
European Scientific Journal January 2019 edition Vol.15, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 

423 

The Heterogeneity of the Abiotic and Biotic 

Components of Techno-Ecosystems:   

View from Space and from The Earth 
 

 

 

Prof. Protasov A.A.,  
Institute of Hydrobiology of NAS of Ukraine, Kyiv, Ukraine 

Prof. Sophia Barinova, 
Institute of Evolution, University of Haifa, Mount Carmel, 199 Abba 

Khoushi Ave., Haifa, Israel 

MSc. Novoselova T.N.,  
Institute of Hydrobiology of NAS of Ukraine, Kyiv, Ukraine 

Buseva Zh.F., PhD,  
The State Scientific and Practical Center of Belarus  

for Biological Resources of the NAS 

Tomchenko O.V., PhD,  
State institution "Scientific Centre for Aerospace Research of the Earth of 

the Institute of Geological Science of the NAS of Ukraine 

Sylaieva A.A., PhD, 
Institute of Hydrobiology of NAS of Ukraine, Kyiv, Ukraine 

Lubskiy N.S., PhD, 
State institution "Scientific Centre for Aerospace Research of the Earth of 

the Institute of Geological Science of the NAS of Ukraine 

Prof. Semenchenko V.P,  

Sysova E.A., PhD, 
The State Scientific and Practical Center of Belarus  

for Biological Resources of the NAS 

 
Doi: 10.19044/esj.2019.v15n3p423       URL:http://dx.doi.org/10.19044/esj.2019.v15n3p423  

 
Abstract  

 The article discusses the use of different methods to assess the spatial 

structure of the biotic and abiotic component of the techno-ecosystems of 

cooling ponds of thermal and nuclear power plants in Belarus and Ukraine. 

Field studies provide point information on the parameters of biotic and abiotic 

variables, whereas statistical mapping and remote sensing methods makes it 

possible to generalize visualization and provides a holistic picture of the 

spatial heterogeneity of conditions and distribution of biota. Spatial changes 

in cooling ponds are mainly determined by hydrodynamic conditions in the 

http://dx.doi.org/10.19044/esj.2019.v15n3p423


European Scientific Journal January 2019 edition Vol.15, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 

424 

pond and the presence of anthropogenic flow of cooling water. Studies have 

shown that the distribution of quantitative indicators of plankton in the surface 

layer in the Khmelnitsky NPP cooling pond was mostly determined by the 

position of individual stations and sections of the pond surface relative to man-

made technical and wind circulation flows. In contrary, thermal conditions had 

the greatest influence on the characteristics of the plankton distribution in the 

Lukomskoye Lake - cooling pond of Lukomlskaya TPP. 

 
Keywords: Phytoplankton, Zooplankton, Lakes, Ecological mapping, 

Remote sensing, Nuclear Power Plants, Thermal Power Plants, Techno-

ecosystem 

 

Introduction 

 Freshwater Heterogeneity of habitat conditions in water bodies, as well 

as heterogeneity of biotic elements of ecosystems can be considered at various 

levels. For example, the allotment of littoral and profundal zones of water 

bodies is based on a significant difference in habitat conditions of hydrobionts 

in the coastal area and in the open part of the reservoir. However, the littoral 

itself is a fairly complex habitat; in particular, higher aquatic plants of different 

eco-morph groups are a factor that increases heterogeneity. 

 It is shown that certain discreteness of biotic communities can be 

formed even in the absence of an obvious heterogeneity of environmental 

conditions (Zhirkov et al., 2010). Well-known are vertical stratification of 

zooplankton (Kiselev, 1980), mosaic, and patchiness of benthic communities 

(Townsend, 1989). Techno-ecosystems of reservoirs that are used as coolers 

for thermal and nuclear power plants have a great heterogeneity in both the 

biotope structure and biotic communities (Protasov, 2011, 2013, 2014). This 

is due to the design features of cooling systems, as well as with the discharge 

of heated waters, the formation of wind and technogenic flows.  

 A complex structure of hydrodynamic flows, thermal fields, and 

circulation are formed. Regarding the pelagic groups of hydrobionts of these 

water bodies have certain heterogeneity (Barinova et al., 2017a). Distribution 

of different types of bottom, different technogenic solid substrates besides the 

thermal and hydrodynamic regime are influence on the heterogeneity of 

benthic and periphyton communities 

 The aim of this work was to identify the nature of heterogeneity of 

conditions and distribution of hydrobiont groups in water bodies, which are 

associated with cooling systems of power plants. 

 

Material and Methods 

 Studies were carried out on two cooling ponds. The Khmelnitsky NPP 

(KhNPP) cooling pond is an artificial reservoir with an area of 17 km2, an 
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average depth of 6 m, was commissioned in 1987. The entrance to the intake 

channel, as well as the discharge of heated water from the discharge channel, 

are located in the eastern part of the reservoir. The KhNPP cooling pond was 

invided in 2004 by zebra mussel (Dreissena polymorpha Pall.) that has 

maximal biomass in 2008 and then slowly decreased. Its biofouling of the 

technical constructions of the canals has created giant problem for the KhNPP 

functionality and development of other organisms in the cooling pool 

ecosystem (Barinova et al., 2017b). Detailed characteristics are presented in 

(Protasov, 2011). Studies of this water techno-ecosystem have been conducted 

for about 20 years’ (Protasov et al., 2017a). 

 The cooling pond of Lukomlskaya TPP is a lake in the north-eastern 

part of Belarus (Lake Lukomskoye), on the bank of which in its northeastern 

part there is a power plant with intake and discharge channels. The lake has an 

area of about 33 km2, and used as a cooler since 1964 (Mitrahovich et al., 

2008). 

 Both water bodies do not have special training wall to direct the heated 

water, therefore, the distribution of the temperature fields depends essentially 

on the wind currents. 

 
Figure 1. Map of location of areas and sampling points with input (blue arrow), output (red 

arrow) of hot water from KhNPP to the cooling pond (a), map of location of the sampling 

transects (1, 2, 3) Lukomskoye lake (b) Dis – exit point of the discharge channel, TPS – 

location of Thermal Power Station 

 

 Current analysis is represented the results of research of the KhNPP 

cooling pond for certain years in the period from 2006 to 2015 and 

Lukomlskaya TPP cooling pond for 2015 and 2017. Map of location of areas 

and sampling points in the KhNPP cooling pond is shown in Figure 1а. 

Sampling on Lake Lukomskoye was carried out on three transects (Figure 1b). 

Four stations were equally distributed at each transect. The sampling, fixation 

and processing of hydrobiological samples were carried out according to 

generally accepted procedures (Methodology, 2006).  
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 The following physicochemical parameters of water were recorded 

during the sampling in both reservoirs: temperature (ºС), transparency (Secki 

disk, m), and depth (m). 

 Samples of phytoplankton with a volume of 0.5 dm3 were taken in the 

pelagic part of the KhNPP cooling pond using a Ruttner's bathometer from the 

surface horizon (0.3–0.5 m). In August 2012, 11 phytoplankton samples were 

taken in the KNPP cooling pond, in September 2015 - 12.  

 Twelve integral samples of phytoplankton were taken using a Ruttner's 

batometer (volume 2 liters) in Lake Lukomskoye in August 2015 and August 

2017 from the following horizons: max depth - depth of transparency - half 

transparency depth - 1 m depth - surface. Phytoplankton samples were fixed 

with a 2% formaldehyde solution. Transportation of samples was carried out 

in ice box (Methodology, 2006; Shcherbak, 2006). 

 A fixed material was quantitatively recorded by direct counting in a 

Nageott chamber (0.02 cm3) using an MBI-3 microscope under magnification 

x400 and x800. The diatom species were studied under × 1000 with Axio 

Amager A1 light microscope. 

 The modern taxonomy of algae taxa is given according to 

algaebase.org (Guiry, Guiry, 2018). 

 The calculation of algae abundance and biomass (thousand cells dm-3 

or million cells dm-3) in each sample was made according (Topachevsky, 

Masyuk, 1984).  

 Average cell volumes and the stereometric method were used for 

calculation the phytoplankton biomass (Kumsare, 1963; Kuzmin, 1975). 

 Mathematical processing of the primary material was performed using 

the Waco application software package developed at the Institute of 

Hydrobiology of the National Academy of Sciences of Ukraine (Protasov et 

al., 1999). 

 Altogether 24 samples of zooplankton were taken in August 2015 and 

August 2017 field trips in Lake Lukomskoye. Crustacean zooplankton 

samples were obtained by vertical hauls using a tow net of 100 μm mesh size 

(0.25 m diameter). Samples collection was performed at each station in 3 

replicates. Samples were preserved with 4% formaldehyde and treated under 

a stereomicroscope to determine species composition. 

 For the analysis of the heterogeneity of zoobenthos, 8 samples were 

collected from the KhNPP cooling pond in October 20–21, 2016 on the depths 

2.5–9.0 m, where bottom was represented by sands of varying degrees of 

siltation. Sampling was done by a bottom grabber; the sampling area was 0.01 

m2. Benthic invertebrates were sorted under microscopes, identified to species 

level, and counted. 
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 To analyze the dynamic picture of the flows in the KhNPP cooling 

pond, a mathematical method of "full flows" was applied (Protasov, 2011; 

Timchenko et al., 2014). 

 The Shannon-Boltzmann entropy function was used to quantify the 

diversity of temperature conditions for the KhNPP cooling pond (Viktorov, 

1986, Protasov, 2008). The values of the relative area of temperature fields 

with a similar temperature are used. 

 The Shannon diversity index was assessed by calculation of species 

diversity (Pesenko, 1982; Protasov, 2008). The similarity between the 

communities and the originality of the composition was determined by the 

method of Smirnov (Smirnov, 1969). The definition of similarity indexes 

according to Smirnov was carried out according to Smirnov (1969) and 

Pesenko (1982), the originality txx was carried out by analyzing the frequency 

(occurrence or absence of a species) calculated for each list of species (CELS) 

at a given station. 

 The coefficient of variation (СV) was calculated by the equation 1 

(Plokhinsky, 1970): 

СV = (100σ) / M, %                     (1)  

Where: σ is the standard deviation; M - arithmetic average. 

Remote sensing satellite sensors that are provide 3-14 μm data have been 

widely used in the field of Earth remote sensing and allow the creation of 

products based on the detection of cells of intense thermal radiation (detection 

of forest fires, study of volcanic activity) or the formation of maps of the 

thermal field of low spatial resolution for the solution of meteorological 

problems. 

 The most commonly used longwave infrared data is the data acquired 

by Thermal Infrared Sensor (TIRS) mounted on Landsat-8 satellite, which 

provides radiance data in two bands: in 10.3-11.3 µm and 11.5-12.5 µm. The 

temperature is determined from Planck's law (Tang, 2014) as: 
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where Ls – spectral radiance from the Earth’s surface, estimated from 

calibrated and atmospherically corrected satellite longwave infrared data; ε(λ) 

– spectral emissivity; c1 = 2hc2 = 1,191·10-16 W·m2 and c2 = 
k

ch
 = 1,439·10–

2 m·К – first and second Planck’s constant; λ – radiation wavelength. 

 Determination of the Earth’s surfaces emissivity distribution using 

remote sensing data is performed by processing images of the visible and near-

infrared range, in particular by establishing of the relationship between 

emissivity the NDVI index distribution. The source of the visible and near-
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infrared data can be any satellite that able to provide it: Landsat-8, Sentinel-2 

etc. The emissivity is a rather inert surface feature, and for its determination, 

it is possible to involve data obtained with some time interval in comparison 

with the data of the long-wavelength range. For large homogenous areas, like 

water surfaces, the common table-value can be used (water emissivity is ≈ 

0.985). Most commonly, satellite remote sensing data is provided by USGS 

EarthExplorer web-service (https://earthexplorer.usgs.gov/). 

 Daily average wind speed was established for the mapping according 

to remote sensing data. 

 The study of the distribution of phytoplankton is possible with the use 

of remote sensing data, based on a specific empirical index – Normalized 

Relative Algoindex (NDAI) (Silkin, 2012). The NDAI is calculated  as 

follows: 

5.0
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where IB, IG, IR, INIR - stand for the spectral reflectance measurements acquired 

in the blue, green, red (visible) and near-infrared regions, respectively. 

Atmospheric noise and background radiation of water are minimized when 

calculating algoindex. Spectral characteristics of scattered and concentrated 

phytoplankton are taken into account. Values less than -0.5 correspond to 

minimum values of phytoplankton biomass; about 0 - low biomass of 

phytoplankton; more than 0.5 - the level of biomass during the "flowering" of 

water. 

 The methods for data analysis were used as comparative analysis of 

species richness and qualitative and quantitative data of hydrobionts as well 

as statistically generated maps of environmental and biological data in the 

Statistica 12.0 program (Barinova, 2017). 

 

Results  

Features of hydrothermal and hydrodynamic regime of the Khmelnitsky 

NPP cooling pond 

 From 6 to 9 million m3 of water, depending on the operating mode of 

the pumps passes into the cooling system per day when two power units are 

operating (Protasov, 2011). The thermal heterogeneity in the surface layer of 

the cooling pond is mainly determined by the currents of water, formed under 

the influence of wind and technogenic currents. Maps of the distribution of 

temperature fields obtained with the help of remote sensing, for different 

periods with winds of the main directions are shown in Figure 2.  

 So, at the western wind, which is most unfavorable for cooling 

function of cooling pond the flow of heated water is pressed to the eastern 

shore and along the shortest trajectory, is directed from the discharge channel 
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to the intake one (Figure 2a). The most favorable for the cooling of discharge 

waters is the situation that is formed by the east wind (Figure 2 b). In contrary, 

the north wind presses the flow from the discharge channel to the southern part 

of the water body. In these conditions, the reservoir is actually divided into the 

cold northern and warm southern parts (Figure 2c). With the south wind, the 

mass of heated water is distributed from the diverting channel through the 

pond center to the dam in the northern part of the reservoir, when sufficiently 

cooled water enters the intake channel (Figure 2 d). 

 
Figure 2. Distribution of temperature fields in the KhNPP cooling pond at the western, 3.7 

m s-1 (a), east, 1.1 m s-1 (b), northern, 1.3 m s-1 (c), and south, 3.2 m s-1 (d) wind directions 

(according to remote sensing data) 

 

 Analysis of four real meteorological situations has shown that very 

diverse temperature conditions are formed in the surface layer of the cooling 

pond. For the four main wind situations on the grid of stations where plankton 

samples were collected, the Shannon-Boltzmann index value (bit/ºC) was 

close to the maximum (Table 1). Values of evenness indicate that fields with 

different temperature levels did not differ significantly in area. 
Table 1. Values of the Shannon-Boltzmann index for temperature at the wind of the main 

directions in the KhNPP cooling pond. 

Indices north south west east 

Shannon H' (Log Base 2), bit/ºC 3.582 3.584 3.579 3.583 

Shannon Hmax (Log Base 2) 3.585 3.585 3.585 3.585 
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 For all the illustrative value of the results of space imagery, it must be 

taken into account that we get a static picture, while the result at a given time 

is a derivative of many factors. This is a more or less stable result of the action 

of complex dynamic processes. 

 

 The dynamics of water masses is one of the leading factors of the 

functioning of water ecosystems and the creation of heterogeneous conditions 

in water bodies, especially in the pelagic zone. The results of modeling of the 

movement of water masses are in good agreement with the observed pattern 

of temperature distribution (Figure 3) 

 
Figure 3. Flow diagram (flow functions, m3 s-1) in the KhNPP cooling pond with the 

operation of two units and a flow velocity of 3 m s-1 in wind conditions of the western (a), 

eastern (b), northern (c) and southern (d) directions according to Protasov (2011). 

 

 Thus, with the wind of the northern direction, the transit flow from the 

place of discharge partially captures the southern part, goes to the western one 

of the reservoir, and then, changing the direction to the eastern one, it wash up 

the northern shore and fall into the intake channel. That is, the temperature 

rises in the southern part of the reservoir, which is confirmed by the results of 

remote sensing (Figure 2c). In addition, in the eastern part of the reservoir 
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between the discharge and intake channels a field with an anticyclonic moving 

of water masses is formed, and near the western shore - cyclonal (Figure 3c). 

 The distribution of phytoplankton by the water area of the KhNPP 

cooling pond depends on the complex of conditions that form in the reservoir 

such as, for example, temperature, and flow velocity. The main factors that 

influence the degree of its heterogeneity are wind flows (with non-operating 

units) and the NPP operation mode.  

 With the operation of one unit (September 11 of 2015) and the east 

wind with speed of up to 3.5 m s-1, the zone of the highest temperatures (upper 

then 26.5°C) spread through the central part where the temperature already 

decreased by 4-5°C (Figure 4a). In the surface horizon of the cooling pond, in 

the part remote from the outlet of the discharge channel, the average 

temperature was 20.8±0.2°С. The Secchi transparency was ranged from 1.1 to 

2.6 m, the minimum and maximum values were recorded in the southern and 

northern areas, respectively, while in the rest of the water area the transparency 

changed insignificantly and averaged 2.21±0.04 m (Figure 4b). 

 
Figure 4. Temperature distribution, °C in the surface horizon (a) and the Secchi 

transparency, m (b) in KhNPP cooling pond, September 11 of 2015. 

 

 The phytoplankton taxonomic composition on the water area under 

these conditions was heterogeneous. The algae composition of the southern 

part of the cooling pond, not included in the circulation and wind flows, had 

the greatest originality (by the Smirnov index, txx=154). The originality of the 

remaining stations was estimated at an average of 91.0±11.7. Local groups of 

phytoplankton at some stations had a greater similarity in the eastern and 

western areas. 

 Abundance fluctuations on the water area were significant: from 0.66 

to 52.16 million cells dm-3 (CV=128.22%). The minimum values were 

recorded in the central and western areas of the reservoir, the maximum values 

in the southern area (Figure 5a). The abundance value was mainly due to the 

development of cyanobacteria, whose share in the total abundance averaged 

69.08±6.36%. A positive relationship was established between the total 
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abundance and abundance of cyanobacteria (r=0.99). The diatom fraction had 

an average of 15.12±3.80% abundance. The distribution of diatoms in the 

surface horizon was quite heterogeneous (CV=90.95%). The minimum 

abundance was noted in the center of the reservoir; the maximum was in the 

southern area. The green algae did not play a significant role (7.69±2.50% of 

the total abundance) and their abundance also varied over a wide range 

(CV=141.40%). 

 
Figure 5. Distribution of phytoplankton abundance, thousand cells dm-3 (a) and 

phytoplankton biomass, mg dm-3 (b), in KhNPP cooling pond, September 11 of 2015. 

 

 Biomass varied over a wide range: from 0.13 to 11.95 mg dm-3 

(CV=147.47), the minimum was recorded in the center of the cooling pond, 

the maximum in the southern area (Figure 5 b). The basis of the total biomass 

in most of the water area was formed by diatoms (46.19±7.45% from total). 

The share of greens and cyanobacteria was 18.15±5.74 and 16.86±4.36%, 

respectively. The biomass of cyanobacteria was distributed similar to their 

abundance. Spatially minimum of the total biomass coincided with the 

minimum biomass of diatoms, and the maximum with the maximum biomass 

of green algae. 

 Interesting is the distribution of phytoplankton biomass in the 

circulation flow: it increased in the direction from the discharge channel to 

intake one (the character and direction of the flow passing through the eastern, 

central, western and again eastern areas is given in Figure 3b) due to the 

gradual increase in the flow the share of large-cell diatoms and the parallel 

reduction the share of smaller green and cyanobacteria. In the area of the 

intake channel, an increase by an order of magnitude of the average size of 

phytoplankton cells was observed in comparison with the outlet area of the 

discharge channel. 

 The diversity in abundance (according to the Shannon index) varied in 

the range from 0.83 to 3.02 bit/ind. The minimum values were associated with 

the overwhelming dominance (87.48 ± 2.88%) of cyanobacteria Microcystis 

aeruginosa (Kützing) Kützing and Aphanocapsa incerta (Lemmermann) 
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G.Cronberg & Komárek. These species were also dominated on the rest of the 

water area, but their share in the total abundance was lower (50.68±5.87%) 

(Figure 6). An inverse relationship between the values of the Shannon index 

and the share of cyanobacteria in the total abundance (r = -0.86) was 

established. 

 
Figure 6. Distribution of diversity indicators in abundance (according Shannon index), 

bit/ind (a) and share of cyanobacteria in total abundance, % (b) in KhNPP cooling pond, 

September 11 of 2015. 

 

 The homogeneity of the biomass values structure increased in the 

direction toward the center of the cooling pond (Figure 7). Fluctuations in the 

Shannon index over the water area were 0.66-3.47 bit/mg. The level of 

diversity in biomass was determined mainly by diatoms. The correlation 

coefficient of the values of the Shannon index from the share of diatoms in the 

total biomass was -0.73. 

 
Figure 7. Distribution of Shannon index value bit/mg in biomass (a), and share of diatoms 

in total biomass, % (b), KhNPP cooling pond, September 11, 2015. 

 

 During the research in phytoplankton, 11 species - temperature 

indicators were detected, of which 8 were indicators of temperate warm water, 

1 – thermophilic, and 2 – eurytherms. Indicators of temperate warm water 
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were noted in all areas of the reservoir, eurytherms – in the center and eastern 

area, thermophilic – only in the western (Table 2). 
Table 2. Distribution of the number of algae temperature-indicative species by areas of the 

KhNPP cooling pond, September 11 of 2015. 

Temperature indicators East North West Centre South 

temp 4 5 3 4 3 

warm 0 0 1 1 0 

eterm 1 0 0 1 0 

Note: temp – indicators of temperate warm water, warm – thermophilic, eterm – 

eurythermic. 

 

 Indicators of temperate warm water were noted at all the stations. Their 

list was formed by representatives of diatoms. The number of indicator species 

varied at individual stations from 1 to 5 (Figure 8). The temperate warm 

indicators are representing the “coolest” water from these three groups of algal 

species. So, its distribution show that northwestern and northeastern parts of 

cooling pool have lowermost temperature in the sampling date. 

 
Figure 8. Distribution of the number of temperate warm water indicators by individual 

stations of KhNPP cooling pond in September 11 of 2015 

 

Algoindex and phytoplankton 

 Remote sensing data are still little used in research and monitoring of 

the state of techno-ecosystems of power plants and often they need 

verification. To check the distribution of algoindex indicators in the KhNPP 

cooling pond, obtained from satellite observations, we compared them with 

the distribution of phytoplankton biomass obtained from field terrestrial 

research. 
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Figure 9. Distribution of the algoindex NDAI value in the KhNPP cooling pond, September, 

18 of 2015 with the north-west direction of the wind (a) and phytoplankton biomass 

indicators in the KhNPP cooling pond (b), August, 29 of 2012 (wind directions, directions 

and consumption of wind flows are indicated). 

 

 During remote sensing period (September, 18 of 2015), in the region 

of the KhNPP cooling pond, a wind mainly north-western and western 

directions with an average speed of up to 5 m s-1 was observed. Under these 

conditions, the central part of the cooling pond was a zone with minimal index 

values (Figure 9a). Toward the periphery, the index values gradually increased 

and reached a maximum in the peripheral parts of the southern, western and 

northern areas, which in this direction of the wind are few involved in the 

circulation flows. The western part of the reservoir is quite clearly separated 

from the zone of minimum index values.  

 A significant heterogeneity was observed in the distribution of 

phytoplankton biomass in the water area of the cooling pond (Figure 9b). High 

values of biomass were recorded mainly on the peripheral part of the reservoir. 

Thus, the distribution of phytoplankton biomass in general terms corresponded 

to the distribution of the algoindex. 

 The zoobenthos of the KhNPP cooling pond also had a large 

heterogeneity, which is determined by the diversity of biotopes and habitat 

conditions. The taxonomic structure and distribution of indicators of the 

abundance of zoobenthos is mainly determined by the depth and type of 

bottom and, to a lesser extent, by temperature in the bottom layers of water. 

During the period of decreasing development of dreissenids after 2008 up to 

present, the zoobenthos biomass decreased, however, the heterogeneity of its 

distribution in different areas of the reservoir was remained - the maximum 

biomass values (in 2008) were 136 times higher than the minimum (in 2016) 

(Figure 10). So, now high biomass in shallow areas where samples were taken 

and also in the southern region was determined by the development of large 

Chironomidae. 
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Figure 10. Distribution of the zoobenthos biomass, g dm-2, KhNPP cooling pond, October 

2015. 

 

 The number of taxa, as well as abundance and biomass decrease with 

increasing depth and siltation rate in reservoir. For example, the smallest 

biomass (on average for the period 1998, 1999, 2001 was at a depth of 5–6 m 

(1.78 g m-2), at other depths it was 2–16 times higher, increasing 176 times at 

a depth of 2–3 m. 

 The use of information from satellites made it possible to estimate the 

change in the KhNPP cooling pond area when the water level fluctuates and 

there is no additional pumping in low-water years (2011, 2015, and 2016). 

 According to the results of the assessment in August 2015, the area of 

drained shallow waters amounted to 1.141 km2, and by 2016 it decreased to 

0.627 km2, which is about 3–6% of the surface of the water body at the 

maximum water level.  

 

Distribution of temperature fields and biotic variables in the Lukomskoye 

Lake 

 Surface flows in calm weather are directed from the northwestern part 

of the Lukomskoye Lake to the southern one, while backward flows create 

several cyclonal and anticyclonal circulations. With the southern wind, the 

high temperature zone is localized in the northern part of the lake (Figure 11). 
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Figure 11. Temperature fields of the Lukomskoye Lake, August 30 of 2017 (the south 

wind) according to remote sensing data 

 

 With the north wind, the displacement of the heated water masses, and 

hence the temperature decrease, occurred from north to south, so the picture 

of the distribution of the temperature readings looked quite natural (Figure 

12a). We can to use the temperature distribution data of 2015 and 2017 

because the regime of discharge of heated waters of the Lukomskoye Lake 

was rather similar year by year (Mitrahovich et al., 2008).  

 
Figure 12. Water temperature distribution, oC in the surface horizon (a) and Secchi 

transparency, m (b) on three transects, the Lukomskoye Lake, September 12 of 2015. 

 

 However, the distribution of Secchi transparency was different (Figure 

12b).  

 The distribution of phytoplankton abundance and biomass 

indicators confirms the dependence on it transparency (Figures 13, 14), the 

biomass minimum is noted just on the intermediate transect (Figure 13b). 
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Figure 13. Distribution of phytoplankton abundance, thousand cells dm-3 (a) and 

phytoplankton biomass, mg dm-3 (b) on three transects in the Lukomskoye Lake, September 

12 of 2015 

 
Figure 14. Dependence of Secchi transparency on phytoplankton biomass in the 

Lukomskoye Lake, September 12 of 2015 

 

 It should be noted that the dependence of Secchi transparency on 

phytoplankton biomass is exponential; algae with relatively low biomass have 

the greatest effect on change of transparency (Figure 14).  

 A fairly smooth transition of thermal conditions does not correspond 

to the same pattern for the biomass of phytoplankton. However, this does not 

apply equally to all groups of algae. A decrease in the shares of green and 

diatom algae occurred along the gradient of temperature decrease, while 

cyanobacteria - in the opposite direction (Figure 15). Thus, the picture of the 

distribution of the abundance indicators was generally determined by the 

distribution of cyanobacteria. 
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Figure 15. Distribution of abundance, % of Chlorophyta (a), Bacyllariophyta (b) and 

Cyanobacteria (c) in the Lukomskoye Lake, September 12 of 2015 

 

 With regard to the distribution of phytoplankton biomass, the picture 

is looked somewhat different (Figure 16). 

 
Figure 16. Distribution of biomass, % of Chlorophyta (a), Bacyllariophyta (b), 

Cyanobacteria (c) and Miozoa (d) in the Lukomskoye Lake, September 12 of 2015 
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 Zooplankton of the Lukomskoye Lake. Studies of the spatial 

distribution of zooplankton were carried out in 2015 and 2017. Thermal 

conditions during these periods were somewhat different (Figures 11, 12a, 

17a). 

 
Figure 17. The distribution of water temperature in three transects in 2017 (a), the 

dependence of the abundance (b) and the biomass of zooplankton (c) on temperature in 2015 

and 2017 

 

 In 2017, not only the temperature range in the investigated water area 

was somewhat narrower, but the distribution also looked more homogeneous 

than in the data of 2015. The majority of the stations of the research, except 

one, were in the temperature range 23–26°C. 

 The distribution of zooplankton abundance indices, unlike 

phytoplankton, did not follow unambiguously up the distribution of 

temperature value (Figure 18a). However, in general, the abundance of 

zooplankton (2015) decreased quite naturally with an increase in temperature 

(Figure 17b), although the two levels can be distinguished: up to 25 ºС, where 

the highest values were noted, and higher, where the abundance almost did not 

change. For zooplankton biomass values in the temperature gradient (Figure 

17c), an increase in biomass in the range 25–29°C has been noted. 

 According to 2017 data, the distribution of abundance and biomass in 

the temperature gradient did not show any clear patterns of change (Figure 

17b, c), and was associated, rather, with local specific conditions in the pond. 
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Figure 18. Distribution of zooplankton abundance in three transects in 2015 (a) and in 2017 

(b) in the Lukomskoye Lake 

 

 However, with a large heterogeneity of the general zooplankton 

variables (2017), the distribution of individual taxonomic groups was more 

closely related to temperature (Figure 19). 

 
Figure 19. Distribution of abundance (a) and biomass (b) of Cladocera, as well as 

abundance (c) and biomass (d) of Copepoda in three transects in the Lukomskoye Lake in 

2017. 

 

Discussion 

 The terrestrial landscapes are highly heterogeneous, and the lake 

ecosystems are also heterogeneous in their spatial aspect, because they are 

associated with multidirectional and differently influenced environmental and 
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climate factors (Kratz et al., 2005). The most sensitive to external influences 

link in the lakes is phytoplankton, as the first trophic level. Algal beta diversity 

reflects the highest rate of energy turnover in an ecosystem and demonstrates 

high heterogeneity in space and time (Maloufiet al, 2016). In addition to 

hydrochemical and hydrophysical environmental factors directly acting on 

plankton, there are also indirect effects, such as wind exposure and lake level 

fluctuations (Kratz et al., 2005; Nicol et al., 2013). The anthropogenically 

impacted lakes can be compared to the model natural lakes if only one factor 

is critical to the ecosystem like water temperature (Allan et al., 2016). In 

analysis of complex of influencing factors can help distance monitoring of the 

lake surface in which the phytoplankton sustainability is reflected (Allan et al., 

2016). 

 It was established in the last years' research of different lakes that 

remote sensing of surface water temperature using satellite-based thermal 

infrared sensors can be accurate to fractions of a Celsius degree (°C) (Allan et 

al., 2016). The experimental data was confirming high correlation between 

measured surface water temperatures and validated using a high-frequency 

sensor data. It gives us the way for comparing of ecological data mapping and 

the water temperature distribution maps which were constructed by two 

different methods from direct measurements of water temperature maps 

(Figures 4, 8), and remote sensing maps. So, the remote sensing maps can be 

used for approximately interpretation of biological parameters distribution in 

the cooling pools. 

 Earlier (Viktorov, 1986, Protasov, 2008), the Shannon-Boltzmann 

entropy function was used to quantify the variety of environmental conditions 

likes landscape diversity. We calculated a variety of temperature conditions 

for the KhNPP cooling pond. 

 Field studies have shown that the discharge of heated waters has a 

significant effect on the hydrothermal regime of the Lukomskoye Lake. For 

example, such an effect can be traced in terms of the thickness of ice on the 

lake (Mitrahovich et al., 2008). In 1975, there was practically no ice at a 

distance of about 1 km from the power plant, while in the southern part of the 

lake its thickness reached 50 cm. The vertical temperature gradient in the 

heating zone can reach 6º m-1.  

 Our studies in KhNPP cooling pond have shown that, with a wind 

speed of about 3 m s-1, the phytoplankton of the technogenic flow from the 

discharge channel to intake one as well as of the circulation gyres, regardless 

of their direction and location, is characterized by a smaller range of 

fluctuations in biomass value than the phytoplankton of isolated, detached 

parts of the reservoir (Novoselova et al., 2015; Novoselova, Protasov, 2016). 

 With a sufficiently large heterogeneity of the values of the algoindex, 

its distribution corresponded to satellite derived of 3-D hydrodynamic model 
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(Allan et al., 2016). In conditions of similar hydrodynamics and wind situation 

August, 29, 2012 in addition to the technogenic flow, a western anticyclonic 

circulation formed in the KhNPP cooling pond (Novoselova et al., 2015). 

 In the spatial aspect, the differences in the distribution of zoobenthos 

biomass in the KhNPP cooling pond were quite significant. Before the 

invasion of zebra mussels in 1998–2001 (Protasov, 2011), the minimum 

biomass was in the central region (1.34 g m-2); in other regions this variable 

was 11–37 times higher. So, the invasion of zebra mussel, a powerful 

edificator, further increased the heterogeneity of the distribution of indicators 

of the abundance of zoobenthos in the water area. In some areas, biomass 

differed by a thousand times in relation to the minimum values. The 

heterogeneity of the distribution of zoobenthos reflects the rather high 

coefficient of variation, which could reach 240% or more. 

 The use of distance sensing methods in relation to the inspection of the 

profundal part of water bodies is limited. However, these methods in relation 

to zoobenthos can be used in assessing and predicting the processes of 

transformation of zoobenthos in conditions of unstable water level, possible 

changes in shallow areas of water bodies, in planning measures to reduce the 

negative consequences of lowering water levels and drainage (Tomchenko et 

al., 2017; Protasov A. A. et al., 2018). 

 The decrease in the water level of KhNPP cooling pond in 2015 led to 

the death of a significant number of bivalve mollusks - Dreissenid and 

Unionidae. For example, according to research in 2009 (Protasov, 2011), the 

stock of bivalve mollusks at a depth of 2 m was more than 500 tons. When 

benthic organisms die on drained sites, the rapid flow of large amounts of 

organic matter can lead to deterioration in the quality of the environment 

throughout the reservoir. 

 Transparency of water in KhNPP cooling pond depends on 

phytoplankton biomass (Protasov, Novoselova, 2015; Novoselova, Protasov, 

2015), and biomass and abundance, in turn, depend on temperature. The 

distribution of the extremums of values had rather a circular character. So, for 

green algae, as well as for diatoms, the average transect was the zone of their 

maximum share in the total biomass. As shown by years of research 

(Mitrahovich et al., 2008), the level of phytoplankton development during the 

growing season was higher in the zone with a temperature regime close to 

natural. 

 It should be noted a certain heterogeneity of phytoplankton in time. In 

the beginning 1970s at the initial stage of zebra mussel (Dreissena 

polymorpha Pall.) invasion, the trophic status of the KhNPP cooling pond 

ecosystem was characterized as eutrophic. Then, the abundance of algae, 

against a background of technogenic rise in temperature, dropped sharply and 

remained low until the end of the 1970s. Since the 1990s, the intensity of algae 
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development has increased, and cyanobacteria caused a "flowering" of water 

(Mitrahovich et al., 2008). 

 According to (Barinova et al., 2017a,b; Protasov et al., 2017b) it was 

noted that environmental and biotic variables in the KhNPP cooling pond 

varied in time and space. Long-term changes were associated with an increase 

in NPP capacity and the introduction of a mollusk filter feeder Dreissena 

polymorpha Pallas (Barinova et al., 2017b; Novoselova, Protasov, 2015).  

 Spatial changes are mainly determined by the dynamic hydrodynamic 

conditions in the reservoirs and the presence of technogenic flow of cooling 

water. As studies have shown in KhNPP cooling pond the distribution of 

quantitative indicators of zooplankton in the surface layer was largely 

determined by the position of individual sections of the reservoir relative to 

technogenic and wind circulation flows, more than by thermal conditions 

(Gromova, Protasov, 2017a,b). 

 As in earlier studies (Barinova et al., 2017a), the distribution of 

phytoplankton variables in the pelagic zone of the KhNPP cooling pond was 

very heterogeneous. The population structure, like its level, was determined 

by cyanobacteria, and biomass - by diatoms. The southern region, which 

receives the flow of the Gniloy Rog River and, with the east wind, is 

practically not involved in cooling the circulation flow, differed significantly 

in composition and abundance of phytoplankton from other areas of the 

reservoir. During the meteorological situation that developed during the period 

of our research, the flow of water from the outgoing channel to the inlet was 

stretched over most of the water area. The phytoplankton biomass carried by 

the stream gradually increased in the direction of water movement. The 

structure of abundance, as well as its level was determined by cyanobacteria, 

in contrary the biomass controlled by diatoms. The dynamic distribution of 

temperature fields under the influence of currents in the pelagic part of the 

reservoir created the conditions for the existence of species indifferent to 

temperature. 

 

Conclusion 

 Remote sensing provides a unique opportunity to explore the 

heterogeneity of the distribution of thermal conditions in water bodies, which 

is especially important for techno-ecosystems of nuclear power plants and 

thermal power plants. Point measurements do not give a complete picture. 

However, using the construction the series of statistically generated wafer 

plots of environmental and biological variables distribution over the pond 

surface can be modeled conditions of heterogeneity. This makes it possible to 

compare the heterogeneity of environmental conditions and the heterogeneity 

of the distribution of biotic indicators. Studies on water bodies conducted in 

situ in parallel with remote sensing gave a unique opportunity mutually add 
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the results obtained by these methods, in particular using build of plots of 

distribution of indicators. 

 Hydrological conditions in reservoirs-coolers of thermal power plants 

and nuclear power plants are characterized by great dynamism. Depending on 

the mode of operation of the plant, and the meteorological situation in the 

reservoir is formed by the different power and direction of the currents and 

gyres. The use of digital remote sensing maps of the earth made it possible to 

confirm, in general terms, the correctness of the current models of currents in 

the KhNPP cooling pond. The habitats of hydrobionts were distinguished by 

high diversity. 

 In the lake Lukomskoye influence of technogenic factors on the 

distribution of plankton was less pronounced, since the technogenic 

circulation practically did not cover the whole water area. Nevertheless, it was 

possible to establish some features of the distribution of the numbers of algae 

and crustaceans in different thermal zones. 

 So, this doing first time research unlocks the potential of remote 

sensing for monitoring temporal and spatial trends with using of ecological 

mapping, which may prove useful for analysis of climate change effects on 

lakes with power plants impact. 
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