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Abstract. We will show that the recent experimental value of the anomalous magnetic moment
(AMM) of the charged lepton µ , denoted as aµ ≡ (g− 2)µ/2, can be explained successfully in a
3-3-1 model with right handed neutrinos adding new heavy SU(3)L neutrino singlets. Allowed
regions satisfying the recent AMM data are illustrated numerically.
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I. INTRODUCTION

The well-known 3-3-1 model with right handed neutrinos (331RN) was introduced [1] not
long after the appearance of the minimal 3-3-1 version [2]. Phenomenology of the 3-3-1 models
is very interesting because it can explain the recent experimental data of neutrino oscillation [3],
including the study of the AMM [4–12]. Theoretical and experimental aspects of the AMM were
reviewed in detailed in Refs. [3, 9]. It was concerned recently [10, 12] that many 3-3-1models
can not explain the recent experimental data of aµ under the constraint of the symmetry breaking
SU(3)L scale obtained by searching for the neutral heavy gauge boson Z′ at LHC. Hence these
3-3-1 models should be extended. In this work, one-loop contributions to aµ predicted by sim-
ple extended 331RN models, which contain heavy gauge singlet neutrinos needed for generating
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active neutrino masses through the inverse seesaw (ISS) mechanism [13–16]. In particular, the
model (331ISS) introduced in Ref. [16] will be chosen for studying the effects of ISS neutrinos
on one loop contributions to aµ . Different from the simple Higgs potential chosen in Ref. [16], a
more general one will be considered in this work [17, 18], where

√
2〈ρ0〉 ≡ v1 6= v2 ≡

√
2〈η0〉.

This leads to the constraint that tβ ≡ 〈η0〉/〈ρ0〉 ≥ 1/3 because η0 generates the top quark mass
at tree level, mt ∼ htv2/

√
2 and v2

1 + v2
2 = v2 = (246)2 GeV2 [19, 20]. We remind that Ref. [16]

considered only the special case of tβ = 1. As we will show, the parameter tβ is very important for
getting large aµ satisfying the experimental data.

Our work is arranged as follows. Sec. II will summary the particle content as well as masses
and mixing of all physical states appearing in the 331ISS model. Sec. III will show the analyti-
cal formulas for one-loop contributions to aµ predicted by the 331ISS model. Sec. IV provides
numerical results to illustrate the allowed regions of parameter space satisfying the experimental
data of aµ . Finally, our conclusions will be presented in Sec. V.

II. THE MODEL AND PARTICLE SPECTRUM

First, we will summary the particle content of the 331ISS model [16] where active neu-
trino masses and oscillations are originated from the ISS mechanism. The quark sector and
SU(3)C representations are irrelevant in this work, and hence they are omitted here. The elec-
tric charge operator corresponding to the gauge group SU(3)L×U(1)X is Q = T3− 1√

3
T8 +X ,

where T3,8 are diagonal SU(3)L generators. Each lepton family consists of a SU(3)L triplet
ψaL = (νa, ea,Na)

T
L ∼ (3,−1

3) and a right-handed charged lepton eaR ∼ (1,−1) with a = 1,2,3.
Each left-handed neutrino NaL = (NaR)

c implies a new right-handed neutrino beyond the SM.
The only difference from the usual 331RN model is that, the 331ISS model contains three right-
handed neutrinos which are gauge singlets, XaR ∼ (1,0), a = 1,2,3. The three Higgs triplets are
ρ = (ρ+

1 , ρ0, ρ
+
2 )T ∼ (3, 2

3), η = (η0
1 , η−,η0

2 )
T ∼ (3,−1

3), and χ = (χ0
1 , χ−,χ0

2 )
T ∼ (3,−1

3).
The necessary vacuum expectation values for generating all tree-level quark masses and leptons
are 〈ρ〉= (0, v1√

2
, 0)T , 〈η〉= ( v2√

2
, 0, 0)T and 〈χ〉= (0, 0, w√

2
)T .

Gauge bosons in this model get masses through the covariant kinetic term of the Higgs
bosons, L H = ∑H=χ,η ,ρ

(
DµH

)†
(DµH), where the covariant derivative for the electroweak sym-

metry is defined as Dµ = ∂µ − igW a
µ T a− gX T 9Xµ , a = 1,2, ..,8. Note that T 9 ≡ I3√

6
and 1√

6
for

(anti)triplets and singlets [21]. It can be identified that g = e/sW and gX
g = 3

√
2sW√

3−4s2
W

, where e and

sW are, respectively, the electric charge and sine of the Weinberg angle, s2
W ' 0.231.

As the usual 331RN model, the 331ISS model includes two pairs of singly charged gauge
bosons, denoted as W± and Y±, defined as

W±µ =
W 1

µ ∓ iW 2
µ√

2
, Y±µ =

W 6
µ ± iW 7

µ√
2

, m2
W =

g2

4
(
v2

1 + v2
2
)
, m2

Y =
g2

4
(
w2 + v2

1
)
. (1)

The bosons W± are identified with the SM ones, leading to the consequence obtained from exper-
iments that

v2
1 + v2

2 ≡ v2 = (246GeV)2. (2)
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Different from Ref. [16], where v1 = v2 were assumed so that the Higgs potential given in Refs. [22,
23] was used to find the exact physical state of the SM-like Higgs boson, the general Higgs po-
tential relating with the 331RN model will be applied in our work. The reason is that the physical
states of the charged Higgs bosons are determined analytically from this Higgs potential, and only
these Higgs bosons contribute significantly to one-loop corrections to the (g− 2)µ . We will use
the following parameters for this general case,

tβ ≡ tanβ =
v2

v1
, v1 = vcβ , v2 = vsβ , (3)

The Higgs potential used here respects the new lepton number defined in Ref. [17], namely

Vh = ∑
S=η ,ρ,χ

[
µ

2
S S†S+λS

(
S†S
)2
]
+λ12(η

†
η)(ρ†

ρ)+λ13(η
†
η)(χ†

χ)+λ23(ρ
†
ρ)(χ†

χ)

+ λ̃12(η
†
ρ)(ρ†

η)+ λ̃13(η
†
χ)(χ†

η)+ λ̃23(ρ
†
χ)(χ†

ρ)+
√

2 f
(
εi jkη

i
ρ

j
χ

k +h.c.
)
, (4)

where f is a mass parameter. The model contains two pairs of singly charged Higgs bosons H±1,2
and Goldstone bosons of the gauge bosons W± and Y±, which are denoted as G±W and G±Y , re-

spectively. The masses of all charged Higgs bosons are [21,24,25] m2
H±1

= (v2
1 +w2)

(
λ̃23
2 −

f
w tβ
)

,

m2
H±2

=
(

λ̃12v2

2 −
f w

sβ cβ

)
, and m2

G±W
= m2

G±Y
= 0. The relations between the original and mass eigen-

states of the charged Higgs bosons are [25](
ρ
±
1

η±

)
=

(
cβ sβ

−sβ cβ

)(
G±W
H±2

)
,

(
ρ
±
2

χ±

)
=

(
−sθ cθ

cθ sθ

)(
G±Y
H±1

)
, (5)

where tθ = v1/w.
The Yukawa Lagrangian for generating lepton masses is:

L Y
l =−he

abψaLρebR +hν
abε

i jk(ψaL)i(ψbL)
c
jρ
∗
k −YabψaL χXbR−

1
2
(µX)ab(XaR)cXbR +H.c.. (6)

In the basis ν ′L = (νL,NL,(XR)
c)T and (ν ′L)

c = ((νL)
c,(NL)

c,XR)
T , Lagrangian (6) gives a

neutrino mass term corresponding to a block form of the mass matrix [16], namely

−L ν
mass =

1
2

ν ′LMν(ν ′L)
c +H.c., where Mν =

 0 mD 0
mT

D 0 MR
0 MT

R µX

 , (7)

where MR is a 3×3 matrix (MR)ab ≡ Yab
w√
2

with a,b = 1,2,3. Neutrino sub-bases are denoted as
νR = ((ν1L)

c,(ν2L)
c,(ν3L)

c)T , NR = ((N1L)
c,(N2L)

c,(N3L)
c)T , and XL = ((X1R)

c,(X2R)
c,(X3R)

c)T .
In the model under consideration, the Dirac neutrino mass matrix mD must be antisymmetric. The
precise form of this matrix will be determined numerically.

The mass matrix Mν is diagonalized by a 9×9 unitary matrix Uν ,

UνT MνUν = M̂ν = diag(mn1 ,mn2 , ...,mn9) = diag(m̂ν ,M̂N), (8)

where mni (i = 1,2, ...,9) are masses of the nine physical neutrinos states niL, namely m̂ν =
diag(mn1 , mn2 , mn3) corresponding to the three active neutrinos naL (a = 1,2,3), and M̂N =
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diag(mn4 , mn5 , ..., mn9) corresponding the six extra neutrinos nIL (I = 4,5, ..,9). The ISS mecha-
nism leads to the following approximation solution of Uν ,

Uν = Ω

(
U O
O V

)
, Ω = exp

(
O R
−R† O

)
=

(
1− 1

2 RR† R
−R† 1− 1

2 R†R

)
+O(R3), (9)

where Uν and Ω are 9×9 matrices; U ≡UPMNS is the well-known 3×3 matrix determined from
the experiment of neutrino oscillation; V is a 6× 6 matrix; and R is a 3× 6 matrix satisfying the
ISS condition that max|Ri j| � 1. There are three zero matrices O have orders 3× 6, 3× 3, and
6×6. The ISS relations are

R∗ '
(
−mDM−1, mD(MT

R )
−1) , M ≡MRµ

−1
X MT

R , (10)

mDM−1mT
D ' mν ≡U∗PMNSm̂νU†

PMNS, V ∗M̂NV † 'MN +
1
2

RT R∗MN +
1
2

MNR†R, (11)

where

MN ≡
(

O MR
MT

R µX

)
.

The relations between the flavor and mass eigenstates are

ν
′
L =Uν∗nL, and (ν ′L)

c =Uν(nL)
c, (12)

where nL ≡ (n1L,n2L, ...,n9L)
T and (nL)

c ≡ ((n1L)
c,(n2L)

c, ...,(n9L)
c)T . In this work, we will con-

sider the normal order of the neutrino data given in [3]. The best-fit values are

∆m2
21 = 7.370×10−5 eV2, ∆m2 = 2.50×10−3 eV2, s2

12 = 0.297, s2
23 = 0.437, s2

13 = 0.0214,

where ∆m2
21 = m2

n2
−m2

n1
and ∆m2 = m2

n3
− ∆m2

21
2 . The detailed calculation shown in Ref. [16],

using the ISS relations and the experimental data, gives

mD ' z×

 0 0.545 0.395
−0.545 0 1
−0.395 −1 0

 ,
where z =

√
2v1 hν

23. The perturbative limit requires that hν
23 <

√
4π , leading to the following

upper bound of z,

z<
1233 [GeV]

tβ
. (13)

For simplicity in the numerical study, we will consider the diagonal matrix MR in the degenerate
case MR = MR1 = MR2 = MR3 ≡ k× z. The parameter k will be fixed at small values that result in
large effects on aµ , namely k ≥ 5.5 so that the exact numerical values of active neutrino masses
are consistent with experimental data of the neutrino oscillation [16]. The choice of k and z as free
parameters has an advantage mentioned in Ref. [16] that we can find numerically the eigenvalues
M̂ν and the mixing matrix Uν using the total neutrino mass matrix Mν once z and k are fixed;
and µX is assumed to be written as a function of MR, mD, UPMNS and active neutrinos masses
from the ISS relations given in Eq. (10) and (11). These results are generally different from the
best-fit values used as inputs in this work, because the ISS relations are the approximate formulas
to determine the Uν at the order O(R2). These formulas only work if max(Ri j) ∼ mD(MT

R )
−1 ∼

1/k� 1. Our numerical investigation shows that when k ≥ 5.5, the active neutrino masses in M̂ν

lie in the 3σ allowed ranges of the experimental neutrino data. Regarding to µX , it can be seen
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from the ISS relations that µX ∼ k2m̂ν , which is small enough so that the ISS mechanism works:
|µX | � |mD| � |MR|. The heavy neutrino masses are nearly degenerate and approximately equal
to MR = k×z. The mixing matrix is estimated by diagonalizing the matrix MN in the limit µX ' 0.

All detailed steps for calculation to derive the couplings that give large one-loop contribu-
tions to aµ are exactly the same as the couplings presented in Ref. [16], which relate to the lepton
flavor violating decays eb→ eaγ , we therefore will not repeat here. We just give the final results
with tβ 6= 1.

III. ANALYTIC FORMULAS OF aµ

In general, Lagrangian of charged gauge bosons contributing to aea with ea = e,µ,τ is

L `nV = ψaLγ
µDµψaL ⊃

g√
2

9

∑
i=1

3

∑
a=1

[
Uν

ainiγ
µPLeaW+

µ +Uν

(a+3)iniγ
µPLeaY+

µ

]
, (14)

leading to the following contributions to the aµ [26]:

aV
ea
≡−4mea

e

(
ℜ[cW

aR]+ℜ[cY
aR]
)
= aW

ea
+aY

ea
,

cW
aR =

eg2mea

32π2m2
W

9

∑
i=1

Uν
aiU

ν∗
ai FLVV

(
m2

ni

m2
W

)
, cY

aR =
eg2mea

32π2m2
W

9

∑
i=1

Uν

(a+3)iU
ν∗
(a+3)i

m2
W

m2
Y
×FLVV

(
m2

ni

m2
Y

)
,

(15)

where e =
√

4παem being the electromagnetic coupling constant and

FLVV (x) =−
10−43x+78x2−49x3 +4x4 +18x3 ln(x)

24(x−1)4 . (16)

Lagrangian of charged Higgs bosons giving one loop contributions to aea is

L `nH =− g√
2mW

2

∑
k=1

3

∑
a=1

9

∑
i=1

H+
k ni

(
λ

L,1
ai PL +λ

R,1
ai PR

)
ea +H.c., (17)

where

λ
R,1
ai =

macθUν

(a+3)i

cβ

, λ
L,1
ai =

3

∑
c=1

cθ

cβ

×
[
(m∗D)acUν∗

ci + t2
θ (M

∗
R)acUν∗

(c+6)i

]
,

λ
R,2
ai = maUν

aitβ , λ
L,2
ai =−tβ

3

∑
c=1

(m∗D)acUν∗
(c+3)i. (18)

We note that the formulas given in Eq. (18) are more general than those in Ref. [16] because of the
appearance of tβ or cβ . The two results are the same when tβ = 1. We emphasize that the couplings
λ L,R,k ∼ tβ , hence they are large with large tβ . In contrast, it does not affect the couplings of W
and Y with charged leptons. This is one of the reasons to explain that contributions of W and Y to
AMM are much smaller than those of charged Higgs bosons, as we will point it out numerically
in Section IV.
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The corresponding one-loop contribution to aea caused by charged Higgs bosons is [26]:

aH
ea
≡−4mea

e

2

∑
k=1

ℜ[cH,k
aR ] =

2

∑
k=1

aH,k
ea
,

cH,k
aR =

eg2

32π2m2
W m2

Hk

×
9

∑
i=1

[
λ

L,k∗
ai λ

R,k
ai mniFLHH

(
m2

ni

m2
Hk

)
+mea

(
λ

L,k∗
ai λ

L,k
ai +λ

R,k∗
ai λ

R,k
ai

)
F̃LHH

(
m2

ni

m2
Hk

)]
, (19)

where

FLHH(x) =−
1− x2 +2x ln(x)

4(x−1)3 , F̃LHH(x) =−
−1+6x−3x2−2x3 +6x2 ln(x)

24(x−1)4 . (20)

We remind that the one loop contributions from neutral Higgs bosons are very suppressed hence
they are ignored here. The deviation of aµ between predictions by the two models 331ISS and SM
is

∆a331ISS
µ ≡ ∆aW

µ +aY
µ +aH,1

µ +aH,2
µ , ∆aW

µ = aW
µ −aSM,W

µ , (21)

where aSM,W
µ = 3.887× 10−9 [27] is the one-loop contribution from W -boson in the SM frame-

work. In this work, ∆a331ISS
µ will be considered as new physics (NP) predicted by the 331ISS and

will be used to compare with experimental data in the following numerical investigation.
The one-loop contributions from Z and Z′ bosons were ignored in our calculation because

they relate to couplings with only charged lepton µ but not new heavy neutral leptons. Hence
the contribution from the Z boson is nearly the same as that in the SM. The contribution from
the Z′ boson is estimated based on the Z contribution, namely with mZ′ ∼ 2 TeV, we have ∆aZ′

µ ∼
aZ

µ ×m2
Z/m2

Z′ ∼ 10−2aZ
µ = O(10−11)� ∆aNP

µ = O(10−9) [3]. This is also consistent with the
result shown in Ref. [12], where mZ′ = 160 GeV is needed to explain ∆aZ′

µ ∼ ∆aNP
µ , leading to

∆aZ′
µ ∼ ∆aNP

µ × (160 GeV)2/m2
Z′ = O(10−11) with mZ′ ≥ 2 TeV.

IV. NUMERICAL RESULTS

Apart from the experimental neutrino data used as the input we mentioned above, the rele-
vant experimental data is taken from Ref. [3], namely mW = 80.385 GeV, g = 0.652, αem = 1/137,
mµ = 0.105 GeV, s2

W = 0.231, e2 = 4παem.
We adopt the contribution from new physics to aµ given in Ref. [3],

∆aNP
µ ≡ aexp

µ −aSM
µ = (255±77)×10−11⇔ 178×10−11 ≤ ∆aNP

µ ≤ 332×10−11, (22)

which is also the same order with the choice adopted in [12], namely ∆aNP
µ ≡ aexp

µ −aSM
µ = (261±

78)× 10−11. This is the discrepancy of the experimental value and the SM’s prediction. If the
331ISS model explains successfully the experimental data, we will have ∆a331ISS

µ = ∆aNP
µ that

must belong to the experimental range given in Eq. (22).
The free input parameters in the 331ISS model are z, k, mH±1

, mH±2
, tβ and mY . As con-

cerned in Ref. [12] that heavier mY will give smaller gauge contribution to aµ hence we will fix
mY = 1.7 TeV corresponding the allowed lower bound of w = 5.06 TeV. This leads to the upper
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bound of MR = kz <
√

4πw/
√

2 = 12.7 TeV. As we discussed above, the coupling of top quark
with η generates the top quark mass, leading to the consequence that tβ > 0.3 in order to satisfy
the perturbative limit. Hence, the range of tβ is taken as 0.3 ≤ tβ ≤ 20 in our numerical investi-
gation. tβ must have a upper bound in this model because the ρ couples with quark to generate
quarks masses at tree level. Similarly to the well-known models such as THDM and the minimal
supersymmetric standard model, this upper bound may be tβ < 60. In addition, because of the
perturbative limit given in Eq. (13), large tβ gives small z, which will result in small ∆aNP

µ . Hence
very large tβ is not interesting to explain the AMM.

The singly charged Higgs masses mH±1,2
contain different free parameters and they can be

light if f is small enough, which is still acceptable in recent discussions [20, 28]. We note that
although f is a coupling beyond the SM, it can be small when the model under consideration
respects a discrete symmetry, for example the Z2 one mentioned in Ref. [29], where ρ and η are
even, while χ is odd. Then f is a soft breaking parameter, hence it can be small. In addition, H±2
can be considered nearly as the ones predicted by the Two Higgs Doublet model [29], where the
lower bound is m2

H±1
≥m2

H±2
≥ 300 GeV [30]. In this work, we will use the lower bound concerned

in Ref. [31], m2
H±1
≥ m2

H±2
> 600 GeV . We have checked numerically that ∆a331ISS

µ will be large

with small charged Higgs masses. Hence we will fix m2
H±1

= m2
H±2

= 650 GeV in the numerical
investigation.

To start the numerical investigation, our scan shows that the sign of ∆a331ISS
µ depends

strongly on both tβ and z, see the illustration in Table 1, where we fix k = 10, tβ = 15, and
mH±1

= mH±2
= 650 GeV.

Table 1. One loop contributions to aµ in the 331ISS model as functions of z, where free
parameters are fixed as k = 10, tβ = 15, and mH±1

= mH±2
= 650 GeV.

z [GeV] ∆aW
µ ×1011 aY

µ ×1011 aH,1
µ ×1011 aH,2

µ ×1011 ∆a331ISS
µ ×1011

60 -8.503 0.8284 110.2 154.1 256.6
70 -8.573 0.8202 110.2 177.9 280.3
80 -8.624 0.8114 101.7 199.1 293.0
90 -8.663 0.8023 85.08 218.0 295.2
100 -8.693 0.7929 60.51 234.9 287.5
110 -8.718 0.7833 28.26 249.9 270.3
120 -8.737 0.7737 -11.40 263.4 244.0
130 -8.753 0.7640 -58.24 275.5 209.3
140 -8.767 0.7545 -112.0 286.4 166.3
150 -8.778 0.7450 -172.6 296.2 115.6
160 -8.788 0.7356 -239.7 305.1 57.27
170 -8.796 0.7264 -313.3 313.1 -8.264
180 -8.803 0.7174 -393.2 320.5 -80.83

There is an interesting result that ∆ a331ISS
µ can reach the order of O(10−9), which is the

same order with aNP
µ given in Eq. (22). In addition the values of z∈ [60GeV, 130GeV] can explain

aNP
µ . For z ≥ 170 GeV, aH,1

µ becomes negative, resulting in that ∆ a331ISS
µ decreases. In deed, the
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perturbative limit gives a constraint that z < 1233/tβ = 82 GeV, hence all values relating with
z > 80 GeV in Table 1 are excluded. Fortunately, the values of z giving ∆a331ISS

µ consistent with
experimental data are still allowed.

Table 2. One loop contributions to aµ in the 331ISS model as functions of k and z, where
free parameters are fixed as tβ = 10, and mH±1

= mH±2
= 650 GeV.

{k, z [GeV]} ∆aW
µ ×1011 aY

µ ×1011 aH,1
µ ×1011 aH,2

µ ×1011 ∆a331ISS
µ ×1011

{6,50} -11.62 0.8480 77.37 83.11 149.7
{6,60} -12.03 0.8447 95.07 105.8 189.7
{6,70} -12.33 0.8411 110.1 127.9 226.5
{6,80} -12.56 0.8370 122.0 149.0 259.3
{6,90} -12.75 0.8326 130.4 169.0 287.5
{6,100} -12.89 0.8279 135.2 187.8 310.9
{6,110} -13.01 0.8230 136.3 205.4 329.6
{6,120} -13.11 0.8178 133.8 221.9 343.3
{7,50} -10.41 0.8454 68.03 75.25 133.7
{7,60} -10.68 0.8412 81.20 94.34 165.7
{7,70} -10.88 0.8365 91.22 112.5 193.7
{7,80} -11.03 0.8313 97.72 129.5 217.0
{7,90} -11.14 0.8257 100.6 145.3 235.6
{7,100} -11.24 0.8198 99.68 160.0 249.3
{7,110} -11.31 0.8137 95.10 173.5 258.1
{7,120} -11.37 0.8073 86.88 186.0 262.3
{8,50} -9.536 0.8425 59.65 68.30 119.3
{8,60} -9.723 0.8373 69.08 84.45 144.6
{8,70} -9.859 0.8314 75.02 99.49 165.5
{8,80} -9.961 0.8250 77.29 113.3 181.5
{8,90} -10.04 0.8183 75.83 126.0 192.6
{8,100} -10.10 0.8112 70.66 137.6 199.0
{8,110} -10.15 0.8038 61.85 148.1 200.7
{8,120} -10.19 0.7963 49.50 157.8 197.9
{9,50} -8.892 0.8394 52.17 62.16 106.3
{9,60} -9.026 0.8330 58.47 75.90 126.2
{9,70} -9.122 0.8260 61.12 88.46 141.3
{9,80} -9.193 0.8184 60.02 99.84 151.5
{9,90} -9.248 0.8104 55.21 110.1 156.9
{9,100} -9.290 0.8022 46.76 119.4 157.6
{9,110} -9.324 0.7937 34.77 127.7 154.0
{9,120} -9.352 0.7851 19.35 135.2 146.0

For small tβ = 10, corresponding to z ≤ 123 GeV obtained from Eq. (13), we can see the
dependence of different one-loop contributions to a331ISS

µ as functions of z and k in Table 2.
We can see that the allowed smallest k = 6 allows large a331ISS

µ which enhances with in-
creasing z. The maximal values correspond to the allowed largest z which is constrained by
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the perturbative limit. This value of k can explain successfully the experimental data. On the
other hand, the maximal max(a331ISS

µ ) decreases with larger k. When k ≥ 9, it can be seen that
max(a331ISS

µ ) < 178× 10−11 which is lower bound allowed by the experimental data. Hence, in
order to get large max(a331ISS

µ ) we will choose k = 6 for studying the case of small tβ .
There are some interesting properties in the Table 1 as the following: i) ∆aW

µ and aY
µ are

much smaller than those from the Higgs contributions; ii) aH,1
µ may be negative with large z ; iii)

a331ISS
µ has a maximal value for a value of z, namely z ∈ [80GeV, 100GeV]. The first property is

consistent with the previous studies mentioned in this work. Two remaining properties imply that
the dependence of a331ISS

µ on z, k and tβ is rather complicated. Our numerical scan suggests that
large values of a331ISS

µ require small k and large tβ , see the numerical illustration shown in Table 2.
For illustration the case of small tβ and k, we choose tβ = 5 corresponding to z < 245

GeV, and k = 6 to get large max(a331ISS
µ ). The numerical results are shown in Table 3. We get

Table 3. One loop contributions to aµ in the 331ISS model as functions of z, where free
parameters are fixed as k = 6, tβ = 5, and mH±1

= mH±2
= 650 GeV.

z [GeV] ∆aW
µ ×1011 aY

µ ×1011 aH,1
µ ×1011 aH,2

µ ×1011 ∆a331ISS
µ ×1011

90 -12.75 0.8326 33.46 42.25 63.80
100 -12.89 0.8279 34.69 46.95 69.57
110 -13.01 0.8230 34.96 51.35 74.13
120 -13.11 0.8178 34.29 55.47 77.46
130 -13.19 0.8124 32.67 59.31 79.60
140 -13.26 0.8069 30.13 62.89 80.56
150 -13.32 0.8013 26.67 66.23 80.38
160 -13.37 0.7956 22.33 69.34 79.09
170 -13.42 0.7899 17.10 72.24 76.72
180 -13.45 0.7841 11.02 74.95 73.31
190 -13.49 0.7782 4.108 77.49 68.88
200 -13.52 0.7724 -3.629 79.86 63.48
210 -13.55 0.7665 -12.17 82.08 57.13
220 -13.57 0.7607 -21.50 84.16 49.85
230 -13.59 0.7549 -31.60 86.11 41.67
240 -13.61 0.7491 -42.47 87.94 32.61

max(a331ISS
µ )' 81×10−11 which is still smaller than that obtained from tβ = 10 and 15 indicated

in the two Tables 1 and 2. The reason is that negative aH,1
µ does not allow large and positive a331ISS

µ .
In general, after checking numerically, we conclude that small tβ < 5 does not give large a331ISS

µ

enough to explain successfully the experimental data (22).

V. CONCLUSIONS

In this work, we have shown that the 331ISS [16] can explain successfully the recent exper-
imental data of aµ if the relation v1 = v2 is released. In addition, more necessary conditions for the
free parameters resulting in consistent aµ with experiment are: i) tβ ≡ v2/v1 should be large, ii)
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k = MR/z should be small. These conditions should be paid attention to in further studies relating
with the 331ISS model discussed in this work. The conclusion may be still true for other 3-3-1
models with the ISS mechanism in order to explain successfully the experimental data of aµ . This
will be our future topic.
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