
computation

Article

GPU Computing with Python: Performance, Energy
Efficiency and Usability †

Håvard H. Holm 1,2,* , André R. Brodtkorb 3,4 and Martin L. Sætra 4,5

1 Mathematics and Cybernetics, SINTEF Digital, P.O. Box 124 Blindern, NO-0314 Oslo, Norway
2 Department of Mathematical Sciences, Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway
3 Research and Development Department, Norwegian Meteorological Institute, P.O. Box 43 Blindern,

NO-0313 Oslo, Norway; andreb@met.no
4 Department of Computer Science, Oslo Metropolitan University, P.O. Box 4 St. Olavs plass, NO-0130 Oslo,

Norway; martinls@met.no
5 Information Technology Department, Norwegian Meteorological Institute, P.O. Box 43 Blindern,

NO-0313 Oslo, Norway
* Correspondence: havard.heitlo.holm@sintef.no
† This paper is an extended version of our paper published in International Conference on Parallel

Computing (ParCo2019).

Received: 6 December 2019; Accepted: 6 January 2020; Published: 9 January 2020
����������
�������

Abstract: In this work, we examine the performance, energy efficiency, and usability when using
Python for developing high-performance computing codes running on the graphics processing unit
(GPU). We investigate the portability of performance and energy efficiency between Compute Unified
Device Architecture (CUDA) and Open Compute Language (OpenCL); between GPU generations;
and between low-end, mid-range, and high-end GPUs. Our findings showed that the impact of using
Python is negligible for our applications, and furthermore, CUDA and OpenCL applications tuned to
an equivalent level can in many cases obtain the same computational performance. Our experiments
showed that performance in general varies more between different GPUs than between using CUDA
and OpenCL. We also show that tuning for performance is a good way of tuning for energy efficiency,
but that specific tuning is needed to obtain optimal energy efficiency.

Keywords: GPU computing; CUDA; OpenCL; high-performance computing; shallow-water
simulation; power efficiency

1. Introduction

General-purpose computing using the graphical processing unit (GPU), known as GPU
computing, was introduced in the early 2000s and has since become a popular concept. The first
examples were acceleration of simple algorithms such as matrix–matrix multiplication by rephrasing
the algorithm as operations on graphical primitives (see, e.g., [1]). This was cumbersome, and there
existed no development tools for general-purpose computing. However, many algorithms were
implemented on the GPU as proof-of-concepts, showing large speedups over the central processing
unit (CPU) [2]. Today, the development environment for GPU computing has evolved tremendously
and is both mature and stable: Advanced debuggers and profilers are available, making debugging,
profile-driven development, and performance optimization easier than ever.

The GPU has traditionally been accessed using compiled languages such as C/C++ or Fortran
for the CPU code, and a specialized programming language for the GPU. The rationale is often
that performance is paramount, and that compiled languages are therefore required. However, for
many GPU codes, most of the time is spent in the numerical code running on the GPU. In these

Computation 2020, 8, 4; doi:10.3390/computation8010004 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
https://orcid.org/0000-0002-2328-9447
https://orcid.org/0000-0001-5504-4594
https://orcid.org/0000-0002-9932-7200
http://www.mdpi.com/2079-3197/8/1/4?type=check_update&version=1
http://dx.doi.org/10.3390/computation8010004
http://www.mdpi.com/journal/computation

Computation 2020, 8, 4 2 of 24

cases, we can possibly use a higher-level language such as Python for the program flow without
significantly affecting the performance. The benefit is that using higher-level languages might increase
productivity [3]. PyCUDA and PyOpenCL [4] are two Python packages that offer access to CUDA and
OpenCL from Python and have become mature and popular packages since their initial release nearly
ten years ago.

Herein, we compare the performance, energy efficiency, and usability of PyCUDA and
PyOpenCL for important algorithmic primitives found in many high-performance computing
(HPC) applications [5]: a memory-bound numerical simulation code and a computationally bound
benchmark code. The memory-bound code performs simulation of the shallow-water equations using
explicit stencils [6,7] and represents a class of problems that are particularly well suited for GPU
computing [8–12]. The computationally bound code computes the Mandelbrot set, and we use it to
explore limitations of using Python for GPU computing.

We show that accessing the GPU from Python is as efficient as from C/C++ in many cases,
demonstrate how profile-driven development in Python is essential for increasing performance for
GPU code (up to 5 times), and show that energy efficiency increases proportionally with performance
tuning. Finally, we investigate the portability of the improvements and power efficiency both between
CUDA and OpenCL and between different GPUs. Our findings are summarized in tables that justify
that using Python can be preferable to C++ and that using CUDA can be preferable to using OpenCL.
Our observations should be directly transferable to other similar architectures and problems.

2. Related Work

There are several high-level programming languages and libraries that offer access to the GPU
for certain sets of problems and algorithms. OpenACC [13] (open accelerators) is one example which
is pragma-based and offers a set of directives to execute code in parallel on the GPU. However,
such high-level abstractions are typically only efficient for certain classes of problems and are often
unsuitable for nontrivial parallelization or data movement. CUDA [14] and OpenCL [15] are two
programming languages that offer full access to the GPU hardware, including the whole memory
subsystem. This is an especially important point, since memory movement is a key bottleneck in many
numerical algorithms [5] and therefore has a significant impact on energy consumption.

The performance of GPUs has been reported extensively [16], and several authors have shown that
GPUs are efficient in terms of energy-to-solution. Huang et al. [17] demonstrated early on that GPUs
could not only speed up computational performance but also increase power efficiency dramatically
using CUDA. Qi et al. [18] show how OpenCL on a mobile GPU can increase performance of the
discrete Fourier transform by 1.4 times and decrease energy use by 37%. Dong et al. [19] analyzed the
energy efficiency of GPU BLAST which simulates compressible hydrodynamics using finite elements
with CUDA and reported a 2.5 times speedup and a 42% increase in energy efficiency. Klôh [20]
reported that there is a wide spread in terms of energy efficiency and performance when comparing 3D
wave propagation and full waveform inversion on two different architectures. They compared an Intel
(Santa Clara, CA, USA) Xeon coupled with an ARM-based Nvidia (Santa Clara, CA, USA) Jetson TX2
GPU module and found that the Xeon platform performs best in terms of computational speed, whilst
the Jetson platform is most energy-efficient. Memeti et al. [21] compared the programming productivity,
performance, and energy use of CUDA, OpenACC, OpenCL, and OpenMP for programming a system
consisting of a CPU and GPU or a CPU and an Intel Xeon Phi coprocessor. They reported that CUDA,
OpenCL, and OpenMP have a similar performance and energy consumption in one benchmark and
that OpenCL performs better than OpenACC for another benchmark. In terms of productivity, the
actual person writing the code is important, but OpenACC and OpenMP require less effort than CUDA
and OpenCL, and CUDA can require significantly less effort than OpenCL.

Previous studies have also shown that CUDA and OpenCL can compete in terms of performance
as long as the comparison is fair [22–25], and there have also been proposed automatic source to source
compilers that report similar results [26,27]. This paper is an extension of Holm et al. [28], and we do

Computation 2020, 8, 4 3 of 24

not know of any other established literature that thoroughly compares the performance, usability, and
energy efficiency of CUDA and OpenCL when accessed from Python.

3. GPU Computing in Python

In this work, we focus on using Python to access the GPU through CUDA and OpenCL.
These two GPU programming models are conceptually very similar, and both offer the same kind of
parallelism primitives. The main idea is that the computational domain is partitioned into equally
sized subdomains that are executed independently and in parallel. Even though the programming
models are similar, their terminology differs slightly, and in this paper, we use that of CUDA. A full
review is outside the scope of this work but can be found in [29,30]. The following sections give an
overview of important parts of CUDA and OpenCL and discuss their respective Python wrappers.
We give a short introduction to using them from C++ and Python and compare the benefits and
drawbacks of both approaches.

3.1. CUDA

CUDA [14] was first released in 2007 and is available on all Nvidia GPUs as Nvidia’s proprietary
GPU computing platform. It includes third-party libraries and integrations, the directive-based
OpenACC [13] compiler, and the CUDA C/C++ programming language. Today, five of the ten
fastest supercomputers (including number one) use Nvidia GPUs, as well as nine out of the ten most
energy-efficient [31].

CUDA is implemented in the Nvidia device driver, but the compiler (nvcc) and libraries are
packaged in the CUDA toolkit and software development toolkit (SDK) (available at https://developer.
nvidia.com/cuda-zone). The toolkit and SDK contain a plethora of examples and libraries. In addition,
the toolkit contains Nvidia Nsight, which is an extension for Microsoft Visual Studio (Microsoft,
Redmond, WA, USA) and Eclipse (Eclipse Foundation, Inc., Ottawa, Ontario, Canada) (for Linux) for
interactive GPU debugging and profiling. Nsight offers code highlighting, a unified CPU and GPU
trace of the application, and automatic identification of GPU bottlenecks. The Nvidia Visual Profiler
is a standalone cross-platform application for profiling of CUDA programs, and CUDA versions for
debugging (cuda-gdb) and memory checking (cuda-memcheck) also exist.

3.2. OpenCL

OpenCL [15] is a free and open heterogeneous computing platform that was initiated by
Apple in 2009, and today, the OpenCL standard is maintained and developed by the Khronos
group. Whilst CUDA was made specifically for Nvidia GPUs, OpenCL can run on a number of
heterogeneous computing architectures, including GPUs, CPUs, field-programmable gate arrays
(FPGAs), and digital signal processors (DSPs). The OpenCL application programming interface
(API) is defined in a common C/C++ header, and a runtime library redirects OpenCL calls to the
appropriate device driver by using an installable client driver (ICD), specific to each architecture. The
actual OpenCL is therefore implemented in each vendor’s device driver. Contrary to CUDA, there
is no common toolkit, but there are several third-party libraries (for a list of OpenCL resources, see
https://www.khronos.org/opencl/resources).

Profiling an OpenCL application can be challenging, and the available tools vary depending on
your operating system and hardware vendor (an extensive list of OpenCL debugging and profiling
tools can be found at https://www.khronos.org/opengl/wiki/Debugging_Tools). It is possible to get
timing information on kernel and memory transfer operations by enabling event profiling information
and adding counters explicitly in your source code. This requires extra work and makes the code
more complex. Visual Studio can measure the amount of run time spent on the GPU, and CodeXL [32]
can be used to get more information on AMD (Santa Clara, CA, USA) GPUs. CodeXL is a successor
to gDebugger which offers features similar to those found in Nsight in addition to power profiling
and is available both as a standalone cross-platform application and as a Visual Studio extension.

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/resources
https://www.khronos.org/opengl/wiki/Debugging_Tools

Computation 2020, 8, 4 4 of 24

While it is possible to use Visual Profiler for OpenCL, this requires the use of the command-line
profiling functionality in the Nvidia driver, which needs to be enabled through environment variables
and a configuration file. After running the program with the profiling functionality in effect, the
profiling data can be imported into Visual Profiler. Intel Code Builder (part of Intel SDK for OpenCL
Applications [33]) and Intel Vtune Amplifier [34] can also be used for OpenCL debugging and profiling,
but these tools only support Intel CPUs and Intel Xeon Phi processors.

One disadvantage of OpenCL is that there are large differences between the OpenCL
implementations from different vendors, and good performance is likely to rely on vendor-specific
extensions. One example is that OpenCL 2.2 is required to use C++ templates in the GPU code, but
vendors such as Nvidia only support OpenCL version 1.2. It should also be mentioned that OpenCL
has been replaced in favor of Metal [35] by Apple (Cupertino, CA, USA) in their most recent versions
of Mac OS X.

3.3. GPU Computing from Python

Researchers spend a large portion of their time writing computer programs [36], and compiled
languages such as C/C++ and Fortran have been the de facto standard within scientific computing for
decades. These languages are well established, well documented, and give access to a plethora
of native and third-party libraries. C++ is the standard way of accessing CUDA and OpenCL
today, but developing code with these languages is time-consuming and requires great care. Using
higher-level languages such as Python can significantly increase development productivity [3,37].
However, it should be mentioned that the OpenCL and CUDA kernels themselves are not necessarily
made simpleror shorter by using Python: The productivity gain comes instead from Python’s less
verbose code style for the CPU part of the code. This influences every part of the host code, from the
boilerplate initialization code and data preprocessing to CUDA/OpenCL API calls, post-processing,
and visualization of results.

Since Python was first released in 1994, it has gained momentum within scientific computing.
Python is easy to learn, powerful, and emphasizes readability of code. All together, this allows for
efficient prototyping of code, but unfortunately often at the expense of performance. Since Python
is an interpreted language, it does not have the speed of C/C++ and Fortran. For example, a loop in
C/C++ or Fortran will execute at great speed, whilst this construction is relatively slow in Python.
This is acceptable for many application areas, but for computationally intensive codes, it becomes a
showstopper.

A popular approach to combining the speed of compiled code with Python is to have the
program flow written in Python and the performance critical inner loop in a compiled language.
The performance critical code can then be called from Python, using, e.g., SWIG (Simplified Wrapper
and Interface Generator), Numba [38] or Cython [39]. The following example illustrates this by
computing C = A′A with the dense general matrix multiplication (DGEMM) subroutine from the
Basic Linear Algebra Subprograms (BLAS) library supplied with SciPy:

1 import numpy as np
2 import scipy.linalg.blas as blas
3 N = 2048
4 A = np.ones((N,N))
5 C = blas.dgemm(alpha =1.0, a=A.T, b=A)

Even though Python can be relatively slow, most of the time in this example is spent in the
very efficient BLAS library, giving good overall performance. This approach thus offers the speed
of compiled code together with the productivity of a high-level language. We can in a similar way
execute GPU code from Python, and our experiments show that this gives a good overall performance.
Hence, Python can also be a viable option for production-level code, not only for experimental code
and prototypes.

Computation 2020, 8, 4 5 of 24

Listing 1: Programming example that shows how to fill an array with the numbers 1 to N using
PyCUDA. The corresponding C++ code is much longer.

1 import pycuda.autoinit
2 import pycuda.driver as drv
3 import pycuda.compiler as compiler
4 import numpy as np
5
6 module = compiler.SourceModule ("""
7 __global__ void fill(float *dest) {
8 int i = blockIdx.x*blockDim.x+threadIdx.x;
9 dest[i] = i+1;

10 } """)
11 fill = module.get_function ("fill")
12
13 N = 200
14 cpu_data = np.empty(N, dtype=np.float32)
15 fill(drv.Out(cpu_data), block =(N,1,1), grid =(1,1,1))
16 print(cpu_data)

There are several libraries that today offer access to the GPU from Python. One class of libraries
are OpenCV [40] (open source computer vision) that offers GPU acceleration of algorithms within a
specific field. Such libraries are outside the scope of this work, as we focus on general-purpose GPU
computing. In addition to these types of libraries, Numba [38] and CuPy [41] are general-purpose
programming environments in Python that offer full access to the GPU. However, the GPU programs
in Numba are written as Python functions, and the programmer has to rely on Numba for efficient
parallelization of the code. While such a design lowers the bar for developers to write code that
executes on the GPU, details that are crucial for obtaining the full potential performance might be
lost in the abstraction. Additionally, Numba is missing support for dynamic parallelism and texture
memory. CuPy also offers functionality to define the GPU functions in terms of Python code but
additionally supports raw kernels written in native CUDA.

PyCUDA and PyOpenCL [4] are Python packages that offer access to CUDA and OpenCL,
respectively. Both libraries expose the complete API of the underlying programming models and
aim to minimize the performance impact. The GPU kernels, which are crucial for the inner loop
performance, are written in native low-level CUDA or OpenCL, and memory transfers and kernel
launches are made explicit through Python functions. The result is an environment suitable for rapid
prototyping of high-performing GPU code. Listing 1 shows a minimal example for filling an array
with numbers 1 to N. The first four lines import PyCUDA and numpy. Lines six to ten hold the CUDA
source code (written in CUDA C/C++) and compile it using the SourceModule interface. Line eleven
retrieves a handle to the kernel so that we can call the GPU function from Python. Line 14 allocates
data in Python using numpy, which is then handed over to the GPU kernel in line 15. This manages
automatic uploading and downloading of data from the GPU through the drv.Out class. The example
shows how PyCUDA can be used to run a GPU kernel in less than 20 lines of code. The equivalent
C++ code would be far longer.

PyCUDA and PyOpenCL can be installed using popular package managers such as apt-get, pip,
and conda. However, the fact that they also require that CUDA and OpenCL be properly installed
makes things a bit more complicated. The installation procedure on Windows is especially tricky,
and it can be a challenge to install the packages successfully. On Linux, a challenge with OpenCL is
that Nvidia only supports version 1.2, whilst PyOpenCL tries to compile with version 2.0 by default
when it is installed with pip. This results in runtime crashes when loading the PyOpenCL package.
The solution is to manually compile the package, which can be cumbersome. An alternative is to

Computation 2020, 8, 4 6 of 24

use the packages in apt-get, but these are often very outdated. For PyCUDA, however, we have
experienced fewer difficulties installing on Linux.

PyOpenCL ships with integration for Jupyter Notebooks [42], which enables rapid prototyping in
an interactive REPL environment (REPL stands for read-eval-print loop and is a class of interactive
development environments where you execute the code as you write it). Using the Jupyter Notebook
for prototyping is extremely efficient, and our development cycle has typically been as follows:

1. Prototype and develop code in a Jupyter Notebook;
2. Clean up code in the notebook;
3. Move code from notebook to separate Python modules.

The first stage often entails developing the idea and concept interactively, making test programs, and
plotting intermediate and final results. Then, when we have a first implementation, we continue by
cleaning up the code and making it suitable for moving into a separate Python module. The tests are
added to an appropriate continuous integration environment.

Unfortunately, we have experienced that OpenCL occasionally crashes at random within the
Jupyter Notebook environment. After a significant amount of debugging, we discovered that the
context was not properly cleaned up, and variables that went out of scope were not properly
deallocated, thereby causing crashes for longer Jupyter sessions. Unfortunately, these crashes
demanded a reload of the GPU driver, which typically means rebooting the system. Our solution
was simply to add explicit invocation of Python’s garbage collector after dereferencing the variables
pointing to GPU main memory.

After having worked with CUDA in the Jupyter Notebook, we discovered that similar problems
were also present here. However, because CUDA is somewhat stateful, it uses a stack of contexts
and this stack was not properly cleaned up. Our solution was in this case to write a context manager
that performed the correct pushing and popping of the CUDA context stack. After having addressed
these shortcomings of PyCUDA and PyOpenCL, we have not experienced any crashes caused by the
interplay with the Jupyter Notebook.

3.4. C++ Versus Python

The GPU can be accessed both from C++ and Python, and these two approaches have
their own benefits and drawbacks. In this section, we examine how a computationally bound
application—computing the Mandelbrot set—can be implemented in the four combinations: C++ and
CUDA; C++ and OpenCL; Python and CUDA; and Python and OpenCL.

The Mandelbrot set M consists of all complex points c in which

zn+1 = z2
n + c

remains bounded as n→ ∞. In practice, one typically initializes a complex number c and z0 = 0, and
iterates until |zn+1| ≥ 2 or an upper limit of iterations has been reached:

//Loop u n t i l i t e r a t i o n s or u n t i l i t diverges
while (| z| < 2 . 0 && n < i t e r a t i o n s) {
z = z∗z + c ;
++n ;
}

Our application consists of a GPU kernel which first initializes the complex coordinate, c, based on
the position of each thread in the computational grid. Each thread then executes a loop as shown above
before the output value for the thread is written to main memory. If we allow, e.g., 1000 iterations, a
single thread may perform up to 1000 iterations of the above while-loop before it writes a single number
to the main GPU memory. However, as Figure 1 shows, the number of actual iterations performed by
each thread varies dramatically, even between threads located close to each other. Between CUDA

Computation 2020, 8, 4 7 of 24

and OpenCL, the kernel code is close to identical, with only syntactic differences (see Section 4.1).
The actual kernel that runs on the GPU is the same for both the C++ and the Python variants, and
differences between them are therefore found in the host code only.

Figure 1. Mandelbrot set colored using continuous coloring. Each complex coordinate c is determined
as within the set if the expression zn+1 = z2

n + c does not diverge after a given set of iterations.
The number of iterations performed for each thread is shown here using a continuous color scale.
Locations close to the boundary perform many iterations, whilst only a few iterations are required far
away. It is evident that threads in close proximity may perform a very different number of iterations.

The host code is responsible for allocating output data on the GPU, launching the kernel, and
downloading the result from the GPU to the CPU. To benchmark the different variants, we computed
the Mandelbrot set for different extents and measured how much time the CPU and GPU uses for
different sections of the code. It should be noted that the overhead of running a traditional Python
for-loop is significant but can be reduced using, e.g., so-called list comprehensions.

Table 1 shows a summary of our benchmarks. It shows clearly that the kernel launch overhead is
larger for Python than for C++, but it becomes negligible when compared to the kernel execution time.
Thus, for kernels that last more than a few ms, there will be little performance benefit of using C++,
and Python will typically be equally fast. The reason for this is that the CPU in both cases simply will
be waiting for the GPU to complete execution for most of the time, and the performance difference
will be completely masked. This is in particular shown here in the “Wall time” row, which shows
no practical difference between C++ and Python. In fact, for CUDA, the Python variant executes
marginally faster. Our explanation to this is that PyCUDA automatically sets the compilation flags for
nvcc for the specific GPU, yielding more optimized code.

One interesting difference between CUDA and OpenCL from Python is that the compilation
time differs. PyCUDA uses nvcc to compile and link an executable in a similar fashion to a regular
C++ program. PyOpenCL, on the other hand, simply hands over the OpenCL kernel source code to
the OpenCL driver, which compiles it on-the-fly. We expect that incorporation of the recent Nvidia
runtime compilation library (NVRTC) into PyCUDA will alleviate this shortcoming.

If we compare the other metrics, we see that both the development time and number of lines of
code is significantly better for Python. Of particular note is that debugging and visualizing results
becomes interactive when using Python and Jupyter Notebooks, thereby increasing the development
efficiency dramatically. This is done using standard tools such as Matplotlib [43], making it extremely
easy to visualize and explore results. In C++, on the other hand, the only way to reasonably explore
the results is through file output (e.g., CSV) and plotting using third-party tools.

Computation 2020, 8, 4 8 of 24

Table 1. Performance of Compute Unified Device Architecture (CUDA) and Open Compute Language
(OpenCL) for the Mandelbrot application from both Python and C++. The code was run on an Nvidia
Tesla M2090 graphical processing unit (GPU) to compute fifty consecutive zooms onto the point
−0.75 + 0.1i with a maximum of 5000 iterations. OpenCL 2.0 is available in the host section of the code,
but the device section must still use OpenCL 1.2 for the C++ version. The development time is set
subjectively by the authors and the lines of code metric contains only the central processing unit (CPU)
code related to the actual GPU kernel launch. On Windows, we were unable to get asynchronous
execution with OpenCL on several different machines, Python versions, and GPU driver versions.
We have not been able to pinpoint the cause of this and suspect that asynchronous execution of OpenCL
in Windows is not fully supported. We used page locked memory with CUDA, whilst this was not
easily available through OpenCL for the download. The overhead for OpenCL therefore includes the
transfer, as it cannot be run concurrently with other operations. It should be noted that OpenCL should
support efficient pinned memory transfers, but we were unable to get this to work using several driver
versions on several different machines. We therefore report the observed transfer times without pinned
memory. The wall time includes all the time the CPU spends from launching the first kernel to having
completed downloading the last result from the GPU.

C++ Python

CUDA OpenCL CUDA OpenCL

API version 10.0 1.2 / 2.0 10.0 1.2
Development time Medium Medium Fast Fast

Approximate lines of code 145 130 100 100
Compilation time ∼5 s ∼5 s ∼5 s Interactive

Kernel launch overhead 13 µs 318 µs 19 µs 377 µs
Download overhead 9 µs 4007 µs 52 µs 8872 µs

Kernel GPU time 480 ms 446 ms 478 ms 444 ms
Download GPU time 4.0 ms 3.9 ms 4.0 ms 8.8 ms

Wall time 24.2 s 22.5 s 24.1 s 22.7 s

4. Porting, Profiling, and Benchmarking Performance and Energy Efficiency

We now describe the process of porting code between PyOpenCL and PyCUDA and optimizing
the PyCUDA versions through profile-driven development. We consider edsimulation of the
shallow-water equations using three different numerical schemes:

• A linear finite difference scheme;
• A nonlinear finite difference scheme; and
• A high-resolution finite volume scheme.

The schemes are used for simulating real-world ocean currents, and two of them were used
operationally in the early days of computational oceanography. All three schemes are essentially stencil
operations with an increasing level of complexity, and their details are summarized in Holm et al. [7].

The numerical schemes are algorithmically well suited for the GPU, but little effort has been
made to thoroughly optimize the codes’ performance on a specific GPU. It is well known in the
GPU computing community that performance is not portable between GPUs, neither for OpenCL
nor CUDA, and automatically generating good kernel configurations is an active research area (see,
e.g., [44–46]). We started by porting the three schemes to CUDA before using the available profiling
tools for CUDA to analyze and optimize each scheme. The obtained optimizations were then also
back-ported into the original OpenCL code. The profiling and tuning was carried out on a laptop with
a dedicated GeForce 840M GPU, representing the low-end part of the GPU performance scale, and on a
desktop with a mid-range GeForce GTX780 GPU representing a typical mid-range GPU. We compared
the performance of the original and optimized implementations with PyCUDA and PyOpenCL using
seven GPUs listed in Table 2, which also includes several high-end server GPUs.

Computation 2020, 8, 4 9 of 24

Table 2. A list of the GPUs used in this work. The profile-driven development was carried out on the
840M and GTX780, and the remaining high-end GPUs were used for performance benchmarking.
We used the 840M, GTX780, P100, and V100 for benchmarking power efficiency. Note that the
performance in giga floating point operations per second (GFLOPS) is for single precision. The
K80 GPU consists of two processors on the same card and has a boost feature for temporarily increasing
the clock speed to increase performance to 2× 4368 GFLOPS.

Model Class Architecture (Year) Memory GFLOPS Bandwidth Power Device

Tesla M2090 Server Fermi (2011) 6 GiB 1331 178 GB/s N.A.
Tesla K20 Server Kepler (2012) 6 GiB 3524 208 GB/s N.A.
GeForce GTX780 Desktop Kepler (2013) 3 GiB 3977 288 GB/s Watt meter
Tesla K80 Server Kepler (2014) 2× 6 GiB 2× 2795 2× 240 GB/s N.A.
GeForce 840M Laptop Maxwell (2014) 4 GiB 790 16 GB/s Watt meter
Tesla P100 Server Pascal (2016) 12 GiB 9523 549 GB/s nvidia-smi
Tesla V100 Server Volta (2017) 16 GiB 14,899 900 GB/s nvidia-smi

4.1. Porting from PyOpenCL to PyCUDA

The porting process requires changing both the kernel code that runs on the GPU and the API
calling in the CPU code. The kernels will in most cases run and produce correct results after a simple
change of keywords. The CPU API calls, however, are quite different between CUDA and OpenCL
and require more attention. This includes handling devices, contexts, and streams, compiling and
linking kernels, setting kernel arguments, execution of kernels, and memory transfers between the
CPU and GPU (or between GPUs).

A difficulty in the porting process is that it involves a significant amount of changes that all
must be completed before it is possible to successfully compile, run, and test the code. The Python
interpreter and the CUDA compiler can be helpful in the porting process, as they will indicate the
locations where code needs to be altered. A summary of key differences between CUDA and OpenCL,
which directly correspond to the steps below, can be found in Table 3. The steps needed to port our
simulator from PyOpenCL to PyCUDA should also be applicable for porting other codes:

1. Import PyCUDA instead of PyOpenCL;
2. Change API calls from PyOpenCL to PyCUDA, paying extra attention to context and stream

synchronization;
3. Adjust kernel launch parameters. Block sizes for PyCUDA need to be 3D, and global sizes are

given in number of blocks instead of total number of threads;
4. Use CUDA indexing in the kernels. Note that gridDim needs to be multiplied with blockDim to

get the CUDA-equivalent of OpenCL get_global_size();
5. Search and replace the remaining keywords in the kernels. Note that GPU functions in OpenCL

have no special qualifier and that GPU main memory pointers need no qualifier for function
arguments in CUDA.

Even though it might be straightforward to port codes between CUDA and OpenCL, there is a
large difference in availability of native and third-party libraries. Built-in and specialized functions
and data types (e.g., float3) are also different between CUDA and OpenCL (and between Nvidia and
AMD). If your code makes use of libraries or built-in functions and data types, the porting process will
be more involved, as substitutes must be found or implemented.

A difference of practical interest is that CUDA uses the (nvcc) compiler for compilation of the
GPU code, whilst OpenCL uses the OpenCL driver. The CUDA compiler is a separate program
that performs compilation of both CPU and GPU code and links these together into a single file.
This process can take a significant amount of time, ranging from seconds to minutes depending on how
complex the code is. OpenCL, on the other hand, uses the OpenCL driver for compilation, and this
process is very fast in our experience. Both CUDA and OpenCL cache their compilations, so this only
applies to the first time a kernel is being used. When developing GPU kernels, however, it becomes

Computation 2020, 8, 4 10 of 24

noticeably slower to work with the compilation times of PyCUDA compared to PyOpenCL, with an
added compilation overhead of about 5 s.

Table 3. Keywords, functions, and application programming interface (API) calls in CUDA and
OpenCL. In many cases, a simple search and replace is sufficient to translate a program.

CUDA OpenCL

Function qualifiers
__global__ __kernel
__device__ N/A

Variable qualifiers
__constant__ __constant
__device__ __global
__shared__ __local

Indexing
gridDim get_num_groups()
blockDim get_local_size()
blockIdx get_group_id()
threadIdx get_local_id()
blockIdx*blockDim+threadIdx get_global_id()
gridDim*blockDim get_global_size()

Synchronization
__syncthreads() barrier()
__threadfence() N/A
__threadfence_block() mem_fence()

API calls
kernel<<<...>>>() clEnqueueNDRangeKernel()
cudaGetDeviceProperties() clGetDeviceInfo()

4.2. Profile-Driven Optimization

The shallow-water equations consist of three coupled nonlinear partial differential equations
that describe conservation of mass and momentum. In our case, they are formulated using η, the
surface deviation from the equilibrium water level, and volume transport hu and hv along the abscissa
and ordinate, respectively. Source terms represent varying bathymetry and the Coriolis forces, which
take into account that we solve the equations on a rotating sphere. The equations can be used
to model gravitational waves, in which the governing motion is horizontal, e.g., the ocean [6,7].
An oceanographic simulation scenario using our simulator is shown in Figure 2.

We started the analysis of the three different numerical schemes using the Nsight extension in
Visual Studio and the standalone Visual Profiler application in the exact same manner as if we were
profiling from C/C++. Nsight was run on a laptop with a GeForce 840M GPU in Windows, and the
Visual Profiler on a desktop with a GTX780 GPU in Linux. Our workflow started by profiling the code,
identifying the performance bottleneck, optimizing the bottleneck, and finally profiling to determine if
the optimization was successful [47]. To ensure that our optimizations do not introduce errors in the
code, we frequently ran integration and regression tests against reference solutions.

An important performance parameter for GPUs is the domain decomposition determined by
the block size. CUDA decomposes the work into a grid with equally sized blocks, and all blocks
are executed independently. At runtime, the GPU takes the set of blocks and schedules them to the
different cores within the GPU. Using a too-small block size will underutilize the GPU, and using a too
large block size will similarly exhaust the GPU’s resources. Figure 3 shows how the block size has a
major impact on performance for three different GPUs and also illustrates that finding the best block

Computation 2020, 8, 4 11 of 24

size can be difficult. Because of this, we experimentally obtained the optimal configuration for each
scheme before starting profiling, and again after the code had been optimized.

0 100 200 300 400 500 600
0

100

200

300

H
ig

h
re

so
lu

ti
on

-0
.2

-0
.2

-0
.2

-0
.2

-0
.1

-0.0

0.1

0.
1

0.2

0
.3

0
.4

0
.5

0
.5

0 100 200 300 400 500 600
0

100

200

300

−2 −1 0 1 2

η [m]
0.0 0.1 0.2 0.3 0.4

particle velocity [m/s]

southern norway highres 23

Figure 2. Example of a shallow-water simulation for oceanographic purposes with our code. The left
figure shows the sea-surface level, whereas the right figure shows the particle velocity. The simulation
covers the North Sea around the southern part of Norway, with Denmark in the lower right corner.
The axes shows distances in km, and the grid consists of 1550× 950 cells of size 400 m× 400 m. The
simulation here is initialized from operational data provided by the Norwegian Meteorological Institute.

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t

GeForce 840M

80 100 120
Megacells/s

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t

GeForce GTX780

200 300 400 500
Megacells/s

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t
Tesla V100

2500 3000 3500 4000
Megacells/s

Figure 3. Heat map of performance as a function of block width and block height for selected sizes for
the high-resolution scheme on three different GPUs. Notice that even though the performance patterns
have similarities, the performance on the V100 would be suboptimal if the optimal configuration from
the GTX780 is used. The performance increase is 2–5× for all three GPUs from the slowest to the fastest
block size.

4.2.1. The High-Resolution Finite Volume Scheme

The first numerical scheme we considered is a high-resolution finite-volume method, which
is designed to be well-balanced with respect to steady-state solutions in geostrophic balance [48].
The scheme reads the physical variables, (η, hu, hv) from the GPU main memory, reconstructs an
intermediate set of four geostrophic equilibrium variables, calculates inter-cell fluxes, and finally
sums up the fluxes and writes the result back to the GPU main memory. Each of the steps are stencil
operations building on top of each other, and the kernel relies heavily on the use of shared memory
for storing and sharing intermediate results. The integration in time is based on a second-order
strong stability preserving Runge-Kutta method, which means that the kernel is called twice for every
iteration.

The first Nsight analysis of the high-resolution scheme indicates that the occupancy is very low
at only 25%. The occupancy is a measure of how many threads are resident in the cores of the GPU
simultaneously and roughly translates to how well the GPU can hide memory latencies. As the GPU

Computation 2020, 8, 4 12 of 24

has restricted resources when it comes to the amount of shared memory, number of registers, etc., the
occupancy is reduced if each block uses many of these resources. In our case, the limiting factor is
the use of shared memory. By reducing the amount of shared memory used by each block, we can
expect to get more blocks resident simultaneously on the GPU, which most likely will increase memory
throughput and thereby increase performance.

Through six consecutive iterations, we progressively reduced the shared memory by 65% with
the following steps (see Figure 4):

1. Recomputing bathymetry in cell intersections instead of storing Hm;
2. Recomputing face bathymetry instead of storing RHx and RHy;
3. Reusing buffer for physical variables Q for storing the reconstruction variables R;
4. Recomputing fluxes along the abscissa instead of storing F;
5. Recomputing fluxes along the ordinate instead of storing G;
6. Reusing the buffer for derivatives along the abscissa, Qx, and derivatives along the ordinate, Qy.

In the third and sixth steps, we managed to reuse other shared memory buffers by reordering the
execution flow of the code, and for all other cases, we relied on recomputation. This essentially means
that we prefer recomputing results rather than storing and sharing them between threads, thus trading
extra computation for less memory storage.

Original Shmem Hm Shmem HRx,y Shmem R Shmem F Shmem G Shmem Qy Registers Compile flags Block size
0

1

2

3

4

5

Tuning steps of the high-resolution scheme with CUDA

840M

M2090

K20

GTX780

K80

V100

P100

Figure 4. Different optimization stages for the high-resolution kernel showing performance normalized
with respect to the original version. Notice that the different optimization strategies impact the
performance very differently for different architectures. The platform we profiled on was the 840M
GPU, yet the highest performance gain was for the K20 and GTX780 GPUs with over 5× improvement.

The first seven groups in Figure 4 show the impact of the shared memory on performance.
The first few buffers we removed were insufficient to increase the occupancy, because it would not
free enough space for another resident block per core. However, after stage three, there was space for
one extra block, and the occupancy increased. After all six iterations, occupancy increased to 56%,
memory bandwidth utilization increased by a factor 1.8, and gigaFLOPS (GFLOPS) (FLOPS stands for
floating point operations per second) more than doubled. It should be noted that memory throughput
is the important factor here, both since our kernel is memory-bound and because our recomputations
artificially increase the number of floating point operations performed by the kernel by 20%.

The next limiting factor was the number of registers (variables) used by the kernel. First, we
removed all variables related to debugging and packed four boolean kernel arguments into a single
integer using bit operations. Finally, we removed several temporary variables by aggregating these as
soon as possible into the final computed flux. The compiler is already very good at optimizing register
use, but using the above optimizations reduced the number of registers per thread from 49 to 47, which
was sufficient to increase occupancy from 56% to 62%.

Compilation flags can also be used to increase performance with relatively little effort, as can be
seen in Figure 4. Here, we used the ––use_fast_math flag, which enables using fast, albeit less precise,
mathematical functions for operations such as exponential and square roots. This gave a dramatic
effect and increased memory throughput by a factor of 3.9 relative to the original version. This is
not only because the mathematical functions execute faster, but perhaps more importantly because

Computation 2020, 8, 4 13 of 24

the fast mathematical functions use less register space, reducing from 47 to 40 registers per thread.
This increased occupancy to 69% and left shared memory as the bottleneck once again. In our case,
the use of fast mathematical functions is sufficiently accurate, but these compilation flags can ruin the
correctness of a program and should be used with care. Other important flags to consider are flags that
determine the maximum amount of register and specify cache configurations. After having optimized
the kernel, our block size is probably no longer optimal, and we reran the block size optimization.

The performance increased by a factor 3.5 on the 840M, and 5.5 on the GTX780 after these
optimization steps. One surprising point is that the optimization steps have a very different effect on
different architectures. For example, the K20 and GTX780 increased to over 5 times the performance,
whereas the K80, P100, and V100 increased by only half of that. Some steps also actually decreased
the performance on one GPU, whilst having a positive effect on others. This was especially noticeable
with our attempts at optimizing register use. It should still be noted that none of the optimization
steps that reduced shared memory usage led to a slowdown on any of the GPUs, even though these
steps increased the computational workload per thread.

4.2.2. The Nonlinear Finite Difference Scheme

Our second scheme is a nonlinear second-order classical leapfrog scheme, also called
centered-in-time centered-in-space. In this scheme, the three physical variables are defined on a
staggered grid and are updated using separate kernels. Each kernel reads all three variables from the
GPU main memory, performs computations, and writes back the result. The computational work in
these three kernels is significantly less than for the high-resolution scheme, making this scheme even
more memory-bound. However, this also means that only four shared memory buffers are needed
(three for the variables from the current time step and one for the constant depth). The initial profiling
shows that the occupancy is 100% for all three kernels.

Due to its simplicity, this type of kernel leaves less headroom for optimization than the
aforementioned high-resolution scheme. For example, the compilation flag ––use_fast_math, which
had a dramatic effect for the high-resolution scheme, has only a marginal effect on this kernel because it
performs less mathematical operations and uses few registers already. One thing that we can optimize,
however, is usin concurrent kernel execution, since all three variables can be updated simultaneously.
Unfortunately, each kernel already occupies all available resources on the GPU, and therefore, the effect
turns out to be marginal, as shown in Figure 5. The figure also shows that the boundary condition
kernels took too long and directed our attention to them. These could with relative ease be optimized
to take an insignificant amount of time.

Figure 5. Four screenshots from the Nvidia Visual Profiler, illustrating the effect of optimizations for
the nonlinear scheme. The top figure shows the original performance, and in the second, we introduce
multiple streams so that the three physical variables can be computed independently. In the third
figure, we reduce the number of blocks that are needed for the boundary condition kernels, and finally,
we compute all three variables within one kernel in the bottom figure. The horizontal time scale is
about 7 ms and equal for all four figures and shows that computing all variables in a single kernel
gives the highest performance gain.

Computation 2020, 8, 4 14 of 24

Because we launched three kernels to update the variables, we read the variables η, hu, and hv
multiple times from the GPU main memory for every iteration. By carefully gathering these kernels
into one, we can reduce the number of variables read and written from the GPU main memory from
16 to ten. After this optimization, our profiling shows a 36% decrease in memory traffic, compared to
the theoretical 37.5%. This directly translates to an equivalent improvement in performance, as shown
in the lower panel of Figure 5.

By merging the three kernels into one, the occupancy decreased to 62.5%, as each thread now
requires more registers. Several attempts were made to reduce this number, but none of our attempts
helped the compiler to do a better job. One way of forcing fewer registers is to set the ––maxrregcount
compilation flag. However, this implies that registers are spilled to local memory (cache on the GPU),
and even though the occupancy increases, the actual performance decreases. The final results from
optimizing the nonlinear scheme are shown in Figure 6, and the optimizations increase the performance
of the CUDA versions by between two to three times on all seven GPUs.

OpenCL original CUDA original OpenCL tuned CUDA tuned
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Linear scheme - Normalized megacells/sec

840M

M2090

K20

GTX780

K80

V100

P100

OpenCL original CUDA original OpenCL tuned CUDA tuned
0

5

10

15

20

25

Linear scheme - megacells/bandwidth

840M

M2090

K20

GTX780

K80

V100

P100

OpenCL original CUDA original OpenCL tuned CUDA tuned
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nonlinear scheme - Normalized megacells/sec

840M

M2090

K20

GTX780

K80

V100

P100

OpenCL original CUDA original OpenCL tuned CUDA tuned
0

5

10

15

Nonlinear scheme - megacells/bandwidth

840M

M2090

K20

GTX780

K80

V100

P100

OpenCL original CUDA original OpenCL tuned CUDA tuned
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

High-resolution scheme - Normalized megacells/sec

840M

M2090

K20

GTX780

K80

V100

P100

OpenCL original CUDA original OpenCL tuned CUDA tuned
0

2

4

6

8

High-resolutions scheme - megacells/bandwidth

840M

M2090

K20

GTX780

K80

V100

P100

Figure 6. Performance of original, ported, and optimized kernels measured in megacells per second.
The left column is normalized with respect to original performance, and the right column with respect
to the theoretical GPU bandwidth. Notice that there is relatively little difference between CUDA
and OpenCL, whilst there is a significant difference in how effective the tuning is for the different
architectures. Furthermore, there is a significant loss of performance when porting from OpenCL to
CUDA in our original approach for the high-resolution and nonlinear schemes. From our experience,
this relates to how the two languages optimize mathematical expressions with and without the fast
math compilation flags. Also notice that the 840M, V100, and P100 GPUs achieved the best performance
relative to the GPU bandwidth.

Computation 2020, 8, 4 15 of 24

4.2.3. The Linear Finite Difference Scheme

The final scheme solves the linearized shallow-water equations using a forward–backward linear
finite-difference scheme [49] and is asymmetric in time. It consists of three simple kernels, in which
the most recent results are always used (similarly to a Gauss–Seidel iteration):

hun+1 ← F(ηn, hvn, hun),

hvn+1 ← G(ηn, hvn, hun+1),

ηn+1 ← H(ηn, hvn+1, hun+1).

In order to reduce the amount of memory read from the GPU main memory, we applied the
same strategy as for the nonlinear scheme and carefully combined all three kernels into one. Since
the execution order has to comply with the data dependencies, we needed to read extra input data
(referred to as ghost cells or computational halo) for all variables at time step n. We then computed
hun+1, hvn+1, and finally ηn+1. Our profiling shows that this reduced the amount of memory read and
written to GPU main memory by 50%.

The profiling now tells us that memory dependencies are the main bottleneck, and that the GPU
has no eligible instructions for about 60% of the cycles. Without a major redesign of the algorithm,
there is typically little we can do to improve the kernel further, but for completeness, we added the
––use_fast_math compilation flag. However, since the kernel is simple and heavily memory-bound,
the flag had a negligible impact.

The overall performance increase is more than two times for the laptop 840M GPU and the server
V100 GPU, but only around 40% for the others. It should also be noted that this kernel is the one with
the smallest negative performance impact when moving from OpenCL to CUDA.

4.3. Backporting Optimizations to OpenCL

To do a fair comparison of the performance of PyCUDA and PyOpenCL, we needed to back-port
our optimizations to PyOpenCL. As most of the optimizations are carried out in the CUDA source
code, it is a relatively simple matter of copying the optimized code into the original OpenCL kernels
and updating the code according to Table 3. In the Python code, the loading of the separate kernels for
the linear and nonlinear schemes was replaced by the new merged kernels, and the input arguments
were updated to correspond to these optimizations. Active and appropriate use of a version control
system and regression testing is crucial in this work.

Porting compiler flags can in general be a greater challenge, as there are no one-to-one
overlaps between the compile-time options for the two languages. However, in our case, only
the ––use_fast_math compilation flag was used in the final PyCUDA version, and it has a
matching counterpart, -cl-fast-relaxed-math, which is passed to PyOpenCL’s API when compiling
the kernels.

4.4. Comparing Performance

The overall performance gain of our optimization is shown in Figure 6, where all results are given
in megacells per second normalized with respect to the original PyOpenCL implementation in the
left-hand column and GPU bandwidth (see Table 2) in the right-hand column. The original porting
from PyOpenCL to PyCUDA gave a noticeable reduction in performance for the high-resolution
scheme on all GPUs. After careful examination, we attributed this to different default compilation flags
in PyCUDA and PyOpenCL: In PyCUDA, the fast-math flag was shown to double the performance
for the high-resolution scheme, while we found that it gave less than a 5% performance gain with
PyOpenCL. Note that the slowdown in the original porting is much less for the linear and nonlinear
schemes, as these schemes contain fewer complex mathematical operations, and we instead observe a
varying effect on performance of porting the original OpenCL code to CUDA. When examining the

Computation 2020, 8, 4 16 of 24

numerical schemes one by one, we see that the optimizations performed for the high-resolution scheme
appears to be highly portable when back-ported to PyOpenCL for all GPUs. For the tuned nonlinear
scheme, however, we saw that the 840M and V100 GPUs give a significantly higher performance
using CUDA than OpenCL. Finally, for the linear scheme, the performance is similar for all GPUs, and
only the 840M and V100 GPUs benefit significantly from the optimization effort. In total, we see that
certain scheme and GPU combinations result in a significant speedup for CUDA over OpenCL, but we
cannot conclude whether this is caused by differences in driver versions or from other factors. We are
therefore not able to claim that CUDA performs better than OpenCL in general. When looking at the
performance normalized with respect to the specific GPU bandwidth, we see that the 840M laptop
GPU offers the highest performance for all schemes, followed by the two most recent high-end GPUs,
the V100 and P100.

4.5. Measuring Power Consumption

We measure power consumption in two ways. The first method is using the nvidia-smi application,
which can be used to monitor GPU state parameters such as utilization, temperature, power draw,
etc. By programmatically running nvidia-smi in the background during benchmark experiments, we
can obtain a log containing a high-resolution power draw profile for the runtime of the benchmark.
The downside of using nvidia-smi is that information about power draw is only supported on recent
high-performance GPUs, and we have therefore only benchmarked the power consumption with
nvidia-smi on the two most recent Tesla GPUs, the P100 and V100. Further, nvidia-smi monitors the
energy consumption of the GPU only, meaning that we do not have any information about energy
consumed by the CPU. For each experiment, nvidia-smi is started in the background exactly 3 s before
the benchmark and is configured to log the power draw every 20 ms. This background process is
stopped again exactly 3 s after the end of the simulation. This approach allows us to measure the
energy consumption of the idle GPU both before and after each benchmark, and we ignore the idle
sections when computing the mean and total power consumption for each experiment. All results
presented here are with the idle load subtracted from the experiment results.

The second method is to measure the total amount of energy used by the entire computer through
a watt meter. The use of the watt meter requires physical access to the computer, and we are therefore
restricted to doing measurements on the laptop and desktop, containing the GeForce 840M and
GeForce GTX780 GPUs, respectively. The watt meter offers no automatic logging or reading but
displays the total power used with an accuracy of 1 Wh. To get sufficiently accurate readings, we
need to run each benchmark long enough to keep the GPU busy for approximately one hour, after
which we read the total and mean power consumption for each experiment. Before and after each
benchmark, we also record the background power of the idle system, and the maximum recorded
power during the experiment, to monitor whether the operating system is putting any nonrelated
background load on the computer. It should also be noted that the battery was removed from the
laptop during these experiments. Similarly to the first method, we subtract the idle loads from the
result of each experiment, but note that the addition increased load from the CPU will still be included.

4.6. Comparing Energy Efficiency

Figure 7 shows the results from the power efficiency experiments using the watt meter on the
laptop (840M) and desktop (GTX780). The top row repeats the results for computational performance
also shown in Figure 6 for the relevant GPUs, whereas the second row shows the normalized mean
power consumption with respect to the original OpenCL versions. The first thing we notice is that
CUDA seems to require less power on the 840M compared to OpenCL for all versions of the three
schemes. On the GTX780, however, there are no differences between the two programming models
for equivalent versions. In fact, only the tuned high-resolution scheme seems to be different from the
others (using about 30% more power), and this behavior can also be seen on the 840M. The power
efficiency of the three schemes is shown in the bottom row in Figure 7, and we see that on the 840M,

Computation 2020, 8, 4 17 of 24

the tuned CUDA versions are the most power-efficient. This is because CUDA is both more efficient
and uses less power on this system. On the GTX780, CUDA and OpenCL have equivalent power
efficiency for all tuned schemes.

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/sec

840M

GTX780

Linear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/sec

840M

GTX780

Nonlinear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/sec

840M

GTX780

High-resolution scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized mean power (W)

840M

GTX780

Linear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized mean power (W)

840M

GTX780

Nonlinear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized mean power (W)

840M

GTX780

High-resolution scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/joule

840M

GTX780

Linear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/joule

840M

GTX780

Nonlinear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/joule

840M

GTX780

High-resolution scheme

Figure 7. Comparison of original, ported, and optimized codes measured in megacells per second (top
row), mean power usage (mid row), and megacells per joule (bottom row), normalized with respect to
the original OpenCL implementation, for the laptop (840M) and desktop (GTX780) GPUs. The power
is measured through a watt meter and represents the power consumed by the entire computer. Note
that the CUDA versions require less power than the OpenCL versions on the 840M, whereas there
are no differences between equivalent versions on the GTX780. In terms of power efficiency, CUDA is
more efficient than OpenCL on the M840, whereas the GTX780 gives the same power efficiency.

The results for the Tesla P100 and Tesla V100 are shown in Figure 8. The top row shows the
computational performance in megacells per second, repeating the results from Figure 6. The second
row shows the mean power used by each version of the three schemes. Note here that on the V100,
both CUDA versions for the nonlinear scheme use 60%–90% more power than the OpenCL versions,
which is the opposite result compared to the 840M results. For both the linear and high-resolution
schemes, the results do not differ significantly in favor of either CUDA or OpenCL, but the tuned
OpenCL version uses slightly more power for the high-resolution scheme. When we consider the
power efficiency in the bottom row, we see that the tuned CUDA versions are the best versions for

Computation 2020, 8, 4 18 of 24

all schemes. In particular for the nonlinear scheme, this is mostly due to the large difference in
computational efficiency between CUDA and OpenCL for this particular scheme on this particular
GPU. For the P100, however, the mean power consumption is almost the same for all versions of each
scheme, except for the high-resolution scheme, which has an increased mean power consumption
for the tuned versions. The increase in mean power consumption is, however, less than the increase
in computational performance, and the high-resolution scheme also has a higher energy efficiency
when tuned.

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/sec

V100

P100

Linear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/sec

V100

P100

Nonlinear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/sec

V100

P100

High-resolution scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized mean power (W)

V100

P100

Linear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized mean power (W)

V100

P100

Nonlinear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized mean power (W)

V100

P100

High-resolution scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/joule

V100

P100

Linear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/joule

V100

P100

Nonlinear scheme

OpenCL
original

CUDA
original

OpenCL
tuned

CUDA
tuned

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Normalized megacells/joule

V100

P100

High-resolution scheme

Figure 8. Comparison of original, ported, and optimized codes measured in megacells per second
(top row), mean power usage (mid row), and megacells per joule (bottom row), normalized with
respect to the original OpenCL implementation, for the Tesla P100 and V100 GPUs. The power is
measured through nvidia-smi and represents the power consumed by the GPU only. On the V100,
there are only minor differences in mean power consumption between different versions of the linear
and high-resolution scheme, but CUDA uses more power than OpenCL for the nonlinear scheme.
CUDA is, however, more power-efficient than OpenCL for all three tuned schemes on this GPU. On the
P100, the mean power consumption is equal for all versions of the linear and nonlinear schemes, which
means that power efficiency becomes equivalent to computational efficiency. For the high-resolution
scheme, we see that the mean power consumption increases for the tuned codes, but the computational
performance increases more, meaning that the power efficiency is still improved by 30%–40%.

Computation 2020, 8, 4 19 of 24

In general, we observe that all experiments show a mean power usage within about 30% of the
original OpenCL versions, with the exception of the nonlinear scheme on the V100. On the other side,
the computational performance increases up to 5 times (the high-resolution scheme on the GTX780).
This shows that the most important factor for improving power efficiency is to increase computational
performance.

4.7. Tuning Block Size Configuration for Energy Efficiency

In the previous section, all benchmarks were configured using the optimal block size configuration
for computational efficiency. Here, we analyze how sensitive power efficiency is to the block size
configuration, and whether there are other optimal configurations if we aim for power efficiency
instead of computational performance.

Figure 9 shows the benchmark results for the three different schemes for a wide range of block
size configurations. The top row shows computational efficiency in terms of computed megacells per
second and confirms how sensitive the performance for all three schemes is to different configurations,
similarly to the results from Figure 3. The optimal configurations with respect to computational
efficiency are (16, 16), (16, 4), and (32, 8) for the linear, nonlinear, and high-resolution scheme,
respectively. The second row shows the mean power consumption for each execution. By comparing
the heat map of mean power usage with the computational efficiency, we see that high computational
performance does not necessarily translate into high mean power consumption. As a specific example,
the most efficient configuration for the linear scheme has a lower mean energy consumption than half
of the configurations. The final row of Figure 9 shows energy efficiency with respect to block size
configuration, and again, we see that the results do not follow an easily predictable pattern across
the different block sizes. Notice how the most energy efficient block sizes (32, 24) for the linear and
nonlinear scheme, and (32, 32) for the high-resolution scheme) can be recognized as configurations
that have particularly low mean power consumption and are less than medium fast. None of the
most computational efficient configurations are among the very best configurations in terms of energy
efficiency. These results show that block tuning for computational efficiency and for energy efficiency
are not the same. However, because a performance tuned code has a lower time-to-solution, we can in
general claim that performance tuning increases the power efficiency proportionally to performance.

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t

Linear scheme

4000 6000 8000
Megacells/s

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t

Nonlinear scheme

3000 4000 5000 6000
Megacells/s

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t

High-resolution scheme

1000 1250 1500 1750 2000
Megacells/s

Figure 9. Cont.

Computation 2020, 8, 4 20 of 24

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t
Linear scheme

70 80 90 100
Mean power consumption [W]

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t

Nonlinear scheme

60 70 80 90
Mean power consumption [W]

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t

High-resolution scheme

90 100 110
Mean power consumption [W]

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t

Linear scheme

4 6 8
Megacells per Joule

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t

Nonlinear scheme

4 5 6 7
Megacells per Joule

4 8 12 16 24 32
Block width

4

8

12

16

24

32

B
lo

ck
h

ei
gh

t

High-resolution scheme

1.00 1.25 1.50 1.75
Megacells per Joule

Figure 9. Computational performance (top), mean power consumption (middle), and energy efficiency
(bottom) for the three numerical schemes for different block size configurations on the Tesla P100 GPU.
Notice that all three measures change rapidly and unpredictably between the different configurations,
and that there does not seem to be a direct translation between high computational performance and
the mean power consumption. The bottom row shows that it is just as important to tune for optimal
block size configuration when optimizing for energy efficiency as when optimizing for computational
performance, and that these two objectives cannot be expected to be fulfilled simultaneously.

5. Summary

We have presented our experiences from working with CUDA and OpenCL from Python for
an extensive period of time (the authors have worked with GPU computing using C++ for over ten
years and over four years using Python). Our conclusion is that using Python is as computationally
efficient as C++ for our use, and we believe this to be true for many other application areas as well. We
also benchmarked three different OpenCL codes, our ported code in CUDA, our optimized CUDA
code, and finally, our OpenCL code with optimizations found using the CUDA tools. Our results
are shown for seven different GPUs, thus representing many of the GPU architectures in use today.
Finally, we looked at the power consumption for all versions of the code and the potential for tuning
for energy efficiency.

One of our most important findings is that working with Python is significantly faster than using
C++, as we have previously done. We notice that the amount of research we are able to do in the
same amount of time increases dramatically, and that the code quality is higher with fewer bugs and
crashes. The combination of PyCUDA/PyOpenCL and the Jupyter Notebook led to a very productive
development environment after addressing the initial crashes that forced us to reboot often. For our
application area, the overhead of using Python becomes negligible with respect to performance.

Computation 2020, 8, 4 21 of 24

The original motivation for using OpenCL was to support GPUs and similar architectures from
multiple vendors. Our motivation for changing from OpenCL to CUDA was because of the better
software ecosystem for CUDA, and we have been very happy with our decision. CUDA appears to be
a much more stable and mature development ecosystem with better tools for development, debugging,
and profiling for our hardware.

We found it interesting that our initial port from OpenCL to CUDA imposed a performance
penalty, due to different default compiler optimizations. Even though some authors have reported
OpenCL to be slower than CUDA, we find no conclusive results that support this in general. The
performance gain varied much more with the GPU being used than whether we used CUDA or
OpenCL. In most of our experiments, tuned versions of CUDA and OpenCL were found to have the
same computational performance, with a few examples showing CUDA being faster than OpenCL.
Additionally, we found that the performance gain of a single optimization strategy will have vastly
different effects on the run time for different GPUs. Even though we profiled and optimized mainly
using a laptop GPU, the highest relative performance gain was for a server class and a desktop class
GPU (the high-resolution scheme on the GTX780 and K20).

There do not seem to be any clear relationships between the power consumption when comparing
different schemes, optimization levels, GPUs, and programming models. When we consider power
efficiency, we see that CUDA performs better than OpenCL for all tuned schemes on the Tesla V100
and GeForce 840M GPUs, whereas there are much smaller differences on the GeForce GTX780 and
Tesla P100 GPUs. When we examine the impact of performance tuning on power efficiency, there
appears to be a systematic and clear relationship: A fast code is a power-efficient code.

In terms of mean power consumption, we found no clear relationships when comparing different
schemes, optimization levels, GPUs, or programming models, but it seems to be just as important to
consider block size configurations, as we measured a factor two difference between the lowest and
highest mean power for different configurations. We also saw that optimizing block size for power
efficiency is not necessarily the same as optimizing for computational efficiency.

Author Contributions: The authors have all contributed to all aspects related to the work, including methodology,
software, benchmarking, and preparing the manuscript. The authors have contributed close to equally to most
parts of the paper, but H.H.H. has had a lead role in the aspect directly related to power efficiency and has had
the role of lead and corresponding author. All authors have read and agreed to the published version of the
manuscript.

Funding: This work is supported by the Research Council of Norway through grant number 250935 (GPU
Ocean). The Tesla K20 computations were performed on resources provided by UNINETT Sigma2—the National
Infrastructure for High-Performance Computing and Data Storage in Norway under project number nn9550k.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

GPU Graphics Processing Unit
HPC High-Performance Computing
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
OpenCL Open Compute Language
FPGA Field-Programmable Gate Array
ICD Installable Client Driver
SDK Software Development Kit
API Application Programming Interface
SWIG Simplified Wrapper and Interface Generator
DSP Digital Signal Processors
BLAS Basic Linear Algebra Subprograms

Computation 2020, 8, 4 22 of 24

DGEMM Dense General Matrix Multiplication
REPL Read-Eval-Print Loop
FLOPS Floating Point Operations per Second
NVRTC Nvidia Runtime Compilation Library

References

1. Larsen, E.; McAllister, D. Fast matrix multiplies using graphics hardware. In Proceedings of the 2001
ACM/IEEE Conference on Supercomputing, SC’01, Denver, CO, USA, 10–16 November 2001. [CrossRef]

2. Owens, J.; Luebke, D.; Govindaraju, N.; Harris, M.; Krüger, J.; Lefohn, A.; Purcell, T. A Survey of
General-Purpose Computation on Graphics Hardware. Comput. Graph. Forum 2007, 26, 80–113. [CrossRef]

3. Nanz, S.; Furia, C. A Comparative Study of Programming Languages in Rosetta Code. In Proceedings
of the IEEE International Conference on Software Engineering, Florence, Italy, 16–24 May 2015; Volume 1,
pp. 778–788. [CrossRef]

4. Klöckner, A.; Pinto, N.; Lee, Y.; Catanzaro, B.; Ivanov, P.; Fasih, A. PyCUDA and PyOpenCL: A
Scripting-Based Approach to GPU Run-Time Code Generation. Parallel Comput. 2012, 38, 157–174. [CrossRef]

5. Asanović, K.; Bodik, R.; Catanzaro, B.; Gebis, J.; Husbands, P.; Keutzer, K.; Patterson, D.; Plishker, W.; Shalf, J.;
Williams, S.; et al. The Landscape of Parallel Computing Research: A View from Berkeley; Technical Report; EECS
Department, University of California: Berkeley, CA, USA, 2006.

6. Brodtkorb, A. Simplified Ocean Models on the GPU. Available online: https://sintef.brage.unit.no/
sintef-xmlui/bitstream/handle/11250/2565319/500-Article2bText-1025-1-10-20180815.pdf?sequence=2&
isAllowed=y (accessed on 7 January 2020).

7. Holm, H.; Brodtkorb, A.; Christensen, K.; Broström, G.; Sætra, M. Evaluation of Selected Finite-Difference
and Finite-Volume Approaches to Rotational Shallow-Water Flow. Commun. Comput. Phys. 2019, accepted.

8. Hagen, T.; Henriksen, M.; Hjelmervik, J.; Lie, K.A., How to Solve Systems of Conservation Laws Numerically
Using the Graphics Processor as a High-Performance Computational Engine. In Geometric Modelling,
Numerical Simulation, and Optimization: Applied Mathematics at SINTEF; Hasle, G., Lie, K.A., Quak, E., Eds.;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 211–264. [CrossRef]

9. Brodtkorb, A.; Sætra, M.; Altinakar, M. Efficient Shallow Water Simulations on GPUs: Implementation,
Visualization, Verification, and Validation. Comput. Fluids 2012, 55, 1–12. [CrossRef]

10. de la Asunción, M.; Mantas, J.; Castro, M. Simulation of one-layer shallow water systems on multicore and
CUDA architectures. J. Supercomput. 2011, 58, 206–214. [CrossRef]

11. Brodtkorb, A.; Sætra, M. Explicit shallow water simulations on GPUs: Guidelines and best practices.
In Proceedings of the XIX International Conference on Computational Methods for Water Resources,
Urbana-Champaign, IL, USA, 17–21 June 2012; pp. 17–22.

12. Holewinski, J.; Pouchet, L.N.; Sadayappan, P. High-performance Code Generation for Stencil Computations
on GPU Architectures. In Proceedings of the 26th ACM International Conference on Supercomputing,
Venice, Italy, June 25–29 2012. [CrossRef]

13. OpenACC-Standard.org. The OpenACC Application Programming Interface Version 2.7. Available online:
https://www.openacc.org/sites/default/files/inline-files/APIGuide2.7.pdf (accessed on 7 January 2020).

14. NVIDIA. NVIDIA CUDA C Programming Guide Version 10.1. Available online: https://docs.nvidia.com/
cuda/archive/10.1/cuda-c-programming-guide/index.html (accessed on 7 January 2020).

15. Khronos OpenCL Working Group. The OpenCL Specification v. 2.2. Available online: https://www.khronos.
org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf (accessed on 7 January 2020).

16. Brodtkorb, A.; Dyken, C.; Hagen, T.; Hjelmervik, J.; Storaasli, O. State-of-the-art in heterogeneous computing.
Sci. Program. 2010, 18, 1–33. [CrossRef]

17. Huang, S.; Xiao, S.; Feng, W.C. On the energy efficiency of graphics processing units for scientific computing.
In Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing, Rome, Italy,
23–29 May 2009; pp. 1–8.

18. Qi, Z.; Wen, W.; Meng, W.; Zhang, Y.; Shi, L. An energy efficient OpenCL implementation of a fingerprint
verification system on heterogeneous mobile device. In Proceedings of the 2014 IEEE 20th International
Conference on Embedded and Real-Time Computing Systems and Applications, Chongqing, China,
20–22 August 2014; pp. 1–8.

http://dx.doi.org/10.1145/582034.582089
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1109/ICSE.2015.90
http://dx.doi.org/10.1016/j.parco.2011.09.001
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2565319/500-Article2bText-1025-1-10-20180815.pdf?sequence=2&isAllowed=y
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2565319/500-Article2bText-1025-1-10-20180815.pdf?sequence=2&isAllowed=y
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2565319/500-Article2bText-1025-1-10-20180815.pdf?sequence=2&isAllowed=y
http://dx.doi.org/10.1007/978-3-540-68783-2_8
http://dx.doi.org/10.1016/j.compfluid.2011.10.012
http://dx.doi.org/10.1007/s11227-010-0406-2
http://dx.doi.org/10.1145/2304576.2304619
https://www.openacc.org/sites/default/files/inline-files/API Guide 2.7.pdf
https://docs.nvidia.com/cuda/archive/10.1/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/archive/10.1/cuda-c-programming-guide/index.html
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf
http://dx.doi.org/10.1155/2010/540159

Computation 2020, 8, 4 23 of 24

19. Dong, T.; Dobrev, V.; Kolev, T.; Rieben, R.; Tomov, S.; Dongarra, J. A step towards energy efficient computing:
Redesigning a hydrodynamic application on CPU-GPU. In Proceedings of the 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, 19–23 May 2014; pp. 972–981.

20. Klôh, V.; Yokoyama, D.; Yokoyama, A.; Silva, G.; Ferro, M.; Schulze, B. Performance and Energy Efficiency
Evaluation for HPC Applications in Heterogeneous Architectures. In Proceedings of the 2018 Symposium
on High Performance Computing Systems (WSCAD), São Paulo, Brazil, 1–3 October 2018.

21. Memeti, S.; Li, L.; Pllana, S.; Kołodziej, J.; Kessler, C. Benchmarking OpenCL, OpenACC, OpenMP, and
CUDA: programming productivity, performance, and energy consumption. In Proceedings of the 2017
Workshop on Adaptive Resource Management and Scheduling for Cloud Computing, Washington, DC,
USA, 28 July 2017.

22. Du, P.; Weber, R.; Luszczek, P.; Tomov, S.; Peterson, G.; Dongarra, J. From CUDA to OpenCL: Towards a
performance-portable solution for multi-platform GPU programming. Parallel Comput. 2012, 38, 391–407.
[CrossRef]

23. Fang, J.; Varbanescu, A.; Sips, H. A Comprehensive Performance Comparison of CUDA and OpenCL. In
Proceedings of the 2011 International Conference on Parallel Processing, Taipei City, Taiwan, 13–16 September
2011; pp. 216–225. [CrossRef]

24. Gimenes, T.; Pisani, F.; Borin, E. Evaluating the Performance and Cost of Accelerating Seismic Processing
with CUDA, OpenCL, OpenACC, and OpenMP. In Proceedings of the 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), Vancouver, BC, Canada, 21–25 May 2018; pp. 399–408.
[CrossRef]

25. Karimi, K.; Dickson, N.; Hamze, F. A Performance Comparison of CUDA and OpenCL. arXiv 2011,
arXiv:1005.2581.

26. Martinez, G.; Gardner, M.; Feng, W.-c. CU2CL: A CUDA-to-OpenCL Translator for Multi- and Many-Core
Architectures. In Proceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed
Systems, Tainan, Taiwan, 7–9 December 2011; pp. 300–307. [CrossRef]

27. Kim, J.; Dao, T.; Jung, J.; Joo, J.; Lee, J. Bridging OpenCL and CUDA: a comparative analysis and translation.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, Austin, TX, USA, 15–20 November 2015; pp. 1–12. [CrossRef]

28. Holm, H.; Brodtkorb, A.; Sætra, M. Performance and Energy Efficiency of CUDA and OpenCL for GPU
Computing using Python. In proceedings of The International Conference on Parallel Computing ParCo2019,
Prague, Czech Republic, 10–13 September 2019.

29. Kaeli, D.; Mistry, P.; Schaa, D.; Zhang, D. Heterogeneous Computing with OpenCL 2.0; Morgan Kaufmann:
Burlington, MA, USA, 2015.

30. Sanders, J.; Kandrot, E. CUDA by Example: An Introduction to General-Purpose GPU Programming;
Addison-Wesley Professional: Boston, MA, USA, 2010.

31. University of Mannheim; University of Tennessee; NERSC/LBNL. Top 500 Supercomputer Sites. Available
online: http://www.top500.org (accessed on 7 January 2020).

32. AMD Developer Tools Team. CodeXL Quick Start Guide. Available online: https://github.com/GPUOpen-
Tools/CodeXL/releases/download/v2.0/CodeXL_Quick_Start_Guide.pdf (accessed on 7 January 2020).

33. Intel. Intel SDK for OpenCL Applications. Available online: https://software.intel.com/en-us/opencl-sdk
(accessed on 7 January 2020).

34. Intel. Intel VTune Amplifier. Available online: https://software.intel.com/en-us/vtune (accessed on 7
January 2020).

35. Apple Inc. Metal Programming Guide. Available online: https://developer.apple.com/library/archive/
documentation/Miscellaneous/Conceptual/MetalProgrammingGuide/Introduction/Introduction.html
(accessed on 7 January 2020).

36. Wilson, G.; Aruliah, D.; Brown, C.; Hong, N.; Davis, M.; Guy, R.; Haddock, S.; Huff, K.; Mitchell, I.; Plumbley,
M.; et al. Best Practices for Scientific Computing. PLoS Biol. 2014, 12, e1001745. [CrossRef] [PubMed]

37. Prechelt, L. An Empirical Comparison of C, C++, Java, Perl, Python, Rexx, and Tcl for a Search/string-Processing
Program; Technical Report; Karlsruhe Institute of Technology: Karlsruhe, Germany, 2000.

38. Lam, S.; Pitrou, A.; Seibert, S. Numba: A LLVM-based Python JIT Compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15, Austin, TX, USA, 15 November 2015;
pp. 7:1–7:6. [CrossRef]

http://dx.doi.org/10.1016/j.parco.2011.10.002
http://dx.doi.org/10.1109/ICPP.2011.45
http://dx.doi.org/10.1109/IPDPS.2018.00050
http://dx.doi.org/10.1109/ICPADS.2011.48
http://dx.doi.org/10.1145/2807591.2807621
http://www.top500.org
https://github.com/GPUOpen-Tools/CodeXL/releases/download/v2.0/CodeXL_Quick_Start_Guide.pdf
https://github.com/GPUOpen-Tools/CodeXL/releases/download/v2.0/CodeXL_Quick_Start_Guide.pdf
https://software.intel.com/en-us/opencl-sdk
https://software.intel.com/en-us/vtune
https://developer.apple.com/library/archive/documentation/Miscellaneous/Conceptual/MetalProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Miscellaneous/Conceptual/MetalProgrammingGuide/Introduction/Introduction.html
http://dx.doi.org/10.1371/journal.pbio.1001745
http://www.ncbi.nlm.nih.gov/pubmed/24415924
http://dx.doi.org/10.1145/2833157.2833162

Computation 2020, 8, 4 24 of 24

39. Behnel, S.; Bradshaw, R.; Seljebotn, D. Cython tutorial. In Proceedings of the 8th Python in Science
Conference, Pasadena, CA, USA, 18–23 August 2009; Varoquaux, G., van der Walt, S., Millman, J., Eds.;
pp. 4–14.

40. Kaehler, A.; Bradski, G. Learning OpenCV: Computer Vision in C++ with the OpenCV Library; O’Reilly Media,
Inc.: Sebastopol, CA, USA, 2017 .

41. Okuta, R.; Unno, Y.; Nishino, D.; Hido, S.; Loomis, C. CuPy: A NumPy-Compatible Library for NVIDIA GPU
Calculations. In Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-First
Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 19 May 2017.

42. Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.;
Grout, J.; Corlay, S.; et al. Jupyter Notebooks—A publishing format for reproducible computational
workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas; IOS Press BV:
Amsterdam, The Netherlands, 2016; pp. 87–90. [CrossRef]

43. Hunter, J. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
44. Singh, R.; Wood, P.; Gupta, R.; Bagchi, S.; Laguna, I. Snowpack: Efficient Parameter Choice for GPU Kernels

via Static Analysis and Statistical Prediction. In Proceedings of the 8th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems, Denver, CO, USA, 13 November 2017; ACM: New York, NY,
USA, 2017; pp. 8:1–8:8.

45. Price, J.; McIntosh-Smith, S. Analyzing and Improving Performance Portability of OpenCL Applications via
Auto-tuning. In Proceedings of the 5th International Workshop on OpenCL, Toronto, ON, Canada, 16–18
May 2017; ACM: New York, NY, USA, 2017; pp. 14:1–14:4.

46. Falch, T.; Elster, A. Machine learning-based auto-tuning for enhanced performance portability of OpenCL
applications. Concurr. Comput. Pract. Exp. 2017, 29, e4029. [CrossRef]

47. Brodtkorb, A.; Hagen, T.; Sætra, M. Graphics processing unit (GPU) programming strategies and trends in
GPU computing. J. Parallel Distrib. Comput. 2013, 73, 4–13. [CrossRef]

48. Chertock, A.; Dudzinski, M.; Kurganov, A.; Lukácová-Medvidová, M. Well-balanced schemes for the shallow
water equations with Coriolis forces. Numer. Math. 2017. [CrossRef]

49. Sielecki, A. An Energy-Conserving Difference Scheme for the Storm Surge Equations. Mon. Weather Rev.
1968, 96, 150–156. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1002/cpe.4029
http://dx.doi.org/10.1016/j.jpdc.2012.04.003
http://dx.doi.org/10.1007/s00211-017-0928-0
http://dx.doi.org/10.1175/1520-0493(1968)096<0150:AECDSF>2.0.CO;2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	GPU Computing in Python
	CUDA
	OpenCL
	GPU Computing from Python
	C++ Versus Python

	Porting, Profiling, and Benchmarking Performance and Energy Efficiency
	Porting from PyOpenCL to PyCUDA
	Profile-Driven Optimization
	The High-Resolution Finite Volume Scheme
	The Nonlinear Finite Difference Scheme
	The Linear Finite Difference Scheme

	Backporting Optimizations to OpenCL
	Comparing Performance
	Measuring Power Consumption
	Comparing Energy Efficiency
	Tuning Block Size Configuration for Energy Efficiency

	Summary
	References

