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Abstract—Contemporary autopilot systems for unmanned
aerial vehicles (UAVs) are far more limited in their flight
envelope as compared to experienced human pilots, thereby
restricting the conditions UAVs can operate in and the types
of missions they can accomplish autonomously. This paper pro-
poses a deep reinforcement learning (DRL) controller to handle
the nonlinear attitude control problem, enabling extended flight
envelopes for fixed-wing UAVs. A proof-of-concept controller
using the proximal policy optimization (PPO) algorithm is
developed, and is shown to be capable of stabilizing a fixed-wing
UAY from a large set of initial conditions to reference roll, pitch
and airspeed values. The training process is outlined and key
factors for its progression rate are considered, with the most
important factor found to be limiting the number of variables
in the observation vector, and including values for several pre-
vious time steps for these variables. The trained reinforcement
learning (RL) controller is compared to a proportional-integral-
derivative (PID) controller, and is found to converge in more
cases than the PID controller, with comparable performance.
Furthermore, the RL controller is shown to generalize well to
unseen disturbances in the form of wind and turbulence, even
in severe disturbance conditions.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are employed exten-
sively to increase safety and efficiency in a plethora of
tasks such as infrastructure inspection, forest monitoring, and
search and rescue missions. Many tasks can however not be
accomplished fully autonomously, due to several limitations
of autopilot systems. Low-level stabilization of the UAV’s
attitude provided by the inner control loops is increasingly
difficult, due to various nonlinearities, as the attitude and
airspeed deviates from stable, level conditions. The outer
control layers providing path planning and guidance has to
account for this, and settle for non-agile and safe plans.
Equipping the autopilot with the stabilization skills of an
experienced pilot would allow fully autonomous operation
in turbulent or otherwise troublesome environments, such as
search and rescue missions in extreme weather conditions, as
well as increasing the usefulness of the UAV by for instance
allowing the UAV to fly closer to its targets for inspection
purposes.
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Autopilots for fixed-wing UAVs, as illustrated in Figure 1,
are typically designed using cascaded single-variable loops
under assumptions of decoupled longitudinal and lateral mo-
tion, using classical linear control theory [1]. The dynamics
of fixed-wing aircraft including UAVs are however strongly
coupled and nonlinear. Nonlinear terms in the equations
of motion include kinematic nonlinearities (rotations and
coriolis effects), actuator saturation and aerodynamic nonlin-
earities, which are also uncertain and difficult to model. The
decoupled and linear designs are reliable and well-tested for
nominal flight, but also requires conservative safety limits
in the allowable range of flight conditions and maneuvers
(flight envelope protection), because linear controllers applied
to nonlinear systems typically result in a limited region
of attraction [2]. This motivates the use of state-of-the-art
nonlinear control algorithms.

Fig. 1: Skywalker X8 Fixed-Wing UAV

Examples of nonlinear control methods applied to UAVs
include gain scheduling [3], linear parameter varying (LPV)
control [4], dynamic inversion (feedback linearization) [5],
adaptive backstepping [6], sliding mode control [7], nonlinear
model predictive control [8], nonlinear H-infinity control [9],
dynamic inversion combined with mu-synthesis [10], model
reference adaptive control [11] and L1 adaptive control [12].
Automated agile and aerobatic maneuvering is treated in [13]
and [14]. Several of these methods require a more or less
accurate aerodynamic model of the UAV. A model-free
method based on fuzzy logic can be found in [15]. Fuzzy
control falls under the category of intelligent control systems,
which also includes the use of neural networks. An adaptive
backstepping controller using a neural network to compensate
for aerodynamic uncertainties is given in [16], while a genetic
neuro-fuzzy approach for attitude control is taken in [17]. The
state of the art in intelligent flight control of small UAVs is
discussed in [18].

Control of small UAVs requires making very fast con-



trol decisions with limited computational power available.
Sufficiently sophisticated models incorporating aerodynamic
nonlinearities and uncertainties with the necessary accuracy
to enable robust real-time control may not be viable under
these constraints. Biology suggests that a bottom-up approach
to control design might be a more feasible option. Birds
perform elegant and marvelous maneuvers and are able to
land abruptly with pinpoint accuracy utilizing stall effects.
Insects can hover and zip around with astonishing efficiency,
in part due to exploiting unsteady, turbulent aerodynamic
flow effects [1]. These creatures have developed the skills
not through careful consideration and modeling, but through
an evolutionary trial-and-error process driven by random-
ness, with mother nature as a ruthless arbiter of control
design proficiency. In similar bottom-up fashion, machine
learning (ML) methods have shown great promise in uncov-
ering intricate models from data and representing complex
nonlinear relations from its inputs to its outputs. ML can
offer an additional class of designs through learning that
are not easily accessible through first principles modeling,
exhibiting antifragile properties where unexpected events and
stressors provide data to learn and improve from, instead
of invalidating the design. It can harbor powerful predictive
powers allowing proactive behaviour, while meeting the strict
computation time budget in fast control systems.

Reinforcement learning (RL) [19] is a subfield of ML
concerned with how agents should act in order to maximize
some measure of utility, and how they can learn this be-
haviour from interacting with their environment. Control has
historically been viewed as a difficult application of RL due
to the continuous nature of these problems’ state and action
spaces. Furthermore, the task has to be sufficiently nonlinear
and complex for RL to be an appropriate consideration over
conventional control methods in the first place. To apply
tabular methods one would have to discretize and thus suffer
from the consequences of the curse of dimensionality from
a discretization-resolution appropriate to achieve acceptable
control. The alternative to tabular methods require function
approximation, which has to be sophisticated enough to han-
dle the dynamics of the task, while having a sufficiently stable
and tractable training process to offer convergence. Neural
networks (NNs) are one of few models which satisfy these
criteria: they can certainly be made expressively powerful
enough for many tasks, but achieving a stable training phase
can be a great challenge. Advances in computation capability
and algorithmic progress in RL, reducing the variance in
parameter updates, have made deep neural networks (DNNs)
applicable to RL algorithms, spawning the field of deep
reinforcement learning (DRL). DNNs in RL algorithms pro-
vide end-to-end learning of appropriate representations and
features for the task at hand, allowing algorithms to solve
classes of problems previously deemed unfit for RL. DRL has
been applied to complex control tasks such as motion control
of robots [20] as well as other tasks where formalizing a
strategy with other means is difficult, e.g. game playing [21].

A central challenge with RL approaches to control is the
low sample efficiency of these methods, meaning they need

a large amount of data before they can become proficient.
Allowing the algorithm full control to learn from its mistakes
is often not a viable option due to operational constraints such
as safety, and simulations are therefore usually the preferred
option. The simulation is merely an approximation of the true
environment. The model errors, i.e. the differences between
the simulator and the real world, is called the reality gap.
If the reality gap is small, then the low sample efficiency
of these methods is not as paramount, and the agent might
exhibit great skill the first time it is applied to the real world.

The current state-of-the-art RL algorithms in continuous
state and action spaces, notably deep deterministic pol-
icy gradient (DDPG) [22], trust region policy optimization
(TRPO) [23], proximal policy optimization (PPO) [24] and
soft actor-critic (SAC) [25], are generally policy-gradient
methods, where some parameterization of the policy is it-
eratively optimized through estimating the gradients. They
are model-free, meaning they make no attempt at estimating
the state-transition function. Thus they are very general and
can be applied to many problems with little effort, at the cost
of lower sample efficiency. These methods generally follow
the actor-critic architecture, wherein the actor module, i.e. the
policy, chooses actions for the agent and the critic module
evaluates how good these actions are, i.e. it estimates the
expected long term reward, which reduces variance of the
gradient estimates.

The premise of this research was to explore the application
of RL methods to low-level control of fixed-wing UAVs,
in the hopes of producing a proof-of-concept RL controller
capable of stabilizing the attitude of the UAV to a given
attitude reference. To this end, an OpenAl Gym environ-
ment [26] with a flight simulator tailored to the Skywalker
X8 flying wing was implemented, in which the RL controller
is tasked with controlling the attitude (the roll and pitch
angles) as well as the airspeed of the aircraft. Aerodynamic
coefficients for the X8 are given in [27]. The flight simulator
was designed with the goal of being valid for a wide array of
flight conditions, and therefore includes additional nonlinear
effects in the aerodynamic model. The software has been
made openly available [28, 29]. Key factors impacting the
final performance of the controller as well as the rate of
progression during training were identified. To the best of
the authors’ knowledge, this is the first reported work to use
DRL for attitude control of fixed-wing UAVs.

The rest of the paper is organized as follows. First,
previous applications of RL algorithms to UAVSs are presented
in Section II, and the aerodynamic model of the Skywalker
X8 fixed-wing UAV is then introduced in Section III. Section
IV outlines the approach taken to develop the RL controller,
presenting the configuration of the RL algorithm and the
key design decisions taken, and finally how the controller
is evaluated. In Section V, the training process and its major
aspects are presented and discussed, and the controller is
evaluated in light of the approach described in the preceding
section. Finally, Section VI offers some final remarks and
suggestions for further work.



II. RELATED WORK

In general, the application of RL to UAV platforms has
been limited compared to other robotics applications, due to
data collection with UAV systems carrying significant risk
of fatal damage to the aircraft. RL have been proposed as
a solution to many high level tasks for UAVs such as the
higher level path planning and guidance tasks, alongside
tried and tested traditional controllers providing low-level
stabilization. In the work of Gandhi et al. [30] a UAV is
trained to navigate in an indoor environment by gathering a
sizable dataset consisting of crashes, giving the UAV ample
experience of how NOT to fly. In [31], the authors tackle
the data collection problem by constructing a pseudo flight
environment in which a fixed-wing UAV and the surrounding
area is fitted with magnets, allowing for adjustable magnetic
forces and moments in each degree of freedom (DOF). In
this way, the UAV can be propped up as one would do when
teaching a baby to walk, and thereby experiment without fear
of crashing in a setting more realistic than simulations.

Imanberdiyev et al. [32] developed a model-based RL al-
gorithm called TEXPLORE to efficiently plan trajectories in
unknown environments subject to constraints such as battery
life. In [33], the authors use a model predictive controller
(MPC) to generate training data for an RL controller, thereby
guiding the policy search and avoiding the potentially catas-
trophic early phase before an effective policy is found. Their
controller generalizes to avoid multiple obstacles, compared
to the singular obstacle avoided by the MPC in training, does
not require full state information like the MPC does, and
is computed at a fraction of the time. With the advent of
DRL, it has also been used for more advanced tasks such as
enabling intelligent cooperation between multiple UAVs [34],
and for specific control problems such as landing [35].
RL algorithms have also been proposed for attitude control
of other autonomous vehicles, including satellites [36] and
underwater vehicles. Carlucho et al. [37] applies an actor-
critic DRL algorithm to low-level attitude control of an
autonomous underwater vehicle (AUV) — similar to the
proposed method in this paper — and find that the derived
control law transfers well from simulation to real world
experiments.

Of work addressing problems more similar in nature to
the one in this paper, i.e. low-level attitude control of UAVs,
one can trace the application of RL methods back to the
works of Bagnell and Schneider [38] and Ng et al. [39], both
focusing on helicopter UAVs. Both employed methods based
on offline learning from data gathered by an experienced pi-
lot, as opposed to the online self-learning approach proposed
in this paper. The former focuses on control of a subset
of the controllable states while keeping the others fixed,
whereas the latter work extends the control to all six degrees
of freedom. In both cases, the controllers exhibit control
performance exceeding that of the original pilot when tested
on real UAVs. In [40], the latter work was further extended
to include difficult aerobatic maneuvers such as forward flips
and sideways rolls, significantly improving upon the state-of-
the-art. Cory and Tedrake [41] presents experimental data of

a fixed-wing UAV perching maneuver using an approximate
optimal control solution. The control is calculated using a
value iteration algorithm on a model obtained using nonlinear
function approximators and unsteady system identification
based on motion capture data. Bou-Ammar et al. [42] com-
pared an RL algorithm using fitted value iteration (FVI) for
approximation of the value function, to a non-linear con-
troller based on feedback linearization, on their proficiency
in stabilizing a quadcopter UAV after an input disturbance.
They find the feedback-linearized controller to have superior
performance. Recently, Koch et al. [43] applied three state-
of-the-art RL algorithms to control the angular rates of a
quadcopter UAV. They found PPO to perform the best of
the RL algorithms, outperforming the proportional-integral-
derivative (PID) controller on nearly every metric.

I1I. UAV MODEL

Following [1], the UAV is modeled as a rigid body of
mass m with inertia tensor I and a body frame {b} rigidly
attached to its center of mass, moving relative to a north-east-
down (NED) frame assumed to be inertial {n}. To allow for
arbitrary attitude maneuvers during simulation, the attitude is
represented using unit quaternions ¢ = [ €; €z e3]? where
g% q = 1. The time evolution of the position p = [z y 2]
and attitude g of the UAV is governed by the kinematic
equations

p=Ry(qv (1)

.10 —wT
where v = [u v w]T and w = [p ¢ 7|7 are the linear
and angular velocities, respectively, and S(a) is the skew-

symmetric matrix

0 —as a9
S(a)=-8%(a) = | a3 0 -m (3)
—as9 aq 0

The attitude can also be represented using Euler angles
O = [¢p 0 Y]T, where ¢, 0, ¢ are the roll, pitch and yaw
angles respectively. Euler angles will be used for plotting pur-
poses in later sections, and also as inputs to the controllers.
Algorithms to convert between unit quaternions and Euler
angles can be found in [1].

The rotation matrix R; transforms vectors from {b} to
{n} and can be calculated from q using [44]

R} (q) = Isxs +2nS(e) +25°(e) (4)

where I3, is the 3 by 3 identity matrix and € = [e; €3 €3]7.
The rates of change of the velocities v and w are given
by the Newton-Euler equations of motion:

mv +w X mv = RZ(Q)ngn + Fprop + Faero (5)
Iw+waw:Mprop+Maero (6)

where g" = [0 0 g]” and g is the acceleration of gravity.
Apart from gravity, the UAV is affected by forces and
moments due to aerodynamics and propulsion, which are
explained in the next sections. All velocities, forces and
moments are represented in the body frame.



A. Aerodynamic Forces and Moments

The UAV is flying in a wind field decomposed into a
steady part vy, and a stochastic part 'vfuq representing gusts
and turbulence. The steady part is represented in {n}, while
the stochastic part is represented in {b}. Similarly, rotational
disturbances are modeled through the wind angular velocity
w.,. The relative (to the surrounding air mass) velocities of
the UAV is then defined as:

Uy
v, =V — R?(q)T'vws — Uy, = | Ur @)
Wy
Dr
Wr =W — Wy = [gr 3
Tr

From the relative velocity we can calculate the airspeed V,
angle of attack « and sideslip angle 5:

Vo = Vu2 + 02 + w? 9)

o = tan~! <Z> (10)
B =sin! <‘IZ> (11)

The stochastic components of the wind, given by Vy, =
(U, Vu, wwg]T and Wy, = [Pw Gu Tw]? are generated
by passing white noise through shaping filters given by the
Dryden velocity spectra [45][46].

The aerodynamic forces and moments are formulated in
terms of aerodynamic coefficients C(*) that are, in general,
nonlinear functions of «, § and w,., as well as control surface
deflections. Aerodynamic coefficients are taken from [27],
based on wind tunnel experiments of the Skywalker X8 flying
wing as well as a Computational Fluid Dynamics (CFD)
code. The X8 is equipped with right and left elevon control
surfaces. Note that there is no tail or rudder. Even though the
vehicle under consideration has elevons, in [27] the model
is parameterized in terms of “virtual” aileron and elevator
deflections 6, and J.. These are related to elevon deflections
through the transformation

5. [-0.5 0.5] [
S.| =105 05| |6

where 6., and J.; are right and left elevon deflections,

12)

respectively.
The aerodynamic forces are described by
-D
Faero = Rfﬂ(a7ﬁ) Y (13)
—L
D 1 _CD((X7B7q7'a6€)
Y| = 5pViS |Cy (Bprirrsda) (14)
L L CL(aaQTv(Se)
1 _bcl(ﬂaprarraaa)
M pero = ipVGQS Ccm(aa%w(se) (15)
_an(Baprv Tr, 5a>

where p is the density of air, S is the wing planform area,
c is the aerodynamic chord, and b the wingspan of the UAV.

The rotation matrix transforming the drag force D, side force
Y and lift force L from the wind frame to the body frame
is given by:

cos(a) cos(B) cos(a) sin(B) — sin(a)

—sin(8)  cos(B)

R?u (OL, ﬁ) - ( ) :
cos(B) sin(a) sin(«) sin(B)

(16)
cos(a)

The model in [27] has similar structure to the linear
coefficients in [1], but has added quadratic terms in « and
[ to the drag coefficient Cp. In addition, C'p is quadratic
in the elevator deflection J.. In this paper, as an attempt
to extend the range of validity of the model, the lift, drag
and pitch moment coefficients in [27] are extended using
nonlinear Newtonian flat plate theory from [1] and [47]. This
makes the lift, drag and pitch coefficients nonlinear in angle
of attack by blending between the linear models which are
valid for small angles, and the flat plate models which are
only valid for large angles. While the linear models are based
on physical wind-tunnel experiments and CFD, the nonlinear
models have not been validated experimentally.

B. Propulsion Forces and Moments

Assuming the propeller thrust is aligned with the x-axis of
{b}, we can write

Fprop = (17)

o o3

The propeller thrust 7}, is given by [48] as presented in [49]:

Va=Vo+ 0t(km — Vo) (18)

T, = %pSpCde (Vi —Va) (19)
where Vj is the discharge velocity of air from the propeller,
kn is a motor constant, S, is the propeller disc area, C)
is an efficiency factor, and §; € [0,1] is the throttle. The
parameters in (18) and (19) for a typical X8 motor/propeller
configuration are given in [50], which are based on wind
tunnel experiments.
The propeller moments are given by

—kq(kadt)?
M,y = 0
0

where kg = 797.1268 and kg = 1.1871e—6, which are
based on the same experimental data used in [50]. Gyroscopic
moments are assumed negligible.

(20)

C. Actuator Dynamics and Constraints

Denoting commands with superscript c, the elevon control
surface dynamics are modeled by rate limited and saturated
second-order integrators similar to [51]:

56 % 2

(5;1-(5) $2 + 2Cwos + wj
for ¢ = r,l, where wy = 100 and { =
deflections and rates are constrained to =+
+200 degrees per second, respectively.

s- The angular
0 degrees and

e



The throttle dynamics are given by the first order transfer
function [47]

0c(s) Ts+1
where T' = 0.2.
IV. METHOD

PPO was the chosen RL algorithm for the attitude con-
troller for several reasons: first, PPO was found to be the
best performing algorithm for attitude control of quadcopters
in [43], and secondly, PPO’s hyperparameters are robust for
a large variety of tasks, and it has high performance and low
computational complexity. It is therefore the default choice
of algorithm in OpenAls projects.

The objective is to control the UAV’s attitude, so a natural
choice of controlled variables are the roll, pitch and yaw
angles. However, the yaw angle of the aircraft is typically
not controlled directly, but through the yaw-rate that depends
on the roll angle. In addition, it is desirable to stay close
to some nominal airspeed to ensure energy efficient flight,
to avoid stall, and to maintain control surface effectiveness
which is proportional to airspeed squared. The RL controller
is therefore tasked with controlling the roll and pitch angles,
¢ and 6, and the airspeed V, to desired reference values. At
each time step the controller receives an immediate reward,
and it aims at developing a control law that maximizes the
sum of future discounted rewards.

The action space of the controller is three dimensional,
consisting of commanded virtual elevator and aileron angles
as well as the throttle. Elevator and aileron commands are
mapped to commanded elevon deflections using the inverse
of the transformation given by (12).

The observation vector (i.e. the input to the RL algorithm)
contains information obtained directly from state feedback of
states typically measured by standard sensor suites. No sensor
noise is added. To promote smooth actions it also includes
a moving average of previous actuator setpoints. Moreover,
since the policy network is a feed-forward network with no
memory, the observation vector at each time step consists
of these values for several previous time steps to facilitate
learning of the dynamics.

A. The Proximal Policy Optimization Algorithm

PPO is a model-free, on-policy, actor-critic, policy-gradient
method. It aims to retain the reliable performance of TRPO
algorithms, which guarantee monotonic improvements by
considering the Kullback-Leibler (KL) divergence of policy
updates, while only using first-order optimization. In this
section, 7 is the policy network (that is, the control law)
which is optimized wrt. its parameterization #,! in this case
the NN weights. The policy network takes the state, s, as
its input, i.e. the observation vector, and outputs an action,
a, consisting of the elevator, aileron and throttle setpoints.
For continuous action spaces, the policy network is tasked

19 is used in this section as it is the established nomenclature in the
machine learning field, but will in the rest of the article refer to the pitch
angle.

with outputting the moments of a probability distribution, in
this case the means and variances of a multivariate Gaussian,
from which actions are drawn. During training, actions are
randomly sampled from this distribution to increase explo-
ration, while the mean is taken as the action when training
is completed.

Policy gradient algorithms work by estimating the policy
gradient, and then applying a gradient ascent algorithm
to the gradient estimate. The gradients are estimated in a
Monte Carlo (MC) fashion by running the policy in the
environment to obtain samples of the policy loss J() and
its gradient [19]:2

Z R(Sta at) = ]ETNTK'Q (1) [R(T)]
t (23)

J(e) = ETNTFQ(T)
B T
> Valogmg(arls:) | R(r)| (24)

t=1

VF)J(Q) = ]ETNT(Q(T)

In practice, these gradients are obtained with automatic
differentiation software on a surrogate loss objective, whose
gradients are the same as (24), and are then backpropagated
through the NN to update 6.

The central challenge in policy gradient methods lie in
reducing the variance of the gradient estimates, such that
consistent progress towards better policies can be made.
The actor-critic architecture makes a significant impact in
this regard, by reformulating the reward signals in terms of
advantage:

Q"(s,a) = > Er,[R(s1,a4) | 5,a] (25)
V7™(s) =Y Exy[R(s1,00) | 5] (26)
A" (s,a) = Q" (s,a) — V7 (s) 27

The advantage function (27) measures how good an action
is compared to the other actions available in the state, such
that good actions have positive rewards, and bad actions have
negative rewards. One thus has to be able to estimate the
average reward of the state, i.e. the value function V(s).}
This is the job of the critic network, a separate NN trained
in a supervised manner to predict the value function with
ground truth from the reward values in the gathered sam-
ples. Several improvements such as generalized advantage
estimate (GAE) are further employed to reduce variance of
the advantage estimates. PPO also makes use of several actors
simultaneously gathering samples with the policy, to increase
the sample batch size.

PPO maximizes the surrogate objective function

27 represents trajectories of the form (s1,a1,82,a2,...,8T,ar)

3The value function V™ (s) is the expected long term reward of being
in state s and then following policy 7, as opposed to the Q7 (s, a)-function
which focuses on the long term reward of taking a specific action in the
state, and then following the policy.



L) = E, [min (rt(e)At, clip (r¢(6),1 — €, 1 +¢) At)l
S (28)
in which A and E denotes the empirically obtained esti-
mates of the advantage function and expectation, respectively,
and 7:(0) is the probability ratio

e (ata St)
0014 (atv st)

Vanilla policy gradients require samples from the policy
being optimized, which after a single optimization step are
no longer usable for the improved policy. For increased
sample efficiency, PPO uses importance sampling to obtain
the expectation of samples gathered from an old policy
Tg,,, under the new policy we want to refine my. In this
way, each sample can be used for several gradient ascent
steps. As the new policy is refined, the two policies will
diverge, increasing variance of the estimation, and the old
policy is therefore periodically updated to match the new
policy. For this approach to be valid, the state transition
function must be similar between the two policies, which
is ensured by clipping the probability ratio (29) to the region
[l —€, 1+ €.* This also gives a first-order approach to
trust region optimization: The algorithm is not too greedy in
favoring actions with positive advantage, and not too quick
to avoid actions with a negative advantage function from a
small set of samples. The minimum operator ensures that
the surrogate objective function is a lower bound on the
unclipped objective, and eliminates increased preference for
actions with negative advantage function. PPO is outlined in
Algorithm 1.

r¢(0) = (29)

Algorithm 1: PPO

for iteration=1, 2, ... do

for actor=1, 2, ..., N do
Run policy mg,,, in environment for T time steps
Compute advantage estimates A, for

t=1,2,...,T
end
Optimize surrogate L wrt. 6.
Gold — 0
end

B. Action Space

A known issue in optimal control is that while continually
switching between maximum and minimum input is often
optimal in the sense of maximizing the objective function,
in practice it wears unnecessarily on the actuators. Since
PPO during training samples its outputs from a Gaussian
distribution, a high variance will generate highly fluctuating
actions. This is not much of a problem in a simulator
environment but could be an issue if trained online on a real
aircraft. PPO’s hyperparameters are tuned wrt. a symmetric

4The clip operator saturates the variable in the first argument between
the values supplied by the two following arguments.

TABLE I: Constraints and ranges for initial conditions and
target setpoints used during training of controller.

Variable  Initial Condition Target
o) +150° +60°
0 +45° +30°
P +60° -
w +60°/s -
« +26° -
B +26° -
Va 12 -30m/s 12 —30m/s

action space with a small range (e.g. -1 to 1). Adhering to this
design also has the benefit of increased generality, training
the controller to output actions as a fraction of maximal and
minimal setpoints. The actions produced by the controller are
therefore clipped to this range, and subsequently scaled to fit
the actuator ranges as described in Section III.

C. Training of Controller

The PPO RL controller was initialized with the default hy-
perparameters in the OpenAl Baselines implementation [52],
and ran with 6 parallel actors. The controller policy is an
extended version of the default two hidden layer, 64 nodes
multi layer perceptron (MLP) policy: The observation vector
is first processed in a convolutional layer with three filters
spanning the time dimension for each component, before
being fed to the default policy. This allows the policy to
construct functions on the time evolution of the observation
vector, while scaling more favorably in parameter count
with increasing observation vector size compared to a fully
connected input layer.

The controller is trained in an episodic manner to assume
control of an aircraft in motion and orient it towards some
new reference attitude. Although the task at hand is not
truly episodic in the sense of having natural terminal states,
episodic training allows one to adjust episode conditions to
suit the agents proficiency, and also admits greater control
of the agents exploration of the state space. The initial state
and reference setpoints for the aircraft are randomized in the
ranges shown in Table I. Episode conditions are progressively
made more difficult as the controller improves, beginning
close to target setpoints and in stable conditions, until finally
spanning the entirety of Table I. The chosen ranges allow
the RL controller to demonstrate that it is capable of attitude
control, and facilitates comparison with the PID controller as
it is expected to perform well in this region. According to
[1], a typical sampling frequency for autopilots is 100 Hertz,
and the simulator therefore advances 0.01 seconds at each
time step. Each episode is terminated after a maximum of
2000 time steps, corresponding to 20 seconds of flight time.
No wind or turbulence forces are enabled during training of
the controller.

In accordance with traditional control theory, where one
usually considers cost to be minimized rather than rewards
to be maximized, the immediate reward returns to the RL



controller are all negative rewards in the normalized range
of -1 to 0:

_ad
R _Chp<¢ ’ ,0m>
G1
6 — o4
Raclip<( )70772>
G2
d
Ry, = clip (w’ 0’73>
(3
4
j N
RSC = Cllp Z]G[a,e,t] Zz_o | Jt—i ]t7171|707fy4
G4
Ry = —(Ry + Ry + Ry, + Rsc) (30)

(1 =33, (2 =225, (3=25, (4 =060
71 =0.3, %2=03, v3=03,74=0.1

In this reward function, L; was chosen as the distance
metric between the current state and the desired state (de-
noted with superscript d).> Furthermore, a cost is attached
to changing the actuator setpoints to address oscillatory
control behaviour. Commanded control setpoint of actuator
J at time step t is denoted &%, where j € [a,e,t]. The
importance of each component of the reward function is
weighted through the ~ factors. To balance the disparate
scales of the different components, the values are divided
by the variables approximate dynamic range, represented by
the ¢ factors.

The components of the observation vector are expressed in
different units and also have differing dynamic ranges. NNs
are known to converge faster when the input features share a
common scale, such that the network does not need to learn
this scaling itself. The observation vector should therefore
be normalized. This is accomplished with the VecNormalize
class of [52], which estimates a running mean and variance of
each observation component and normalizes based on these
estimates.

D. Evaluation

Representing the state-of-the-art in model free control,
fixed-gain PID controllers for roll, pitch and airspeed were
implemented to provide a baseline comparison for the RL
controller:

t
5 = —kpy (Ve — V) — ki, / Ve—VhHdr @1
0

t
52 = _kp¢(¢ - ¢d) - ki¢ 0 (¢ - ¢d)d7' - kd¢p (32)

t
5t =l (60" ~ iy [ (600 —kagg (33)
0

The throttle is used to control airspeed, while virtual aileron
and elevator commands are calculated to control roll and
pitch, respectively. The PID controllers were manually tuned

SThe L distance has the advantage of punishing small errors harsher
than the Lo distance, and therefore encourages eliminating small steady-state
errors.

using a trial-and-error approach until achieving acceptable
transient responses and low steady-state errors for a range
of initial conditions and setpoints. Wind was turned off in
the simulator during tuning. The integral terms in (31)-(33)
are implemented numerically using forward Euler. Controller
gains are given in Table II.

TABLE II: PID controller parameters.

Parameter  Value  Parameter Value
kpy 0.5 kg " 0.5
ki, 0.1  kp, —4
kp " 1 ki —0.75
ki 5 0 kq, —0.1

The same aerodynamic model that is used for training
is also used for evaluation purposes, with the addition of
disturbances in the form of wind to test generalization
capabilities. The controllers are compared in four distinct
wind and turbulence regions: light, moderate, severe and no
turbulence. Each setting consists of a steady wind component,
with randomized orientation and a magnitude of 7 m/s, 15
m/s, 23 m/s and O m/s respectively, and additive turbulence
given by the Dryden turbulence model [45]. Note that a wind
speed of 23 m/s is a substantial disturbance, especially when
considering the Skywalker X8’s nominal airspeed of 18 m/s.
For each wind setting, 100 sets of initial conditions and target
setpoints are generated, spanning the ranges shown in Table
I. The reference setpoints are set to 20-30 degrees and 3-4
m/s deviation from the initial state for the angle variables and
airspeed, respectively. Each evaluation scenario is run for a
maximum of 1500 time steps, corresponding to 15 seconds
of flight time, which should be sufficient time to allow the
controller to regulate to the setpoint.

The reward function is not merely measuring the profi-
ciency of the RL controller, but is also designed to facilitate
learning. To compare, rank and evaluate different controllers,
one needs to define additional evaluation criteria. To this
end, the controllers are evaluated on the following crite-
ria: Success/failure, whether the controller is successful in
controlling the state to within some bound of the setpoint.
The state must remain within the bounds for at least 100
consecutive time steps to be counted as a success. The bound
was chosen to be 5° for the roll and pitch angles, and +2m/s
for the airspeed. Rise time, the time it takes the controller to
reduce the initial error from 90 % to 10 %. As these control
scenarios are not just simple step responses and may cross
these thresholds several times during the episode, the rise
time is calculated from the first time it crosses the lower
threshold until the first time it reaches the upper threshold.
Settling time, the time it takes the controller to settle within
the success setpoint bounds, and never leave this bound
again. Overshoot, the peak value reached on the opposing
side of the setpoint wrt. the initial error, expressed as a
percentage of the initial error. Control variation, the average
change in actuator commands per second, where the average
is taken over time steps and actuators. Rise time, settling
time, overshoot and control variation are only measured



when the episode is counted as a success. When comparing
controllers, the success criterion is the most important, as
it is indicative of stability as well as achieving the control
objective. Secondly, low control variation is important to
avoid unnecessary wear and tear on the actuators. While
success or failure is a binary variable, rise time, settling time
and overshoot give additional quantitative information on the
average performance of the successful scenarios.

V. RESULTS AND DISCUSSION

The controller was trained on a desktop computer with
an i17-9700k CPU and an RTX 2070 GPU. The model
converges after around two million time steps of training,
which on this hardware takes about an hour. This is relatively
little compared to other applications of DRL, and suggests
that the RL controller has additional capacity to master
more difficult tasks. Inference with the trained model takes
800 microseconds on this hardware, meaning that the RL
controller could reasonably be expected to be able to operate
at the assumed autopilot sampling frequency of 100 Hertz in
flight.

A. Key Factors Impacting Training

The choice of observation vector supplied to the RL
controller proved to be significant for its rate of improvement
during training and its final performance. It was found that
reducing the observation vector to only the essential compo-
nents, i.e. the current airspeed and roll and pitch angles, the
current angular velocities of the UAV, and the state errors,
helped the RL controller improve significantly faster than
other, larger observation vectors.® Including values for several
previous time steps (five was found to a good choice) further
accelerated training, as this makes learning the dynamics
easier for the memoryless feed-forward policy.

The reward function is one of the major ways the designer
can influence and direct the behaviour of the agent. One of
the more popular alternatives to L; norm and clipping to
achieve saturated rewards are the class of exponential reward
functions, and notably the Gaussian reward function as in
[37]. Analyzing different choices of the reward function was
not given much focus as the original choice gave satisfying
results.

B. Evaluation of Controller

The RL controller generalizes well to situations and tasks
not encountered during training. Even though the controller
is trained with a single setpoint for each episode, Figure 2
shows that the controller is perfectly capable of adapting to
new setpoints during flight. This result was also found by
Koch et al. [43] for quadcopters. The generalization capabil-
ity also holds true for unmodeled wind and turbulence forces.
The controller is trained with no wind estimates present in
the observation vector, and no wind forces enabled in the
simulator, but as Table III shows it is still able to achieve

SEssential here referring to the factors’ impact on performance for this
specific control task. One would for instance expect o and 3 to be essential
factors when operating in the more extreme and nonlinear regions of the
state space.

tracking to the setpoint when steady wind and turbulence
is enabled in the test environment. Table III should be
read as a quantitative analysis of performance in conditions
similar to normal operating conditions, while Figure 2 and
3 qualitatively shows the capabilities of the controllers on
significantly more challenging tasks.

Table III shows that both controllers are generally capable
of achieving convergence to the target for the evaluation
tasks, with neither controller clearly outperforming the other.
The RL controller has an advantage over the PID controller
on the success criterion, and seems to be more robust to the
turbulence disturbance. It is able to achieve convergence in
the attitude states in all situations, unlike the PID controller,
and is also notably more successful in moderate and severe
turbulence conditions. The PID controller has considerably
lower control variation for the simple settings with little or
no wind, but its control variation grows fast with increasing
disturbance. At severe turbulence the RL controller has the
least control variation.

The two controllers perform similarly wrt. settling time
and rise time, each having the edge in different states
under various conditions, while the PID controller performs
favorably when measured on overshoot. All in all, this is
an encouraging result for the RL controller, as it is able
to perform similarly as the established PID controller in its
preferred domain, while the RL controller is expected to
make its greatest contribution in the more nonlinear regions
of the state space.

A comparison of the two controllers is shown in Fig-
ure 3 on a scenario involving fairly aggressive maneuvers,
which both are able to execute. Figure 2 and 3 illustrate
an interesting result, the RL controller is able to eliminate
steady state errors. While the PID controller has integral
action to mitigate steady-state errors, the control law of the
RL controller is only a function of the last few states and
references. This might suggest that the RL controller has
learned some feed-forward action, including nominal inputs
in each equilibrium state, thus removing steady-state errors
in most cases. Another possibility is that steady-state errors
are greatly reduced through the use of high-gain feedback,
but the low control variation shown for severe turbulence in
Table III indicates that the gain is not excessive. Future work
should include integral error states in the observations and
evaluate the implications on training and flight performance.

VI. CONCLUSIONS

The ease with which the proof of concept RL controller
learns to control the UAV for the tasks presented in this paper,
and its ability to generalize to turbulent wind conditions,
suggests that DRL is a good candidate for nonlinear flight
control design. A central unanswered question here is the
severity of the reality gap, or in other words how transferable
the strategies learned in simulations are to real world flight.
Future work should evaluate the controller’s robustness to
parametric and structural aerodynamic uncertainties; this is
essential to do before undertaking any real life flight exper-
iments. For more advanced maneuvers, e.g. aerobatic flight



TABLE III: Performance metrics for the RL controller and the baseline PID controller on the evaluation scenarios. Both
controllers exhibit strengths in different aspects — the best value in each circumstance is shown in bold.

Success (%) Rise time (s) Settling time (s) Overshoot (%) CO_meI
variation
Setting Controller o) 6 Va All ) 7 Va o) 0 Va ¢ [ Va (s~
RL 100 100 100 100 0.265 0.661 0.825 1.584 1.663 2.798 21 24 31 0.517
No turbulence
PID 100 100 98 98 1.344 0.228 0962 2.050 1.364 2.198 4 17 35 0.199
. RL 100 100 100 100 0.210 0.773 0.744 1.676 1.806 2.738 28 33 36 0.748
Light turbulence
PID 100 100 99 99 1.081 0.294 0.863 2.057 1.638 2.369 6 20 43 0.457
RL 100 100 98 98 0.192 1474 0934 2167 2438 4.085 54 54 74 0913
Moderate turbulence
PID 100 93 90 87 0.793 0.525 0.864 2.764 2563  3.460 34 35 70 0.781
RL 100 100 92 92 0.166 1.792 1.585 2903 3.280 7.049 122 93 156 1.083
Severe turbulence
PID 99 96 87 8 0.630 0945 1343 3576 5256 5470 92 80 122 1.117
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Fig. 2: The RL controller trained episodically with a single
setpoint and no wind or turbulence generalizes well to many
wind conditions and continuous tracking of setpoints (shown
with dashed lines marked by crosses). Here subjected to
severe wind and turbulence disturbances with a magnitude
of 20 m/s.
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Fig. 3: Comparison of the PID and RL controllers tasked
with tracking the dashed green line.

or recovering from extreme situations, the controller should
be given more freedom in adjusting the airspeed, possibly
through having it as an uncontrolled state.

There is still much potential left to harness for this class
of controllers. The policy network used to represent the
control law is small and simple; more complex architectures
such as long short term memory (LSTM) could be used to
make a dynamic RL controller. Training, experiments and
reward structures can be designed to facilitate learning of
more advanced behavior, tighter control or better robustness.
Should the reality gap prove to be a major obstacle for the
success of the RL controller in the real world, one should
look to the class of off-policy algorithms such as SAC. These
algorithms are able to learn offline from gathered data, and
thus might be more suited for UAV applications.
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