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Abstract
Malignant melanoma is a severe and aggressive type of skin cancer, with a rapid decrease in survival rate if not diagnosed 
and treated at an early stage. Histopathological examination of hematoxylin and eosin stained tissue biopsies under a 
light microscope is currently the gold standard for diagnosis. However, this manual examination is a difficult and time-
consuming task, and diagnosis is often subject to intra- and inter-observer variability. With more pathology departments 
starting to convert conventional glass slides into digital resources, a Computer Aided Diagnostic (CAD) system that can 
automate part of the diagnostic process will help address these challenges. It is expected to reduce examination time, 
increase diagnostic accuracy, and reduce diagnostic variations. An important initial step in developing such a system is 
an automated epidermis segmentation algorithm, since several important diagnostic factors are within or seen relatively 
to the epidermis’ location. In this paper, we propose a new epidermis segmentation technique built on Convolutional 
Neural Networks. We trained an U-net based architecture end-to-end, with ∼ 380k overlapping high resolution image 
patches at 512 × 512 pixels, extracted and augmented from 36 digitized histopathological images from two different 
clinical sites, to discriminate pixels as either epidermal or non-epidermal. The proposed technique was evaluated on 33 
test images, where we achieved a mean Positive Predictive Value at 0.89 ± 0.16 , Sensitivity at 0.92 ± 0.1 , Dice Similarity 
Coefficient at 0.89 ± 0.13 and a Matthews Correlation Coefficient at 0.89 ± 0.11 , showing a superior performance when 
compared to existing techniques. Our algorithm also proves to be robust to variations in staining, tissue thickness and 
laboratory pre-processing.
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Abbreviations
CAD	� Computer aided diagnostic
CNN	� Convolutional neural networks
H&E	� Hematoxylin and eosin
WSI	� Whole slide image
ILSVCRC​	� ImageNet large-scale visual recognition 

challenge
FCN	� Fully convolutional network
UBC	� University of British Columbia
UMch	� University of Michigan

ReLU	� Rectified linear unit
ELU	� Exponential linear unit

1  Introduction

Malignant melanoma is one of the cancer types in Nor-
way with highest increase in incident rate  [1], placing 
Norway amongst the countries in the world with high-
est melanoma incidence and mortality, when looking 
at age-standardized rates [2]. In 2017 there were 2222 
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new cases (which is 20 times more that the early 1950s) 
and 306 dead of the disease, more men than women [3]. 
Malignant melanoma is among the most aggressive types 
of skin cancer and if not treated early, the tumor is likely 
to thicken and progress to a more invasive stage. Here it 
can invade nearby lymphatic -and/or blood vessels and 
rapidly spread to other parts of the body. This will cause 
the 5-year survival rate to drop dramatically from 80–90% 
(male-female); to only 14–24% depending on cancer stage 
at time of diagnosis [3]. Detection and accurate diagnosis 
at an early stage is therefore of the utmost importance.

Histopathological examination of hematoxylin and 
eosin (H&E) stained tissue biopsies under a light micro-
scope remains the gold standard for diagnosis of malig-
nant melanoma. With this, pathologists have a cellular 
level view of the disease, and use their deep domain 
knowledge and experience to asses complex morphologi-
cal and cytological features of the tissue sample in order 
to reach a diagnosis. However, the manual evaluation of 
tissue samples are in many cases complex and therefore a 
time- and labor-intensive task. In addition, at most pathol-
ogy laboratories the sheer amount of skin biopsies causes 
real logistic and personnel challenges [4–6].

Furthermore, since the pathologists’ diagnosis is sub-
jective and based on personal experience and bias, this 
can lead to intra- and inter-observer variability. It has 
been shown that inter-observer variations of diagnosis 
sensitivity may range from 55 to 100 percent among 20 
pathologist [7].

With more pathology departments being remodeled 
to digital pathology,1 by converting conventional glass 
slides into digital resources commonly know as Whole 
Slide Images (WSIs), a Computer Aided Diagnostic (CAD) 
system to automate parts of the diagnostic process will 
help address these challenges. It is expected to reduce 
examination time, increase diagnostic accuracy, and 
reduce diagnostic variations.

A digitized H&E stained skin WSI consists of three main 
parts (i.e. skin layers); epidermis, dermis and subcutane-
ous tissue, as illustrated in Fig. 1. The epidermis region, 
highlighted in green, consists of several important diag-
nostic factors [8]. Therefore, an important initial step in 
developing a CAD system, is to develop a robust automatic 
segmentation algorithm to precisely localize this area.

1.1 � Related work

Several automated techniques have been proposed for 
epidermis segmentation. Haggerty et al. [9] proposed a 
contrast enhancement and thresholding method (hence-
forth referred to as CET). It performs color normalization 
on WSIs with 10x magnification. This is followed by global 
thresholding on contrast enhanced image, which is cre-
ated from an equally weighted linear combination of the 
normalized WSIs grayscale-converted image and the blue-
yellow component from its CIELAB-converted image.

Lu et al. [10] proposed a technique based on global 
thresholding and shape analysis (henceforth referred to 
as GTSA) on WSIs at 40× magnification down-sampled by 
a factor of 32. This technique first obtains a coarse segmen-
tation by global thresholding on the red channel on the 
down-sampled image followed by shape analysis. Then, 
a template matching method is used to enhance the sig-
nal of epidermis. A final threshold is then determined by 
analyzing the probability density function of the response 
value image.

Xu et al. [11] propose a technique in which an initial 
coarse segmentation is obtained similar to GTSA followed 
by a thickness measurement of the obtained epidermis 
region (henceforth referred to as THM technique). If the 
coarse segmentation is classified as bad quality (i.e. too 
thick) a second-pass fine segmentation is performed with 
a k-means classification algorithm.

Kłeczek et al. [12] propose a technique based on poros-
ity analysis and stain concentration analysis (henceforth 
referred to as PASC technique) on WSIs from multiple 
sources down-sampled to 10x magnification. A coarse 
segmentation is obtained by filling void spaces which are 

Fig. 1   H&E stained skin biopsy. Illustration of a H&E stained skin 
biopsy with its three tissue layers: epidermis, dermis and subcuta-
neous tissue. The green contour of the epidermis area is manually 
labeled and superimposed on the digitized slide

1  Image-based information environment which is enabled by com-
puter technology that allows for the management of information 
gathered from a digital slide.
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probable clear cells or desmosomes using a shape criteria 
and performing global thresholding on density. The next 
step is to compute hematoxylin (H) and eosin (E) stain 
concentration and reject blood, stratum corneum and 
dense collagen by performing global thresholding on E, 
H and H/E concentration maps. A final refinement is done 
by rejection highly porous regions, similar to the initial 
coarse step.

With the exception of the PASC technique, existing 
techniques makes strong assumptions on staining uni-
formity and sufficient contrast differences between epi-
dermis and dermis in their approaches. They are all mainly 
based on global thresholding on a predefined color chan-
nel followed by an analysis of shape and area. However, 
due to inter and intra-variations in staining and tissue 
thickness, skin appendages and dermal cellular infiltra-
tion, these assumptions are often not met. Consequently, 
these techniques often include large false positive regions 
within the dermis due to darker components, such as skin 
appendages and cellular infiltration of nevi cells of lypm-
hocytes. These color variations also result in general failure 
for two of the above mentioned methods on almost half of 
the images when tested by the authors of the PASC tech-
nique. This was due to area and/or shape criteria not being 
met after the global thresholding step. These results are 
in accordance with our own results, which are presented 
in Section 5.

In the following pages we propose a robust automatic 
segmentation technique, built on Convolutional Neural 
Network (CNN) and the U-net architecture. Our technique 
does not make any assumption on color channels or con-
trast. Due to annotated images from multiple sources and 
the CNN-models ability to learn features that maps each 
pixel to its respective class, we overcome challenges with 
anatomical variations and variations that may arise from 
staining, different slide scanners and software processing.

1.2 � Biomedical image segmentation with deep 
neural networks

Deep neural network is currently the most frequently 
studied method within the field of machine learning. 
These learning methods have in the last decade out-
performed classical machine learning algorithms with 
handcrafted features in several fields, including digi-
tal image processing. The introduction of CNNs [13] in 
1998, a gradient decent based machine learning method 
with a convolutional architecture, allowed the network 
to build feature maps directly from annotated training 
images. However, due to lack of large enough data sets 
and sufficient computational power, the potential of 
this technique was not truly shown before the ground-
breaking results by Krizhevsky et al. [14]. Their algorithm, 

AlexNet, was the first deep neural network algorithm to 
win the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVCRC) [15], and they won it by a wide margin. 
Ever since, these types of image analysis competitions 
are won consistently by deep neural network algorithms.

In the research field of medical imaging, the use of 
CNNs have gained a growing popularity for various tasks 
in several modalities, such as radiography, magnetic 
resonance imaging, ultrasound and computer tomog-
raphy, among others [16]. Within the relatively new field 
of digital pathology, analysis of histopathology images 
also benefits from the multitude of challenges solvable 
by the use of CNNs. Among these, there has been pro-
posed numerous tasks involving detection, classification 
and segmentation [16–18].

Regular CNNs map each input image into contain-
ing objects from one or several classes (with a possible 
bounding box describing where the object is), but this 
results in a too coarse segmentation for the task at hand. 
Long et al. [19] proposed a solution to this, called Fully 
Convolutional Network (FCN). This network architecture 
can be trained end-to-end to obtain a pixel-wise predic-
tion for the entire input image. As of today, most state-
of-the-art pixel-wise semantic segmentation networks 
are based on this approach [20]. FCN based systems can 
handle input images of arbitrary size, since they are not 
restricted by any dense layers. However, the giga-pixel 
nature of histopathological images quickly exceed GPU 
memory available with current technology. An exam-
ple WSI with size 40,000 × 60,000 pixels, in RGB color 
space, would alone need ∼6.7GB of memory. If we use 
32 filters in the first layer, the filter activations (i.e. fea-
ture maps) would, with single-precision floating points, 
need roughly 286GB memory. During training, inter-
mediate filter activations are saved at each layer since 
they are needed for back-propagation. Hence, even for 
smaller images, the memory requirements will grow fast 
out of reasonable limits. Two possible solutions are to 
either down-sample the WSIs resolution with the con-
sequence of losing high resolution details, or a patch-
based approach where multiple (possible overlapping) 
patches are extracted from the full resolution WSI and 
used as independent input images [21]. One unfortu-
nate effect with the latter approach is the loss of possible 
global information.

In the development of our system for epidermis seg-
mentation, we have chosen the patch-based approach, 
which has been common when working with CNNs and 
full size WSIs. The reason is that, the extensive down-sam-
pling needed to not exceed memory limitations would 
result in the loss of most of the discriminative cellular level 
details, which are more important than possible global 
information.
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2 � Methods

In this section we present the various data sets used, 
ground truth labeling and the preparation of patches 
used for training and testing. Thereafter we present 
our model’s architecture, training, inference and 
post-processing.

2.1 � Data sets

The WSIs used for training and testing our proposed 
method are all from formalin-fixed paraffin-embedded 
tissue blocks containing skin biopsies. These are sliced 
approximately 4�m thick, stained with H&E using an 
automated stainer, and are obtained from two different 
clinical sites.

The first subset of 59 images are publicly available, 
and obtained from University of British Columbia Virtual 
Slidebox [22] (henceforth denoted as the UBC data set), 
scanned with an Aperio ScanScope slide scanner system 
at an apparent 40x magnification ( 0.25μm∕px ) and saved 
into JPEG format.

The second subset of 10 images are publicly available, 
and obtained from University of Michigan Virtual Slide 
Box  [23] (henceforth denoted as the UMch data set). 
These images were scanned with an Aperio ScanScope 
slide scanner system at an apparent 40× magnification 
( 0.25 μm∕px ) and saved into JPEG2000 format.

In all, our data set consist of 69 skin WSIs with 
size ranging between 5000 × 10, 000 pixels and 
48, 000 × 63, 000 pixels. Example WSIs from both of the 
subsets is shown in Fig. 2.

2.2 � Ground truth

The boundary of the epidermal area in the WSIs were 
carefully annotated using Aperio ImageScope, assisted by 
an expert pathologist specialized in skin diseases at 
Stavanger University Hospital, and saved as an XML file. 
Annotations were then converted from XML to a binary 
image in Matlab. Additionally, foreground masks were 
obtained by first converting the WSIs to HSV colorspace. 
Thereafter, we thresholded the H and S channels with 
Otsu’s method, and combined these. Finally, small pixel 
areas in the background were removed with morpho-
logical closing, holes were filled with morphological 
reconstruction and the boundaries were smoothed with 
morphological opening (Fig. 3). These masks were used 
as labels during patch extraction, training, and later as 
ground truth when evaluating the proposed system.

Fig. 2   WSIs from different sources used in this study. This figure 
shows example WSIs acquired from two different sources

Fig. 3   Foreground and epidermis masks. This figure shortly illus-
trates how the foreground and epidermis masks are constructed 
from an annotated WSI
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2.3 � Training data

For the training of our CNN model, we randomly extracted 
384000 overlapping image patches at 512 × 512 pixels 
from 36 of the 69 WSIs in our data set. These were chosen 
from both subsets to represent variations in staining and 
anatomy. From the total number of image patches, 95% 
were used to train our model with forward- and backward 
propagation. The remaining 5% were kept aside as a vali-
dation set, used to check if our model were overfitting on 
the training data, and to fine-tune hyperparameters.

The remaining 33 WSIs were kept aside for testing the 
model.

2.3.1 � Patch extraction

As seen in Fig. 1, the epidermis area comprise of a very 
tiny part of the total tissue slide. Thus, there is a huge 
class imbalance between the epidermis region and the 
rest of the slide. Of the total pixel count in our images, 
roughly 3.5% of the pixels are within the epidermal area. 
The remaining pixels are other tissue ( ∼29.5%) and back-
ground ( ∼67%). Due to the insufficient amount of pixels 
labeled as epidermis, early experiments converged with 
high accuracy by predominantly classifying pixels as other 
tissue and background.

We approached this problem by under-sampling the 
background and other tissue area, and over-sampling the 
epidermal area. This was done by first deciding the maxi-
mum number of patches from each WSI based on a pixel 
count in the epidermis ground truth mask. Each new ran-
domly generated patch were extracted by the following 
criteria:

First, we ensured that the patch was within the bound-
ary of the original WSI. Next, we calculated the euclidean 
distance between the upper left corner of the new patch 
and all others, ensuring it being minimum 200 pixels. This 
was done to spread the patches thoroughly and prevent-
ing them from being too overlapping. Then, pixels per 
class were counted to decide in which category the patch 
belonged by the following criteria:

•	 If > 40% epidermis pixels → count as epidermis patch.
•	 If > 60% background pixels → count as background 

patch.
•	 If > 60% other tissue pixels → count as other tissue 

patch.

If the chosen category were full (i.e. being one third of the 
maximum number of patches), the patch not being within 
WSI boarder or it being too close to the other patches, it 
is discarded and a new patch is randomly generated. This 
was repeated until all categories were filled. An overview 

of the described pipeline, for extracting training patches 
from one WSI, is shown in Fig. 4.

This results in a better training set distribution, where 
we now have 24% of the pixels representing epidermis 
area. Whereas the other tissues and background areas 
are represented in 42% and 34% of the total pixel count, 
respectively. We believe it to be advantageous with an 
over-representation of other tissue pixels because of the 
high anatomical variance caused by possible hair follicles, 
sebaceous glands, sweat glands, blood and lymph vessels 
etc. in the dermis and subcutaneous layers. Additionally, in 

Fig. 4   Patch extraction pipeline. This illustrates how the training 
patches were extracted from each WSI
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some of the slides, there are different cellular infiltrations 
within the dermis area, these being lymphocytes, nevus 
cells and/or tumor cells, which all can vary substantially.

2.3.2 � Image augmentation

To further increase the amount of training data, each patch 
and its corresponding labeled patch were augmented by 
rotating and flipping the images, as illustrated in Fig. 5. 
This result in an eight-fold increase of training data.

2.4 � Model architecture

In the context of semantic segmentation in medical 
imaging, the U-net architecture [24], which is an evolu-
tion of the FCN architecture, has shown several prom-
ising results  [25–27]. The first half of the “U” consist 
of a four level contracting path (encoder), where two 
3x3 convolution operations with a rectified linear unit 
(ReLU) activation are applied, followed by a max-pool 
down-sampling. This builds a multi-channeled feature 
map which capture the context in the image, but has a 
localization trade-off (i.e. the “what” is improved at the 
expense of the “where”). The localization issue is han-
dled in the second symmetric half, four level expansive 
(decoder) part of the network. Here, the feature map is 
up-sampled and concatenated with its corresponding 
higher resolution feature map from the contracting path, 
which combines context information with precise locali-
zation. Additional convolutional operations are, at each 
level applied to the concatenated feature maps, which 

assembles a more precise output. A final 1x1 convolution 
is then used to map the last feature map to its desired 
class.

Our adaption of this architecture, shown in Fig. 6, has 
some modifications. We halved the number of feature 
channels to 32 - 64 - 128 - 256 - 512, thus drastically reduc-
ing the memory required for filter weights and to store all 
intermediate filter activations which is needed for back-
propagation. With the original number of feature chan-
nels and a batch size of eight, the model would require ∼
25GB GPU memory during training, exceeding the limits 
on every GPU on the market. However, with the num-
ber of feature channels halved, model requirement is ∼
12.7GB, which is doable on higher end GPUs. At every con-
volutional layer, except the last 1x1, we use zero-padded 
convolutions. Hence, no cropping operations are needed 
before the concatenation of feature maps. In addition, this 
preserves the spatial dimensions of the input to the out-
put. Furthermore, the ReLU activations has been switched 
with the Exponential Linear Unit (ELU) [28] activations:

where � is a hyperparameter that controls the value to 
which ELU saturates for negative inputs. According to the 
original ELU article, it will provide much faster learning 
and a better generalization performance compared to 
ReLU. To further reduce the training time, we use batch 
normalization [29] after each convolutional layer, which 
also provides some regularization effect to the model. 
Additional regularization is done by incorporating drop-
out [30] at each level in both contracting and expansive 
path, unlike the original architecture which only has it in 
the last two levels of the contractive path. Due to the high 
resolution images, the original filter size of 3 × 3 has been 
increased to 5 × 5, which increases the models receptive 
field. Thus more contextual information and finer details 
are expected to be captured.

2.5 � Training and inference

To focus on the classification of the epidermal area only, 
the classes other tissue and background were combined 
as non-epidermal area, hence making this a binary classi-
fication problem. The model proposed in this study maps 
512 × 512 × 3 RGB images to 512 × 512 × 1 images with 
floating-point pixel values from 0 to 1, where each pixel 
value represent the predicted probability of that given 
pixel belonging to the epidermal area. Furthermore, to 
produce the final output mask, these predicted images 
were post-processed to result in a proper binary mask.

(1)fELU(x) =

{

𝛼(ex − 1) for x < 0

x for x ≥ 0

Fig. 5   Patch augmentation. Upper left is the original patch. The 
remainder are rotated and flipped versions of the original. HF and 
VF denote horizontal- and vertical flip, respectively. Redundant 
combinations (crossed out) are excluded
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2.5.1 � Training

We trained the model over 15 epochs with a batch-size of 
eight on training data containing 364800 image patches. 
Prior to the training, all kernels were initialized using He’s 
uniform initialization [31]. When training a neural network, 
a stochastic gradient-based optimization is used to update 
the parameters in the model. Here we used an Adam opti-
mizer [32], which computes an adaptive learning rate to 
further speed up the training. The learning rate was ini-
tially set to �init = 2 × 10−3 , and was reduced by a factor 
of 2 if loss didn’t improve during the last two epochs. To 
prevent overfitting, dropout with a drop rate of 0.2 were 
used on the first convolutional layer at each level, both in 
the contractive and the expansive path.

2.5.2 � Loss function

At the end of the forward-pass for each mini-batch, train-
ing loss were derived from the sigmoid activation output 
at the last layer

and by calculating its binary cross entropy loss

(2)ŷ = 𝜎(x) =
1

1 − e−x

This loss was then back-propagated throughout the net-
work, updating each parameter.

2.5.3 � Inference

To infer the segmentation, non-overlapping patches 
were extracted from a full size WSI and fed forward into 
the model, which generates a epidermis probability map. 
These were then reassembled into an image equal in size 
as its original WSI. To reduce checkerboard artifacts caused 
by the edges of each patch, we increased the patch-size 
in the inference to 4096 × 4096. Since FCN based systems 
doesn’t include any dense layer, the input size of the net-
work isn’t restricted by other than available GPU memory, 
and that the dimension of the input image must be divid-
able by 2n where n = {1, 2...,N} and N is the depth of the 
network.

2.5.4 � Post‑processing

To reduce computational complexity in the post process-
ing stage, the output probability map from the inference 

(3)L(ŷ, y) = −(ylog(ŷ) + (i − y)log(i − ŷ))

Fig. 6   Model architecture. Model architecture adapted from Olaf 
Ronnebergers U-net: Convolutional Networks for Biomedical Image 
Segmentation  [24]. Each blue box correspond to a multi-channel 

feature map. The number of channels are shown over the boxes. 
Light blue boxes are copied feature maps from the encoder part of 
the network. Finally, the arrows denote the different operations
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were decimated by a factor of four. This also made it so the 
output size matched the existing techniques, which eases 
the performance comparison. The probability map were 
binarized by first smoothing the image with an 11 × 11 
averaging kernel, before the image was thresholded using 
using Otsu’s method [33]. Small objects with areas smaller 
than 20,000 pixels were removed to eliminate false posi-
tives. To finalize the epidermis mask, morphological open-
ing with a disk-shaped kernel with radius of eight, were 
applied to smooth the boundary. The kernel sizes used 
for averaging and morphological opening and the size 
threshold for pixel areas to be removed, were obtained 
empirically.

2.6 � Implementation details

All experiments were conducted using Keras [34] deep 
learning library with Tensorflow backend [35] in Python 
3.5. Both training and inference were done on a NVIDIA 
Tesla P100 GPU computing processor with 12GB of 
memory.

3 � Results

In this section we present comparative segmentation 
results by our proposed method and existing techniques.

3.1 � Evaluation metrics

The segmentation results are compared to the ground 
truth by four area based metrics:

•	 Positive Predictive Value ( APPV ), measures how precise 
the segmentation mask is within the boundary of the 
ground truth.

•	 Sensitivity ( ASEN ), measures how large part of the 
ground truth mask is covered by the segmentation 
mask.

•	 Dice Similarity Coefficient ( ADSC ), is the harmonic aver-
age of the APPV and ASEN.

•	 Matthews Correlation Coefficient ( AMCC ), is a balanced 
measure that uses all the four classes of the confusion 
matrix in its computation.

As a single score, APPV and ASEN won’t provide an accurate 
measure of the actual performance, and must therefore be 
evaluated as a pair. ADSC score is widely used, but can be 
misleading when working with large class imbalance. This 
is the case when classifying a relatively small epidermal 
area in a large image. Hence, the score strongly depend 
on which class is defined as the positive class. When cal-
culating the AMCC score, both the positive and negative 
elements are considered and is therefore independent 
of which class is defined as what. Thus, it’s claimed to be 
the most informative single score performance metric in 
binary classification [36]. The four evaluation metrics are 
calculated as follows:

3.2 � Quantitative results

To evaluate the efficiency of our proposed system, its per-
formance is compared to the segmentation techniques 
CET, GTSA, THM and PASC presented in the Related Work 
section. The CET, GTSA and THM techniques all have sev-
eral key parameters, which are set in accordance with their 
original work. The PASC results are obtained from the origi-
nal authors online research page [37].

Metrics defined in Eqs. 4–7 were calculated from the 
resulting segmentation maps produced by each method 
and are summarized in Tables 1 and 2. Highlighted in bold 

(4)APPV =
TP

TP + FP

(5)ASEN =
TP

TP + FN

(6)ADSC = 2 ⋅
APPV ⋅ASEN

APPV +ASEN

(7)AMCC =
TP ⋅ TN − FP ⋅ FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Table 1   Segmentation 
performance on the training 
set (n = 36)

Method #failed Mean value Median value SD

A
PPV

A
SEN

A
DSC

A
MCC

A
PPV

A
SEN

A
DSC

A
MCC

A
PPV

A
SEN

A
DSC

A
MCC

CET 0 0.31 0.97 0.41 0.46 0.22 0.99 0.36 0.43 0.26 0.06 0.27 0.24
GTSA 20 0.66 0.55 0.53 0.55 0.76 0.64 0.54 0.59 0.26 0.36 0.28 0.27
THM 13 0.69 0.39 0.42 0.45 0.73 0.20 0.31 0.34 0.20 0.35 0.30 0.27
PASC 0 0.50 0.89 0.59 N/A 0.52 0.97 0.61 N/A 0.27 0.21 0.26 N/A
Proposed 0 0.84 0.97 0.86 0.87 0.96 0.98 0.97 0.96 0.28 0.02 0.24 0.21
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are the technique which achieved the highest score on the 
given performance metric. The #failed column present the 
number of WSIs for which a given method failed (i.e. not a 
single pixel is segmented).

The mean, median and standard deviation in the tables 
are all calculated from the non-failed images, to empha-
size on the respective techniques performance on images 
where a segmentation result were obtained.

As shown in bold in the tables, our proposed system 
provides an overall superior performance according to 
almost all metrics. The only metric where other methods 
supersede our system is the sensitivity achieved by CET. 
However as explained, sensitivity alone isn’t enough to 
evaluate the techniques overall performance, since sensi-
tivity doesn’t account for false positive areas (e.g. an image 
where all pixels are segmented as epidermis, will get a sen-
sitivity score of 1). If we look at CET’s other metrics, we 
observe that they are significantly lower than those of our 
method. As mentioned, this is mainly due to incorrect clas-
sification of abundant non-epidermis pixels as epidermis.

As a single score metric, ADSC and AMCC are much more 
descriptive. To emphasize the differences according to 
these metrics, the proposed method achieves a ADSC score 
higher than 0.9 in 25 of 31 test WSIs, whereas none of the 
other techniques scored this high on more than one of the 
images in the test set. This superior performance is also 
shown when inspecting AMCC , where our method scored 
higher than 0.9 in 23 images. These values are also sup-
ported if we inspect the mean and median from ADSC and 
AMCC . Additionally, the robustness of our method never 
lead to failure on any of the images, whereas both GTSM 
and THM fails on around half of them.

3.3 � Qualitative evaluation

Qualitative segmentation results from our proposed 
method are illustrated in Figs. 7, 8, and 9. Overall, the accu-
racy of our proposed technique is seen on a majority of the 
images in our data set. Here, most of the true epidermal 
area is correctly predicted, with almost negligible amount 
of non-epidermal pixels predicted as epidermis. The slide 
shown in Fig. 7 is an example representing the 25 WSIs that 

show this accuracy. In this case we can observe that our 
proposed technique segment an area almost identical to 
the ground truth mask. Similar performance is also seen 
in the remainder of these mentioned slides. However, for 
the reasons seen below, the proposed technique didn’t 
perform satisfactory on some of the images.

Table 2   Segmentation 
performance on the test set 
(n = 33)

Method #failed Mean value Median value SD

A
PPV

A
SEN

A
DSC

A
MCC

A
PPV

A
SEN

A
DSC

A
MCC

A
PPV

A
SEN

A
DSC

A
MCC

CET 0 0.35 0.99 0.47 0.52 0.34 0.99 0.50 0.55 0.22 0.01 0.25 0.22
GTSA 21 0.73 0.31 0.39 0.42 0.81 0.19 0.29 0.35 0.27 0.31 0.33 0.31
THM 17 0.69 0.38 0.45 0.47 0.72 0.26 0.39 0.42 0.20 0.32 0.28 0.27
PASC 0 0.65 0.84 0.68 N/A 0.72 0.96 0.77 N/A 0.25 0.26 0.23 N/A
Proposed 0 0.89 0.92 0.89 0.89 0.95 0.96 0.94 0.93 0.16 0.10 0.13 0.11

Fig. 7   Example representing majority of test slides. A chosen exam-
ple representing the 25 slides which received a A

DSC
> 0.9 . This 

slide in particular scored 0.97 on all performance metrics

Fig. 8   Example slide with false positives. An example represent-
ing the six slides which received a A

DSC
< 0.9 due to false posi-

tives. This slide in particular achieved A
PPV

= 0.25 , A
SEN

= 0.98 , 
A

DSC
= 0.40 , A

MCC
= 0.49
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Of the six images receiving a ADSC score lower than 0.9, 
two had low positive prediction value due to a noticeable 
amount of false positives, as the example shown in Fig. 8. 
The false positive areas seen in these images are due to 
areas contain hair follicles, sweat glands and sebacceous 
glands which all contain epithelial cells. These are prob-
ably mistaken as the similar keratinocytes, which also is 
epithelial cells, and the major component of the epider-
mal area. Some areas containing lymphocytes were also 
wrongly classified in these images.

The remaining four with low ADSC were due to a low 
sensitivity score, and inspection showed that the model 
was not able to segment the whole epidermal area in 
these cases. One of these WSIs is shown in Fig. 9. The rea-
sons as for why our model was unable to fully segment 
the epidermal area in these images, varies from image to 
image. One image has a piece of folded tissue in the epi-
dermis area, which our system didn’t recognize. Another 
image comprise of an epidermis broken up into several 
parts, where some of these were deemed as too small and 
removed in the post-processing stage. The last two images 
suffered from areas abundant with clear cells within the 
epidermis, resulting in lower values in the probability map 
outputted from our deep neural network model. Conse-
quently, these were removed in the thresholding step of 
the post-processing. Hence, the issue in these four cases 
partially arise in the post-processing stage, which in these 
images removed too much of the actual epidermal area.

Performance metrics and segmentation results for each 
individual WSI can be found online.2

3.4 � Computational complexity

Due to the varying size of the WSIs, the inference time will 
vary proportionally to the images size. On average, the 
inference time for a full-size WSI in our data set, was 138 s. 
For each individual 4096 × 4096 patch, the inference time 
is ≈ 4.3s. Inference times on a selection of WSIs are shown 
in Table 3.

4 � Discussion

The aim of our study was to develop, train and test an 
automated method for segmenting epidermal area in 
digitized H&E stained skin WSI with convolutional neural 
networks.

Both the GTSA and THM techniques make strong 
assumptions about color and contrast in their approaches, 
and are both mainly based on global thresholding on the 
red channel of an RGB image in addition to area and shape 
analysis. Due to nuances in anatomy, inter- and intra-vari-
ations in staining and tissue thickness, these assumptions 
are in many cases not met. Regions containing stratum 
corneum, infiltration of lymphocytes or nevi cells, skin 
appendages and inking of biopsy edges are often regions 
highlighted using Otsu thresholding. Thus the two above 
mentioned methods, using this as a coarse segmentation 
step, often fail on their area and/or shape criteria.

All compared techniques, including the cases for which 
GTSA and THM didn’t fail, score relatively low on Positive 
Predictive Value. This is mainly due to regions within der-
mis being infiltrated with lymphocytes and/or nevi cells, or 
due to the specimen containing numerous skin append-
ages, which will appear as low-intensity areas similar to the 
epidermis. Consequently, making the global thresholding 
incapable of discriminating these areas as non-epidermal. 
The THM method tries to limit false positive areas by meas-
uring the epidermis thickness followed by an additional 
fine segmentation using a k-means algorithm. The PASC 
method reduces the number false positives by rejecting 
regions within dermis, based on their position relative 
to the lesion’s boundary. However, it fails to reject dense 

Fig. 9   Example slide where the model were unable to segment 
whole epidermis area. A chosen example representing the four 
slides which received a dice score below 0.9 due to false negatives 
in the epidermal area. This slide in particular also have a false posi-
tive area which contribute to lowering the score

Table 3   Examples of inference times compared to WSI size

WSI size (pixels) Inference time (s)

6,125×7754 22.5
17,111×17,145 136.5
26,536×24,406 238
39,252×32,831 505.3
63,002×48,524 1075.1

2  http://bit.ly/u-net-epide​rmis

http://bit.ly/u-net-epidermis
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connective tissue and cellular infiltration close to the 
lesion’s boarder.

The proposed technique does not make any assump-
tions and only relies on the models ability to learn fea-
tures from training data from several different sources. This 
allows our model to map each WSI pixel to its respective 
class, without ever failing on any of the images. However, 
as with all existing methods, our method sometimes suffer 
from false positive predicted pixels. But, it doesn’t happen 
as often and at a much smaller scale. Overall, the proposed 
technique is more robust and provides a more accurate 
segmentation when compared to existing techniques.

A drawback with the proposed technique, is that high 
computationally complexity lead to long inference time. 
However, the inference time is believed to decrease con-
siderably with some optimization in regard to coding. 
Additionally, the patches which only consist of back-
ground could be excluded from the neural network pipe-
line. Thus, reducing the inference time further.

5 � Conclusion

This paper presents a new method for segmenting the 
epidermal areas in hematoxylin and eosin stained whole 
slide histopathological images, using Convolutional Neu-
ral Network and a U-net based architecture. The proposed 
method is trained end-to-end on 384 000 image patches 
extracted from 36 different whole slide images from two 
different sources, with binary cross entropy loss. Further-
more, the predicted segmentation maps generated by our 
CNN model, are post-processed to produce proper binary 
segmentation masks. The proposed technique was evalu-
ated both on the training WSIs and on the 33 test image, 
where it achieved satisfactory results in both instances. On 
the training data it achieved an overall mean Positive Pre-
dictive Value at 0.84 ± 0.28 , Sensitivity at 0.97 ± 0.07 , Dice 
Similarity Coefficient at 0.86 ± 0.24 and a Matthews Cor-
relation Coefficient at 0.87 ± 0.21 . On the 33 test images, 
our method achieved a mean Positive Predictive Value at 
0.89 ± 0.16 , Sensitivity at 0.92 ± 0.1 , Dice Similarity Coef-
ficient at 0.89 ± 0.13 and a Matthews Correlation Coeffi-
cient at 0.89 ± 0.11 . In a vast majority of the images, our 
method was able to correctly predict the full epidermal 
area with very few false positive areas. However, in some 
WSIs there were too many false positive pixels, thus lower-
ing the mean results. This was mainly due to cellular infil-
tration and/or skin appendages within the dermis area, 
incorrectly classified as epidermis. There was also a few 
cases where the system showed inability to segment the 
complete epidermal area.

Our method proves to be robust to variations in stain-
ing, tissue thickness and laboratory pre-processing. With 

a larger training set and with more diverse images, the 
proposed method is believed to overcome the issues seen 
in the images struggling with cellular infiltration and skin 
appendages. Additional color augmentation of the train-
ing patches is also believed to help rectify issues seen in 
these cases. With these issues solved, we strongly believe 
our method could be good a foundation when developing 
a CAD system assisting pathologists during their diagnos-
tic process.
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