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PREFACE 

California’s Roosevelt (Cervus canadensis rooseveltii) and tule elk (C. c. nannodes) 

populations have experienced a remarkable recovery after over-hunting and habitat loss 

nearly extirpated them from the state (McCullough 1969, California Department of Fish 

and Wildlife 2018). The tule elk population has grown from fewer than 10 individuals in 

the late 1800s to nearly 6,000 in 2017 (McCullough 1969, California Department of Fish 

and Wildlife 2018). Roosevelt elk populations in California have experienced similarly 

dramatic population growth, and the state population now numbers approximately 6,000 

(Barnes 1925a, 1925b, California Department of Fish and Wildlife 2018). Yet research 

on these two populations has not matched their rapid population growth, and knowledge 

gaps have formed regarding how these subspecies utilize and relate to their habitat. 

Greater clarity of Roosevelt and tule elk habitat selection patterns would help managers 

continue to effectively support the recovery of these two iconic subspecies. As the 

manner in which elk populations balance their competing resource needs is unique to 

each population (Skovlin et al. 2002), I have examined Roosevelt and tule elk habitat 

selection patterns in separate analyses and present these results in independent chapters. 

In both cases, I examine the role behavior can play in influencing habitat selection and 

fitness. Habitat selection models rely on a number of assumptions, which have proven 

difficult to test, particularly in regards to how behavior relates to perceived habitat 

suitability and resource availability. In this thesis, I address some of these assumptions by 

accounting for variation in elk behavior and changing resource conditions. My results 
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demonstrate the effect of behavioral variation on habitat suitability predictions and its 

importance for consideration in population management decisions.  
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CHAPTER 1 : RISK PERCEPTION MODIFIES HABITAT SELECTION AND 

POTENTIAL ABUNDANCE IN ROOSEVELT ELK 

Abstract 

Habitat selection models often assume individuals within a population behave 

identically, which is problematic as behavior can vary non-randomly due to differences in 

how individuals perceive and respond to predation risk. I used GPS location data and a 

measure of human-tolerance (on a scale of “bold” to “shy”) to examine habitat selection 

patterns and make predictions about habitat suitability and potential abundance of 

Roosevelt elk in northwestern California, USA. Overall, elk selected for areas of open 

land cover types, in close proximity to forest edge, further from roads, and with gentle 

terrain. Shy elk remained closer to forest edge and further from roads compared to bold 

elk. Predicted elk habitat differed between bold and shy elk, but potential abundance 

estimates were relatively consistent at around 13,000-14,000 elk in the study area. 

Management decisions should be made at the level of individual elk groups when 

feasible, as decisions that affect an elk group’s tolerance of human disturbance will 

impact the availability and composition of suitable habitat, and ultimately may affect 

potential abundance.
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Introduction 

Wildlife managers rely on models of habitat selection to inform land management 

decisions (e.g., habitat preservation, restoration, and modification). These models 

frequently assume that animals select habitat “optimally” – i.e., that individual animals 

select high quality resources to maximize their own fitness (Hildén 1965, Jaenike and 

Holt 1991, Orians and Wittenberger 1991, Martin 1998). However, resource selection is 

often mediated by other behavioral concerns, including limited access to high quality 

resources (Nilsen et al. 2004, Martin et al. 2008), intraspecific interactions (Kamler and 

Gipson 2000, Campomizzi et al. 2008, Farrell et al. 2012), and perceived predation risk 

(Creel et al. 2005, Heithaus and Dill 2006). In other words, animals may not use high 

quality resources because they cannot get to them, because they are prevented from doing 

so by their peers, or because they are afraid. These behavioral interactions can lead to 

poor inferences regarding habitat selection, as animals will appear to select resources that 

are in fact sub-optimal. Habitat modelers have developed a suite of approaches to cope 

with physical barriers in assessing habitat selection (Wilson et al. 1998, Getz et al. 2007, 

Horne et al. 2007), and a large theoretical framework has evolved to address how habitat 

selection is affected by intraspecific competition (Fretwell and Lucas 1970, Møller 1995, 

Calsbeek and Sinervo 2002). However, while many ecologists have explored the 

“landscape of fear,” few have outlined the management consequences for ignoring fear in 

habitat models (Merrick and Koprowski 2017). 
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Fear is particularly problematic for habitat selection models as behavioral patterns 

can differ within a population due to genetic variation and differences in experience-

based learning. A fear-based behavioral continuum describing individual response to 

potentially threating stimuli, ranging from shyness to boldness, has been observed in 

many species across a range of taxa (Wilson et al. 1994). These behavioral patterns 

correspond with ecologically significant activities such as migration, movement rate, and 

habitat use (Carrete and Tella 2009, Found and Clair 2016, Thurfjell et al. 2017). To add 

to the complexity, habitat selection can occur across multiple spatial and temporal scales 

simultaneously. In this manner, fear can affect the establishment of individuals’ home 

ranges across the landscape (2nd order selection), as well as finer scale patterns of habitat 

use within home ranges (3rd order selection) (sensu Johnson 1980). The inconsistent role 

of fear in habitat selection is especially conspicuous in how individuals respond to human 

presence. Many animals perceive human disturbance as a type of predation risk and 

experience trade-offs between avoiding predation or obtaining resources (Frid and Dill 

2002, Gavin and Komers 2006, Sawyer et al. 2009). Perceived risk elicits anti-predator 

behavioral responses including spatial and temporal avoidance of risky areas, increased 

vigilance, and lower feeding rates (Benhaiem et al. 2008, Proffitt et al. 2009, Sawyer et 

al. 2009).  

How populations perceive and respond to human disturbance is especially 

important for game species, such as the North American elk (Cervus canadensis spp.), a 
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group-living, generalist herbivore. Elk response to human disturbance can vary even 

within a population depending on a variety of factors, such as exposure level, type of 

disturbance, or the availability of refugia. (Thompson and Henderson 1998). Fear of 

predation can mediate elk space-use in relation to the use of refugia (e.g., forest cover) 

and risky habitats (e.g., areas near roads) (Wolff and Horn 2003, Creel et al. 2005, Frair 

et al. 2005, Hernández and Laundré 2005, Prokopenko et al. 2017). These risk mediation 

behaviors can result in reduced acquisition of resources and population declines (Dwinnel 

et al. 2019). On the other hand, some elk populations also benefit from human activity, 

which can serve as a “human shield” against natural predators and result in lower 

predation rates and increased calf survival (Hebblewhite 2005). Understanding how 

perception of human predation risk – which I’ll refer to as human tolerance – affects elk 

habitat selection would provide insight into habitat suitability models and a habitat’s 

capacity to support elk populations.  

 An ideal situation to study the effects of variable human tolerance in elk is 

present with the Roosevelt elk (Cervus canadensis roosevelti) population in northwestern 

California. While the population is recovering and expanding into new areas, patterns of 

habitat selection appear to be fairly idiosyncratic: some groups utilize areas with high 

human use, while others are reclusive and found deep in managed forests. Roosevelt elk 

are typically reliant on open areas with herbaceous growth (Rowland et al. 2018), yet 

despite the apparent availability of suitable habitat, the regional population remains 

below management objectives (CDFW 2018). I hypothesize that risk perception, 



5 
 

 
 

specifically risk perception due to fear or tolerance of humans, is a central driver of 

habitat selection in this population. If that is true, then resource selection functions 

(RSFs) should include a measure of elk response to human disturbance as an important 

contributor to selection models. Furthermore, fearful elk should remain closer to refugia, 

show greater avoidance of risky areas and consequently experience lower resource 

availability than less fearful elk. Ultimately, reduced access to high quality habitat for 

fearful elk should result in lower potential abundance estimates. 
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Materials and Methods 

Study area 

 

The study area was located in the North Coast Roosevelt Elk Management Unit 

(“North Coast”) which is comprised of Humboldt and Del Norte counties (Figure 1.1). 

The study area was ~15,000 km2 divided between state, federal, tribal and private 

ownership, with timber production and livestock-based agriculture comprising a large 

part of private land use. Elevation ranged between 0-2,000 m. The climate was generally 

mild and coastal-influenced, with high annual precipitation (annual average ~1,700 mm) 

typically in the form of winter rain (National Climate Data Center 2017). Lower 

elevations and coastal areas were dominated by forests with coastal redwood (Sequoia 

sempervirens), coast Douglas-fir (Pseudotsuga menziesii var. menziesii), red alder (Alnus 

rubra.) and big-leaf maple (Acer macrophyllum) comprising the most abundant tree 

species. Interior and higher elevation areas were drier and characterized by montane 

forests with Ponderosa pine (Pinus ponderosa), white fir (Abies concolor), madrone 

(Arbutus menziesii), tanoak (Lithocarpus densiflorus) and oak (Quercus spp.). Potential 

predators included mountain lions (Puma concolor), black bears (Ursus americanus), 

bobcats (Lynx rufus), and coyotes (Canis latrans). Hunting permits for Roosevelt elk 

were allocated as a combination of public draw tags and private landowner tags. Over the 

course of the study, 80-100 elk tags were issued each year, with high hunter success rates 

(i.e., >80% average success rate in the Northwestern and North Coast hunts 2007-2017, 
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CDFW 2018). An additional but unknown number of elk were killed each year due to 

poaching and vehicle collisions (C. Hilson, pers. comm., 2019). A portion of the region’s 

elk lived in Redwood State and National Park, where no legal hunting occurs.  
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Figure 1.1: Map of the study area, the North Coast Elk Management Unit, California, 

USA. 
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Data 

 

In the fall and winter of 2017, 17 Roosevelt elk cows were chemically 

immobilized using dart projectors from the ground or a helicopter and fitted with GPS 

collars in Humboldt and Del Norte counties. An additional 20 cows were collared in the 

fall and winter of 2018. The distribution of collars was based on group size and capture 

opportunity, but effort was made to have representative samples of the entire population 

in terms of habitat type and land-use. All captures were conducted by California 

Department of Fish and Wildlife with approval from Humboldt State University (IACUC 

protocol #15/16.W.96-A). Collars were programmed to record a location every 4 hours, 

and every hour during calving season to assist with locating neonatal calves. To avoid 

seasonal bias in the collar data due to unequal relocation rate, I thinned the data to one 

location every 4 hours for all cows across seasons. Data were censored if the animal or 

collar died prematurely (<3 months from capture). The final dataset included 95,022 elk 

locations from 33 individuals collected between November 2017 and February 2019 

(Appendix A). 

As my goal was to capture the causal factors driving population distribution and 

habitat use for elk at the home range and regional scales, I selected a set of predictor 

variables that have been shown to represent important drivers of elk habitat selection in 

other studies (Appendix B; Skovlin et al. 2002, Rowland et al. 2018). These variables can 

be broadly categorized as pertaining to forage availability, predation risk, or energetic 
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cost of movement. I included eight predictor variables in the RSF, seven of which were 

GIS-based measurements. I used a land cover layer that assigned each pixel as belonging 

to one of eight land cover types (CalFire 2018). I used a forest cover change layer to 

account for changes in forage availability due to timber production and wildfire (Hanson 

et al. 2013). I used distance to nearest forest edge layer, since the forest edge is an 

important transition zone between forage (outside the forest) and shelter/safety (inside the 

forest) (USGS GAP 2011). I calculated distance to nearest road, as elk populations 

exposed to human hunting pressure will avoid roads due to perceived predation risk (US 

Bureau of the Census 2018). The road shapefile included all primary, secondary, rural, 

and private roads, including vehicular trails. I used a digital elevation model to calculate 

terrain slope in ArcMap, measured in degrees above horizontal, since steeper terrain is 

energetically demanding to use (NASA 2001). I also calculated two complementary 

layers to capture the effects of topographic aspect: “northness” and “eastness” (sin and 

cosine of aspect * π/180, respectively). I included a single non-GIS measurement – “fear 

score” – to account for differences in human disturbance tolerance between the distinct 

elk groups. Elk were considered part of the same group if home ranges had considerable 

spatial overlap (i.e., >50%). I assigned each group a rating based on the elk group’s flight 

initiation distance in response to human presence. Elk behavior was assessed from 

observations of each group during research and management field work (i.e., captures, 

calf survival monitoring, mortality investigations, census counts, opportunistic sightings, 

etc.) by myself and the California Department of Fish and Wildlife’s regional elk 
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management personnel. Fear scores ranged between 0-3, with a score of 0 being the least 

fearful (i.e., most tolerant of human presence) and 3 being the most fearful of human 

presence (i.e., least tolerant of human presence) (Appendix C). 

 

RSF design 

 

I created RSFs by measuring and comparing a set of environmental predictor 

variables found at each elk use location to those found at available locations (Manly et al. 

2002). Available locations were randomly drawn from two spatial scales corresponding 

to the 2nd and 3rd orders of selection (Johnson 1980), which I refer to as the landscape 

scale and home range scales, respectively. I defined the landscape range as the 100% 

minimum convex polygon created using the full set of elk locations, with a 700 m buffer 

(Figure 1.2). This buffer reflects average 4-hour movement distance reported from 7 

separate elk movement studies (Strohmeyer and Peak 1994). Within the landscape scale, I 

randomly sampled a number of available locations equal to the number of use locations. 

The home range scale was defined as the 95% isopleth of a time-local convex (T-LoCoH) 

hullset, where Vmax was the greatest distance between two consecutive points and the s-

value was set to 0.5 to provide equal weight to time and spatial distance between points, 

for each individual elk’s set of locations (‘tlocoh’ package in program R; Lyons et al. 

2013). Within each elk’s individual home range area, I randomly sampled a number of 

available locations equal to the number of used locations collected for that individual elk. 
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I excluded locations from one individual from the landscape scale dataset due to 

anomalous results caused by the highly linear shape of its home range (Elk.ID 44046, 

Group.ID Gold Bluff Beach). Since this elk’s movements were constrained to a narrow 

strip of beach, assumptions about habitat availability in relation to distance-to-feature 

measurements could not be met. After censoring available locations that occurred in areas 

missing environmental predictor data, this resulted in 79,223 available locations within a 

landscape scale of 4,230 km2, and 94,089 available locations within a home range scale 

of 322 km2. I developed a set of RSFs at both scales using mixed-effects logistic 

regression models with a binomial distribution and logit-link function to estimate 

response coefficients for each environmental predictor variable (Manly et al. 1993, Boyce 

et al. 2002).  
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Figure 1.2: Map showing the distribution of collared elk home ranges in northwestern 
California, USA. The black polygon represents the landscape scale. The home 
range scale was the collection of individual home ranges.   
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I built a set of 11 models with predictive variables included as fixed effects and 

either Group ID or Individual ID as a random effect, for both spatial scales. I also ran the 

same 11 models as only fixed-effect models, for a total of 33 total models at each scale. I 

tested for collinearity between each variable and did not include predictors in the same 

model if (|r | > .70). The most parsimonious model within < 2 AIC of the lowest scoring 

model was selected as the best model for each spatial scale (Arnold 2010).  

 

Potential abundance estimates 

 

I used a habitat-based ratio estimator to estimate the potential population size of 

Roosevelt elk in the study area following the principles and methods reported in Boyce 

and McDonald (1999) and Hebblewhite et al. (2011). Fundamentally, my ratio-estimator 

approach was based on extrapolating the observed density ratios (i.e., number of elk / unit 

of habitat) across the entire study area using minimum group count data, group home 

ranges, and the relative probability of use values from the RSFs. The formula for the 

ratio-estimator is expressed in the following equation: 

 

Where Nstudy is the population estimate for elk in the study groups, ∑ŵ study (x)I  is the sum 

of the relative probabilities from the RSF of the study group ranges and ∑ ŵ North Coast (x)I  
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is the sum of the relative probabilities from the RSF of the entire North Coast region (see 

Appendix D for graphical interpretation of habitat-based ratio estimator). For the study 

group count data, I used the highest cow-calf count observed for each group during the 

study period (CDFW 2019, unpublished data). I excluded elk that did not have reliable 

count data (n = 4, Group ID = “Goodman” and “Grizzly Creek / Kneeland”). The group 

ranges were created by merging each collared elk’s 95% minimum convex polygon 

(MCP). I used MCPs for each group instead of T-LoCoH hullsets since MCPs are more 

inclusive and therefore better account for the possibility that un-collared elk within a 

group may use nearby areas not included in a collared individual’s home range. 

I defined a “habitat suitability” threshold based on RSF values in order to exclude 

the large amount of habitat unlikely to be used by elk. As no previous studies have 

attempted to use a habitat-based ratio estimator for elk, I tested a total of five threshold 

methods to assess the effect changing the threshold had on final population size 

estimates. One threshold was set at the RSF value of 0 (corresponding to 0% relative 

probability of use). The other thresholds were set at the RSF values that captured 95%, 

90%, 75%, and 50% of use-locations.  

 To test the effect of variable human tolerance on potential population abundance 

and the amount of available elk habitat, I divided the data based on fear score and created 

two additional RSFs using location data from either bold or shy elk only (total of three 

RSFs: “combined”, “bold”, “shy”). I defined bold elk as those with fear scores of 0 or 1 

and shy elk as those with fear scores of 2 or 3. I created scenario-specific RSFs using the 
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top landscape scale model from the combined data. The thresholds based on RSF values 

of elk-use location were specific to their respective scenarios (i.e., only bold elk locations 

used to determine habitat suitability thresholds for the bold RSF). I calculated the density 

relationship using the combined elk abundance counts and group ranges with scenario-

specific RSFs. While density estimates would ideally be based on scenario-specific group 

counts and ranges, this was precluded by the wide variance in group sizes and small 

number of groups for each scenario.  
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Results 

Landscape scale 

 

The top model included the full set of variables, with interactions between fear 

score and forest edge distance and between fear score and road distance, with Elk.ID 

included as a random variable (Table 1, see Appendix E for complete landscape scale 

model selection results). Relative probability of elk presence was greater closer to forest 

edge, further from roads, on gentler slopes, and in areas that had lost forest cover more 

recently (Figure 1.3). Herbaceous and agricultural areas were the most strongly selected 

land cover types (Figure 1.4). Greater fear scores resulted in stronger selection for areas 

closer to forest edge and further from roads (Figure 1.5, Figure 1.6). The top model was 

used to predict relative probability of use across the North Coast (Figure 1.7).  
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Table 1.1: Partial/Top Model selection results from set of mixed effects models 
explaining landscape level habitat selection patterns of Roosevelt elk in 
northwestern California. Top model contained 10 fixed effect terms: Land cover 
type, distance to forest edge, distance to road, years since forest loss, slope, 
northness, eastness and fear score, as well as interaction terms between fear score 
with road distance and fear score with edge distance. Elk ID was included as a 
random effect. 

Model Description  df logLik AICc ΔAIC weight 
Full, Elk.ID random  18 -76351.80 152739.6 0.00 1.0000 
(-) Fear_Score:road_dist, Elk.ID random 17 -76386.27 152806.5 66.95 0.0000 
Full, Group.ID random  18 -76416.16 152868.3 128.73 0.0000 
(-) Fear_Score:road_dist, Group.ID random 17 -76448.21 152930.4 190.81 0.0000 
(-) Fear_Score:edge_dist, Elk.ID random 17 -76585.20 153204.4 464.81 0.0000 
(-) Fear_Score:edge_dist + 
Fear_Score:road_dist 16 -76634.89 153301.8 562.18 0.0000 

(-) Fear_Score, Elk.ID random 15 -76646.76 153323.5 583.92 0.0000 
(-) Fear_Score:edge_dist, Group.ID 
random 17 -76648.96 153331.9 592.33 0.0000 

(-) Fear_Score:edge_dist + 
Fear_Score:road_dist, Group.ID random 16 -76695.87 153423.7 684.14 0.0000 

(-) Fear_Score, Group.ID random 15 -76703.63 153437.3 697.66 0.0000 
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Figure 1.3: Standardized beta values of the fixed effects terms of top model explaining 
2nd order habitat selection patterns of Roosevelt elk in northwestern California. 
Values above 1 (blue) and below 1 (red) represent positive and negative effects, 
respectively. Top model contained elk ID as random effect. Conifer was the 
reference class for the land cover terms. Error bars represent 95% confidence 
intervals. 
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Figure 1.4: Marginal effects plot showing response of Roosevelt elk to land cover at the 
landscape scale. California, USA. Error bars represent 95% confidence intervals.  
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Figure 1.5: Interaction plot showing how 2nd order habitat selection changes in response 
to distance to roads depending on fear score. Greater fear scores correspond to 
lower tolerance to human disturbance for Roosevelt elk in northwestern 
California. Shaded areas represent 95% confidence intervals.  
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Figure 1.6: Interaction plot showing how 2nd order habitat selection changes in response 
to distance to forest edge depending on fear score. Greater fear scores correspond 
to lower tolerance to human disturbance for Roosevelt elk in northwestern 
California. Shaded areas represent 95% confidence intervals. 
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Figure 1.7: A) Habitat suitability for Roosevelt elk in the North Coast Elk Management 
Unit in northwestern California created using the top model from a resource 
selection function analysis of all elk locations (n= 33 individuals). B) A true color 
image of the North Coast Elk Management Unit, California. 
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Home range scale 

 

The top model for the home range level selection included the full set of 

environmental variables, with interactions between fear score with distance to forest edge 

and nearest road and Group.ID included as a random effect (Table 2, see Appendix F for 

complete home range scale model selection results). The distance to road term was the 

only term to overlap 0 in the 95% confidence interval; however, the interaction term of 

distance to road with fear score did not overlap 0. At the home range scale, elk selected 

for areas further from forest edge and roads, with gentler slopes and areas that had more 

recently lost forest cover (Figure 1.8). Selection for land cover classes followed a similar 

pattern to the landscape scale with herbaceous and agriculture land cover as the two most 

strongly selected cover types, and with conifer and shrub being the least strongly selected 

(Figure 1.9). The interaction terms showed that groups of elk with higher fear scores 

selected for areas closer to forest edge and further from roads while elk with the lowest 

fear scores selected for greater distance to forest edge and had no response to roads 

(Figure 1.10, Figure 1.11).  
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Table 1.2: Model selection results from set of mixed and fixed effects models explaining 
home range level habitat selection patterns of Roosevelt elk in northwestern 
California. Top model included 9 fixed effect terms: land cover type, distance to 
forest edge, distance to road, time since forest loss, slope, eastness and fear score, 
as well as interactions between fear score with road distance and fear score with 
edge distance. Elk ID was included as a random effect. 

Model Description  df logLik AICc delta weight 
Full, Group.ID random  18 -128209 256454.8 0 0.9975 
Full, Elk.ID random  18 -128216 256467.8 12.99 0.0015 
(-) northness + eastness, Group.ID random 16 -128219 256469.2 14.39 0.0007 
(-) Fear_Score:road_dist, Group.ID random 17 -128219 256471.9 17.04 0.0002 
(-) Fear_Score:road_dist, Elk.ID random 17 -128225 256483.6 28.80 0.0000 
(-) northness + eastness, Elk ID random 16 -128226 256484.2 29.35 0.0000 
(-) slope, Group.ID random 17 -128250 256533.2 78.37 0.0000 
(-) slope, Elk.ID random  17 -128255 256544.4 89.55 0.0000 
(-) Fear_Score:edge_dist, Group.ID random 17 -128287 256608.6 153.72 0.0000 
(-) Fear_Score:edge_dist + 
Fear_Score:road_dist, Group.ID random 16 -128292 256616.8 162.00 0.0000 
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Figure 1.8: Standardized beta values of the fixed effects terms of top model explaining 3rd 

order habitat selection patterns of Roosevelt elk in northwestern California. 
Values above 1 (blue) and below 1 (red) represent positive and negative effects, 
respectively. Top model contained Group.ID as random effect. Conifer was the 
reference class for the land cover terms. Error bars represent 95% confidence 
intervals.
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Figure 1.9: Marginal effects plot showing response of Roosevelt elk to land cover at the 

home range scale. California, USA. Error bars represent 95% confidence 
intervals. 

A
gr

ic
ul

tu
re

 

H
er

ba
ce

ou
s 

Sh
ru

b 

W
at

er
 

H
ar

dw
oo

d 

U
rb

an
 

H
ar

dw
oo

d 

C
on

ife
r 

Relative 
probability 

of use 



28 
 

 
 

 

Figure 1.10: Interaction plot showing how 3rd order habitat selection for Roosevelt elk in 
northwestern California changes in response to distance to road depending on fear 
score. Greater fear scores correspond to lower tolerance to human disturbance. 
Shaded areas represent 95% confidence intervals. 
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Figure 1.11: Interaction plot showing how 3rd order habitat selection changes in response 
to distance to forest edge depending on fear score. Greater fear scores correspond 
to lower tolerance to human disturbance for Roosevelt elk in northwestern 
California. Shaded areas represent confidence intervals. 
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Abundance estimates 

 

The amount and composition of predicted suitable elk habitat differed between 

the three RSF scenarios (Figure 1.12, Figure 1.13). The size and consistency of potential 

abundance estimates varied based on the RSF and threshold method (Figure 1.14). The 

bold RSF scenario showed the most consistency, with an inter-method range of between 

12,286-14,337 individuals. Estimated population sizes were least consistent for the shy 

scenario ranging between 8,518-18,827 individuals (average = 14,904 individuals), which 

were the two most extreme population estimates. The combined scenario estimates were 

relatively consistent, ranging between 10,480-15,683 individuals, and had a similar 

average compared to the bold scenario (13,485 vs. 13,784 individuals, respectively). The 

amount of suitable habitat predicted by each RSF varied by threshold method but was 

generally consistent between RSFs. For each given threshold, the shy RSF predicted the 

greatest amount of suitable habitat and the bold RSF predicted the least amount of 

suitable habitat (Figure 1.15; Appendix G).  
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Figure 1.12: Comparison of the three scenarios’ RSFs predicted across the study area. A) 
True color satellite image of the study area. B) RSF created using the full location 
dataset. C) RSF created with bold elk locations. D) RSF created with shy elk 
locations. Area highlighted in red in 1.12A is shown in detail in Figure 1.13.  
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Figure 1.13: Detail comparison of the three RSFs shown in Figure 1.12. A) True color 
satellite image of the study area. B) RSF created using the full location dataset. C) 
RSF created with bold elk locations. D) RSF created with shy elk locations. B) 
and D) show relative probability of use is negatively correlated with distance to 
forest edge, with bold elk more likely to use areas at greater distance to forest 
edge than in the shy scenario. 
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Figure 1.14: Potential population size estimates for Roosevelt elk in northwestern 
California, USA, calculated under three management scenarios. Potential 
population size was calculated using a scenario-specific resource selection 
function (RSF) and a habitat-based ratio estimator. Minimum habitat suitability 
thresholds were set either by excluding all areas that fell below 0% relative 
probability of use, or by using the RSF value corresponding to the highest x% of 
elk-use locations.  
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Figure 1.15: Amount of suitable habitat for Roosevelt elk in northwestern California, 
USA, calculated under three scenarios. Suitable habitat was calculated using a 
scenario-specific resource selection function (RSF) and a habitat-based ratio 
estimator. Minimum habitat suitability thresholds were set either by excluding all 
areas that fell below 0% relative probability of use, or by using the RSF value 
corresponding to the highest x% of elk-use locations.  
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Discussion 

Human predation risk perception played a key role in structuring elk habitat 

selection patterns. Bold and shy elk selected habitat differently, which had consequences 

for predicted regional habitat suitability and population size. Shy elk remained closer to 

forest edge and further from roads compared to bold elk. Estimates of potential 

population size were relatively consistent between thresholds for the bold RSF scenario, 

and to a lesser extent for the combined RSF, but varied widely for the shy RSF. 

Regardless of human-tolerance, optimal elk habitat in the study area was represented by 

areas with open land cover types, in close proximity to forest edge, further from roads, 

and with gentle terrain. Management decisions should be made at the level of individual 

elk groups whenever possible, as decisions that affect a group’s human tolerance impacts 

habitat selection patterns and potential abundance.  

Risk perception was a key factor in habitat selection patterns as shy elk avoided 

areas with higher perceived human predation risk. The best-supported models showed 

fear score interacted with distance to road and forest edge at both spatial scales and for all 

three RSFs. At the landscape scale, the combined model showed that elk avoided roads 

and selected areas near forest cover; however, these patterns varied with an individual’s 

response to human disturbance. Shy elk selected areas further from roads and closer to 

forest cover compared to bold elk (Figure 1.5, Figure 1.6, Figure 1.10, Figure 1.11). 

These results align with previous studies that have found perceived risk elicits changes in 

spatio-temporal distribution patterns as individuals avoid areas with greater chance of 
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encountering predators and select areas near predation refugia (Frid and Dill 2002, Creel 

et al. 2008, Cleveland et al. 2012). Forest cover is a common predation refugia for elk in 

heterogeneous landscapes, and roads represent areas with higher risk of encountering or 

being disturbed by humans (Czech 1991, Creel et al. 2005, Frair et al. 2005, Hernández 

and Laundré 2005). In this study, selection was positively correlated with distance to 

forest edge at the home range scale – a result that would be difficult to interpret without 

accounting for behavioral variation in the population (Figure 1.8, Figure 1.11). Individual 

behavioral patterns have been found to correspond with a variety of aspects in ungulate 

life-history, including diel activity patterns, usage of risky habitats, and migration 

(Bonnot et al. 2013, Found and St. Clair 2016). The large differences in elk selection 

patterns observed in this study provide further support for including behavioral variability 

in habitat selection modeling.  

To be clear, this study did not assess individual animals on the spectrum of shy to 

bold in the traditional sense as developed by behavioral ecologists (in situ Wilson et al. 

1994, Found and St. Clair 2016); rather, I assigned this trait to behavior at the group 

level. In other words, while shyness and boldness were observable phenomena at the 

group level, these traits are by necessity emergent properties of the combined decisions of 

every individual member of that group. Nonetheless, my assessment of group behavior 

was consistently measurable and repeatable over the timeframe of this study. Further, the 

differences in group-level behavior explained a substantial portion of the group’s 

selection of habitat. In fact, my findings are in accordance with the “grazing personality 
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model” recently described by Garcia et al. (2020). The grazing personality model, 

defined as “suites of traits of different nature (e.g., behavioral, cognitive, physiological, 

and morphological), which… result in specific grazing patterns displayed consistently 

across contexts and over time”, accounts for the role of individual behavioral variation in 

the collective foraging decisions of large herbivore groups. This model has particular 

relevance to elk management as a range of herd personalities may maximize productivity 

and ecosystem services in areas with a diversity of habitats (Garcia et al. 2020). Elk and 

other social species would benefit immensely from further research into the interplay 

between this individual and group-level behavior.  

Underlying most habitat suitability modeling is the premise that animals select 

habitat based on its quality, that is, animals should spend more time in areas that 

contribute to an individual animal’s fitness. However, this study demonstrated that 

habitat selection differs between groups identified as shy and those identified as bold. 

Bold behavior entails a trade-off between greater access to resources, such as foraging or 

mating opportunities and greater risk of mortality (Ward et al. 2004). For ungulates, bold 

behavior increases individual’s mortality risk from anthropogenic sources, such as human 

predation (Cuiti et al. 2012), and can increase disease transmission risk from contact with 

domestic livestock (Richomme et al. 2006). While this study did not explicitly address 

how bold and shy strategies related to fitness, there were no obvious disparities in 

mortality between the bold and shy elk, with mortality sources of collared individuals 

being: hunter harvest (3 bold individuals, 2 shy), unknown (2 bold, 2 shy), and vehicle 
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collision (1 bold, 1 shy). Ultimately, there was a fairly tight correlation between density 

and habitat suitability in the group home ranges, indicating that, at least at the home 

range level, fitness and behavior were linked. Future work examining the link between 

behavior and fitness in this population should explore recruitment rates and juvenile 

mortality between the bold and shy strategies.  

Competition for available forage may be the ultimate cause driving habitat 

selection for bold elk. Energetically-stressed individuals incur greater risk for foraging 

opportunities (Sih 1980, Sweitzer and Berger 1992), a phenomenon that has been 

suggested as one of the mechanisms behind the growing number of habituated elk 

populations in North America (Thompson and Henderson 1998). Long-term monitoring 

of the habituated groups in Redwood National and State Parks has shown population 

growth was density dependent and linked to forage availability (Weckerly 2017), and 

some groups have expanded their home ranges in tandem with a reduction in palatable 

forage in traditional grazing areas (Weckerly, pers. comm. 2020). Future work that 

quantifies the effect of human tolerance on energetic availability, such as measuring 

giving-up densities and vigilance behavior in relation to road and forest cover distance, 

would improve our understanding of the fitness implications of bold behavior and 

establishing long-term population goals.  

An alternative mechanism for bold group’s human tolerance – the “human shield” 

hypothesis – was not well-supported as elk did not show risk avoidance behavior at the 

home range scale, and are unlikely to be responding to landscape scale patterns of 
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mountain lion presence. Mountain lions in the study area avoid primary roads (Meinke 

2004), yet bold elk did not select for areas closer to roads at the home range scale, as 

would be expected if elk were responding to fine-scale patterns of predation risk. While 

bold elk did select areas closer to roads at the landscape scale, it is problematic to 

interpret this as evidence of risk avoidance behavior since overall mountain lion density 

would be similar across elk group home ranges due to ubiquity of mountain lion presence 

throughout the study area and the large size of mountain lion territories. Mountain lion 

home ranges around Redwood National and State Parks averaged 147 and 621 km2 for 

females and males, respectively (Meinke 2004), dwarfing elk group home ranges in the 

same area, which averaged 11 km2 in this study. Future research that more directly 

addresses the influence of non-human predation risk on elk behavior should include a 

fine-scale temporal component to account for daily variation in human disturbance and 

mountain lion activity.  
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Management Implications 

The areas most likely to be selected by Roosevelt elk, regardless of human 

tolerance, were comprised of open land cover (i.e., herbaceous and agriculture) in close 

proximity to forest edge, and with lower slope (Figures 1.4, 1.9, see Appendix H for land 

comparison of land cover selection between bold vs. shy elk). The agricultural areas 

selected by elk were typically composed of pasture land used by livestock, rather than 

row crop production. The importance of open cover types and selection for areas that had 

recently lost forest cover indicate that forage availability was a primary driver of habitat 

selection in the population. This would also explain the strong selection for the 

barren/other land cover class observed at the landscape scale, as a herbaceous area 

heavily used by one group (Red School House) was incorrectly classified as barren/other 

in the land cover layer (Appendix I).  

The results suggest that human predation risk perception should factor into elk 

management decisions. While the mechanisms controlling human tolerance in ungulates 

are complex (Thompson and Henderson 1998, Blumstein 2016), management actions can 

influence tolerance and its component behaviors. In ungulate populations, changes in 

hunting pressure, disturbance frequency and disturbance type affect habituation, habitat 

selection and disturbance response (Cassier and Freddy 1992, Bender et al. 1999, 

Stankowich 2008, Naylor et al. 2009). Accordingly, management decisions that decrease 

human tolerance could inhibit elk expansion into unoccupied areas. Whether or not to 

promote the growth of a given population should be dependent on situation-specific 
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context, such as high potential for human-wildlife conflict or the proximity to suitable but 

unoccupied areas. For example, in areas with high potential for human-elk conflict, 

targeted management action towards nearby elk groups could deter population expansion. 

Management practices which emphasize disturbance, such as extended hunting seasons 

or aversive conditioning with dogs, may help deter tolerance behavior and conflict better 

than numerical reduction alone (Bateson and Bradshaw 1997, Cromsigt et al. 2013). 

Conversely, practices that prioritize tolerance may facilitate dispersal to suitable habitat 

through human-disturbed areas and increase elk viewing opportunities for non-

consumptive uses such as tourism. Formal establishment of tolerance goals into 

management plans may be helpful for transparency in managing non-consumptive uses 

and human-elk conflicts. Elk behavior is highly variable; even neighboring groups can 

have differing human tolerance. Elk management decisions should therefore be made at 

as small of spatial scales and on a group-by-group basis whenever possible (Sevigny et 

al. 2018).  

The habitat-based ratio-estimator technique I used demonstrated utility as a 

management tool. I took a basic approach and implementation was straightforward. 

Results were consistent across threshold methods and illustrative of population-level 

response to differing tolerance scenarios. While estimates of its accuracy are unknown, it 

was useful to gauge relative differences between alternative management actions. This 

approach could have practical applications for two management scenarios, or for giving a 

basic idea of population size a given area of habitat could support. This may help identify 
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areas for habitat conservation and restoration and guide management plan 

implementation under specific tolerance scenarios.
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Appendix A 

Appendix A: Table of each collared elk’s number of points, group membership, and size 
of their group. 

Elk.ID Number of Points Group.ID Group Size 
42732 13188 Tolowa 200 
42733 12912 Tolowa 200 
42727 12678 Tolowa 200 
44526 2466 Tolowa 200 
44891 6360 Tolowa 200 
42735 13287 Big Lagoon 40 
44049 8076 Big Lagoon 40 
44044 12216 CBEC 100 
42737 13071 Davison 65 
44048 7962 Davison 65 
42729 11181 Gilbert 45 
44054 4467 Gilbert 45 
44046 12564 Gold Bluff Beach 30 
44057 6276 Goodman NA** 
44056 6378 Goodman NA** 
44897 6588 Grizzly NA** 
42728 12504 Hastings 40* 
44051 6378 Kneeland NA** 
42731 4653 Lincoln 30 
44894 5295 Lincoln 30 
44042 6474 Bald Hills 250 
44045 7794 Bald Hills 250 
42736 11145 Bald Hills 250 
44043 6447 Maple Creek 35 
42726 12726 McAdams 70 
42738 3276 Orick 110 
44052 7914 Orick 110 
42730 3171 R. Ranch 40 
44896 6384 R. Ranch 40 
42725 7347 Rowdy 40* 
42734 13218 Red School House 65 
44047 7953 Red School House 65 
42724 12675 Timmons 20 

*Hastings + Rowdy are considered the same group for population counts 
** NA = Not available. Groups without reliable count data were excluded from 

abundance estimate calculations. 
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Appendix B 

Appendix B: Detail for each variable used in the model selection and habitat suitability mapping process.  
 

Predictor Variable Name in Model Product/Source Year Resolution Note 
Land Cover life_form  Fveg 15.1 2018 30m 

 

Distance to Road road_dist 2017 TIGER/Line Shapefile  2017 30m 
 

Distance to Edge edge_dist USGS –AP–- Ecotone  2017 30m 
 

Slope slope ArcMap calculation  2001 90m Slope calculated from digital 
elevation model with Spatial 
Analyst Extension 

Northness northness Cosine of aspect * pi/180) 2001 90m Aspect calculated from digital 
elevation model in ArcMap with 
Spatial Analyst Extension 

Eastness eastness Sin of aspect * pi/180 2001 90m Aspect calculated from digital 
elevation model in ArcMap with 
Spatial Analyst Extension 

Years since forest 
loss 

years_since_loss Global Forest Cover Change 
2000-2018 
 

2018 30m 
 

Fear Score fear_score Field observations of study 
groups  

2018 - See Appendix C 
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Appendix C  

Appendix C: Fear Score Assessment Criteria: Fear Scores were assessed based on field 
observations of disturbance response in the collared study groups. The distance at which elk 
were disturbed (i.e., became vigilant or initiated flight) was assessed in relation to two 
disturbance types, humans on foot and vehicles. Groups that fell in between two categories were 
given the average score (i.e,. 0.5, 1.5, 2.5).  
  

Fear Score Human on foot Vehicle 
0 <25 m Minimal / none 
1 25-50 m Minimal / none 
2 >50 m 25-50 m 
3 >50 m >50 m 
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Appendix D 

Appendix D: Graphical representation of the habitat-based ratio estimator approach used to 
estimate the potential population size of Roosevelt elk in the study area based on the density 
relationship between RSF scores and number of elk in a given area. The potential abundance of 
elk in the study area (iv) is proportional to the number of elk in the collared study groups (i) 
multiplied by the sum of RSF values of suitable habitat in the study area (ii), divided by the sum 
of RSF values of the group study areas (iii).  
 

 
  



54 
 

 
 

Appendix E 

Appendix E: Complete model selection results tab–es - Landscape scale.  

Full* = northness + eastness +life_form + Years_Since_Disturbance + Fear_Score*road_dist + 
Fear_Score*edge_dist

Description  logLik AICc delta weight 

Full*, Elk.ID random  -76291.53 152619.07 0.00 1.00 
(-) Fear_Score:road_dist, Elk.ID random -76327.10 152688.21 69.14 0.00 
Full*, Group.ID random  -76353.06 152742.12 123.06 0.00 
(-) Fear_Score:road_dist, Group.ID random -76386.14 152806.28 187.22 0.00 
(-) Fear_Score:edge_dist, Elk.ID random -76497.60 153029.21 410.15 0.00 
(-) Fear_Score:edge_dist + Fear_Score:road_dist -76546.36 153124.71 505.65 0.00 
(-) Fear_Score, Elk.ID random -76558.44 153146.88 527.81 0.00 
(-) Fear_Score:edge_dist, Group.ID random -76559.05 153152.11 533.05 0.00 
(-) road_dist, Fear_Score:edge_dist, Elk.ID random -76563.36 153156.73 537.66 0.00 
(-) Fear_Score:edge_dist, Fear_Score:road_dist, Group.ID 
random -76605.04 153242.08 623.01 0.00 

(-) Fear_Score, Group.ID random -76612.92 153255.85 636.78 0.00 
(-) edge_dist, Fear_Score:road_dist, Group.ID random -76624.31 153278.61 659.55 0.00 
(-) years_since_loss, Elk.ID random  -76751.42 153536.84 917.77 0.00 
(-) years_since_loss, Group.ID random  -76831.11 153696.22 1077.15 0.00 
(-) eastness, northness, Elk.ID random -76866.67 153765.35 1146.28 0.00 
(-) eastness, northness, Group.ID random -76930.08 153892.16 1273.10 0.00 
Full* -77155.72 154345.45 1726.39 0.00 
(-) Fear_Score -77241.89 154515.79 1896.72 0.00 
(-) Fear_Score:edge_dist -77318.81 154669.62 2050.56 0.00 
(-) Fear_Score:edge_dist, Fear_Score:road_dist, Elk.ID random -77421.18 154872.37 2253.30 0.00 
(-) road_dist, Fear_Score:edge_dist, Group.ID random -77482.15 154992.30 2373.24 0.00 
(-) years_since_loss -77706.56 155445.12 2826.05 0.00 
(-) edge_dist, Fear_Score:road_dist, Elk.ID random -77835.80 155701.60 3082.54 0.00 
(-) edge_dist, Fear_Score:road_dist, Group.ID random -77913.06 155856.12 3237.06 0.00 
(-) eastness, northness -77959.19 155948.39 3329.32 0.00 
(-) Fear_Score -78706.66 157441.32 4822.26 0.00 
(-) edge_dist, Fear_Score:road_dist -79093.16 158214.31 5595.25 0.00 
(-) slope, Elk.ID random -81926.68 163887.35 11268.29 0.00 
(-) slope, Group.ID random -82003.80 164041.59 11422.53 0.00 
(-) slope -82771.41 165574.82 12955.75 0.00 
(-) life_form, Group.ID random -98002.89 196027.78 43408.71 0.00 
(-) life_form, Elk.ID random -98014.48 196050.96 43431.90 0.00 
(-) life_form -98993.40 198006.79 45387.73 0.00 
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Appendix F 

Appendix F: Complete model selection results tables- home range scale. 

Description  logLik   AICc   delta   weight  
Full*, Group.ID random  -128209.42 256454.83 0.00 0.997545 
Full*, Elk.ID random  -128215.91 256467.82 12.99 0.0015075 
(-) eastness, northness, Group.ID random -128218.61 256469.23 14.39 0.0007478 
(-) Fear_Score:road_dist, Group.ID random -128218.94 256471.88 17.04 0.0001988 
(-) Fear_Score:road_dist, Elk.ID random -128224.82 256483.63 28.80 5.56E-07 
(-) eastness, northness, Elk.ID random -128226.09 256484.18 29.35 4.23E-07 
(-) slope, Group.ID random -128249.60 256533.21 78.37 9.56E-18 
(-) slope, Elk.ID random -128255.19 256544.38 89.55 3.58E-20 
(-) Fear_Score:edge_dist, Group.ID random -128287.27 256608.55 153.72 4.17E-34 
(-) Fear_Score:edge_dist, Fear_Score:road_dist, 
Group.ID random -128292.42 256616.83 162.00 6.63E-36 

(-) Fear_Score:edge_dist, Elk.ID random -128293.18 256620.36 165.53 1.13E-36 
(-) Fear_Score, Group.ID random -128296.97 256623.93 169.10 1.90E-37 
(-) Fear_Score:edge_dist + Fear_Score:road_dist -128297.78 256627.56 172.72 3.11E-38 
(-) edge_dist, Fear_Score:road_dist, Group.ID 
random -128299.97 256629.94 175.11 9.45E-39 

(-) edge_dist, Fear_Score:road_dist, Group.ID 
random -128301.25 256632.50 177.67 2.63E-39 

(-) road_dist, Fear_Score:edge_dist, Elk.ID 
random -128304.71 256639.43 184.59 8.23E-41 

(-) Fear_Score, Elk.ID random -128305.04 256640.08 185.25 5.93E-41 
(-) edge_dist, Fear_Score:road_dist, Elk.ID 
random -128305.13 256640.27 185.44 5.40E-41 

(-) Fear_Score -128414.21 256860.41 405.58 8.48E-89 
Full*  -128413.97 256861.95 407.11 3.94E-89 
(-) years_since_loss, Group.ID random  -128424.91 256883.81 428.98 7.03E-94 
(-) years_since_loss, Elk.ID random  -128428.26 256890.52 435.68 2.46E-95 
(-) slope -128445.48 256922.95 468.12 2.23E-102 
(-) eastness, northness -128450.74 256931.49 476.65 3.13E-104 
(-) Fear_Score:edge_dist, Fear_Score:road_dist -128453.42 256936.84 482.01 2.15E-105 
(-) Fear_Score:edge_dist -128452.56 256937.12 482.29 1.87E-105 
(-) road_dist, Fear_Score:edge_dist, Group.ID 
random -128482.58 256993.16 538.32 1.27E-117 

(-) edge_dist, Fear_Score:road_dist -128519.72 257067.44 612.61 9.38E-134 
(-) Fear_Score -128556.24 257140.49 685.65 1.29E-149 
(-) years_since_loss -128671.30 257374.61 919.78 1.87E-200 
(-) life_form, Group.ID random -130207.41 260436.82 3981.99 0 
(-) life_form, Elk.ID random -130226.41 260474.82 4019.98 0 
(-) life_form -130335.52 260691.03 4236.20 0 

Full* = northness + eastness + life_form + Years_Since_Disturbance + Fear_Score*road_dist + 
Fear_Score*edge_dist 
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Appendix G 

Appendix G: Table showing estimated potential cow-calf abundance in the study area, amount of 
predicted suitable habitat (km2) and density (elk / km2) as predicted with 5 different thresholds 
for the three RSFs.  
 

Combined RSF 

Threshold   Population Area Density 
 0% probability  15,683 2,091 7.5 
95% points  10,481 4,753 2.2 
90% points   14,631 3,183 4.6 
75% points  14,958 1,810 8.3 
50% points  11,672 552 21.1 

Average    13,485 2,478 5.4 
 
Bold RSF 

 
 
 
 
 
 
 
 

 
Shy RSF 

  

Threshold Population Area Density 
 0% probability 14,347 1,783 8 
95% points 14,332 2,198 6.5 
90% points  14,337 1,594 9 
75% points 12,286 667 18.4 
50% points 13,620 427 31.9 

Average  13,784 1,334 10.3 

Threshold Population Area Density  
 0% probability 18,288 3,906 4.7 
95% points 8,519 8,225 1 
90% points  17,063 5,778 3 
75% points 17,707 2,859 6.2 
50% points 12,945 1,049 12.3 

Average 14,904 4,364 3.4 
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Appendix H 

Appendix H: Marginal effects plots from the bold and shy RSF showing response of Roosevelt 
elk to land cover at the landscape scale. California, USA. Vertical bars represent confidence 
intervals. 
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Appendix I  

Appendix I: Image panel showing how a misclassificaiton in the land cover layer of an 
herbaceous area likely caused an over-estimation of selection for the barren/other land 
cover class. Panel A shows a land cover classification and home range for one elk from 
the Red School House group (Elk.ID 42734). The black points in Panel B depicts the elk 
locations. Panel C shows a satellite image of the area in Panels A and B. Panel D shows a 
detailed view of the area classified as Barren/Other instead of Herbaceous. 

A B 

C D 
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Intermission  

While the mild, coastal climates along the North Coast means Roosevelt elk 

experience relatively consistent resource availability throughout the year, elk habitat 

selection varies temporally, with populations responding to annual changes in resource 

availability in their environment (Green and Bear 1990, Skovlin et al. 2002). As tule elk 

have evolved in arid ecosystems with unpredictable resource landscapes, these highly 

variable environments present a considerable challenge for habitat selection models due 

to unmet assumptions regarding resource availability. Fortunately, advances in our ability 

to collect spatial data now allow us to measure changes in resource availability at 

increasingly fine spatial and temporal scales. Simultaneously, the use of GPS collars can 

provide insight into animal response to these resources at similar scales. These 

technological improvements have enabled us to examine habitat selection in 

unpredictable environments in unprecedented detail.
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CHAPTER 2: SEASONAL WATER DEPENDENCE AND FORAGE DYNAMICS 

DRIVES HABITAT SELECTION BY TULE ELK  

Abstract 

Climate change is expected to affect arid-system ungulate populations by altering 

the availability of critical resources, such as forage and water sources, and by increasing 

the frequency and severity of drought. The habitat selection patterns of the tule elk, a 

subspecies endemic to the Mediterranean climate regions of California, may provide 

insight into the behavioral adaptations which will allow affected ungulate populations to 

remain in their current geographic ranges. I used location data from GPS-collared tule elk 

to model their response to different environmental covariates including water sources, 

forage dynamics, human disturbance, and drought, across the wet and dry seasons. I 

found that tule elk behaved as central place foragers around water sources during the dry 

season, and that this behavior was likely tied to forage moisture content. During the wet 

season, elk appeared to be water independent and selected for high quality forage 

sources. These patterns were mediated by drought, as severe drought resulted in elk 

selecting for areas closer to water sources in the dry season and further from water 

sources in the wet season. My findings will help inform management decisions regarding 

artificial water source allocation and minimizing the effect of human disturbance on 

resource availability. 
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Introduction 

Climate change is altering historic patterns of resource availability by affecting 

precipitation, phenology, temperature and drought (Parmesan and Yohe 2003, Trenberth 

2011, Trenberth et al. 2014). Many wildlife populations will need to adapt their behaviors 

to persist in their current ranges as conditions change (Van Buskirk et al. 2012, Beever et 

al. 2017). These changes are expected to negatively impact terrestrial herbivore 

populations, particularly ungulates, due to their effects on the availability of forage (Post 

and Stenseth 1999) and water resources. Ungulates in arid regions are especially 

vulnerable, as many populations are at the limits of their physiological tolerances in these 

climates and experience seasonal resource shortages, which are exacerbated by drought 

(Duncan et al. 2012). The behavioral adaptations of arid system ungulates to persist in 

their challenging environments contain lessons for their continued resiliency and could 

provide valuable insight for ungulate management and conservation efforts in areas 

facing a warmer, drier future.  

The adaptive behaviors wildlife use to increase fitness can be observed through 

their habitat selection patterns. Examining habitat selection can elucidate the factors 

affecting resource use across multiple spatial and temporal scales and provide insight into 

population distribution and growth (Fortin et al. 2008). Ungulates select habitat that allow 

them to access resources and avoid predation risk in an energetically efficient manner 

(Laundré et al. 2001, Skovlin 2012). For arid system ungulates, balancing these 

competing demands is complicated by the unpredictable availability of forage and water 
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resources in time and space. To understand how arid system ungulates have adapted to 

their dynamic resource landscapes, it is necessary to examine their habitat selection in 

relation to forage, water, and risk.  

Foraging behavior is fundamental to understanding how herbivores acquire the 

energetic reserves necessary to survive periods of scarcity. Forage dynamics – changes in 

the quality and abundance of available forage – are an important factor in ungulate forage 

selection (Fryxell 1991, Bischof et al. 2012, Merkle et al. 2016). Ungulates face trade-

offs between selecting forage sources of higher quality or greater abundance (Fryxell 

1991, Bergman et al. 2001). At earlier growth stages, forage has lower fiber content, 

shorter passage times and higher nutritional content, but low biomass entails greater 

forage effort. Conversely, forage at later growth stages has lower nutritional content and 

takes longer to digest, but the greater biomass allows individuals to quickly achieve 

rumen-fill and devote more time to ruminating, acquiring other resources, or vigilance. 

Many ungulate populations track forage dynamics across the landscape by exploiting 

heterogeneity in forage phenology (Merkle et al. 2016, Aikens et al. 2017). These forage 

selection patterns vary between species and populations and likely reflects adaptation 

based on physiology, life-history, and available habitat. For example, a Rocky Mountain 

elk (Cervus canadensis nelsonsoni) population in British Columbia contained a mixture 

of forage selection strategies, with migratory individuals selecting for forage quality and 

non-migratory individuals selecting forage abundance (Hebblewhite et al. 2008). 

However, forage growth stage only accounts for foraging behavior during the growing 

season. Ungulates will alter their diet selection in response to forage senescence; this 
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often entails a switch from utilizing primarily herbaceous vegetation to woody browse, as 

browse contains higher protein and moisture content (Kutilek 1979). These diet selection 

decisions are particularly important for arid system ungulates as forage selection 

decisions are interconnected with forage moisture and the availability of water sources.  

The availability of surface water and a species’ level of water dependence mediate 

ungulate behavior in time and space. How often individuals must visit a water source is a 

function of forage moisture content, ambient temperature, and a species’ physiological 

adaptations to conserve water (Cain et al. 2006). Water dependence concentrates ungulate 

activity around available water sources, especially during the dry season when water 

demands are high and forage moisture is low. In ungulates, this localization behavior can 

result in central place foraging dynamics and accompanying effects on foraging behavior, 

predation risk, and population dynamics (Coppolillo 2001, Rozen-Rechels et al. 2015). 

Critically, the gradual depletion of forage around the water source imposes limits on arid 

system herbivores’ energetic returns and ultimately population growth (Western 1975, 

Owen-Smith 1996, Chamaillé-Jammes et al. 2009, Landman et al. 2012). While there is a 

growing recognition of the myriad effects of water availability and central place foraging 

behavior in herbivore communities, there has been comparatively little examination of 

these aspects outside of Africa. Relationships between arid system ungulates and their 

water sources is central to understanding the population-level impacts of drought and 

enabling informed management decisions regarding artificial water source allocation.  

Predation risk further complicates ungulate foraging decisions. For ungulates, the 

effects of human activity as disturbances are especially important. Human disturbance 
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functions as a form of perceived predation risk (Frid and Dill 2002, Northrup et al. 2015) 

and elicits risk-mediation strategies such as flight and temporal or spatial avoidance 

(Stankowich 2008, Gaynor et al. 2018). Ungulates minimize disturbance by avoiding 

areas where human activity is concentrated, such as trails, roads, dwellings and energy 

production sites (Rowland et al. 2000, Sawyer et al. 2006, Weir et al. 2007, Brook 2010). 

In this manner, human disturbance reduces habitat suitability (Northrup et al. 2015), and 

can ultimately result in decreased fitness due to restricted access to critical resources 

(Dwinnell et al. 2019).  

One species that can provide insight into the behavioral adaptations of arid-

system ungulates is the tule elk (Cervus canadensis nannodes). Tule elk are a subspecies 

of the North American elk, a widely-distributed species evolved to cope with harsh 

winters and resource-abundant summers. Tule elk are endemic to the Mediterranean 

climate regions of California, which are characterized by large seasonal fluctuations in 

forage and water availability as well as frequent interannual drought. This subspecies has 

adapted both physiologically and behaviorally to cope with hot, dry summers when 

resources are scare, and cool, wet winters when resources are more abundant. In fact, 

despite the harsh conditions, including a historically severe drought across their range 

between 2012-2017, tule elk populations have grown steadily in the modern era (Griffin 

and Anchukaitis 2015, CDFW 2018). For these reasons, tule elk offer unique insight into 

habitat selection strategies to mitigate the challenges of arid systems on sensitive 

ungulates. Accordingly, I investigated tule elk habitat selection patterns within their 

dynamic resource landscapes in relation to season and drought. I hypothesized that forage 
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quality and water dependence would be the main drivers of selection in the wet and dry 

seasons, respectively, and that drought would amplify patterns of water dependence. I 

tested the prediction that elk would track forage green-up during the wet season and 

behave as central place foragers around water sources during the dry season. Because 

drought engenders greater water dependence and lower forage availability, I predicted 

that central place foraging behavior would increase with greater drought severity, and 

that the effect of drought would differ between the wet and dry seasons. I also 

hypothesized human disturbance would affect selection in all seasons and spatial scales. 

Specifically, I tested the prediction that elk would avoid roads and other landscape 

features associated with human presence.
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Materials and Methods 

Study area 

 

The study area was located in San Luis Obispo, California (~ 35° 12’N, 119° 

55’W), in and around the Carrizo Plain National Monument (Figure 2.1). The study area 

was comprised of a mixture of state, federal and private land ownership. The climate was 

semi-arid with an average annual precipitation of ca. 200 mm, most of which comes in 

the form of winter and spring rains. Summer temperatures averaged a high of 36oC while 

winter temperatures averaged 18oC (National Climate Data Center 2017). Elevations 

ranged between 450-1550 m. Vegetation varied across the study area, with California 

prairie, Piñon-juniper, oak-woodland, and chaparral being the most abundant vegetation 

communities (Buck-Diaz and Evens 2011). Cattle grazing occurred in some parts of the 

state and federal lands and throughout the adjacent private ranchlands, but usage of 

specific grazing allotments varied between years. Between 2012-2017, livestock numbers 

fell and many grazing allotments on public land were unused (B. Stafford, pers. comm., 

2018). Potential elk predators in the study area included mountain lions (Puma concolor), 

black bears (Ursus americanus), bobcats (Lynx rufus), and coyotes (Canis latrans). The 

study region is managed as part of the La Panza Elk Management Unit. Elk hunting 

permits are allocated each year by the California Department of Fish and Wildlife 

(CDFW) and various hunting seasons with different regulations (i.e., general draw, 

Private Lands Management tags) occur between August and early December each year. 
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The amount of hunting pressure varied between the sub-herds due to differences in 

ownership and public access restrictions. 

 

 

Figure 2.1: The study area was located within the La Panza Elk Management Unit, 
California, USA (Map credit: CDFW 2018). Highlighted area represents general 
location of the study area within the management unit.  
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Data 

 

Between 2005 and 2017 location data were collected using GPS collars deployed 

on 36 tule elk (23 cows, 13 bulls) captured using helicopter net-capture. This time period 

contained a mixture of wet and dry years, but the majority (n = 24) of collars were 

deployed in 2015 during the severe drought that occurred between 2012-2017. Collars 

were distributed amongst four sub-herds historically recognized by CDFW (“California 

Valley”, “American”, “Chimineas”, “Cedar Canyon”), with the sub-herd designation 

referring to geographic areas of the management unit. These sub-herds’ home ranges 

differ in relation to land cover composition, proximity to human development, and 

property ownership (Figure 2.2). Collars were programmed to record a location every 13 

hours and monitored for the duration of the collar’s battery life or until the elk died. All 

captures were conducted independent of HSU by California Department of Fish & 

Wildlife and followed internal animal use protocols. Post hoc data analysis for this 

chapter was approved under HSU IACUC #16/17.W.94-E. A total of 30,667 elk location 

points were used in the habitat selection analysis, with a range of 115 – 1406 locations 

collected for each individual elk (Appendix J).  
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Figure 2.2: The distribution of collared elk in four distinct sub-herds in the study area in 

San Luis Obispo County, California, USA. The home range scale was the 
collection of individual home ranges. The black polygon represents the landscape 
scale. 
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I selected 13 raster-based predictor variables related to resource availability, risk 

and energy expenditure (Appendix K), which were known drivers of elk habitat selection 

in other populations or potential influences on habitat selection in this system (Skovlin et 

al. 2002). I used a land cover layer (life_form) that assigned each pixel as belonging to 

one of 10 land cover types (MLRC 2011). Distance to nearest road layer (road_dist) was 

included to account for human disturbance (US Bureau of the Census 2018). A digital 

elevation model was used to calculate terrain slope in ArcMap (Environmental Systems 

Research Institute, Inc., Redlands, CA, USA, Version 10.6.1), (slope) and topographic 

position in R (TPI, NASA 2001). Topographic aspect was measured using two 

complimentary layers: “northness” and “eastness” (northness, eastness; sin and cosine of 

aspect * π/180, respectively). The quantity and quality of available forage was estimated 

using the normalized difference vegetation index (NDVI) and the instantaneous rate of 

green-up (IRG), respectively (NASA 2018, see Appendix L for background and 

processing details). I conducted an extensive mapping effort to locate available water 

sources – both natural and man-made – on the landscape using a combination of satellite 

and aerial imagery (see Appendix M for full water source availability methodology). 

From this, I calculated distance to nearest water source for each location (water_dist). I 

also included distance to nearest solar production site, transmission-line and permitted 

cannabis production site to test for the possibility these activities and infrastructures 

represent an additional disturbance to elk (solar_dist, power_dist, cannabis_dist). The 

Palmer Drought Severity Index (PDSI) was used to account for the effects of drought, 
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measured monthly at the geographic center of the study area (Abatzoglou et al. 2017). I 

included a term to account for differences between the sub-herds (Herd).  

 

RSF design  

 

I employed a use-available design in a resource selection function (RSF) 

framework (Manly et al. 2002) to model the effects of the environmental predictor 

variables on habitat use. Available locations were randomly drawn from two spatial 

scales corresponding to the 2nd and 3rd orders of selection (Johnson 1980), which I refer 

to as the population range and home range scales, respectively. I defined the population 

range as the 100% minimum convex polygon with a 2,300 m buffer, created using the 

full set of elk locations (Figure 2.2). This buffer reflected a mean 13-hour movement 

distance as calculated from seven elk studies that reported average hourly elk movement 

rates (Strohmeyer and Peak 1994). Within the population range, I randomly sampled 

available locations equal to the number of use locations. The home range scale was the 

collective set of individual elk home ranges, defined as the 95% isopleth of a time-local 

convex (T-LoCoH) hullset where Vmax was the greatest distance between two consecutive 

points, hulls were constructed with the nearest 15 locations, and the s-value was set to 0.5 

to provide equal weight to time and spatial distance between points (‘tlocoh’ package in 

program R; Lyons et al. 2013). Within each elk’s individual home range area, I randomly 

sampled a number of available locations equal to the amount of used locations collected 

for that elk. Each available point matched the date when the use location was collected. I 
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censored use and available locations that occurred in areas missing environmental 

predictor data (n=873).  

At both spatial scales, I ran three sets of models based on the date each used point 

was collected: full year, wet season, and dry season. I defined the wet season as 

November 16 – May 15 and the dry season as May 16 – November 15. These two periods 

were chosen in order to align with characteristic seasonal resource availability conditions 

(i.e., the period of higher forage and water availability after the arrival of the first rains, 

which typically occurs in November, and the period of lower resource availability after 

vegetation senesces in the late spring and early summer).  

I developed RSFs using mixed-effects logistic regression models with a binomial 

distribution and logit-link function to estimate response coefficients for each 

environmental predictor variable. In an RSF framework, habitat selection can be 

quantified using a logistic regression model (logistic discriminant function) to provide a 

relative probability of use for a resource unit (Johnson et al. 2006, Lele et al. 2013). For 

each spatial scale, I built three sets of 17 logistic regression models with the same set of 

variables included as fixed effects (see Appendix N for model descriptions), but which 

differed in their included interaction terms. The competing models and differing 

interaction terms were designed to test my hypotheses regarding the influence of water, 

forage, roads and drought on selection. Each set of models had either Group ID as a 

random effect, Individual ID as a random effect, or Group ID as a fixed effect, for a total 

of 51 models tested. I tested for collinearity between each variable and did not include 

predictors in the same model if |r | > 0.60. Three variables, distance to solar, distance to 
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cannabis, and distance to powerline, were all correlated with each other. I chose to 

consider only distance to solar in the model, as the other two variables were also 

correlated with distance to road. The most parsimonious model within < 2 AIC of the 

lowest scoring model was selected as the best model for each spatial scale (Arnold 2010). 

I then used the top models from the landscape scale to create maps of relative probability 

of use in the study region.  
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Results 

Seasonal differences in habitat selection 

 

The top dry season home range scale model included interactions between 

distance to water with NDVI, IRG, distance to road, and PDSI, with Herd included as a 

fixed effect (Table 2.1, Figure 2.3, see Appendix N for all model selection results). 

Confidence intervals of coefficients overlapped 1 for the PDSI, distance to road, and 

distance to road:distance to water interaction terms. Of the 10 land cover classes, 

confidence intervals overlapped 1 for the barren/other, wetland, and water land cover 

classes.  

 
Table 2.1: Top models explaining habitat selection patterns at the landscape scale (2nd 

order selection) and home range scale (3rd order selection) in a population of tule 
elk in California, USA. 

Model Description df logLik weight  
Home range - full year  Full* (-water_dist*PDSI). Herd ID fixed 29 -41758 0.8  

Home range - dry season  
Full* (-NDVI*road_dist, -IRG*road_dist). Herd ID 
fixed 27 -21713 0.45  

Home range - wet season  Full*. Elk ID random 27 -19878 0.99  

Landscape - full year 
Full* (-IRG*road_dist, water_dist*-PDSI). Elk ID 
random 26 -38282 0.55  

Landscape - dry season Full* (-water_dist*PDSI). Herd ID fixed 28 -19861 0.45  
Landscape - wet season Full*(-IRG*road_dist). Elk ID random 26 -18086 0.53  

*Full = Water_Distance + road_dist + NDVI + IRG + Water_Distance + PDSI+ TPI + slope+ Northness + 
Eastness + Solar_Distance + Water_Distance*NDVI + Water_Distance*IRG+ Water_Distance*road_dist 
+Water_Distance*PDSI + NDVI*road_dist+ IRG*road_dist 
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Figure 2.3: Standardized beta values of the fixed effects terms of top model explaining 
dry season habitat selection patterns at the home range scale (3rd order selection) 
in a population of tule elk in California, USA. Values above 1 (blue) and below 1 
(red) represent positive and negative effects, respectively. Horizontal lines 
represent confidence intervals, asterisk indicates confidence interval too wide to 
plot. Agriculture was the reference class for the land cover terms. 
 

  



76 
 

  

The top wet season home range scale model included interactions of distance to 

water with IRG, NDVI, distance to road and PDSI, with Herd as a fixed effect (Figure 

2.4, see Appendix N for model selection results). Confidence intervals overlapped 1 for 

the eastness, PDSI, TPI terms and for the barren/other, urban wetland, and water land 

cover classes. 

 

 

Figure 2.4: Standardized beta values of the fixed effects terms of top model explaining 
wet season, 3rd order habitat selection patterns in a population of tule elk in 
California, USA. Values above 1 (blue) and below 1 (red) represent positive and 
negative effects, respectively. Horizontal lines represent confidence intervals, 
asterisk indicates confidence interval too wide to plot. Agriculture was the 
reference class for the land cover terms. 
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The wet and dry season models showed contrasting patterns of selection in 

response to distance to water (Figure 2.5), the interactions between distance to water and 

NDVI (Figure 2.6, Figure 2.7), as well as the interaction between distance to water and 

PDSI (Figure 2.8). Selection for the forage metrics NDVI and IRG also differed between 

the wet and dry seasons (Figure 2.9). Land cover selection patterns were generally similar 

across season, though selection for agriculture, hardwood, and conifer was slightly higher 

while selection for shrub was slightly lower in the dry season (Figure 2.10). Elk strongly 

avoided roads in the wet season, but avoidance was weaker in the dry season (Figure 

2.11). Similarly, elk strongly selected steeper slopes in the wet season but not during the 

dry season (Figure 2.12).  

 

Figure 2.5: Response plots showing seasonal differences in 3rd order habitat selection for 
water sources for a population of tule elk in California, USA. Shaded areas 
represent confidence intervals. 
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Figure 2.6: Interaction plots showing seasonal changes in 3rd order habitat selection for 
water sources changes in response to forage availability (NDVI) for a population 
of tule elk in California, USA. Higher NDVI score corresponds to greater forage 
availability. Shaded areas represent confidence intervals. 
 

 
Figure 2.7: Interaction plots showing 3rd order habitat selection for forage availability 

(NDVI) changes in response to water availability for a population of tule elk in 
California, USA. Higher NDVI score corresponds to greater forage availability. 
Shaded areas represent confidence intervals.  
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Figure 2.8: Interaction plot showing seasonal patterns of 3rd order habitat selection for 

water sources changes in response to drought severity (PDSI) for a population of 
tule elk in California, USA. Lower PDSI score corresponds to greater drought 
severity. Shaded areas represent confidence intervals. 

 

 
Figure 2.9: 3rd order habitat selection response to forage abundance (NDVI) and forage 

quality (IRG) in the wet and dry season for a tule elk population in California, 
USA. Shaded areas represent confidence intervals. 
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Figure 2.10: Marginal effects plots showing 3rd order habitat selection response of tule 
elk to land cover in the wet and dry season in the Carrizo Plain region, California, USA. 
Bars represent confidence intervals. 
 

 
Figure 2.11: Response plots showing seasonal differences in 3rd order habitat selection in 

relation to roads for a population of tule elk in California, USA. Shaded areas 
represent confidence intervals. 
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Figure 2.12: Variable response from top 3rd order habitat selection models showing tule 
elk response to slope in the wet and dry season in the Carrizo Plain region, 
California, USA. Shaded areas represent confidence intervals. 
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Scale-dependent selection 

 

The top home range scale model included interactions between distance to water 

with NDVI, IRG and distance to road, as well as interactions between distance to road 

with NDVI and IRG, with Elk.ID as a random effect (Figure 2.13, see Appendix N for 

model selection results). Confidence intervals overlapped 1 for the PDSI term and the 

water, wetland, and barren/other land cover classes for the home range scale model.  

 

Figure 2.13: Standardized beta values of the fixed effects terms of top model explaining 
year-round, 3rd order habitat selection patterns in a population of tule elk in 
California, USA. Values above 1 (blue) and below 1 (red) represent positive and 
negative effects, respectively. Horizontal lines represent confidence intervals. 
Agriculture was the reference class for the land cover terms. 
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The top landscape scale model included interactions between distance to water  

with NDVI, IRG, and distance to road, as well as the interactions between distance to 

road and NDVI with Herd as a fixed effect (Figure 2.14, see Appendix O for 2nd order 

wet and dry season selection results). Confidence intervals overlapped 1 for the TPI, 

PDSI and interaction between the distance to road and distance to water terms.  

 

 
Figure 2.14: Standardized beta values of the fixed effects terms of top model explaining 

year-round, 2nd order habitat selection patterns in a population of tule elk in 
California, USA. Values above 1 (blue) and below 1 (red) represent positive and 
negative effects, respectively. Horizontal lines represent confidence intervals. 
Agriculture was the reference class for the land cover terms. 
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Over the course of the full year, both the landscape and home range scale models 

showed that elk selected areas closer to water sources, further from roads, closer to solar 

production sites, and with greater NDVI and IRG values. Patterns of selection in response 

to land cover were generally similar at both spatial scales, with agriculture being the most 

highly selected land cover type; however, selection for hardwood was higher at the home 

range scale compared to selection for these land cover classes at the landscape scale. Elk 

utilized similar areas before and after solar farm construction (Appendix P) and did not 

appear to avoid solar production sites, as evidenced by the negative coefficient for both 

the landscape and home range scale models. The top models of 2nd order selection in the 

wet and dry season were used to create maps of predicted habitat suitability across the 

region (Appendix Q).  

 

 

Figure 2.15: Marginal effects plot showing 2nd (Landscape) and 3rd (Home Range) order 
habitat selection response of tule elk to land cover in the Carrizo Plain region, 
California, USA. Bars represent confidence intervals. 
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Discussion  

Water source selection 

 

 Tule elk selection patterns were reflective of seasonal changes in forage 

conditions and dependence on water sources. These patterns were consistent with the 

expectation that tule elk are water dependent and behave as central place foragers around 

water sources in the dry season. Elk showed a strong, negative selection response to 

water source distance in the dry season (Figure 2.5). Selection response during drought 

was also consistent with central place foraging behavior, as elk responded to greater 

drought severity by selecting areas further from water in the wet season (Figure 2.8). For 

large herbivores, central place foraging causes a gradient in forage availability due to 

concentrated foraging activity near water sources (Andrew 1988). This forage gradient 

can lead to a “humped” distribution as ungulates select areas at intermediate distance to 

water sources (Ogutu et al. 2014). Severe drought in the wet season, such as occurred in 

the study area 2012-2016, would correspond with depleted forage conditions and push 

elk to forage at increasingly greater distance from water sources. In contrast to selection 

patterns in the dry season and during drought, tule elk appeared to avoid water sources 

during the wet season (Figure 2.5). A similar, bimodal selection pattern has been 

observed in African herbivore communities characterized by concentration around water 

sources in the dry season and dispersal away from these sources in the wet season 

(Western 1975, Ogutu et al. 2014).  
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Selection for water sources was closely linked to forage conditions. NDVI was 

negatively related to distance to water in both the wet and dry season (Figure 2.6), likely 

because the higher moisture content of photosynthetically active plants reduced water 

dependence. Forage moisture is a main factor in ungulate water budgets (Cain et al. 2006) 

and dependence on water sources has been associated with lower forage moisture content 

for arid system ungulates in Africa (Jarman 1973) and Rocky Mountain elk in New 

Mexico (Harris et al. 2015). Although the coarse resolution of elk location intervals and 

water source availability data prevents more precise descriptions of the tule elk’s water 

dependence, such as water source visitation rates, the inflection between positive and 

negative selection for water sources was roughly approximate in both seasons (occurring 

at a raw NDVI value of ~3000; Figure 2.6, Figure 2.7). This may serve as a rough 

approximation of the forage conditions necessary for tule elk to transition out of central 

place foraging behavior. 

 

Forage dynamics 

 

In contrast to the localization around water sources seen during the dry season, elk 

appeared to track forage quality across their home ranges during the wet season, as seen 

in the positive selection response to IRG. Response to IRG was stronger and had greater 

certainty in the wet season than dry season (Figure 2.9). The strong response to IRG in 

the wet season matches the expectations of the Forage Maturation Hypothesis, that 

herbivores select forage at intermediate growth stages to maximize energy gain (Fryxell 
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1991). Previous studies have reported migratory ungulates track IRG across elevation 

gradients (Bischof et al. 2012, Merkle et al. 2016, Aikens et al. 2017), although non-

migratory populations can track IRG as well (Hebblewhite et al. 2008). While the elk in 

this study were non-migratory, their large home ranges (~45-120 km2) may have 

provided enough green-up heterogeneity due to differences in elevation, aspect, rainfall 

and forage species, to allow them to exploit fine scale differences in forage quality over 

the course of the wet season. Extended access to peak green-up has been linked to higher 

fitness in ungulates (Pettorelli et al. 2007, Monteith et al. 2015, Middleton et al. 2018). 

The importance of tracking high quality forage would also explain why elk selected areas 

further from water sources in the wet season (Figure 2.5) and when NDVI (and forage 

moisture) was high (Figure 2.6).  

As discussed previously, tule elk appeared less dependent on surface water when 

forage conditions were favorable; however, the positive selection response suggests an 

additional mechanism causing elk to forage at greater distance to water sources. While 

forage depletion near water sources is an expected effect of central place foraging, the 

apparent avoidance of water sources could also be a side-effect of water source 

placement in the broader landscape. For example, elk may be tracking high quality forage 

areas with fewer water sources, such as in areas of rugged terrain. Rugged terrain 

experiences more heterogeneity in green-up timing due to topographic complexity and 

elevational gradients, which subsequently provide elk longer access to forage in its most 

nutritious growth stages. Indirect evidence for the role of rugged terrain in elk foraging 

patterns was seen in their selection for greater slope in the wet season than in the dry 
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season (Figure 2.12). Alternatively, water source avoidance could be a consequence of 

human disturbance, as water sources are typically located near roads and subject to 

human visitation. Whether this behavior is driven by forage selection or disturbance 

avoidance is a salient area for future research. 

 Elk in this study did not exhibit a strong seasonal shift in land cover selection. This 

result contrasted with expectations that elk would show strong selection for browse 

during the dry season. While there was moderately higher selection for hardwood land 

cover in the dry season (Figure 2.10), selection for hardwood was low compared to its 

availability at the landscape scale (Figure 2.15). Furthermore, shrub land cover, a 

potential source of browse, had lower selection in the dry season than in the wet season 

(Figure 2.9, Figure 2.10). This result contrasts with other studies that have noted tule elk 

switched between herbaceous vegetation in the wet season and browse in the dry seasons 

(McCullough 1969, O’Connor 1988, Cobb 2010). In fact, two of the four sub-herds were 

almost entirely reliant on herbaceous and agricultural land cover for the duration of the 

study (Appendix R). As the use of agricultural land cover increased in the dry season, 

agriculture may have been an important resource during periods when natural forage 

sources were unavailable or insufficient.  

 

Response to human disturbance 

 

Human disturbance was an important driver of tule elk habitat selection at both 

spatial scales, as evidenced by the strong avoidance of roads (Figure 2.13, Figure 2.14). 
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The relative lack of vegetation structure in the Carrizo Plain may have contributed to the 

elk’s road avoidance. A lack of vegetation structure, which is used for predator avoidance 

and escape cover, can cause ungulates to increase vigilance and result in flight responses 

at greater distances to potential danger (Stankowich 2008). Interestingly, elk were less 

responsive to roads in the dry season (Figure 2.3). This could be due to the stronger 

dependence on artificial water sources, which are typically near roads in the study area, 

or poor forage conditions resulting in greater risk-taking (Sih 1980). Alternatively, 

human disturbance levels could be lower in the dry season due to lower human visitation 

to the study area, or elk may be more nocturnal to avoid higher ambient temperatures and 

thus encounter humans less frequently.
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Management Implications 

The allocation of free water for ungulates is a common management practice, 

although it is a subject of debate (Broyles 1996, Rosenstock et al. 1999, Krausman et al. 

2006). While artificial water sources increase forage availability for ungulates during the 

dry season, a high density of water sources can lead to over-exploitation of the forage 

base (Walker et al. 1987, Illius and O’Connor 2000) and ultimately result in high 

mortality in the event of drought (Walker et al. 1987, Illius and O’Connor 2000, Owen-

Smith 2004). In this regard, areas of low water availability act as grazing refugia and 

therefore serve as critical sources of reserve forage (Gaylard et al. 2003, Fensham and 

Fairfax 2008). For ungulates, central place foraging around water source mediates 

population growth by imposing physiological constraints on energy gain (Western 1975, 

Owen-Smith 1988, Landman et al. 2012). Accordingly, short-term drought impacts 

ungulate populations primarily by reducing recruitment rates rather than increased adult 

mortality (Ogutu et al. 2008). As central place foragers, tule elk populations will likely be 

more resilient to future droughts if managers incorporate heterogeneity into water 

allocation decisions. Future research on forage utilization in relation to water sources and 

elk recruitment rates would help establish best-practices for water source allocation.  

Additionally, managers should consider the effects of competition and predation 

around water sources when making water allocation decisions. A species’ degree of water 

dependence is an important mechanism structuring herbivore communities in semi-arid 

southern Africa (Shannon et al. 2009, Smit and Grant 2009, Cain et al. 2012), with lower 
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water dependence acting as a competitive advantage (Western 1975). Artificial water 

sources can also increase predation risk, as predators utilize water sources for drinking 

and for hunting prey (Davidson et al. 2013, Harris et al. 2015). Seasonal reductions in 

artificial water allocation, especially during the wet season when tule elk are less 

dependent on water sources, could reduce potential competition with invasive feral pigs 

(Sus scrofa) and predation risk from mountain lions. 

Human disturbance could negatively impact tule elk populations by interfering 

with the availability of water sources and high-quality forage. Human disturbance, in 

addition to causing greater stress and energy expenditure (White 1983, Seip et al. 2007), 

can reduce ungulate fitness by interfering with foraging and calf-rearing behaviors 

(Phillips and Alldredge 2000, Shively et al. 2005, Dwinnell et al. 2019). Tule elk cows 

must build sufficient energy stores in the wet season to sustain themselves and a calf 

through the dry season. Disturbance could push tule elk into areas with lower quality 

forage and water availability. Tule elk face growing levels of human disturbance as 

California’s rangeland ecosystems, traditional tule elk habitat, are projected to experience 

continued urban and agricultural development (Sleeter et al. 2017). Management actions 

that reduce disturbance, such as road closure, seasonal access restriction, and locating 

artificial water sources away from roads would increase tule elk habitat availability and 

suitability. 
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Appendix J 

Appendix J: Table of each collared elk’s ID, sex, number of points, group membership. 

Elk.ID Sex Number.of.Points Subherd 
200 F 562 California Valley 
250 F 855 Cedar Canyon 
300 F 1406 American 
350 F 1340 Cedar Canyon 
377 F 1081 Cedar Canyon 
397 F 1189 California Valley 
528 M 817 Chimineas 
562 M 782 Chimineas 
582 M 1099 American 
592 M 785 American 
650 F 1297 Chimineas 
9000 F 695 American 
9020 F 146 California Valley 
9040 F 617 Cedar Canyon 
9060 F 1344 American 
9080 F 1260 California Valley 
9100 F 599 Cedar Canyon 
9120 F 848 American 
9137 F 1064 American 
9140 F 128 California Valley 
9160 F 959 American 
9180 F 999 California Valley 
9220 F 826 Cedar Canyon 
9223 F 1587 California Valley 
9298 F 1284 Chimineas 
9320 F 1248 American 
9420 M 667 American 
9440 M 767 California Valley 
9460 M 1358 Cedar Canyon 
9480 M 250 California Valley 
9499 F 665 Chimineas 
9500 M 472 Cedar Canyon 
9520 M 247 American 
9540 M 804 California Valley 
9560 M 777 Cedar Canyon 
9580 M 116 American 
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Appendix K 

Appendix K: Table of predictor variables  
 

Predictor Variable Name in 
Model Source Temporal 

Resolution 
Spatial 

Resolution Note 

Land Cover life_form NLCD  2011 30m - 
Distance to Road road_dist TIGER/Line Shapefile  2017 - - 

NDVI NDVI NASA 8-day 250m Transformed to daily values 
(Appendix B) 

IRG IRG NASA 8-day 250m Interpolated to daily values 
(Appendix B) 

Distance to Water Source water_dist Multiple Monthly - Appendix C 

Slope slope DEM 2000 90m Slope with Spatial Analyst Extension 
in ArcMap 

Topographic Position Index TPI DEM 2000 90m  Calculated in rStudio with spatialEco 
package using 5x5 pixel window 

Northness northness DEM 2000 90m 
Aspect calculated with ArcMap with 
Spatial Analyst Extension. Northness 
= Cosine of aspect * pi/180 

Eastness eastness DEM 2000 90m 
Aspect in ArcMap with Spatial 
Analyst Extension. Eastness = Sin of 
aspect * pi/180  

Distance to Solar Farm solar_dist CDFW provided shapefile 2017 - Calculated with Euclidean Distance 
tool in ArcMap 
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Predictor Variable Name in 
Model Source Temporal 

Resolution 
Spatial 

Resolution Note 

Distance to Cannabis site cannabis_dist CDFW provided shapefile 2017 - Calculated with Euclidean Distance 
tool in ArcMap 

Distance to Transmission Line power_dist CDFW provided shapefile 2017 - Calculated with Euclidean Distance 
tool in ArcMap 

Drought Severity  PDSI Western Regional 
Climate Center Monthly - PDSI = Palmer Drought Severity 

Index 
Sub-herd membership Herd CDFW - - - 
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Appendix L 

Appendix L: Background on the use of Normalized Difference Vegetative Index (NDVI) 
and Instantaneous Rate of Green-up (IRG) to estimate forage quantity and quality.  
 

NDVI is a measure of the photosynthetic activity occurring in a given pixel of 

satellite imagery. NDVI is correlated with primary productivity and vegetation biomass 

and widely used metric for estimating available forage for herbivores (Ryan et al. 2012) 

(Pettorelli et al. 2005, Pettorelli et al. 2011). Previous research has shown that the rate at 

which NDVI increased over the course of the growing season was correlated with peak 

fecal protein, a measure of forage quality (Hamel et al. 2009). Therefore, a metric for 

forage quality, IRG, can be estimated using the rate of change of a given pixel’s NDVI 

(Bischoff et al. 2012).  

I performed a series of steps to retrieve NDVI and IRG values for each elk and 

available location over the course of the study, following the methods outlined in 

Bischoff et al. (2012). Briefly, the steps were i) download every MOD09Q1 product 

collected over the course of the study and extract the NDVI values for each pixel. The 

MOD09Q1 product gives surface reflectance values with a 250-meter spatial resolution, 

with each pixel representing the highest quality observation available over an 8-day time 

period. ii) Remove all pixels classified as low quality. iii) Apply a moving three-window 

median filter to remove spikes in the time series. iv) Interpolate NDVI values over the 

course of a year using a curve fitting function. v) Calculate IRG using the first-derivative. 

vi) Extract NDVI and IRG value for the specific day each used location was recorded. 
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My methodology differed from Bischoff et al. (2012) and other similar studies (e.g., 

Merkle et al. 2016) in that I used a spline method to interpolate values instead of a double 

logistic function in order to better capture the variable timing and rate of vegetation 

growth patterns in Mediterranean climates, and I did not scale each pixel’s NDVI values 

between 0 and 1 to better capture differences in forage abundance between pixels.
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 Appendix M 

Appendix M: Background on how water sources were located in the study area.  
 

I attempted to locate all water sources within the study area using a combination 

of methods. The primary method was using Google Earth imagery to “fly” evenly spaced 

transects across the study area and locate water sources visually. After locating a water 

source, I attempted to determine when water was available. I first looked through Google 

Earth historical imagery catalog to see when water was first visible and then estimated its 

availability over the course of the study. Images dated back to the early 2000s, with a 

new image available generally every ~ 2 years. After 2013, imagery was of higher spatial 

resolution (< 1m resolution), which made identification of water presence in small 

features like cattle troughs easy. Pre-2013 imagery varied between ~1-5m resolution and 

made identification of water presence in cattle troughs at these resolutions difficult, and I 

relied more on spatial context (i.e., appearance of bare earth and trails around a trough) to 

estimate water availability. To estimate availability between images I considered water 

sources as falling into two categories, natural (i.e., seeps, rivers, ponds, etc.) or artificial 

(i.e., cattle troughs, stock ponds, etc.). I considered an artificial water source permanent if 

it contained water in each high-resolution image and had indications of use pre-2013 (i.e., 

worn-down area, trails leading to water trough, etc.). If an artificial water source was 

missing water in a single image I either: A) considered it permanent if the appearance of 

the earth around the water source remained bare and worn in the absent image (i.e., the 
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water source was in use until recently); or B) if the area around the water source made it 

appear like it had not been used recently, I averaged availability before and after the 

imagery date when water was absent (e.g., if water was present in an image taken January 

1st 2012 and water was present on an image taken January 1st 2016, but not January 1st 

2014, water would be considered unavailable from January 1st 2013 to January 1st 2015). 

If an artificial water source was missing water in two or more consecutive images then I 

similarly averaged availability around the date when water was absent.  

Most natural water sources displayed seasonality in availability, with water 

present during the wet season and absent during the dry season. To estimate these water 

sources’ availability, I created a basic calculation to estimate monthly availability using 

the monthly precipitation data for the Carrizo region and a “Persistence Score” (ranging 

between 0-5) which I estimated based on how many months a water source appeared to 

hold water after a significant monthly rainfall amount (which I defined as 3.8 cm of 

rainfall in one month). Therefore, a Persistence Score of 0 meant a water source only had 

water if it had rained more than 3.8 cm of rain that month, while a Persistence Score of 5 

corresponds to holding water five months after the last significant rainfall. After closely 

observing the patterns of water availability, it was apparent that periods of drought were 

affecting how long water was lasting into the dry season for water sources with 

Persistence Scores of 4 and 5, likely since annual rainfall totals were low. To account for 

this, I included a “Wet Year Effect”, such that these water sources received an additional 

+1 to their Persistence Score in years of above average rainfall.  
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After water availability had been calculated for each water source for each month 

over the duration of the study, I measured the distance to the closest available water 

source for each used and available location.
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Appendix N 

Appendix N: Model selection results for all scales and seasons 
 
Model descriptions: 
*Full = Water_Distance + road_dist + NDVI + IRG + Water_Distance + PDSI+ TPI + slope+ 
Northness + Eastness + Solar_Distance + Water_Distance*NDVI + Water_Distance*IRG+ 
Water_Distance*road_dist +Water_Distance*PDSI + NDVI*road_dist+ IRG*road_dist 
 
**Fixed variables = Water_Distance + road_dist + NDVI + IRG + Water_Distance + PDSI+ TPI + 
slope+ Northness + Eastness + Solar_Distance  
 
 

Full model 
Full*. Herd ID random 
Full*. Elk ID random 
Full*. Herd ID fixed 
 
Fixed variables** + Water interactions  
Full*(-IRG*road_dist, -NDVI*road_dist). Herd ID random 
Full*(-IRG*road_dist, -NDVI*road_dist). Elk ID random 
Full*(-IRG*road_dist, -NDVI*road_dist). Herd ID fixed 
 
Fixed variables** + Water interactions except drought 
Full*(-IRG*road_dist, -NDVI*road_dist, -water_dist*PDSI). Herd ID random 
Full*(-IRG*road_dist, -NDVI*road_dist, -water_dist*PDSI). Elk ID random 
Full*(-IRG*road_dist, -NDVI*road_dist, -water_dist*PDSI). Herd ID fixed 
 
Fixed variables** + forage interactions  
Full*(-water_dist*road_dist, -water_dist*PDSI). Herd ID random 
Full*(-water_dist*road_dist, -water_dist*PDSI). Elk ID random 
Full*(-water_dist*road_dist, -water_dist*PDSI). Herd ID fixed 
 
Fixed variables** + road interactions 
Full*(-IRG*water_dist, -NDVI*water_dist, -water_dist*PDSI). Herd ID random 
Full*(-IRG*water_dist, -NDVI*water_dist, -water_dist*PDSI). Elk ID random 
Full*(-IRG*water_dist, -NDVI*water_dist, -water_dist*PDSI). Herd ID fixed 
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Fixed variables** + water & forage quality interactions except drought 
Full*(-NDVI*road_dist, -water_dist*PDSI). Herd ID random 
Full*(-NDVI*road_dist, -water_dist*PDSI). Elk ID random 
Full*(-NDVI*road_dist, -water_dist*PDSI). Herd.ID fixed 
 
Fixed variables** + water & forage quality interactions  
Full*(-NDVI*road_dist). Herd ID random 
Full*(-NDVI*road_dist). Elk ID random 
Full*(-NDVI*road_dist). Herd.ID fixed 
 
Fixed variables** + water & forage quantity interactions except drought 
Full*(-IRG*road_dist, -water_dist*PDSI). Herd ID random 
Full*(-IRG*road_dist, -water_dist*PDSI). Elk ID random 
Full*(-IRG*road_dist, -water_dist*PDSI). Herd.ID fixed 
 
Fixed variables** + water & forage quantity interactions  
Full*(-IRG*road_dist). Herd ID random 
Full*(-IRG*road_dist). Elk ID random 
Full*(-IRG*road_dist). Herd.ID fixed 
 
Fixed variables** + forage quantity and road interactions  
Full*(-IRG*water_dist, -water_dist*PDSI). Herd ID random 
Full*(-IRG*water_dist, -water_dist*PDSI). Elk ID random 
Full*(-IRG*water_dist, -water_dist*PDSI). Herd ID fixed  
 
Fixed variables** + forage quality and road interactions  
Full*(-NDVI*water_dist, -water_dist*PDSI). Herd ID random 
Full*(-NDVI*water_dist, -water_dist*PDSI). Elk ID random 
Full*(-NDVI*water_dist, -water_dist*PDSI). Herd ID fixed 
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Home range scale, full year:  
Model Description df logLik AICc delta weight 

Full* (-water_dist*PDSI). Herd ID fixed 29 -41758 83574.04 0 0.80 
Full* (-IRG*road_dist, -water_dist*PDSI). Herd ID fixed  28 -41760.5 83577.03 2.99 0.18 
Full* (-water_dist*PDSI). Elk ID random 27 -41764.3 83582.65 8.61 0.01 
Full* (-IRG*road_dist, -water_dist*PDSI). Elk ID random 26 -41766.8 83585.63 11.59 2.46E-3  
Full* (-water_dist*PDSI). Herd ID random 27 -41765.9 83585.89 11.85 2.15E-3 
Full* (-IRG*road_dist, -water_dist*PDSI). Herd ID random 26 -41768.4 83588.89 14.86 4.78E-4 
Full*. Herd ID fixed 29 -41783.6 83625.2 51.16 6.24E-12 
Full* (-NDVI*road_dist, -water_dist*PDSI). Herd ID fixed 28 -41786.9 83629.88 55.84  6.01E-13 
Full* (-IRG*road_dist). Herd ID fixed 28 -41787.1 83630.17 56.13 5.21E-13 
Full*. Elk ID random 27 -41789.8 83633.67 59.63 9.03E-14 

*Full = Water_Distance + road_dist + NDVI + IRG + Water_Distance + PDSI+ TPI + slope+ Northness + Eastness 
+ Solar_Distance + Water_Distance*NDVI + Water_Distance*IRG+ Water_Distance*road_dist 
+Water_Distance*PDSI + NDVI*road_dist+ IRG*road_dist 
 
Home range scale, dry season  

Model Description  df logLik AICc delta weight 
Full* (-NDVI*road_dist, -IRG*road_dist). Herd ID fixed 27 -21713 43480.3 0 0.45 

Full* (-IRG*road_dist, -water_dist*PDSI). Herd ID fixed 28 -21713 43481.5 1.19 0.25 

Full* (-NDVI*road_dist, -water_dist*PDSI). Herd ID fixed 28 -21713 43482.3 2 0.16 

Full*. Herd ID fixed 29 -21712 43482.6 2.3 0.14 

Water interactions (-water_dist*PDSI). Herd ID fixed 26 -21720 43491.9 11.59 1.36E-03 

Full* (-IRG*road_dist, -water_dist*PDSI). Herd ID fixed  27 -21720 43493.3 13 6.68E-04 

Water interactions. Herd ID random 25 -21722 43493.5 13.21 6.04E-04 

Full* (-NDVI*road_dist, -water_dist*PDSI). Herd ID fixed 27 -21720 43493.9 13.58 5.01E-04 

Full* (-water_dist*PDSI). Herd ID fixed 28 -21719 43494.4 14.05 3.96E-04 

*Full = Water_Distance + road_dist + NDVI + IRG + Water_Distance + PDSI+ TPI + slope+ Northness + Eastness 
+ Solar_Distance + Water_Distance*NDVI + Water_Distance*IRG+ Water_Distance*road_dist 
+Water_Distance*PDSI + NDVI*road_dist+ IRG*road_dist  
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Home range scale, wet season:  
Model Description  df logLik AICc delta weight 

Full*. Elk ID random 27 -19878.4 39810.95 0.00 0.99 
Full* (-NDVI*road_dist). Elk ID random 26 -19888.1 39828.15 17.20 1.84E-04 
Full* (-IRG*road_dist). Elk ID random 25 -19890.9 39831.85 20.90 2.90E-05 
Full*(-water_dist*PDSI). Elk ID random 26 -19890.4 39832.81 21.85 1.80E-05 
Full*. Herd ID fixed 29 -19889.1 39836.27 25.32 3.18E-06 
Full*(-NDVI*road_dist, -water_dist*PDSI). Elk ID random 25 -19899.2 39848.36 37.41 7.54E-09 
Full*. Herd ID random 27 -19899.3 39852.58 41.63 9.12E-10 
Full*(-IRG*water_dist, -water_dist*PDSI). Herd ID fixed  27 -19899.6 39853.29 42.34 6.39E-10 
Full*(-water_dist*PDSI). Herd ID fixed 28 -19899.3 39854.62 43.67 3.29E-10 
Full*(-NDVI*water_dist). Herd ID fixed 28 -19899.3 39854.69 43.74 3.17E-10 

*Full = Water_Distance + road_dist + NDVI + IRG + Water_Distance + PDSI+ TPI + slope+ Northness + Eastness 
+ Solar_Distance + Water_Distance*NDVI + Water_Distance*IRG+ Water_Distance*road_dist 
+Water_Distance*PDSI + NDVI*road_dist+ IRG*road_dist 
 
Landscape scale, full year:  

Model Description df logLik AICc delta weight 

Full* (-IRG*road_dist, -PDSI). Elk ID random 26 -38282.4 76616.8 0 0.55 
Full* (-PDSI). Elk ID random 27 -38282.2 76618.4 1.65 0.25 
Full* (-NDVI*road_dist, -IRG*road_dist, -PDSI). Elk ID 
random 25 -38285.5 76621.0 4.19 0.07 
Full* (-NDVI*road_dist, -PDSI). Elk ID random 26 -38284.5 76621.0 4.25 0.07 
Full*. Elk ID random 27 -38284.3 76622.6 5.82 0.03 
Water and forage quality x roads, no drought. Elk ID 
random 26 -38285.4 76622.7 5.96 0.03 
Full* (-NDVI*road_dist, -IRG*road_dist). Elk ID random 25 -38287.5 76624.9 8.12 0.01 
Full* (-NDVI*road_dist). Elk ID random 26 -38287.3 76626.6 9.81 0.0041 
Full* (-water_dist*road_dist). Elk ID random 26 -38291.1 76634.1 17.31 9.63E-05 
Full* (-IRG*road_dist). Elk ID random 26 -38292.6 76637.1 20.34 2.12E-05 
Full* (-water_dist*road_dist, -road_dist*IRG, -
water_dist*NDVI). Elk ID random 24 -38301.8 76651.6 34.84 1.50E-08 

*Full = Water_Distance + road_dist + NDVI + IRG + Water_Distance + PDSI+ TPI + slope+ Northness + Eastness 
+ Solar_Distance + Water_Distance*NDVI + Water_Distance*IRG+ Water_Distance*road_dist 
+Water_Distance*PDSI + NDVI*road_dist+ IRG*road_dist  
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Landscape scale, dry season: 
Model Description df logLik AICc delta weight 

Full* (water_dist*-PDSI). Herd ID fixed 28 -19861.3 39778.61 0 0.45 

Full*(-water_dist*road_dist). Herd ID fixed 27 -19862.5 39779.03 
0.42 
 0.36 

Full*. Herd ID fixed 29 -19861.2 39780.36 
1.75 
 0.19 

Full*(-PDSI). Herd ID random 26 -19870.2 39792.44 13.83 4.44E-05 
Full*(-water_dist*road_dist). Herd ID random 25 -19871.4 39792.85 14.24 3.62E-04 
Full*. Herd ID random 27 -19870.1 39794.19 15.58 1.86E-04 
Full*(-NDVI*road_dist, water_dist-PDSI). Herd ID fixed 27 -19871 39796.03 17.42 7.40E-05 
Full* (-NDVI*road_dist). Herd ID fixed 28 -19870.9 39797.8 19.19 3.05E-05 
Full* (-IRG*road_dist, -water_dist*PDSI). Herd ID fixed  27 -19872.6 39799.27 20.66 1.46E-05 
Full* (-IRG*road_dist). Herd ID fixed 28 -19872.5 39801 22.39 6.17E-06 
Full*(-IRG*road_dist, -NDVI*road_dist, -
water_dist*PDSI. Herd ID fixed 26 -19874.6 39801.25 22.64 5.44E-06 

*Full = Water_Distance + road_dist + NDVI + IRG + Water_Distance + PDSI+ TPI + slope+ Northness + Eastness 
+ Solar_Distance + Water_Distance*NDVI + Water_Distance*IRG+ Water_Distance*road_dist 
+Water_Distance*PDSI + NDVI*road_dist+ IRG*road_dist 
 

Landscape scale, wet season: 
Model Description df logLik AICc delta weight 

Full*(-IRG*road_dist). Elk ID random 26 -18086.31 36225 0.00 0.53 
Full*. Elk ID random 27 -18085.43 36225 0.24 0.47 
Full*(-IRG*road_dist, -NDVI*road_dist). Elk ID random 25 -18097.91 36246 21.19 1.32E-05 
Full*(-NDVI*road_dist). Elk ID random 26 -18097.49 36247 22.36 7.38E-06 
Full*(-IRG*road_dist, -water_dist*road_dist, -
water_dist*PDSI). Elk ID random 25 -18106.30 36263 37.98 3.00E-09 
Full*(-IRG*road_dist, -water_dist*PDSI). Elk ID random 25 -18107.15 36264 39.67 1.29E-09 
Full*(-water_dist*PDSI). Elk ID random 26 -18106.28 36265 39.95 1.12E-09 
Full*(-IRG*water_dist, -IRG*road_dist, -
water_dist*road_dist, -water_dist*PDSI). Elk ID random 23 -18113.12 36272 47.61 2.43E-11 
Full*(-water_dist*road_dist, -water_dist*PDSI). Elk ID 
random 25 -18112.21 36274 49.79 8.18E-12 
Full*(-IRG*road_dist, -NDVI*road_dist, -water_dist*PDSI). 
Elk ID random 24 -18119.20 36286 61.77 2.04E-14 

*Full = Water_Distance + road_dist + NDVI + IRG + Water_Distance + PDSI+ TPI + slope+ Northness + Eastness 
+ Solar_Distance + Water_Distance*NDVI + Water_Distance*IRG+ Water_Distance*road_dist 
+Water_Distance*PDSI + NDVI*road_dist+ IRG*road_dist  
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Appendix O 

Appendix O: Standardized beta values of the top selection models explaining seasonal 2nd order 
habitat selection for a population of tule elk in California, USA. Values above 1 (blue) 
and below 1 (red) represent positive and negative effects, respectively. Agriculture was 
the reference class for the land cover terms. Error bars represent confidence intervals.  

 
Dry Season:  
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Wet Season: 
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Appendix P 

Appendix P: Map showing locations from collared individuals in the California Valley and 
Cedar Canyon subherds before and after solar farm construction. 
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Appendix Q 

Appendix Q: Habitat suitability maps created using the top landscape scale model for each 
season. The values for distance to water, NDVI, and IRG were calculated by averaging across 
December – April for the wet season and July-October for the dry season.  

 
Wet season: 
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Dry season:  
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Appendix R 

Appendix R: Land cover map of the study area with each individual elk’s home range overlaid.  
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