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A B S T R A C T

Partial least square regression (PLS-R) methodology have been applied on dataset containing FTIR spectra and
densities for a large set of MEA solvent samples. The prediction capabilities for the major compounds were tested
on different set of realistic degraded solvent samples ranging from bench scale experiments to pilot plant
campaigns. Generally, the methods showed good results with exception of samples with high amount of heat
stabile salts (HSS). For the real samples, sample residuals (i.e. part of data not fitted by the model) were also
studied, and a clear correlation between the residuals and HSS level in samples were observed. Online techniques
based on PLS-R and FTIR should be an attractive alternative for monitoring the major solvent compounds in CO2

capture plants using amine solvents, as this will reduce cost of chemical analysis and could be an important tool
for implementation of control strategies for energy saving in the process.

1. Introduction

CO2 capture processes must be operated optimally in order to ensure
minimization of CO2 removal cost, emissions to air and solvent long-
evity. Efficient operation requires optimization of process conditions,
set points and allowable tolerances for a given capture scenario. In the
case of post-combustion carbon capture where power generation is the
primary function of the operating plant, the CO2 capture system must
respond quickly to varying plant loads in order to ensure that CO2

emissions are maintained below a given threshold. Reliably operating a
CO2 capture process at or near optimal conditions in response to fluc-
tuating plant loads becomes a dynamic and potentially complex pro-
blem requiring advanced on-line telemetry and well-developed process
control strategies. Dynamic operation is seen as a likely scenario for a
future solvent based CO2 capture plants, and online telemetry, capable
of monitoring gas and liquid compositions throughout the capture
process, becomes a vital tool for implementation of control strategies
for energy saving in the process.

Many of today's promising CO2 capture solvents incorporate blends
of amines and / or other additives, which need to be monitored and
maintained for optimal performance. Commercially available industrial
instrumentation for online compositional analysis is generally limited
to that of gas phase streams in CO2 capture processes. Determination of
solvent concentrations (amines, water, CO2, etc.) is typically conducted
off-line, requiring manual sampling and laboratory analysis. The Off-
line analytics do not provide immediate feedback to the current state of
the process and the analysis may also be expensive. CO2-loading, blend

composition and water content are dynamic solvent parameters directly
related to the process performance. In long-term processes solvent de-
gradation and accumulation of unwanted contaminants may cause se-
vere problems and methodology which could alert when build up or
changes occur in the solvent may give valuable improvement in oper-
ating systems. Online techniques should be an attractive alternative for
monitoring of solvents if they can provide the major compounds of the
solvent (amine, CO2, water), are robust and easy to use as well as
having low cost.

Infrared spectroscopy is a technique that is been used in food and
other industry for chemical quality and process control, and Fourier
transform infrared spectroscopy (FTIR) is regarded as an appealing
technology because simple, rapid and nondestructive measurements of
chemical components can be obtained (Rodriguez-Saona and Allendorf,
2011). FTIR spectrometry has the advantage that several components
can be determined simultaneously, and the monitoring can be per-
formed continuously (Einbu et al., 2012). Vibrational spectroscopy like
FTIR is well suited to be used with multivariate calibration, as each
observation is characterized by analytical signal/absorbance recorded
at multiple wavelengths (Tomuta et al., 2018). Among multivariate
data analysis, Partial Least Squares regression (PLS-R) are often used for
treatment of such data (Rathore et al., 2011). PLS-R is a generalization
of multiple linear regression (MLR) and can analyze data with strongly
correlated, noisy and numerous X-variables and simultaneously model
several response variables (Wold et al., 2001).

The analytical principle of liquid analysis of solvents of aqueous
amines by Fourier transform infrared spectroscopy (FTIR) in
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conjunction with Attenuated Total Reflectance (ATR) has previously
been demonstrated for measurements of concentration of 2-ethanola-
mine (MEA) and CO2-loading (mol CO2/mol amine) in a process stream,
by the use of a Partial Least Squares regression (PLS-R) calibration
model (Einbu et al., 2012). There are also several other studies were
FTIR have been applied for determination of composition in amine
solvents (Richner and Puxty, 2012; Kachko et al., 2016; Robinson et al.,
2012; Motang, 2015; Diab et al., 2012; Ciftja, 2013). Some of the stu-
dies are for online specification in VLE measurements and lab reactors
and some are related to demonstration of models for synthetic samples.
Studies in larger scale such as pilot plants are more limited and also
studies with aging solvents are very limited.

This work is focused on the PLS-R models and further improvement
of robustness as well as attempt of extended calibration functionalities.
The MEA calibration set used by Einbu et al. (2012) is also used in this
study. In addition, spectral analysis of realistically degraded solvent
samples ranging from bench scale experiments to pilot plants as well as
spiked MEA samples with a range of degradation products is produced
and applied for validation.

2. Experimental and methods

2.1. Experimental

The results of the current work are based on calibration models
developed from a large set of solvent samples of known concentration
and corresponding FTIR spectra. The preparation of the main calibra-
tion set as well as the corresponding spectra is described by Einbu et al.
(2012). In this study this data set were extended with the corresponding
densities and also water concentrations.

The MEA samples spiked with degradation products were prepared
gravimetrically. For the real/aged samples, analysis of MEA, CO2 and
water were mainly done by LC–MS, TIC/TOC analyzator (operated in
TIC mode) and Karl Fischer titration respectively. These results were
used as reference concentrations in the study. All corresponding spectra
with 32 cm−1 resolution were obtained on ABB MB3000 Serie
Laboratory FTIR spectrometer using a Pike MIRacle™ ATR cell with
diamond as crystal. The measured spectral range was 700-4000 cm−1.
In addition, density was determined at 22 °C using a Mettler-Toledo
CM40 Density Meter.

2.2. Spectral pre-treatment

As the spectra for real/aged samples were recorded at different
times and some years later than the calibration set a correction was
done to the spectra's recorded later than the calibration set. This cor-
rection was based on standardization of the spectra with respect to 30%
MEA (unloaded), and the correction were done according to the fol-
lowing equation:

= +I I( ) ( )Corr. (1)

With each set of samples recorded a sample of 30% MEA were in-
cluded. The coefficients in Eq. (1) were determined by an iterative
calculation scheme were the newly recorded spectra of 30 wt.% MEA
and the 30% spectra from the calibration set were used. The scheme
was as follows:

a) At start β = 1 and γ = 0.
b) α was determined by minimizing the sum of squares of deviation

(SSD) between ICorr and ICal set. This minimizing was done using the
SOLVER function in MS-Excel™.

c) β and γ were then determined by linear regressing of the difference
ICorr - ICal set. against λ.

d) Step b) and c) was then repeated until no significant reduction in
SSD.

The correction was checked with applying the correction to newly
recorded samples of 10% MEA and 20% MEA and compare them with
their respective spectra from the calibration set.

When working with spectra, some pre-treatment (transformation)
prior to the PLS-R may lead to better results. One commonly used
transformation is the use of derivative spectra's (first or second deri-
vatives) (Esbensen et al., 2009). In this work a first and second deri-
vatives by using Savitzky-Golay differentiation as well as a square root
transformation (SQRT) was applied to the spectra of the calibration set.
For the Savitzky-Golay differentiation a 4th order polynomial was used.
The use of 2nd derivative Savitzky-Golay did not yield improvement
compared to untreated spectra, while the 1st derivative Savitzky-Golay
yield improvement for CO2. The square root transformation yielded
reduction in root mean square error (RMSE) for all components. A
comparison of estimated RMSE using transformed and untransformed
spectra are shown in Table 1. The calculations were performed on
identical dataset (i.e. with same samples and same spectral region).

The RMSE is calculated according to the following equation:

=RMSE
C C

n
( )calc Ref

2

(2)

where ccalc – model predicted concentration, cRef – reference solution

Nomenclature

ATR Attenuated Total Reflection
DEA Diethanolamine
FTIR Fourier Transform Infrared Spectroscopy
HeGly N-(2-hydroxyethyl)-glycine
HEPO 4-(2-hydroxyethyl)-2-piperazinone
HSS Heat Stabile Salts
IC Ion Chromatography
LC–MS Liquid chromatography combined with Mass

Spectrometry
MEA Monoethanolamine

MEA Urea N,N'-bis(2-hydroxyethyl)-urea
MLR Multiple linear regression
NIPALS Nonlinear Iterative Partial Least Squares
PLS-R Partial Least Square regression
RMSEC Root Mean Square Error of Calibration
RMSEP Root Mean Square Error of Prediction
RMSEV Root Mean Square Error of Vaildation
SDR Solvent Degradation Rig
SQRT Square Root
TCM Technology Center Mongstad
TIC Total Inorganic Carbon
TOC Total Organic Carbon

Table 1
Root mean square error of calibration (RMSEC) and validation (RMSEV) with
and without transformation (used factors are 4 in all cases). Cross validation
with random segments of 10 applied for calculation of RMSEV.

RMSEC [mol/kg] RMSEV [mol/kg]

MEA H2O CO2 MEA H2O CO2

No transformation 0.1346 0.5417 0.0712 0.1523 0.6150 0.0784
1st derivative Savitzky-

Golay
0.1342 0.5466 0.0498 0.1496 0.6013 0.0515

2nd derivative Savitzky-
Golay

0.1892 0.6167 0.0859 0.2161 0.7350 0.0976

SQRT transformation 0.0843 0.3265 0.0282 0.0958 0.3603 0.0300
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concentration and n number of samples.

2.3. Multivariate analysis and calibration

The PLS-R calibration models as well as prediction have all been
calculated using the Unscrambler® X version 10.5 (CAMO Software).
For PLS-R, the data were mean centered and calculated using the
NIPALS algorithm. For validation of the calibration a cross validation
with 10 random segments were applied. The used number of samples
was 77 and the spectral range 895-1713 cm−1. For some of the PLS-R
models density was also included in the data set.

3. Results and discussion

3.1. Refined/extended calibration models

Density data may often be available online and the inclusion of
density may yield an improved PLS-R model. The MEA calibration data
set was extended with the corresponding densities. Prior to the PLS
regression, the density data (kg/l) were scaled by the following

equation

= ( 0.9)
2Scaled (3)

In addition, the scaled density was transformed by the square root,
similar to the FTIR intensities.

PLS calibration was also done with a narrowed concentration range
for MEA, 20–40 wt% MEA. In that case 30 samples were included in the
calibration calculation. The used wavelengths of the spectra were the
same for all models. The models are denoted as follows:

• PLS 10–80 : Calibration based on the whole calibration set with
MEA concentrations in the range from 10 to 80 wt%.set (77 sam-
ples)

• PLS 20–40 : Calibration based on MEA concentrations in the range
from 20 to 40 wt% (30 samples)

• PLS 10–80 w density: Same dataset as used PLS 10–80, but here also
the density is included in the model.

• PLS 20–40 w density: Same dataset as used in PLS 20–40, but here
also the density is included in the model.

The RMSE is here used for comparison of the models and they are
summarized in Table 2.

From Table 2 we see that there is a decrease in RMSEC when also
density is included in the calibration. For RMSEV there is only a small
reduction for MEA and H2O when density is included, while for CO2 the
figures a pretty much the same.

4-(2-hydroxyethyl)-2-piperazinone (HEPO), N-(2-hydroxyethyl)-
glycine (HeGly) and N,N'-bis(2-hydroxyethyl)-urea (MEA Urea) are
major degradation products in MEA (Vevelstad et al., 2017). Based on
this, a set of samples containing these compounds as well as dietha-
nolamine (DEA) and NH3 in 30% MEA were prepared. One subset with
each compound was prepared with concentration in the range 0.1–1 wt

Table 2
Root mean square error of calibration (RMSEC) and validation (RMSEV) of the
4 PLS moldels (4 factors are used in all cases). Cross validation with random
segments of 10.

RMSEC [mol/kg] RMSEV [mol/kg]

MEA H2O CO2 MEA H2O CO2

PLS 10-80% 0.0843 0.3265 0.0282 0.0958 0.3603 0.0300
PLS 10-80% w density 0.0770 0.2900 0.0255 0.0921 0.3314 0.0307
PLS 20-40% 0.0563 0.1949 0.0245 0.0772 0.2665 0.0296
PLS 20-40% w density 0.0519 0.1706 0.0233 0.0742 0.2524 0.0303

Fig. 1. Comparison of FTIR spectra of 30% MEA and 30% MEA with added 1 wt% of HEPO, HeGly, MEA Urea, DEA and NH3.
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%. A calibration of these compounds was also tried, but as the sensi-
tivity to these compounds (in this range) was low, no meaningful results
were obtained.

Additionally, also subset with two HSS (heat stabile salts), formate
(added as formic acid) and sodium sulphate were prepared. For the
subset with the HSS, the concentration range was extended to 5 wt%. A
PLS calibration were calculated using an extended sample set (the HSS
samples were added to the original calibration set), however the re-
sulting RMSEC and RMSEV for all major compounds (MEA, CO2 and
H2O) increased with several orders compared to the results in Table 2.
A second approach were also tried, by first applying the PLS 10–80% on
this set of subsamples and then using the residue spectres in a new PLS-

R model. The model was tested with one aged lean MEA sample, which
was spiked with these compounds in the range of 0.5–5 wt% as well as
with some heavily degraded MEA samples from oxidative degradation
experiments. For sulphate, the obtained recovery was in the range from
60 to 230%, while for formate, the recovery was in the range of 85 to
270%. So, at this stage, these models yield more semi quantitative re-
sults for concentrations above 0.5 wt%

3.2. Effect of degradation products

As mention in the previous section HEPO, HeGly and MEA Urea are
major degradation products in MEA. For HEPO, HeGly, MEA Urea, NH3

Fig. 2. Comparison of FTIR spectra of 30% MEA and 30% MEA with added 5 wt% formic acid and Na2SO4.

Fig. 3. Effect of added degradation products on prediction of MEA.
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Fig. 4. Predicted CO2 concentration in unloaded 30% MEA with addition of some degradation products.

Fig. 5. Calculated X sample residuals for 30% MEA sample spiked with different degradation compounds.

Table 3
Samples from Oxidative degradation experiments. Experimental conditions different for each sample (temperature and O2 content of gas). All samples are from end of
experiment except for the first one (na=not analysed).

Sample LC-MS Titration TIC/TOC IC IC Wet Chem.
MEA Amine CO2 Formate Sulphate HSS
[mol/kg] [mol/kg] [mol/kg] [mg/kg] [mg/kg] [eq/kg]

75 °C 98%O2 t=0 4.50 1.78 39 1 067 na
75 °C 98%O2 t = 500 hrs 1.42 0.68 0.11 25 579 1 152 1.01
65 °C 49%O2 t = 670 hrs 2.18 1.73 0.68 9 975 na 0.59
75 °C 49%O2 t = 670 hrs 1.48 0.72 0.21 22 272 na 0.84
75 °C 6%O2 t = 860 hrs 3.23 2.98 1.06 6 109 2 414 0.23
55 °C 98%O2 t = 500 hrs 3.28 3.27 1.37 3453 2315 0.27
55 °C 49%O2 t = 500 hrs 3.68 3.56 1.49 2556 2563 0.19
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and DEA, there was no or very little effect on the spectra with the ad-
dition of these compounds, as also illustrated in Fig. 1.

For the two HSS there were significant changes to the spectra when
these were added as illustrated in Fig. 2.

To evaluate the influence of these degradation compounds on
model's capability to predict MEA and CO2, the deviation between
predicted and reference concentrations was studied. The predicted
value is here from the use of the PLS-R model PLS 10–80%. A plot of
calculated relative deviations for the MEA concentration (i.e. relative
difference between predicted and reference) for the different sub-sets
are shown in Fig. 3.

As also the FTIR spectra illustrates, there are no or relatively small
effect of the compounds HEPO, HeGly, MEA Urea, DEA and NH3 on the
prediction of MEA. However there seems to be a correlation between
the amount of DEA in the solution and predicted MEA concentration, so
DEA above 0.5 wt% may influence the predicted MEA concentration.
For formate and Na2SO4 there is a significant influence on the predicted
MEA concentration for concentration > 0.5 wt% and the effect in-
creases with increasing concentration.

As these samples were CO2-free (unloaded) the effect on CO2 may be

illustrated by looking at the predicted CO2 concentration as shown in
Fig. 4. For HEPO, HeGly, MEA Urea, DEA and NH3 the effect is small
(correspond to 2% relative or less for a typical Lean with CO2 con-
centration of 1 mol/kg) for concentration below 0.5 wt%. The effect is
also low at 1 wt% except for NH3 and HeGly where the effect is minor
(corresponds to around 5% relative for a typical lean with CO2 con-
centration of 1 mol/kg).

For formate and sulphate, there is a significant effect when more
than 0.5 wt% of these compounds are added. The effect seems to be
opposite for these two compounds; formate causes an over prediction
while sulphate causes an under prediction of CO2 concentration.

When predicting results with the PLS model, also residuals (i.e. the
part of the data that are not model, often denoted as X residuals) are
calculated. Additionally, also sample residuals are calculated and the
relation between the X residuals (E) and sample residuals is given in the
equations below.

= = = =
=

Sample residual MSE RSS
N f N f

e
N f

E E1 1

i

n

i
T

1

2

(4)

Where:

=E X X̂ (5)

In Fig. 5 calculated sample residuals are plotted against added
amount of the different compounds. For HEPO, HeGly, MEA Urea, DEA
and NH3 the information/trend is much the same as for the MEA de-
viation (Fig. 3) and predicted CO2 concentrations (Fig. 4), small effect
except for NH3 and HeGly. For NH3 and HeGly a significant increase
can be observed with increasing concentration. Also for the other
compounds there is a slight increase with concentration, especially
above 0.5 wt%.

The presence of formic acid and Na2SO4 gives a clear increase in
residuals as the added concentration increase. The development and the
magnitude are very similar for both compounds. These results show
that the residuals contain useful information and the results here in-
dicate that they may also be used for monitoring HSS development.

Table 4
Predicted concentration based on PLS model 10–80% w density for samples
from oxidative degradation experiments. Rel. Dev. is the relative deviation
between the predicted and reference concentration.

Sample MEA CO2 H2O

CPred Rel. Dev. CPred Rel. Dev. CPred

[mol/kg] [mol/kg] [mol/kg]

75 °C 98%O2 t=0 4.55 1.1 % 1.834 3.0 % 35.6
75 °C 98%O2

t = 500 hrs
1.09 −23 % 0.782 611 % 49.9

65 °C 49%O2
t = 670 hrs

1.91 −12 % 1.160 71 % 46.2

75 °C 49%O2
t = 670 hrs

0.95 −36 % 0.802 282 % 50.4

75 °C 6%O2 t = 860 hrs 3.22 −0.4 % 1.316 24 % 41.4
55 °C 98%O2

t = 500 hrs
3.13 −4.4 % 1.602 17 % 41.0

55 °C 49%O2
t = 500 hrs

3.56 −3.3 % 1.697 14 % 39.3

Fig. 6. Predicted MEA concentration of samples from oxidative degradation experiments obtained with two PLS-R models versus reference MEA concentration
(LC–MS).

A. Grimstvedt, et al. International Journal of Greenhouse Gas Control 83 (2019) 293–307

298



3.3. Test on real/aged samples

3.3.1. Oxidative degradation experiments at SINTEF
Some samples from earlier oxidative experiments at SINTEF has also

been run on the FTIR. The oxidative degradation set-up consists of an
open batch reactor (1 L) of glass where a recycle gas (blend of air/
oxygen and CO2) is sparged into the solution with circulation rate of
about 50 L/h. More description of these samples and the set-up could be
found in a paper by Vevelstad et al. (Vevelstad et al., 2016). For these
samples the concentrations were calculated with two PLS-R models
(PLS 10–80% and PLS 10–80% w density). An overview of the sample
set and the reference concentrations of MEA and CO2 as well as con-
centration of some HSS is summarized in Table 3. It must be noted that
most of these samples are heavily degraded and probably we could not
expect such degraded samples in a real pilot plant. However, it would
be interesting to see how the PLS-R model will work on such samples.

Results from the prediction of concentration of these samples are

summarized in Table 4. The predicted results for MEA and CO2 are also
plotted against reference concentration in Figs. 6 and 7. As all these
experiments started with the same MEA concentrations (4.55 mol/kg),
the most degraded samples (and highest amount of HSS) has the lowest
MEA concentration. As high levels of HSS causes increasing deviation in
the predicted concentration the linear relation (see Figs. 6 and 7) be-
tween reference and predicted do not pass through origin.

From Table 4 we see that the predicted MEA concentration are
pretty good (relative deviation below 5%) for all except three samples.
For CO2 there are large deviation for the same three samples, and also
high deviation (20% relative) for the rest except for the first sample
(start sample). As two of these samples contains high amounts of for-
mate (around 2.5 wt%) and HSS, it is not surprising, based on the test
with spiking, that the models yield high deviation for those samples.

From the plot for both MEA and CO2 we see that both PLS models
yield similar results (though the PLS 10–80% w density yields some-
what better results for the one with lowest MEA concentration).

Fig. 7. Predicted CO2 concentration of samples from oxidative degradation experiments obtained with two PLS-R models versus reference CO2 concentration (TIC/
TOC analyzer).

Fig. 8. Calculated X sample residuals for oxidative degradation samples as function of MEA loss and HSS content.
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Table 5
Predicted MEA concentration based on 4 different PLS-R models for samples from a MEA campaign in the SDR. RMSEP is root mean error of prediction. Rel. Dev. is
the relative deviation between the predicted and reference concentration.

Ref.MEA PLS 10-80% PLS 10-80% w density PLS 20-40% w density PLS 20-40%

[mol/kg] CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev

Lean 0 hrs 4.658 4.67 0.30 % 4.65 −0.26 % 4.64 −0.48 % 4.66 0.13 %
Lean 166 hrs 4.669 4.66 −0.13 % 4.64 −0.57 % 4.64 −0.64 % 4.66 −0.12 %
Lean 335 hrs 4.634 4.60 −0.68 % 4.58 −1.06 % 4.59 −1.03 % 4.61 −0.47 %
Lean 526 hrs 4.643 4.64 −0.14 % 4.62 −0.52 % 4.62 −0.46 % 4.65 0.11 %
Lean 694 hrs 4.603 4.54 −1.37 % 4.53 −1.57 % 4.54 −1.34 % 4.56 −0.89 %
Lean 845 hrs 4.635 4.58 −1.10 % 4.57 −1.45 % 4.58 −1.19 % 4.61 −0.61 %
Lean 860 hrs 4.596 4.55 −0.92 % 4.55 −1.10 % 4.56 −0.87 % 4.58 −0.46 %
Lean 861 hrs 4.527 4.54 0.26 % 4.51 −0.29 % 4.52 −0.17 % 4.55 0.61 %
Rich 166 hrs 4.419 4.38 −0.87 % 4.34 −1.82 % 4.47 1.19 % 4.54 2.70 %
Rich 335 hrs 4.383 4.31 −1.76 % 4.27 −2.59 % 4.42 0.75 % 4.48 2.27 %
Rich 526 hrs 4.435 4.38 −1.21 % 4.34 −2.06 % 4.48 1.02 % 4.54 2.47 %
Rich 694 hrs 4.383 4.31 −1.69 % 4.28 −2.41 % 4.43 0.99 % 4.49 2.36 %
Rich 860 hrs 4.388 4.27 −2.65 % 4.24 −3.31 % 4.40 0.21 % 4.46 1.54 %

RMSEP 0.055 0.077 0.040 0.065

Fig. 9. Predicted MEA concentration in Lean and Rich samples obtained using 4 different PLS-R models.

Table 6
Predicted CO2 concentration based on 4 different PLS-R models for samples from a MEA campaign in the SDR. RMSEP is root mean error of prediction. Rel. Dev. is the
relative deviation between the predicted and reference concentration.

Ref.CO2 PLS 10-80% PLS 10-80% w density PLS 20-40% w density PLS 20-40%

[mol/kg] CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev

Lean 0 hrs 1.034 1.074 3.92 % 1.069 3.43 % 1.074 3.85 % 1.076 4.04 %
Lean 166 hrs 0.994 1.036 4.16 % 1.032 3.75 % 1.037 4.31 % 1.038 4.37 %
Lean 335 hrs 0.991 1.042 5.13 % 1.039 4.79 % 1.041 5.08 % 1.043 5.26 %
Lean 526 hrs 1.029 1.095 6.39 % 1.091 6.03 % 1.094 6.33 % 1.096 6.52 %
Lean 694 hrs 0.964 1.022 6.05 % 1.020 5.83 % 1.024 6.24 % 1.025 6.28 %
Lean 845 hrs 1.021 1.080 5.72 % 1.076 5.34 % 1.080 5.79 % 1.082 5.97 %
Lean 860 hrs 0.990 1.056 6.70 % 1.054 6.50 % 1.059 6.97 % 1.059 6.94 %
Rich 166 hrs 2.157 2.131 −1.22 % 2.120 −1.74 % 2.159 0.07 % 2.199 1.92 %
Rich 335 hrs 2.055 2.106 2.48 % 2.096 1.99 % 2.134 3.83 % 2.174 5.79 %
Rich 526 hrs 2.132 2.128 −0.19 % 2.117 −0.68 % 2.155 1.09 % 2.194 2.91 %
Rich 694 hrs 2.093 2.111 0.83 % 2.101 0.37 % 2.141 2.29 % 2.180 4.12 %
Rich 860 hrs 2.107 2.106 −0.07 % 2.097 −0.50 % 2.139 1.49 % 2.176 3.28 %

RMSEP 0.046 0.043 0.052 0.068
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For these extremely degraded samples it would be interesting to see
if there is any correlation between the sample residuals and MEA loss or
HSS amount for these samples. In Fig. 8 the residuals are plotted against
MEA loss and also against HSS concentration. The MEA loss is here
simply set as 4.55 (start conc.) minus the actual MEA concentration
given in Table 3. We see that there is a clear increase in residuals with
increasing MEA loss and a fairly linear trend when the residuals are
plotted against the HSS concentration.

3.3.2. SDR campaign at SINTEF
Also a set of MEA samples from a campaign in SINTEF's solvent

degradation rig (SDR) were analysed and predicted with the PLS-R
models. The SDR is a lab scale degradation apparatus capable of pre-
dicting degradation at real-life process conditions. The rig has continues
cycling of solvent between a simulated absorber- and stripper section,
with realistic temperature, CO2 loading and residence time of the sol-
vent. In the absorber section, the solvent is contacted with synthetic
flue gas mixtures with options for addition of NOx or other compounds.
The SDR is built for continuous operation, with typical test campaigns
duration of 5 weeks (Einbu et al., 2013).

The predicted MEA concentrations from the different PLS models
are summarized in Table 5.

All models show good agreement for MEA versus the reference
concentrations, in this case the model PLS 20–40% w density shows the
lowest RMSEP, and for this model almost all relative deviations are
below 1% relative.

A graphical comparison for the lean and rich samples is given in
Fig. 9. We see that for the lean samples all models predict slightly lower
than the reference concentration, but all show the same trend with
time. For the rich samples, deviation is slightly higher than for the lean,
here the two models where also density data is included yields higher
results than the reference, while the models without density yields
lower results that the reference.

In Table 6 the predicted results for CO2 are summarized. For CO2 the
relative deviations are higher than for MEA. The model PLS 10–80% w
density yields the lowest RMSEP, but the value for PLS 10–80% is only
slightly higher.

The predicted CO2 concentrations are also plotted versus the re-
ference concentrations in Fig. 10. As this campaign was run to maintain
a fairly constant lean and rich CO2 loading, the CO2 groups around two
concentration levels (1 mol/kg for Lean and around 2 mol/kg for Rich)
with little span within each group. The predicted concentrations for all
models give very similar values for the lean samples while there is more
difference for the rich samples.

Fig. 10. Predicted CO2 concentration of SDR samples obtained by 4 PLS-R models versus reference concentration.

Table 7
Predicted H2O concentration based on 4 different PLS-R models for samples from a MEA campaign in the SDR. RMSEP is root mean error of prediction. Rel. Dev. is
the relative deviation between the predicted and reference concentration.

Ref. H2O PLS 10-80% PLS 10-80% w density PLS 20-40% w density PLS 20-40%

[mol/kg] CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev

Lean 0 hrs 37.6 37.1 −1.3 % 37.2 −1.0 % 37.2 −0.93 % 37.1 −1.2 %
Lean 166 hrs 37.5 37.2 −0.78 % 37.3 −0.57 % 37.3 −0.57 % 37.2 −0.80 %
Lean 335 hrs 37.9 37.4 −1.3 % 37.5 −1.1 % 37.5 −1.1 % 37.4 −1.4 %
Lean 526 hrs 36.6 37.2 1.7 % 37.2 1.8 % 37.2 1.8 % 37.1 1.5 %
Lean 694 hrs 37.0 37.7 1.9 % 37.7 2.0 % 37.7 1.8 % 37.6 1.6 %
Lean 860 hrs 36.6 37.5 2.6 % 37.6 2.7 % 37.5 2.6 % 37.5 2.4 %
Lean 861 hrs 36.3 36.5 0.62 % 36.6 0.90 % 36.6 0.81 % 36.5 0.44 %
Rich 166 hrs 35.4 35.5 0.15 % 35.7 0.63 % 35.1 −0.91 % 34.8 −1.8 %
Rich 335 hrs 36.2 35.8 −0.97 % 36.0 −0.56 % 35.4 −2.2 % 35.0 −3.1 %
Rich 526 hrs 34.8 35.5 2.0 % 35.6 2.5 % 35.1 0.86 % 34.8 −0.04 %
Rich 694 hrs 35.0 35.8 2.2 % 35.9 2.6 % 35.3 0.84 % 35.0 −0.01 %
Rich 860 hrs 34.8 35.9 3.4 % 36.0 3.7 % 35.4 1.9 % 35.1 1.1 %

RMSEP 0.640 0.690 0.545 0.566
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Finally, the predicted results for H2O is summarized in Table 7. For
this set, all models agree well with the reference concentrations with
relative deviation mainly below 2%. In this case the models with the
reduced sample set yield the lowest RMSEP.

The results for H2O are also shown graphically in Fig. 11. We see
that all models' yields were similar results for the lean samples while
there some more difference for the rich samples

As these samples had a very low level of HSS, one of the latest lean
samples were used to produce a set of spiked samples with Na2SO4 and
formic acid. This was done to study if the effect of HSS shows similar
trend on an CO2 loaded and aged samples as the fresh and unloaded
MEA. The calculated sample residuals for these spiked samples is shown
versus added amount in Fig. 12. The residuals were from the model PLS
10–80%. Also here a clear increase in residuals with increasing amount
of added formic acid and Na2SO4 is observed. In this case the residuals

are higher with the addition Na2SO4 than formate (with unloaded fresh
MEA they were very similar)

The sample residual for the lean samples were also calculated and
they are shown as function of time in Fig. 13. Except for the starting
samples there is an increase in the residual during the campaign, and
this increase may be interpreted as increased degradation of the solvent

3.3.3. Samples from pilot plant campaign at Tiller
A set of Lean samples from an MEA campaign at SINTEF Tiller pilot

plant was analysed with FTIR and the concentrations were predicted
using the PLS models. The SINTEF CO2 capture pilot facility at Tiller
has flexibility regarding the flue gas source, with pilot plants operating
on flue gas from either a propane burner or from a coal/biomass burner.
The solvents analysed were operated in a full height pilot plant (20 m
height absorber section with Mellapak 2X structured packings)

Fig. 11. Predicted H2O concentration in Lean and Rich samples obtained using 4 different PLS models.

Fig. 12. Calculated X sample residuals for Lean MEA sample spiked with formic acid and Na2SO4.
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Fig. 13. Calculated X sample residuals for the Lean MEA samples.

Table 8
Predicted MEA concentration based on 4 different PLS-R models for Lean samples from MEA campaign at Tiller. RMSEP is root mean error of prediction. Rel. Dev. is
the relative deviation between the predicted and reference concentration.

Ref. MEA PLS 10-80% PLS 10-80% w density PLS 20-40% w density PLS 20-40%

[mol/kg] CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev

Lean 50hrs 4.52 4.55 0.78 % 4.54 0.58 % 4.58 1.35 % 4.61 2.12 %
Lean 220hrs 4.45 4.40 −1.14 % 4.42 −0.68 % 4.43 −0.60 % 4.43 −0.64 %
Lean 410hrs 4.52 4.30 −4.85 % 4.33 −4.10 % 4.36 −3.45 % 4.35 −3.61 %
Lean 650hrs 4.43 4.14 −6.42 % 4.17 −5.80 % 4.16 −6.08 % 4.14 −6.36 %
Lean 890hrs 4.18 4.05 −2.96 % 4.09 −2.00 % 4.09 −2.12 % 4.06 −2.83 %
Lean 900hrs 3.73 3.62 −2.97 % 3.74 0.44 % 3.76 0.82 % 3.64 −2.35 %
Lean 1420hrs 4.40 4.36 −0.85 % 4.42 0.43 % 4.43 0.68 % 4.39 −0.12 %
Lean 1710hrs 4.61 4.54 −1.49 % 4.63 0.41 % 4.68 1.55 % 4.62 0.28 %
Lean 1930 hrs 4.39 4.46 1.74 % 4.53 3.27 % 4.66 6.26 % 4.66 6.11 %

RMSEP 0.138 0.120 0.146 0.153

Fig. 14. Predicted and reference MEA concentration for Lean Tiller samples obtained by the different PLS-R models.
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operated with propane burner flue gas and an electric reboiler. The
plant is constructed with 316SS stainless steel for all parts in contact
with solvent and flue gas. Further details of the Tiller pilot plant are
given by Mejdell and co-workers (Mejdell et al., 2011). The samples
from the Tiller were from two different campaigns; the first campaign
was from an approximately 900 hrs operation. The used solvent was
stored for approximately 10 months before it was re-used in a second
campaign. In the latter test campaign some fresh MEA was added as
make-up around 1000 hrs. In Table 8 the predicted MEA concentrations
for the 4 PLS-R models are summarized.

Based on the calculated RMSEP, the model PLS 10–80% w density
yields the best results. The obtained results are also shown graphically
in Fig. 14. We see that all models produce results that follows the same
trend. Except for the two samples at 410 and 650 hrs there are very
good agreement between the predicted and reference concentrations.

Similarly, the predicted concentrations of CO2 for the 4 PLS-R
models are summarized in Table 9 and the results are also illustrated
graphically in Fig. 15. Also for CO2 PLS 10–80% w density seems to give
the best results (lowest RMSEP) though the PLS 20–40% w density give
the same results and PLS 10–80% only slightly higher RMSEP. For these

Table 9
Predicted CO2 concentration based on 4 different PLS-R models for Lean samples from MEA campaign at Tiller. RMSEP is root mean error of prediction. Rel. Dev. is
the relative deviation between the predicted and reference concentration.

Ref. CO2 PLS 10-80% PLS 10-80% w density PLS 20-40% w density PLS 20-40%

[mol/kg] CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev

Lean 50hrs 0.912 0.96 5.79 % 0.96 5.77 % 0.96 5.20 % 0.97 6.33 %
Lean 220hrs 0.672 0.67 −0.32 % 0.68 0.50 % 0.67 −0.34 % 0.66 −1.20 %
Lean 410hrs 0.676 0.65 −3.96 % 0.66 −2.73 % 0.65 −3.29 % 0.65 −4.16 %
Lean 650hrs 0.755 0.75 −0.32 % 0.76 0.39 % 0.75 −0.18 % 0.74 −1.83 %
Lean 890hrs 0.699 0.67 −4.09 % 0.68 −2.97 % 0.68 −2.72 % 0.66 −5.31 %
Lean 900hrs 0.567 0.51 −9.45 % 0.54 −4.67 % 0.55 −2.49 % 0.51 −10.7 %
Lean 1420hrs 0.857 0.85 −1.28 % 0.86 0.02 % 0.86 0.31 % 0.84 −2.19 %
Lean 1710hrs 0.613 0.64 3.80 % 0.65 6.69 % 0.66 8.21 % 0.64 3.93 %

RMSEP 0.031 0.027 0.027 0.036

Fig. 15. Predicted and reference CO2 concentration for Lean Tiller samples obtained by the different PLS-R models.

Table 10
Predicted H2O concentration based on 4 different PLS-R models for Lean samples from MEA campaign at Tiller. RMSEP is root mean error of prediction. Rel. Dev. is
the relative deviation between the predicted and reference concentration.

Ref. H2O PLS 10-80% PLS 10-80% w density PLS 20-40% w density PLS 20-40%

[mol/kg] CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev CPred Rel. Dev

Lean 50hrs 36.9 37.8 2.4 % 37.8 2.5 % 37.7 2.2 % 37.5 1.8 %
Lean 220hrs 37.8 39.0 3.2 % 38.9 3.0 % 38.9 3.0 % 38.9 3.0 %
Lean 410hrs 36.3 39.4 8.4 % 39.3 8.0 % 39.2 7.8 % 39.2 7.9 %
Lean 650hrs 37.0 39.7 7.1 % 39.6 6.8 % 39.6 7.0 % 39.7 7.2 %
Lean 890hrs 37.7 40.2 6.5 % 40.0 6.1 % 40.0 6.1 % 40.2 6.5 %
Lean 1420hrs 36.0 38.7 7.5 % 38.5 6.9 % 38.4 6.8 % 38.6 7.3 %
Lean 1710hrs 34.8 38.6 11 % 38.4 10 % 38.1 9.5 % 38.3 10 %
Lean 1930 hrs 33.8 37.9 12 % 37.6 11 % 37.2 9.8 % 37.2 9.9 %

RMSEP 2.8 2.6 2.5 2.6
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models, there is also good agreement with the reference concentrations.
The last lean sample (Lean 1930 hrs) is omitted in the calculations of
RMSEP as the results from FTIR is consider as an outlier (all models give
almost the same results with a deviation of above 20% relative). Except
for the last sample all models show good agreement with the reference
concentrations.

Finally, the predicted concentrations of H2O for the 4 PLS-R models
are summarized in Table 10 and the results are also illustrated gra-
phically in Fig. 16. For H2O the lean sample at 900 hrs is omitted as the
H2O results from Karl Fischer analysis is not available. For H2O all
models yield nearly the same RMSEP and the predicted concentration
are very similar for all the samples. In this case the predicted results are
higher than the reference concentration for all the samples and the
relative deviation is higher than for MEA and CO2. Why the prediction
of H2O is poorer for this sample set is not clearly understood, one
reason could be some unknown contaminants in the solvent, but this is
not verified. The predicted H2O concentration follows much the same
trend as the reference and reflects the changes in the H2O concentration
but with a systematic to high concentration (i.e. poorer accuracy). This
demonstrates that a good practice will be to include dedicate off-line
analysis of some samples for control when a new campaign is started.

As mentioned in the previous sections, sample residuals may contain
useful information. In Fig. 17 a plot of the calculated sample residuals
versus time for these lean MEA samples is shown. The residuals are
from the model PLS 10–80% w density. From Fig. 17 we see an increase
in residuals for the first part of the first campaign, then they are nearly
constant for the rest of the campaign. For the second campaign the
residuals are higher, which may indicate some degradation due to
storage. Lower residuals (at approximately 1400 and 1900 hrs.) corre-
sponds to the addition of fresh MEA.

3.3.4. Samples from MEA campaign at TCM
A set of samples from an MEA campaign at Technology Center

Mongstad (TCM) was also analyzed with FTIR and concentrations
predicted with the PLS models. The capture plant at TCM is large scale
solvent based CO2 capture demo facility constructed by Aker Solutions.
The design capacity is 80–200 ton CO2 per day and is operated with an
exhaust gas with 3.5 -15% CO2 content from either the Combined Heat
398 and Power plant (CHP) at Mongstad or from the Residue Fluid
Catalytic Cracker (RFCC) plant at Mongstad refinery.

The TCM test campaign was started in June 2017 and the tested
samples here were from the period 4th of September until the 9th of
October 2017 (Morken et al., 2019). The samples with corresponding
analysis results for MEA, CO2 and density has been provided by TCM
DA and they are summarized in Table 11.

The obtained results using FTIR spectra and densities using the
different PLS-R models are given in Tables 12 and 13 for MEA and CO2

Fig. 16. Predicted H2O concentration for Lean samples for the different PLS-R models.

Fig. 17. Calculated X sample residuals for Lean MEA sample from Tiller cam-
paign.

Table 11
Samples from MEA campaign at TCM. Concentrations and density provided by
TCM DA, Tot Alk is total alkalinity determined by titration, MEA is determed by
Gas Chormatography, CO2 by TIC/TOC analyzer and density from online
measurement.

Sample id Tot Alk MEA CO2 Density
[mol/kq] [mol/kg] [mol/kg] [kg/m3]

Lean 04/09-17 4.7 4.741 0.847 1058
Lean 11/09-17 5.1 5.238 1.005 1072
Lean 18/09-17 4.7 4.866 0.788 1070
Lean 25/09-17 4.6 4.551 0.934 1088
Lean 02/10-17 4.9 4.941 1.088 1095
Lean 09/10-17 4.7 4.878 1.074 1101
Rich 04/09-17 4.25 4.279 2.321 1106
Rich 11/09-17 4.64 4.768 2.453 1119
Rich 02/10-17 4.71 4.675 2.153 1121
Rich 09/10-17 4.51 4.438 2.132 1128
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respectively.
For MEA all models give good predictions, with the model PLS 10–80

having the lowest RMSEP. With this model all results are within ± 4%
relative compared to the reference concentration, the magnitude of
RMSEP is also very similar to the results obtained for the Tiller samples.
For CO2 the results are not as good as for MEA, here deviation from re-
ference concentration are quite high for some of the samples (20–30%)
and the deviation is increasing with time for the lean solvents. This is
assumed to be affected by HSS and degradation products. The parity plot
for MEA and CO2 (predicted concentrations from the model PLS 10–80%)
given in Fig. 18 also illustrate this trend for CO2.

Also, in this case sample residuals were calculated. A plot of the
sample residuals versus time for these samples are shown in Fig. 19. The
shown residuals are obtained from the model PLS 10–80%. For both
rich and lean there is a nearly linear increase with time which is as-
sumed to be caused by an increase in degradation during the period.

4. Conclusion

The use of PLS-R model based on FTIR spectra is a technique that
could be used for online analysis of the main components (MEA, CO2

and H2O) of MEA solvent. This work with PLS-R models shows that pre-

Table 12
Predicted MEA concentration based on 4 different PLS-R models for samples from MEA campaign at TCM. RMSEP is root mean error of prediction. Rel. Dev. is the
relative deviation between the predicted and reference concentration.

PLS 10-80% PLS 10-80% w density PLS 20-40% PLS 20-40% w density

Sample id [mol/kg] Rel. Dev. [mol/kg] Rel. Dev. [mol/kg] Rel. Dev. [mol/kg] Rel. Dev.

Lean 04/09-17 4.76 0.3 % 4.80 1.2 % 4.85 2.2 % 4.81 1.4 %
Lean 11/09-17 5.40 3.0 % 5.46 4.2 % 5.47 4.3 % 5.43 3.7 %
Lean 25/09-17 5.06 4.0 % 5.16 6.1 % 5.15 5.8 % 5.14 5.5 %
Lean 02/10-17 4.99 1.0 % 5.12 3.6 % 5.21 5.3 % 5.20 5.2 %
Lean 09/10-17 4.76 −2.3 % 4.91 0.6 % 4.99 2.2 % 4.97 2.0 %
Rich 04/09-17 4.16 −2.8 % 4.13 −3.4 % 4.52 5.6 % 4.37 2.1 %
Rich 11/09-17 4.65 −2.5 % 4.62 −3.1 % 5.03 5.4 % 4.85 1.8 %
Rich 02/10-17 4.83 3.2 % 4.82 3.1 % 5.17 11 % 4.99 6.7 %
Rich 09/10-17 4.46 0.5 % 4.49 1.3 % 4.91 11 % 4.75 7.0 %
RMSEP 0.120 0.163 0.300 0.211

Table 13
Predicted CO2 concentration based on 4 different PLS-R models for samples from MEA campaign at TCM. RMSEP is root mean error of prediction. Rel. Dev. is the
relative deviation between the predicted and reference concentration.

PLS 10-80% PLS 10-80% w density PLS 20-40% PLS 20-40% w density

Sample id [mol/kg] Rel. Dev. [mol/kg] Rel. Dev. [mol/kg] Rel. Dev. [mol/kg] Rel. Dev.

Lean 04/09-17 0.922 8.9 % 0.932 10 % 0.890 5.1 % 0.882 4.1 %
Lean 11/09-17 1.10 9.0 % 1.11 10 % 1.05 4.2 % 1.04 3.6 %
Lean 25/09-17 0.96 21 % 0.98 24 % 0.896 14 % 0.899 14 %
Lean 02/10-17 1.33 22 % 1.36 25 % 1.29 18 % 1.29 18 %
Lean 09/10-17 1.43 33 % 1.46 36 % 1.38 28 % 1.37 28 %
Rich 04/09-17 2.14 −7.9 % 2.13 −8.3 % 2.20 −5.1 % 2.12 −8.6 %
Rich 11/09-17 2.35 −4.4 % 2.34 −4.7 % 2.40 −2.3 % 2.31 −6.0 %
Rich 02/10-17 2.31 7.1 % 2.30 6.9 % 2.31 7.2 % 2.23 3.4 %
Rich 09/10-17 2.33 9.3 % 2.33 9.5 % 2.36 11 % 2.27 6.6 %
RMSEP 0.192 0.207 0.163 0.160

Fig. 18. Predicted versus reference concentration of MEA and CO2 for samples from campaign at TCM.
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treatment of the spectra improves the prediction capabilities of the
models. Spectral pre-treatment with square root transformation was
shown to give better analytical predictions on realistic solvent samples.
Furthermore, the introduction of density in the calibration models
makes some improvement.

The effects of the presence of several of major degradation products
in MEA solvent on model prediction and robustness was investigated. It
was found that for most of the degradation products tested, a calibra-
tion and quantification of the degradation products with the FTIR and
PLS-R is not possible for the typical concentration range of these pro-
ducts (< 0.5 wt%). Additionally, the effect on the prediction of the
solvent compounds (MEA, CO2 and H2O) is small for these concentra-
tion range of the degradation products. There is however an exception
for typical heat stabile salt compounds, where we have run samples
containing formate and sulphate. Here a significant effect on the spectra
was observed as well as on model prediction, when concentration of
these salts exceeds around 0.5 wt%.

The sample residuals (i.e. part of the data that are not modelled)
contains useful information and in this work we have seen that increase
in the residuals is an indication of changes to the solvent (like increased
HSS). Thus, the residuals may be an important factor to monitor during
solvent test campaigns. Specific monitoring of individual degradation
products and contaminates is important. As the sensitivity of the
spectroscopic techniques is not as good as for dedicated off line analysis
(concentrations may be in the g/l range before degradation products
can be quantified) an alternative maybe to monitor residuals and set an
alert when significant changes in the solvent appear. When this alert
appears dedicated off line analysis could be applied for determination
of specific degradation products.
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