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ABSTRACT 

COHO SALMON (ONCORHYNCHUS KISUTCH) DISPERSAL AND LIFE HISTORY 

VARIATIONS AMONG HUMBOLDT BAY WATERSHEDS 

 

 

Madison J. Halloran 

 

The decline of Coho Salmon (Oncorhynchus kisutch) in California is the result of 

various anthropogenic effects across the landscape, affecting all stages of their 

anadromous life history. Monitoring a subset of the remaining populations is essential to 

evaluate the success of management actions and develop new restoration projects. 

Defining the appropriate spatial scale for this monitoring and restoration depends on the 

frequency and extent of dispersal of individuals across watershed boundaries. Coho 

Salmon life-cycle monitoring projects in California estimate the abundance of juveniles 

and adults over time in selected focal watersheds. If individuals frequently enter or leave 

the monitored watersheds for rearing or spawning, these abundance estimates might not 

accurately reflect the production and survival of individuals in the focal watershed. To 

address this issue, I assessed movement of Coho Salmon among watersheds along 

Humboldt Bay, including the life-cycle monitoring population in Freshwater Creek. 

Using individual tags and mark-recapture multi-state modeling, I quantified the 

frequency of juvenile and adult movement between Freshwater, Wood, Ryan, and Jacoby 

Creek over two years of life-cycle monitoring (2017-2019). Wood Creek and Ryan Creek 

are two connected sub-watersheds that share an estuary with Freshwater Creek, while 
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Jacoby Creek is separated from these other watersheds by Humboldt Bay. Straying of 

adults among watersheds was rare (only 2 individuals out of 51 tagged adult returns 

strayed into a stream with potential spawning habitat). Movement of juveniles through 

the full marine habitat in Humboldt Bay (between Jacoby Creek and the three other 

streams) occurred, but at low rates (3 fish out of 2492 individuals tagged in 2017 and 5 

fish out of 2614 individuals tagged in 2018). Movement of juveniles among Freshwater, 

Wood, and Ryan Creeks was relatively common (ranged from 250 fish out of 2492 

individuals tagged in fall 2017 to 354 fish out of 2614 individuals tagged in fall 2018).  

I developed a multi-state model structure to estimate the probability of individuals 

moving among watersheds while accounting for survival and imperfect detection, but 

parameter estimates from the global model were unreliable due to small sample size and 

violations of mark-recapture assumptions. A reduced model with fewer parameters 

provided more reliable estimates. Apparent survival in the second interval of the most 

parsimonious reduced model was 47.5% in 2017-18 and 29.5% in 2018-19. The reduced 

model estimated that <0.2% of juvenile fish crossed the bay in both years. However, 17% 

and 23% of juvenile fish moved between Freshwater, Ryan, and Wood Creeks in 2017-18 

and 2018-19 respectively. I also performed a power analysis with simulated data to 

demonstrate that a greater sample size of fall-tagged individuals would likely not provide 

more accurate model estimates for transition probability, as many of the transition 

probabilities are very close to zero. These results suggest the importance of scaling up 

monitoring efforts to include all connected areas upstream of marine habitats and suggest 

that it is less essential to monitor adjacent watersheds separated by full marine habitat.   
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INTRODUCTION 

Pacific salmon are ecologically important throughout their region and often used 

as an indicator species to characterize the health and productivity of watersheds. Salmon 

remain economically important throughout their range in both commercial and 

recreational fisheries (Quinn 2011). In the 20th century, California’s salmon and steelhead 

populations experienced extreme declines in their distribution and abundance, leading 

many of the state’s salmonids to be listed under the California Endangered Species Act 

(CESA) and the Federal Endangered Species Act (ESA) as either threatened or 

endangered (Adams et al. 2011). Monitoring and recovering these listed populations 

requires a clear understanding of the spatial scale of dispersal during juvenile rearing and 

reproductive integration of populations of salmon living in nearby watersheds. For my 

thesis, I addressed these issues for an intensively-monitored population of Coho Salmon 

(Oncorhynchys kisutch) in Freshwater Creek and adjacent watersheds that flow into 

Humboldt Bay, California. 

Salmon that are born in different watersheds intermingle during their time in the 

ocean, but most individuals have a precise tendency to return to their natal rivers to 

spawn (Quinn 2011). Because of this, fisheries biologists have long recognized 

reproductive isolation of independent populations that spawn in different watersheds as a 

defining characteristic of Pacific salmonids (Waples 1991, Dittman and Quinn 1996, 

Hendry et al. 2000). This isolation allows for genetic divergence,  local adaptation, and 
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life history variation among populations with increasing spatial separation, based on 

regionally specific genetic diversity (Spence et al. 2008).  

The National Oceanic and Atmospheric Administration (NOAA) defines an 

independent population of any Pacific salmonid as “a collection of one or more local 

breeding units whose population dynamics or extinction risk over a 100-year time period 

is not substantially altered by exchanges of individuals with other populations” 

(McElhany et al. 2000). To manage for and conserve the local genetic and life history 

diversity of protected salmon, NOAA has defined groups of salmon populations in 

spatially-clustered watersheds along the West Coast as Evolutionary Significant Units 

(ESUs). The National Marine Fisheries Service (NMFS) has listed 27 salmon ESUs 

under the ESA since 1989 and created recovery plans and delisting criteria for these 

groups of salmonids (Spence et al. 2008). The ESA is primarily concerned with the 

viability and persistence of an ESU as a whole, not all of the individual populations 

within each ESU (McElhany et al. 2000), under the assumption that the ESU scale 

captures the spatial scale of local adaptation.  

While the legal protection for salmonids operates at the ESU level, which 

incorporates many watersheds, the practice of protecting them through monitoring and 

evaluation of restoration activities typically take place at the population level, within a 

single watershed. Though much of the focus in modern salmon management has been 

placed on the conservation of genetic diversity in local, independent populations, Pacific 

salmonids have persisted for millennia through the exchange of individuals between 

spatially discrete populations (Rich 1939; Schtickzelle and Quinn 2007). Recent studies 
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have demonstrated that straying in wild populations is not merely a “failure to home”, but 

rather a critical evolutionary feature of salmonid biology, allowing a buffer to protect a 

population against natural variation in resources, as well as environmental catastrophes 

(Keefer and Caudill 2014). The Southern Oregon/Northern California Coast (SONCC) 

Coho Salmon ESU Recovery Plan acknowledges the potential for interactions between 

neighboring populations through their labeling of “core” and “dependent” populations, 

implying that a “core” population of a salmonid species will be able to assist the recovery 

of their neighbors through the movement of individuals (NMFS 2014), providing 

resilience to both anthropogenic stressors and catastrophic natural events (Adams et al. 

2011). Because of this and other potential life history variations, recovery plan designs 

include strategies that account for the potential movement of individuals between 

populations, however, the frequency and importance of interactions between populations 

of different watersheds is often unknown (Lawson 2009). As salmon habitat becomes 

more fragmented through human actions, the need to better understand interactions 

between connected salmonid populations only grows. 

Previous investigations of salmon dispersal among watersheds have most often 

focused on adult straying during their reproductive migration (Quinn 2011). Straying of 

adults has a clear effect on a donor population, as an adult that strays from its natal 

stream to reproduce elsewhere displaces its demographic contribution from one 

watershed to another. Straying can have varying effects on a small recipient population 

beyond the demographic contribution. Strays potentially contribute traits that improve the 

fitness and viability of the donor population, but the opposite can also happen. For 
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example, even very low (~1 percent) stray rates from large donor populations can 

“swamp” smaller, locally-adapted populations with an influx of individuals that lack 

adapted traits (Keefer and Caudill 2014).  

In addition to straying as adults, salmon may also disperse among watersheds as 

juveniles. Juvenile dispersal occurs when a pre-smolt salmon leaves its natal stream to 

rear in another watershed before going to sea. This form of dispersal provides no direct 

demographic contribution of recruitment to the non-natal stream, unless the fish also 

returns as an adult to reproduce there. However, if a non-natal juvenile salmon is 

included in monitoring activities for a watershed or not included in production estimates 

for its home watershed, then frequent juvenile dispersal could bias estimates of 

population survival and outmigration. Movement of different life stages among 

watersheds could have important consequences for Pacific salmon populations, and has 

been investigated in Washington (Bennett et al. 2015, Roni et al. 2012), yet this scale of 

dispersal has not been studied rigorously in California. 

Coho Salmon are a species of anadromous salmon, found along the West Coast of 

the United States and Canada. Aptos Creek, in central California, now represents the 

southernmost extent of their range, although historically they were found as far south as 

the San Lorenzo River in Santa Cruz County (Olswang 2017). Where populations remain, 

the abundance of Coho Salmon in California is a small fraction of historic levels. The 

decline of Coho Salmon in California is a result of various anthropogenic activities across 

the landscape, affecting all stages of their anadromous life cycle. These activities include 

stream alterations, urbanization, mining, logging, loss of genetic integrity due to reduced 
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stocks and hatchery salmon production, overharvest of adults, damming and climate 

change (Bradford and Irvine 2000, Brown et al. 1994; Spence et al. 2008 and references 

therein).  

Coho Salmon throughout the Pacific Northwest typically follow a three-year life 

cycle. Juveniles remain in fresh water for one full year before migrating out to the ocean 

as smolts during the spring, usually between the months of March and May (Sandercock 

1991, Brown et al. 1994). Most adults spend approximately 18 months at sea, before 

returning to their native stream to spawn and die. However, there are several common 

variations to this typical life history, including “jacks” (males that return at age two) and 

adults that stray from their natal stream to spawn. Some juvenile Coho Salmon migrate 

downstream to tidal estuary habitat prior to the spring smolt migration (Chapman 1962);  

the survival and reproductive success of these early emigrants is not well documented, 

but some do survive to return and spawn (Jones et al. 2014; Ghrist 2019). These 

variations provide temporal and spatial separation within populations, buffering against 

variable environmental conditions (Schtickzelle and Quinn 2007). However, they may 

also cause biased population estimates (Rebenack et al. 2015, Cochran et al. 2019) or 

affect the long-term viability of populations through transferred genetic adaptations 

(Spence et al. 2008).  

The Coho Salmon fry that move downstream early in their life cycle are referred 

to as “nomads” (Koski 2009). Initial research attributed nomad’s downstream movement 

to displacement by dominant, territorial individuals upstream, leading to the inference 

that nomads are forced into low-quality habitat and not likely to contribute to adult 
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returns (Chapman 1962). Juvenile Coho Salmon were historically thought to be intolerant 

of saline-waters found in estuaries (Crone and Bond 1976), making them unlikely 

candidates for volitional early migrations outside of their natal stream. More recent 

studies have since shown that nomad Coho Salmon can not only tolerate brackish water, 

but that the estuary ecotone may provide crucial, highly productive habitat for these 

individuals (Koski 2009). There is evidence that nomadic juvenile life histories can 

successfully contribute to adult returns, and are not merely “surplus production” as 

previously thought (Bennett et al. 2015, Gorman 2016, Osterback 2017). Adult Coho 

throughout the West Coast have also been shown to stray from their natal streams (Keefer 

and Caudill 2014, Quinn 2011), although due to a lack of analysis of juvenile movement 

data, it is difficult to say if adult straying is linked to non-natal movement at another life 

stage.  

My study on Coho Salmon dispersal and life history variations was located within 

the Humboldt Bay watershed. This area has some of the southernmost streams with 

robust spawning populations of Coho Salmon, and thus is crucial to the conservation and 

recovery of Coho Salmon. The Humboldt Bay population was included under the 

Southern Oregon/Northern Californian Coast (SONCC) ESU of Coho Salmon listed as 

threatened in 1997 (NMFS 2014). Humboldt Bay tributaries include Freshwater Creek, 

the site of a long-term, intensive Coho Salmon monitoring effort. The tributaries of 

Humboldt Bay outside of the Freshwater Creek watershed have not been regularly 

surveyed for juvenile Coho Salmon. Researchers have conducted spawner surveys 

throughout additional potential spawning tributaries to Humboldt Bay, but these adult 
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counts are intended to produce a single abundance estimate for the bay, not separate 

assessments of each tributary. Past studies of the Freshwater Creek population have 

assessed one life history variation – early emigration of smolts (Rebenack et al. 2015) 

and the effects this life history strategy might have on marine survival rates (Ghrist 

2019). More data is needed to analyze the population for additional non-natal life history 

variations that may further impact population abundance estimates or marine survival 

rates.  

Within the Humboldt Bay watershed, there have been indications for years that 

some Coho may display other alternative life history strategies, moving beyond the 

stream-estuary ecotone of their natal stream as either a juvenile or adult. Anecdotal 

evidence includes Freshwater Creek-tagged juveniles that were observed outmigrating as 

smolts from other streams (M. House, personal communication, 2017). Reports 

throughout the Pacific Northwest have documented similar alternative life history 

strategies for Coho Salmon, including juveniles entering saltwater before smoltification, 

and potentially moving between watersheds as pre-smolts, or later straying as returning 

adults (Bennett et al. 2015, Faukner et al. 2017, Koski 2009, Roni et al. 2012, Weybright 

and Giannico 2017). Based on these observations, Anderson et al. (2019) called for 

monitoring efforts at Freshwater Creek to be expanded to include nearby streams and 

seasonal habitat within Humboldt Bay, in order to better capture what specific habitat 

attributes outside of the natal stream might be needed to improve survival rates of 

juvenile Coho Salmon.  
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I used passive integrated transponder (PIT) tags and mark-recapture multi-state 

modeling to evaluate the movement of rearing juveniles and returning adults between 

four Humboldt Bay tributaries. It is important to increase our understanding of this 

population to develop more robust monitoring approaches that account for these 

variations in juvenile life history. These four tributaries form a spectrum of connectivity – 

Freshwater, Ryan, and Wood Creeks are all connected within an estuary system, while 

the mouth of Jacoby Creek is several miles away across Humboldt Bay, which represents 

a lower degree of connectivity by both distance and a more challenging salinity barrier. I 

hypothesized that there would be some movement between all four study creeks, with 

increased transition probability between creeks that were closer to each other and thus 

more connected. If there are enough Coho Salmon moving between these watersheds 

throughout their juvenile life stages, it may significantly alter the estimates of key 

demographic rates from the monitoring data that is collected entirely within Freshwater 

Creek. Effective management and monitoring protocols, as well as data analysis of the 

Freshwater Creek life-cycle monitoring station would then need to be expanded to 

include nearby watersheds. 
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STUDY SITE 

I evaluated movement of juvenile and adult Coho Salmon among four streams in 

the Humboldt Bay watershed: Freshwater, Wood, Ryan, and Jacoby Creeks. Humboldt 

Bay is located in Humboldt County, California, and is the second largest estuary in 

California. The Humboldt Bay watershed, which drains an area of 578 square kilometers, 

is mainly forested, and used for a mix of agricultural, residential, commercial, extractive 

or industrial purposes (HBWAC 2005). Most of the surrounding lands are used for timber 

production, with some residential areas and a small amount of agricultural and 

commercial use (HBWAC 2005). There are five tributaries to Humboldt Bay with known 

spawning populations of Coho Salmon every year: Jacoby, Freshwater, Ryan, and 

Salmon creeks, and Elk River. Numerous additional small tributaries may provide 

seasonal rearing habitat for Coho Salmon (NMFS 2014), for example, fish have been 

caught and observed on antennas in Wood Creek (Wallace et al. 2015). Freshwater Creek 

is the largest watershed in Humboldt Bay and the focus of most ongoing population 

monitoring efforts (Anderson and Ward 2016). Jacoby Creek and Ryan Creek are the 

Humboldt Bay tributaries closest to Freshwater Creek with documented adult Coho 

Salmon spawning and juvenile rearing habitat.  

Freshwater Creek is a 24 km stream and drains an 83 square-km watershed. There 

is a 6-meter waterfall approximately 14.5 kilometers up the main channel that is a barrier 

to anadromy (Rebenack et al. 2015). The surrounding land is mostly forested and has 

experienced considerable timber harvest, with some agricultural land use. Several small 
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residential communities are located throughout the watershed. Freshwater Creek is 

connected to Humboldt Bay by Freshwater Slough, which then drains into Humboldt 

Bay. There is a permanent weir in the main stem of Freshwater Creek managed by the 

California Department of Fish and Wildlife (CDFW) and Humboldt State University 

Sponsored Programs Foundation as part of a Life Cycle Monitoring (LCM) station. In 

California, LCM stations are intended to allow CDFW to assess the response of Coho 

Salmon populations to freshwater habitat management while accounting for fluctuations 

in abundance caused by changing ocean conditions (Adams et al. 2011). To meet this 

goal, the Freshwater Creek LCM is operated to fulfill several main objectives, which 

include estimating juvenile and adult abundance, as well as freshwater and marine 

survival rates of Coho Salmon. Data from the LCM station also helps to characterize the 

diversity of life history patterns present in this watershed. An adult trap is installed at the 

weir each winter to sample Coho Salmon returning to spawn, a smolt trap is used at the 

weir each spring to sample emigrating smolts, and radio frequency identification (RFID) 

antenna arrays are installed on Freshwater Creek annually to detect PIT-tagged juveniles 

and adults (Figure 1). Historically, fisheries data in Humboldt Bay has largely focused on 

Freshwater Creek due to the presence of this sampling infrastructure. Annual estimates of 

juvenile Coho Salmon smolt emigration using mark-recapture procedures at the weir trap 

sampling location ranged between 5,000 and 17,000 from 2007-2018 (Anderson et al. 

2019). Annual mark-recapture estimates of spawner abundance ranged from 600 and 

1,800 individuals for the years 2002-2017.   
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Jacoby Creek is an 18-km-long stream and drains a 45 square-km watershed. The 

anadromous reach ends approximately 9 km upstream from the mouth due to a waterfall 

that is impassable for salmonids (HBWAC 2005).  The mouth of Jacoby Creek is 

approximately 5 km north of the mouth of Freshwater Slough, connected by Humboldt 

Bay. Two restoration ponds were constructed on upper Jacoby Creek in 2016 and a lower 

channel network was constructed in 2018. During the first year of this study, two RFID 

antenna arrays were maintained at the upper Jacoby restoration pond, one at the off-

channel pond entrance and one just below the pond on the main stem of Jacoby Creek. 

During the second year of the study, one array was maintained near the upper Jacoby 

restoration pond, while two additional arrays were installed in lower Jacoby Creek, one at 

the entrance to the new off-channel restoration pond, and one on the main stem of Jacoby 

just below that pond entrance. 

Ryan Creek is a 10-km-long tributary that drains a 38 square-km watershed into 

Freshwater Slough. The lower one kilometer of Ryan Creek is tidally influenced. Ryan 

Creek was historically believed to provide poor salmon habitat due to its silty water and 

lack of coarse gravel substrate preferred by salmonids; however, significant numbers of 

adult Coho Salmon have been observed in the limited spawning habitat and juveniles 

have been captured throughout the creek from October to December. Previous PIT 

tagging studies have confirmed that Ryan Creek and its estuary also provides seasonal 

rearing habitat for juvenile fish originating from Freshwater Creek and its tributaries 

(Wallace et al. 2015). Ryan Slough provides approximately 4.5 km of anadromous 

habitat (HBWAC 2005). Until recently, approximately 76% of the Ryan Creek watershed 
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was owned by Green Diamond Resource Company and managed as timber lands. Green 

Diamond conducted some Coho Salmon monitoring at the site and CDFW conducted 

additional tagging and monitoring on Ryan Creek from 2013 – 2016 (Wallace 2015). 

Ryan Creek is connected to Freshwater Creek through Ryan Slough, so juveniles do not 

have to enter the bay to move between the two creeks. Ryan Creek has one PIT antenna 

array, located approximately 1 km upstream of its confluence with Freshwater Creek 

(Figure 1). 

Wood Creek is a 1.6 km stream that drains a <2 square-km watershed. There is no 

Coho Salmon spawning habitat in Wood Creek, but it feeds into a recently restored tidal 

wetland intended to provide rearing habitat for non-natal juveniles. The Wood Creek 

restoration contains a network of channels and ponds that were built in two phases. Phase 

1 was completed in 2010, and included the removal of a tidal gate, the construction of 

tide channels and the construction of an off-channel pond in the tidally-influenced area of 

Wood Creek. Phase 2 was completed in 2016, and included the construction of more tide 

channels to increase overwinter habitat for salmonids (Wallace et. al 2015). CDFW 

monitored the Phase 1 project area from 2007 until August 2017, and the Phase II project 

site from November 2016 through August 2017. In September of 2017, the National 

Marine Fisheries Service (NMFS) began monitoring water quality and fish assemblages 

in both Phase 1 and Phase 2 of the project area. This sampling occurs monthly from 

October to June (Pagliuco 2018). Two antennas arrays are maintained annually during the 

same months within the Wood Creek restoration site, one at the tide gate and one in the 

Phase 2 project area (Figure 2).  
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Figure 1. Humboldt Bay Tributaries, RFID antenna locations (triangles and squares), and 

spawner survey reaches (numbered) in the Freshwater Creek LCM station and adjacent 

streams for the 2018-19 monitoring season (Anderson et al. 2019). Antenna locations are 

abbreviated as: Lower Jacoby Creek/Pond (LJC & LJP), Wood Creek Tide Gate and 

Wood Creek Phase II (WCT & WCP), Freshwater Weir (FWW), Ryan Creek (RC), 

Howard Heights (HH), Middle Mainstem and Cloney Gulch (MMS & CLO). DSMT 

indicates the location of the downstream migrant trap. WCT & WCP also mark the 

location of the Wood Creek restoration study site (Figure 2). Inset shows location of 

Humboldt Bay on the West Coast of the United States (Google Maps). 
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Figure 2. Map of the Wood Creek restoration study site, courtesy of Bob Pagliuco. Eight 

sites (labeled Site 1, 4, and 6-11) were sampled monthly using seining and minnow 

trapping. Three PIT tag antennas are labeled, only the Tide Gate and Phase 2 (middle) 

antennas are currently operational. 
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MATERIALS AND METHODS 

I monitored movement for two juvenile (birth years 2017 and 2018) and two adult 

(return years 2017-18 and 2018-19) cohorts of Coho Salmon. I relied on the life-stage 

specific seasonal sampling and fish tagging efforts of the Freshwater Creek LCM 

program, supplemented with additional tagging and recapture efforts that I conducted at 

sites outside of the scope of the Freshwater Creek program. Each cohort was first 

sampled as young of the year (YOY) in the fall and subsequently detected at sampling 

events (described in detail below), stationary antennas arrayed through the study sites, or 

at the downstream migrant trap on Freshwater Creek. By June, most surviving juveniles 

had become smolts and migrated downstream to the ocean. Returning adults that were 

tagged as juveniles could also be detected at the stationary antennas or at an adult trap on 

Freshwater Creek.   

For the study years 2017-19, the staff of the Freshwater Creek LCM sampled and 

marked juvenile Coho Salmon in Freshwater, Jacoby, and Ryan Creeks each fall. I 

worked with employees from the Northcoast Regional Land Trust, NOAA Fisheries, and 

volunteers to conduct monthly sampling in Wood Creek from November to June each 

year. I also worked with the LCM staff and volunteers from HSU to conduct seine and 

minnow trap surveys several times each winter in the Jacoby Creek restoration ponds. In 

the upper pond, we used a 3-4 m x 1.5 m x 3.2 mm mesh seine net to sample the pond in 

two sections, with approximately 4 seine pulls in each direction, pulling towards the 

mouth of the restoration pond.  We also placed 10 minnow traps baited with hatchery 



16 

 

  

feed while we seined (at least 30 minutes). Seining was generally a more successful 

method than trapping in this pond. In the lower restoration area, volunteer crews used the 

same methods to sample twice during the 2018-2019 winter.  

The LCM staff maintained a downstream migrant trap annually from March to 

June on Freshwater Creek. Detailed field methods are described in Anderson and Ward 

(2016), and relevant aspects for a typical year are summarized below. In this monitoring 

structure, an individual fish may be encountered at one or more of the following steps as 

a cohort completes its life cycle: fall tagging and fall/winter antenna detections as a 

YOY, spring outmigrant tagging at the trap (Freshwater Creek only), outmigrant 

detection on the antennas, adult capture at the trap, adult detection at antennas, and adult 

detection on spawning ground surveys.  

The Institutional Animal Care and Use Committee (IACUC) approval number for 

this research was 15/16.F.79-A, which was first approved February 22, 2016. 

Fall Tagging 

The main stem and tributaries of Freshwater Creek were divided up into 10 

reaches, and all reaches have been sampled each year since 2010. The average number of 

pools sampled and fish tagged per pool vary by reach to balance the number of tags 

deployed across areas in each watershed. Jacoby and Ryan Creeks were similarly divided 

into reaches and sampled annually starting in 2017.  

The fall tagging effort for all three creeks (Freshwater, Jacoby, and Ryan) used 

systematic sampling, in which we seined every third pool along each reach for juvenile 



17 

 

  

Coho Salmon. Surveyors used a 3-4 m x 1.5 m x 3.2 mm mesh seine net to sample each 

pool until we captured the appropriate number of individuals to mark (goal of 9-12 per 

pool, depending on the reach). All salmonids were placed in a bucket and individually 

worked up by recording their fork length (FL) and wet weight before being tagged and 

released.  

Juvenile Coho Salmon with a FL greater than or equal to 60 mm were marked 

with a PIT tag. Individuals with a FL between 60-69 mm received a 9 mm tag (Biomark 

FDX), while those with a fork length longer than 69 mm received a larger 12 mm tag 

(Biomark HDX). Prior to tagging, all fish were anesthetized using tricaine 

methanesulfonate (<150 mg/L) or Alka Seltzer. PIT tags were inserted into the body 

cavity through a <2 mm incision made with a sterile scalpel anterior to the pectoral fin. 

We allowed fish to recover for approximately 20-30 minutes before returning them to the 

pool where they were sampled.  

Continued Tagging 

The Jacoby Creek restoration pond sites were seined approximately once a month 

during the winter and spring to supplement antenna detections. Two people pulled a 4 m 

x 1.5 m x 3.2 mm mesh seine net to sample an area for YOY. Any individual caught in 

the net was scanned for a PIT tag. Any individuals without a PIT tag already implanted 

received a PIT tag using the same technique described above for fall tagging. Some sites 

were sampled with roe-baited minnow traps that were left in place for 30 minutes to an 

hour. 
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Sampling in Wood Creek began in 2007, and since September 2017, the National 

Marine Fisheries Service (NMFS) has conducted monthly sampling of eight sites within 

two restoration areas there. Some sites were sampled with baited minnow traps, a 9.1m x 

1.8m x 6.4 mm mesh beach seine, or both (Pagliuco 2018). The same scanning and 

tagging procedure as described in Jacoby Creek was followed on Wood Creek. 

Antenna Detections 

Six antenna arrays located throughout Freshwater Creek (Figure 1) were operated 

continuously from mid-November to early June each year. In January of 2018, we 

installed an additional antenna array in lower Jacoby Creek. Ryan Creek has had one 

antenna array installed since 2015. The arrays were a mix of dual-platform readers that 

detect both HDX and FDX tags and single-platform readers that only detect HDX tags, so 

some were unable to detect the 9 mm PIT tags (Figure 1). Antennas located in Jacoby 

Creek, upper Freshwater Creek and its tributaries were only able to detect the 12 

mm/HDX tags, while the Freshwater weir antenna arrays, Ryan Creek array, Wood Creek 

tide gate (WCT) and pond (WCP) antenna arrays read both half and full duplex tags 

(Anderson and Ward 2016). All antennas were operational for different periods of time 

throughout each study year (Table 1).  
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Table 1. Date ranges all RFID antennas were operational for each study season. 

Antenna name 2017-2018 Season 2018-2019 Season 

Upper Jacoby Creek Pond 01/03/2018 - 04/30/2018 10/23/2018 – 3/6/2019 

Lower Jacoby Pond N/A 11/24/2018 – 7/1/2019 

Lower Jacoby Creek N/A 11/23/2018 – 7/1/2019 

Ryan Creek 08/29/2017 - 07/12/2018 11/20/2018 – 7/8/2019 

Middle Main stem Freshwater Creek 10/18/2021 - 07/12/2018 10/15/2018 – 1/13/2019 

Howard Heights, Freshwater Creek 11/08/2017 - 07/12/2018 10/18/2018 – 6/28/2019 

Freshwater Creek Weir 10/18/2017 - 07/12/2018 11/20/2018 – 7/6/2019 

Wood Creek Tide Gate 8/24/2017 - 7/09/2018 10/30/2018 – 6/17/2019 

Wood Creek Phase 2 8/24/2017 - 7/09/2018 11/18/2018 – 6/23/2019 

 

Smolt Trapping 

A downstream migrant, or “smolt” trap is installed annually at the Freshwater 

Creek weir in early March (weather and flow dependent). The LCM staff continued to 

use similar methods to the past 16 years of smolt trap operation (Anderson and Ward 

2016). The trap was checked daily, and all individual fish were scanned with a handheld 

scanner to check for PIT tags. Each day, a sample of previously unmarked age 1+ Coho 

were marked with PIT tags. Both individuals recaptured from fall tagging and newly 

marked individuals had their fork length and weight recorded. The LCM staff typically 

estimates capture efficiency of the weir by releasing marked fish upstream of the weir 

and tracking how many are recaptured in the trap. These smolts could also potentially be 

detected on one or more of the Freshwater Creek antennas during their outmigration. 

Tagged juveniles in the other two creeks were detected by the stationary antennas during 

this time of year.  
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Adult Returns 

Adult Coho Salmon were detected at the adult trap at the weir on Freshwater 

Creek, or as antenna detections as the adults return to any of the study tributaries from 

Humboldt Bay. Tagged adults were also recorded during spawner surveys in the winter 

between November and February, but these were less common than detections from the 

antennas or weir. During these surveys, field technicians walked all reaches of 

Freshwater Creek and counted both live and dead fish that were encountered. Carcasses 

were scanned for PIT tags when possible.  

Multi-state Modeling Framework 

The Freshwater Creek LCM has used the Cormack-Jolly-Seber (CJS) mark-

recapture model (Cormack 1964; Jolly 1965; Seber 1965) to estimate overwinter survival 

of juvenile Coho Salmon that are marked in fall and recaptured during the spring smolt 

outmigration for nine years. In a CJS model, sampling events are called “occasions” and 

the time between events is an “interval”. The CJS model estimates two key parameters: 

detection probability (p) for each occasion, as well as apparent survival (Φ) for each 

interval. In this modeling strategy, the survival parameter is referred to as “apparent 

survival” because there is no way to determine if a marked fish permanently left the 

sampling system (the stream) or died. This basic model structure highlights the 

importance of understanding movement across a watershed, because a fish that simply 

moves to another stream before the expected migration period would be considered dead 
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in a single stream monitoring approach. If this happens at large enough rates, “apparent” 

survival may experience a significant negative bias as an estimate of “true” survival. 

For my modeling purposes, I expanded the basic CJS model into a multi-state 

mark-recapture (MSMR) model. In this modeling strategy, each stream is a different 

“state” (s) and each season in the sampling structure represents an “occasion” (t). In my 

global model, apparent survival (Φ) and transition probability (Ψ) are estimated for the 

intervals (v) between occasions and vary with time and state (s). For example, the 

estimate of apparent survival in the first interval (between occasions 1 and 2) will be 

different depending on if a fish is in Freshwater Creek or Jacoby Creek, thus Φ1, F ≠ Φ 1, J.   

During each interval (v) between occasions, the fish must survive before it can 

either move to a new “state” or remain in the same one. To determine the rate of juvenile 

dispersal, Program MARK estimated the parameter “p” (detection probability) for each 

occasion for each stream (pt,s) as well as two parameters for each interval (represented by 

arrows in Figure 3): Φ v,s or apparent survival during the interval in each state, and Ψ v,s, 

the conditional probability that an animal moved from one state to another at the end of 

said interval. In my global model, all of these parameters vary between occasions. For 

example, in the global model, detection probability at Occasion 2 is different for 

Freshwater Creek fish (state “F”) and Jacoby Creek fish (state “J”), thus p2,F ≠ p2,J. This 

parameter “p” is estimated from the total antenna detections, including individuals that 

are known to be alive (because they are detected at subsequent occasions) but are not 

detected. Fish that are tagged in different locations may have different detection 

probabilities because of the many factors that can vary in each stream, antenna array, 
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trap, or sampling effort. This variation is captured by allowing the detection probability 

to vary by stream, occasion, and tag type (HDX versus FDX PIT tags). 

Survival was estimated for each interval based on the fish that are detected at time 

i + 1 compared to time i, after accounting for p. No evidence of tag-induced mortality 

was identified using analysis of tagging effects during a tag study conducted in the 2010 

and 2011 field seasons for this study area (Hauer 2013).  The movement parameter is 

conditional on the fact that the individuals first survived the interval. The probability that 

an animal moved from one state to another between each occasion (Ψ) is complimentary 

for all four states, i.e. the four Ψ estimates, plus the probability of remaining in the 

current state must add up to 1 for each interval in each capture history.  

I constructed capture histories for each individual that were based on a series of 

four occasions that correspond to the different types of encounters at different times of 

the year: fall juvenile tagging, winter antenna detections, and spring smolt trapping, 

tagging, and antenna detections (Tables 2 and 3).  Fish that were detected were assigned a 

state based the stream where the detection occurred (F=Freshwater, W=Wood, R=Ryan, 

J=Jacoby). Occasions were defined by the corresponding data collection methods. For 

example, the “spring” occasion starts when the smolt trap is installed, which varies from 

year to year (Tables 3 and 4). These are biologically arbitrary dates that have no direct 

correlation to salmon life history, but my modeling structure is confined to this because 

of how the sampling protocol is structured. Fish that emigrate before the smolt trap is 

installed will have a different probability of detection than individuals that do not, 

because the early emigrants will not be caught at the trap. Because of this modeling 
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structure, it is not possible to conduct a temporal covariate analysis, as the seasonal 

intervals I used were too long to capture the short-term response to discrete events. I 

analyzed years separately in the global model. 

 

 

Figure 3. A conceptual diagram of the general model for one cohort. Each column 

corresponds to one of the four mark-recapture occasions: occasion one is in-hand tagging 

of YOY during the fall (October-November), occasion two is antenna detections and in-

hand capture during winter seining events (November-March), occasion three is spring 

antenna detections and occasion four is either a secondary, downstream antenna detection 

or an in-hand detection at the weir downstream migrant trap. Rectangles represent 

occasions, and letters represent states, which are the four study creeks: Freshwater (F), 

Jacoby (J), Ryan (R), and Wood (W). All arrows represent Φ x Ψ, where individuals first 

must survive (Φ) and then transition to a new state (Ψ). In the final interval of this model, 

survival is fixed to 1 and transition probability is fixed to zero. 
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The global model has a large number of parameters, so I also constructed a 

reduced model to increase the likelihood of model convergence. For this model, I made 

simplifying assumptions to reduce the number of parameters. First, I assumed that 

apparent survival (Φ) is occasion-dependent, but is constant among the four states 

(creeks). Second, I assumed that the probability of transitioning to a new state (Ψ) only 

varies between two groups: the individuals that cross the bay at some point (from Jacoby 

to the Freshwater complex, or vice versa) or those that do not, so reciprocal transitions 

are the same parameter.  For example, in this model structure, for the first occasion, i,j = 

R, W, F, and Ψi,j, 1 = Ψj,i, 1 where i≠j, while ΨFJ, 1 = ΨRJ, 1 = ΨWJ, 1 = ΨJF, 1 = ΨJR, 1 = ΨJW, 1 

(Figure 4). In this reduced model I retain a covariate for tag group (HDX or FDX) to 

account for the variation in detection probability between antenna types. 

To find the most parsimonious model with this data set, I conducted a model 

selection test for four alternatives of the reduced model, combining both years of data 

(2017-2018 and 2018-2019). The models were constructed as follows, with the final 

transition fixed to zero in each model structure: 

 Model 1: Apparent survival (Φ) and transition (Ψ) vary between years; 

 Model 2: Apparent survival (Φ) and transition (Ψ) are constant between years; 

 Model 3: Vary apparent survival (Φ) between years; 

 Model 4: Vary transition (Ψ) between years. 
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Figure 4. Parameter index matrix diagram, showing the model structure for my original 

reduced model. The top row shows the parameter numbers for the model. The first 

column shows the name of each parameter, which are apparent survival (Φ), detection 

probability (p), and the probability of transitioning to a new state (Ψ). Letters denote the 

“state”, which is one of the four study creeks: Freshwater (F), Jacoby (J), Ryan (R), and 

Wood (W). If two parameters are set to be equal, they will have boxes shaded in gray for 

the same parameter number. In the final interval, survival is fixed to one (Parameter 3) 

and transition probability is fixed to zero (Parameter 33). 
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Simulations 

I tested the full model structure on a set of encounter histories generated in 

Microsoft Excel using preliminary estimates of model parameters from my raw data, and 

sample sizes similar to my field study. I ran the simulated data set as a data input file in 

Program MARK to demonstrate the validity of a four state mark-recapture model for 

estimating survival and movement among locations for Coho Salmon in the study 

tributaries. This preliminary model was able to accurately estimate the input parameters 

(Appendix A).  

To test how parameter estimates could be improved with increased sample size, I 

conducted a power analysis using the simulations function in Program MARK. For this, I 

used beta values that reflected biologically plausible estimates for this system. Survival 

between occasions 1 and 2 were based on actual overwinter “apparent survival”, or the 

percentage of fall-tagged fish that migrated during the spring smolt trapping period in the 

2017-18 season, which ranged from 14-25%. Detection probabilities were set to be 60% 

for all occasions and all creeks. Transition estimates for the input parameters were 

approximately twice the rates we observed, allowing for imperfect detections in the 

empirical data. I fixed the survival parameter in the final interval to 1 for all fish, and the 

transition probability to 0, constraining the fish to stay in the same creek between 

occasions 3 and 4, which reflected how I ran my empirical models. I created four levels 

of sample sizes, varying the number of tagged fish released in the first occasion (Table 

2), in order to simulate the fall tagging occasion in my model (Figure 3). The first level is 
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an approximate number of tags that is put out annually in our monitoring effort (2350 

tags total, of which 1000 each go into Freshwater and Jacoby, 250 in Ryan and 100 in 

Wood Creek), and the three levels after that double (Power 2), triple (Power 3), and 

quadruple (Power 4) the number of tags from the initial level.  

 

Table 2. Set up of power analysis, number of releases per simulated “creek”. Power 1 

approximates the number of fish that are actually fall-tagged in each creek during our 

study years. 

 

 Power 1 Power 2 Power 3 Power 4 

Freshwater 1000 2000 3000 4000 

Jacoby 1000 2000 3000 4000 

Ryan 250 500 750 1000 

Wood 100 200 300 400 

Total 2350 4700 7050 9400 

 

Data Analysis 

After completing each season of field work, the data was entered into an Access 

database and checked for accuracy of transcription. I cleaned the antenna detections using 

an R code developed by a previous graduate student (G. Scheer, personal communication, 

2018), queried the data to isolate the years and individual fish relevant to this study, 

exported this as an Excel file, and created a capture history for each fish. Ultimately, my 

final database contained a series of detections for each fish that was marked with a PIT 

tag. These detections were transformed into capture histories for each individual 

(Appendix B) and analyzed using a multi-state Cormack-Jolly-Seber (CJS) mark-
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recapture model in Program MARK (version 8.2). Due to the variation throughout this 

study in RFID antennas, not all antennas were able to detect both FDX and HDX tags, 

which reduced my overall detection capability.  

The assumptions of a multi-state CJS model are as follows (Calvert et al. 2009):  

(1) all tagged animals were assigned the correct state; (2) tags were not lost; (3) tagging 

did not affect the survival, detection or movement of the animals; (4) every individual in 

a state was subject to the same survival, capture and transition probabilities; (5) the fate 

of each individual was independent of the fates of others; (6) sampling was 

instantaneous; and (7) all emigration from the sample area was permanent. If one or more 

of these assumptions is violated, there may be overdispersion of the data leading to less 

accurate parameter estimates. I used a median ĉ test in Program MARK to evaluate 

goodness of fit.  

The estimates for survival and detection probability are confounded in the final 

interval of a mark-recapture model, so in order to estimate the parameters for my main 

interval of interest, overwinter survival and transition probability (“Interval B”), I needed 

one additional occasion, which is why the “spring” time period is divided into Occasions 

3 and 4, or “Spring #1” and “Spring #2” (Figure 3). In Freshwater and Wood Creeks, I 

was able to use two different antenna arrays (or in the case of Freshwater, an array and 

the downstream migrant trap) for these two spring occasions. In Ryan and Jacoby Creeks, 

I had to split an array to use the upper and lower antennas as separate occasions 

(Appendix B). This may violate the 5th assumption of CJS models, that every individual 

represents an independent sample, as environmental conditions or power source issues 
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that affect detection efficiency would affect antennas in the same array similarly. 

Regardless of if the detection method used separate or split arrays for detections in 

Occasions 3 and 4, all of those locations are spatially very close to each other, so I fixed 

the survival parameter (Φ) to 1 and the transition probability (Ψ) to 0 for the third interval 

in all of the creeks.  

 

Table 3. Occasion structure for the 2017-18 study season, detailing the data input for each 

seasonal occasion for each state: Freshwater, Wood, Ryan, and Jacoby Creeks. 

 
 

Occasion 1 

Fall 

Occasion 2 

Winter 

Occasion 3 

Spring #1 

Occasion 4 

Spring #2 
 

10/1/17-11/20/17 11/21/17-03/09/18 Spring #1 and #2 (3/10/18 - 6/13/18) 

Freshwater Fall tagging Winter antenna (any) FWW antenna FW Weir DSMT 

Wood  Detection/in-hand  Detection/in-hand WC Phase 2  WC Tidegate 

Ryan Fall tagging Winter antenna (any) RC1 antenna RC2 antenna 

Jacoby Fall tagging Winter antenna (any) JC1 antenna JC2 antenna 
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Table 4. Occasion structure for the 2018-19 study season, detailing the data input for each 

seasonal occasion for each state: Freshwater, Wood, Ryan, and Jacoby Creeks. 

 

 
Occasion 1 

Fall 

Occasion 2 

Winter 

Occasion 3 

Spring #1 

Occasion 4 

Spring #2 

10/2/18 - 11/8/18 11/9/18 - 3/18/19 3/19/19 – 6/24/19 

Freshwater Fall tagging Winter antenna (any) FWW antenna FW Weir DSMT 

Wood Antenna/in-hand Antenna/in-hand WC Phase 2 WC Tidegate 

Ryan Fall tagging Winter antenna (any) RC1 antenna RC2 antenna 

Jacoby Fall tagging Winter antenna (any) LJP antenna LJC antenna 

 

In addition to the juvenile data analysis outlined above, I used adult return data 

from the weir trap, carcass surveys, and antenna detections. Originally I had intended to 

use these data to model adult returns in a separate analysis from the juvenile dispersal 

model, and thus examine the rate of adult straying by comparing the last detection of their 

smolt state and the basin of adult return. Unfortunately, there are too few tagged adults 

returning for capture-recapture modelling, so I evaluated stray rate simply by tabulating 

the number of tagged adults that return to streams other than their natal stream relative to 

the total number of tagged returns and the total number of tagged outmigrants. An 

evaluation of the proportion of adults that stray from their natal stream has not been 

conducted before, so even this single documentation represents a valuable contribution to 

the monitoring program. 
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RESULTS 

The results of this study are separated into four sections: a summary of the 2017-

18 data, a summary of the 2018-19 data, results of the empirical multi-state modeling 

analysis, and results from the model evaluation using simulated data. 

2017-2018 Data Summary 

 2492 PIT tags were applied to juvenile Coho in the 2017-18 study season across 

the four study creeks (Table 5). Of these fall- and winter-tagged fish, 697 (28%) were 

detected again on at least one occasion. There were 55 unique capture histories that 

occurred in this study season, 26 of which had greater than 5 occurrences (Figure 5). Fish 

that were tagged in the fall and never detected again (J000, F000, R000) were among the 

most common capture histories. These individuals represented approximately 96.9% of 

Jacoby fall-tagged fish, 49.1% of Freshwater fall-tagged fish, and 69.4% of Ryan fall-

tagged fish. Three fish moved across Humboldt Bay in this cohort year, with one 

individual and two individuals exhibiting the capture histories 0JFF and J00W, 

respectively (Table 6). Movement occurred at a much higher rate between Freshwater, 

Ryan, and Wood creeks through the shared estuary/slough area. 
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Table 5. The number of fish that were tagged in each of four Humboldt Bay Tributaries: 

Freshwater Creek, Ryan Creek, Wood Creek and Jacoby Creek in each season of the 

2017-18 study year. 

Creek Fall Winter 

Freshwater 1153 0 

Ryan 248 0 

Wood 0 67 

Jacoby 1091 97 

 

 

 

 

Figure 5. All capture histories that had 5 or more individuals and in which the individual 

was detected at least once after fall-occasion release for study year 2017-2018. 
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Table 6. Summary table of fish detected in a creek in either the winter or spring occasions 

that was different than where they were tagged as a YOY in the fall of 2017 or winter of 

2017-18. The number of fall tags applied in each creek are noted in parentheses in the 

first column. Creeks are listed in order of connectedness. Shaded boxes denote a 

movement across Humboldt Bay. An individual fish could be counted in more than one 

creek if they moved between occasions. 

Detection Creek 

T
a
g
g
in

g
 C

re
ek

 

 Freshwater Wood Ryan Jacoby 

Freshwater 

(1153) 
355 139 84 0 

Wood 

(67) 
3 38 1 0 

Ryan 

(248) 
0 20 55 0 

Jacoby 

(1188) 
1 2 0 27 

 

 

There were 2058 juveniles tagged in the 2015-16 season throughout Freshwater, 

Wood, and Ryan creeks. This is the cohort that returned to Humboldt Bay as adults in the 

winter of 2017-18. Seven juvenile-tagged adults returned to Freshwater Creek and were 

caught at the weir. Only three of these individuals were ever detected on RFID antennas, 

and all seven were tagged at the Freshwater Creek weir downstream migrant trap in the 

spring of 2016 during the juvenile migrant trapping survey. A total of 23 juvenile-tagged 

adult fish were detected on antennas at least once, and three of these adults were detected 

in non-natal streams. All three of the adults detected in non-natal streams had been 

tagged during a Freshwater Creek juvenile survey. Two were detected as adults on a 

Ryan Creek antenna, and one was detected on a Wood Creek antenna. Wood Creek does 



34 

 

  

not provide any spawning habitat, so adult detections here do not represent straying that 

would have any effect on reproduction demographics.  

In total, 31 fish were detected on antennas during the 2017-18 data year that were 

tagged as YOY in the fall of 2016 or as pre-smolts and smolts in the spring of 2017. All 

of these were tagged at the Freshwater Creek weir downstream migrant trapping in the 

spring of 2016 during the juvenile migrant trapping survey. Without having them in hand, 

it is difficult to say whether these ambiguous individuals detected on the antennas were 

fish that outmigrated and came back after less than a year at sea (jacks) or if they never 

outmigrated and remained in the system as two year old smolts. Six additional fish were 

described as jacks when they were caught in hand during the 2017-18 Freshwater Creek 

HFAC weir Adult Trapping survey. 

Four of these adults were detected on antennas in “non-natal streams” (they were 

tagged during a Freshwater Creek survey and detected on a Wood Creek or Ryan Creek 

antenna). One of these fish displayed exploratory movement behavior, and was detected 

on three different Freshwater Creek antenna arrays as well as detected on the Ryan Creek 

array (Appendix C). This fish was tagged during the 2016 Freshwater Creek over-winter 

survival fall tagging event as a YOY. It was next detected on the Freshwater Creek weir, 

middle main stem, and Howard Heights antennas in January and February of 2018. Its 

final detection occurred moving upstream on the Ryan Creek antenna array on February 

2, 2018, approximately 5 hours after its final detection on the weir antenna. Because this 

fish was never captured in hand again after the initial tagging event, it is not possible to 
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say where it spawned. Additionally, this individual is another example of an ambiguous 

adult – I cannot determine if it is a jack or a two-year old smolt from this antenna data.  

2018-2019 Data Summary 

2614 PIT tags were applied to juvenile Coho in the 2018- 19 study season in the 

four study creeks (Table 7). Of these fall and winter tagged fish, 974 were detected again 

at some point. There were 64 unique capture history types detected in the study year 

2018-19. Twenty-nine of these capture history types had 5 or more fish detected in this 

study year (Figure 6), and 35 capture history types had fewer than 5 occurrences. Fish 

that were tagged in the fall and never detected again (J000, F000, R000) were 

overwhelmingly the most common capture history again in this study year. These 

individuals represented approximately 72.4% of Jacoby fall-tagged fish, 52.2% of 

Freshwater fall-tagged fish, and 76.5% of Ryan fall-tagged fish. The detection percentage 

of Jacoby fall-tagged fish improved between the two study years, associated with the 

additional antenna installed at the new restoration site, while the detection of fall-tagged 

fish in the other two creeks declined slightly. 

There were 340 non-natal fish detections (fish that were tagged in one creek and 

detected in another) in this study year (Table 8). Five fish exhibited cross-basin 

movement behavior in this cohort year with the capture histories JF00, JR00, JW00, 

R0JJ, and F0J0. None of these histories occurred in the 2017-18 study year.  
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Table 7. The number of fish that were tagged in each of four Humboldt Bay Tributaries: 

Freshwater Creek, Ryan Creek, Wood Creek and Jacoby Creek in each season of the 

2018-19 study year. 

Creek Fall Winter 

Freshwater 1331 0 

Ryan 380 0 

Wood 0 1 

Jacoby 903 52 

 

 

 

Figure 6. All capture histories that had 5 or more individuals and in which the individuals 

were detected at least once after fall-occasion release for study year 2018-2019. 
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Table 8. Summary table of fish detected in a creek other than where they were tagged as a 

YOY in the fall of 2018. The number of fall tags applied in each creek are noted in 

parentheses in the first column. Creeks are listed in order of connectedness. Shaded boxes 

denote a movement across Humboldt Bay. An individual fish could be counted in more 

than one creek if they moved between occasions. 

Detection Creek 

T
a
g
g
in

g
 C

re
ek

 

 Freshwater Wood Ryan Jacoby 

Freshwater 

(1331) 
336 220 103 1 

Wood 

(1) 
1 0 0 0 

Ryan 

(380) 
11 14 63 1 

Jacoby 

(903) 
0 2 1 283 

 

 

There were 2037 juveniles tagged in the 2016-17 season throughout Freshwater, 

Wood, and Ryan creeks. This is the cohort that returned to Humboldt Bay as adults in the 

winter of 2018-19. Three juvenile-tagged adults returned to Freshwater Creek and were 

caught in hand at the weir. All were tagged at the Freshwater Creek weir in the spring of 

2017 during the juvenile migrant trapping survey, and all were detected at least once on 

antennas during 2018-19. 21 total adult fish were detected on antennas at least once 

(including the three caught in hand at the weir), and two of these adults were detected in 

“non-natal streams”, but both of these were tagged during a Freshwater Creek survey and 

detected on a Wood Creek antenna. As Wood Creek does not provide any spawning 

habitat, these adult detections do not represent straying that would have an effect on 

reproduction demographics, provided these adults eventually were able to spawn 

successfully elsewhere.  
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In December of 2018, one juvenile-tagged fish was described as a “jack” when it 

was captured in hand during the Freshwater Creek HFAC weir Adult Trapping survey. A 

total of 16 fish were detected on antennas during the 2018-19 data year that were tagged 

as YOY in the fall of 2017. Three of these individuals were detected in non-natal streams 

(they were all tagged as YOY in Freshwater Creek and detected in Ryan or Wood Creek). 

Without having them in hand, it is difficult to say whether these ambiguous fish were 

individuals that outmigrated and came back after less than a year at sea (jacks) or if they 

never outmigrated and remained in the system.  

Multi-state Modeling Results 

While the global multi-state model was able to converge in Program MARK v. 

8.2, it provided clearly erroneous estimates for many of the parameters in the model. The 

global model estimates (Appendix D) for detection and movement were obviously biased 

based on comparisons to results from previous studies (Rebenack et al. 2015, Anderson 

and Ward 2016, Ghrist 2019) and the raw data. For example, in 2017, the model 

estimated transition probabilities from both F to J and from J to F of >0.5 in the second 

interval, even though no fish were observed making the transition from F to J, and only 

one transitioned from J to F for the entire sampling season (Table 6). This was likely due 

to the model being over-parameterized, as well as the violation of many key CJS 

modeling assumptions. Even with the introduction of additional covariates, such as PIT 

tag type, I was unable to diagnose or account for these assumption violations because 

there were so few observations for many of the state transitions.  
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Program MARK was unable to complete a goodness-of-fit test on the 2018-19 

data using the global model, because every one of the simulated values generated a 

median ĉ of less than the observed value. The 2017-18 data also exhibited very poor 

goodness of fit. This means that there is likely an issue within the dataset, and indicates 

that that this model was not able to capture the reality of the system, or that the data 

violated some key assumptions of a CJS model.  

The reduced parameter model estimated that Φ (apparent survival) was 

approximately the same between the two study years (Figure 7). For the 2017-18 data 

year, the model estimated <0.2% of the fish crossed the bay throughout the first two 

intervals, but approximately 17% moved between Freshwater, Ryan, and Wood Creeks. 

For the 2018-19 data year, this model estimated <0.2% of the fish cross the bay 

throughout the first two intervals, whereas approximately 23% moved between 

Freshwater, Ryan, and Wood Creeks. The bootstrapped median ĉ test in Program MARK 

for this model was 2.11 for the 2017-18 data and 2.25 for the 2018-19 data, which 

indicated that the data were indeed over-dispersed.  
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Figure 7. A bar graph comparison of apparent survival (Φ) results from the initial reduced 

MSMR model for the two study years (2017-2019). In this model, survival is time-

dependent but does not vary between the four states. Error bars represent the standard 

deviation for the model estimates. 

 

Next, I combined both years of data (2017-2018 and 2018-2019) and conducted a 

model selection test for four alternatives of the reduced model. The bootstrapped median 

ĉ test in Program MARK for the most parameterized model (Model 1) was 2.14, which 

indicated that the data were again over-dispersed. To account for over-dispersion in the 

data, I used quasi-likelihood adjusted AIC (QAICc) values for model selection instead of 

AIC. QAICc values adjust for overdispersion and correct for small sample size (Burnham 

and Anderson 2002). I determined Model 3 (survival varies by year) to be the most 

parsimonious model by comparing QAICc values (Table 9). This indicates that survival 

varied between years, but transition probabilities were constant between years. In both 

years, apparent survival was higher in the first interval, and much lower in the second 
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interval, and cross-bay transitions were less likely than non-cross-bay transitions in 

intervals 1 and 2 (Table 10). 

Table 9. Model selection table for four variants of the reduced model structure, ranked by 

QAICc value. Models are listed in order from best supported to least supported model. 

QAICc is the difference in QAICc from the top model (Model 3) and QAICc Weight 

indicates the level of support for a given model. The number of parameters provided is 

the total number of parameters for the model, minus the number of parameters fixed 

when the model was run. 

Model 
 

QAICc QAICc Weight 
No. of 

Parameters 

3: Φ varies by year 0 1.00 56 

2: Φ and Ψ are constant 

between years 

71.83 0.00 54 

1: Φ and Ψ vary by year 323.75 0.00 60 

4: Ψ varies by year 11012.38 0.00 58 

 

Table 10. Real estimates for apparent survival (Φ) and transition (Ψ) from the top 

reduced model (Model 3). Survival varies by year, and is fixed to 1 in interval 3 for both 

years. The probability of transitioning to a new state (Ψ) varies between two groups: 

individuals that cross the bay at some point from Jacoby to the Freshwater complex, or 

vice versa (“cross-bay”) or those that do not (“no cross”), so reciprocal transitions are the 

same parameter. Transition is fixed to zero for interval 3 in both groups. 

Parameter Estimate SE Lower 95% CI Upper 95% CI 

Φ: Interval 1 (2017) 0.877463 0.056154 0.72011 0.9522223 

Φ: Interval 2 (2017) 0.474842 0.033858 0.409305 0.5412577 

Φ: Interval 3 (2017) Fixed to 1 - - - 

Φ: Interval 1 (2018) 0.999999 4.16E-04 0.906E-298 1 

Φ: Interval 2 (2018) 0.295312 0.013402 0.26974 0.322239 

Φ: Interval 3 (2018) Fixed to 1 - - - 

Ψ: Interval 1 (Cross-bay) 0.001232 6.97E-04 4.06E-04 0.00373 

Ψ: Interval 2 (Cross-bay) 0.001889 0.001119 5.91E-04 0.0060179 

Ψ: Interval 3 (Cross-bay) Fixed to 0 - - - 

Ψ: Interval 1 (No cross) 0.164996 0.007974 0.149955 0.1812233 

Ψ: Interval 2 (No cross) 0.039673 0.006917 2.81E-02 0.0556854 

Ψ: Interval 3 (No cross) Fixed to 0 - - - 



42 

 

  

Multi-state Power Analysis Results 

While the reduced model provided some reasonable estimates and informative 

results, it does not have the resolution to answer questions regarding the variation in 

survival and movement among the individual states. To mitigate this shortcoming, I 

tested the full model structure on simulated data in Program MARK. These data were 

generated using preliminary estimates of model parameters from the raw empirical data, 

which better met the CJS assumptions. The model was able to accurately estimate the 

input parameters in Program MARK at sample sizes similar to the field study (Appendix 

E). I then used Program MARK to generate and analyze multiple data sets (n = 1000) 

simulations over a range of sample sizes of fish released in the first occasion to conduct a 

power analysis, where the number of releases increased for each set of 1000 simulations.  

For the movement parameter Ψ in the second interval, a key parameter of interest for this 

study, the set of simulations with the highest accuracy for the Freshwater (F) to Jacoby 

(J) transition was the in the largest sample size, with 4000 fish released in two “states” 

representing Freshwater and Jacoby creeks, and 1000 and 400 released in “Ryan” and 

“Wood” states, respectively. This is evident in the parameter estimates for the second “J 

to F” transition as well as the second “F to J” transition, although the estimates for these 

rare transitions still converge on zero for some iterations of the simulation (Figures 8 and 

9). Estimating parameters that are naturally very small is likely to pose challenges for any 

analysis of empirical data sets with limited sample sizes, due to the difficulties posed by 

the boundary of zero.  
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Figure 8. Box and whisker plot showing the results of a power analysis for the estimate of 

Ψ in the second interval for the transition from Freshwater to Jacoby, with the lowest 

sample size represented by the box on the far left, increasing along the x axis to the right. 

The horizontal line represents the true beta value of 0.01. “Power” labels on the x axis 

refer to the power analysis laid out in Table 2.  
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Figure 9. Box and whisker plot showing the results of a power analysis for the estimate of 

Ψ in the second interval for the transition from Jacoby to Freshwater, with the lowest 

sample size represented by the box on the far left, increasing along the x axis to the right. 

The horizontal line represents the true beta value of 0.01. “Power” labels on the x axis 

refer to the power analysis laid out in Table 2.  
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DISCUSSION 

Researchers and managers along the Pacific Coast have an extensive history of 

studying Coho Salmon population ecology. In recent years, it has become apparent that 

alternative life histories may not be captured by traditional monitoring (Mobrand et al. 

1997, Bell and Duffy 2007, Koski 2009, Lawson 2009, and Bennett et al. 2015), which 

presents problems for accurate life-cycle modeling. When individuals with these life 

history variations are not accounted for, estimates of key demographic parameters such as 

overwinter survival and smolt abundance may be biased. 

Due to the many challenges of monitoring highly migratory fish populations in 

marine environments, salmon researchers primarily estimate marine survival rates by 

using the number of smolts outmigrating from a given watershed and the number of 

adults that return there (Cochran et al. 2019). These analyses make many assumptions 

about the consistency of Coho Salmon life history types, including that they always rear 

in their natal stream, outmigrate uni-directionally at the same time in the spring, and 

return to their natal stream as adults (Sandercock 1991, Brown et al. 1994). However, the 

literature has also acknowledged extensive examples of diversity, both within and among 

Coho populations, including variations in juvenile behavior, developmental rates, and 

physiology (McElhany et al. 2000). 

Various studies throughout the Pacific Northwest have begun to investigate 

juvenile life history diversity, including pre-smolt migration out of their natal streams. In 

general, the ability to accurately estimate demographic rates is impeded by a lack of 
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methodology to address alternative life history strategies used by juvenile Coho (Hauer 

2013), even as we understand this diversity is important to maintain populations. To more 

accurately understand population structure, the spatial and temporal scales of juvenile 

Coho dispersal throughout their range and their relative reproductive success following 

dispersal must be investigated more thoroughly (Schtickzelle and Quinn 2007). 

Researchers in Humboldt Bay have expanded the spatial and temporal scope of 

population studies several times as we learn more about the potential life history variation 

within the Coho Salmon life cycle in Freshwater Creek: first to include non-natal rearing 

habitat in the lower main stem (Rebenack et al. 2015) and then lower-basin wetlands and 

estuaries (Ghrist 2019). By conducting a more rigorous analysis of juvenile Coho 

movement between adjacent watersheds, this study sought to inform local fisheries 

managers if they need to expand the study of Freshwater Creek to nearby streams, in 

order to get a more accurate picture of Coho Salmon in this watershed.  

Anecdotal evidence from previous monitoring studies (Mike Wallace and Bob 

Pagliuco, personal communication) identified at least seven tagged Coho Salmon 

juveniles that travelled between tributaries of Humboldt Bay between 2005 and 2017. 

These fish were caught in hand during various restoration activities, and would not have 

been captured in the typical sampling schedule of the current life cycle monitoring 

program. After two years of monitoring specifically directed at detecting fish moving 

among basins, I found that movement between streams happened at relatively low rates. 

Even with this more focused monitoring of adjacent watersheds, I found low rates of 

juvenile dispersal and straying throughout the winter, which were comparable to the 
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annual rates observed within the anecdotal evidence. This is in agreement with other 

study systems along the West Coast that have documented similar alternative life history 

strategies for Coho salmon, including juveniles entering salt water before smoltification 

and moving between coastal watersheds as pre-smolts (Koski 2009, Keefer and Caudill 

2012, Bennett et al. 2015, Faukner et al. 2017). These non-natal transition estimates are 

usually low and frequently reported as raw data within a larger study.  

During their evaluation of downstream migrants, Bennett et al. (2015) identified a 

similar movement pattern among juveniles tagged in adjacent rivers that discharge to the 

Strait of Juan de Fuca in Washington. The Bennett et al. study tagged an average of 4330 

juvenile fish each fall for 6 years, and recorded 20-50 juveniles per year (0.46 - 1.15%) 

that left their fall tagging stream and were detected in another nearby stream after 

swimming through 1-4 kilometers of salt water. I observed a lower rate of only 0.12% 

(2017) and 0.19% (2018) of my tagged juveniles make a transition across Humboldt Bay, 

but the order of magnitude of this type of movement is similar between the two studies. 

Additionally, almost all of their juvenile movement was east to west, and I did not see a 

preference for movement direction across Humboldt Bay when data was corrected for 

detection issues. In general, it is difficult to directly compare study systems like these that 

cover a large area, include a variety of habitat, and may experience many differences in 

environmental factors that are difficult to categorize or quantify. 

Other studies that identified juvenile movement into non-natal watersheds 

identified rates closer to mine. A study of five adjacent creeks on the coast of Santa Cruz 

County detected 5 juvenile Coho in their non-natal watershed out of 2,167 tagged (an 
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average of 0.28%) from 2013-2016 (personal communication E. Kanawi 2018).  

Weybright and Giannico (2017) qualitatively evaluated juvenile Coho movement in one 

inlet of Coos Bay, Oregon and found the average maximum distance moved during the 

winter varied between 1.3 km – 5.7km, which is similar to the cross-bay distances 

traveled by the juveniles in my study. In 2013, a CDFW monitoring project identified two 

juvenile Coho in the Prairie Creek rotary screw trap (also in Humboldt County, CA) that 

were initially tagged in McGarvey and Hunter Creeks in Del Norte County, a journey that 

would have required 17 miles of ocean transit (Faukner et al. 2017).  The total number of 

fall-tagged juveniles was not reported, but this was described as a “previously 

undocumented life history behavior” in juvenile Coho in the Klamath river, and thus 

assumed to be a rare occurrence.  

Juvenile dispersal through Humboldt Bay to non-natal rearing habitat is relatively 

rare and does not occur uni-directionally (i.e. only from Jacoby towards the Freshwater 

basin, as might be expected for this particular outmigration route). This low number of 

cross-basin movements is an important result for the monitoring program, as it suggests 

that the alternative life history of juveniles moving between tributaries separated by 

Humboldt Bay is likely not introducing much, if any, bias into demographic estimates of 

Freshwater Creek. However, these results also suggest that future lifecycle monitoring in 

this system should account for juvenile movement throughout Wood, Ryan, and 

Freshwater Creeks, in order to more fully understand the Freshwater population 

estimates. Movements between these watersheds are frequent enough to potentially 



49 

 

  

introduce bias into our estimates, and monitoring should be scaled up to account for the 

area downstream of the Freshwater Creek DSMT where all three basins are connected. 

My global multi-state model had a high number of parameters to estimate. Given 

the rarity of movement among states, low detection probabilities, and relatively small 

number of tagged fish, I discovered that some of the potential life histories will 

effectively never appear in capture histories. My data also clearly violated multiple 

assumptions of the multi-state CJS modeling criteria. I suspect that there is some 

heterogeneity in this dataset that are not accounted for in the model, for example that my 

survival and transition probabilities could vary among individuals or sub-groups within 

the same tagging group during one interval. Although I included covariates to account for 

differences in detection probabilities within tagging groups, it was not sufficient to solve 

these issues. I may have missed some explanatory variable for differences in detection 

and movement probabilities, or some other issue within the dataset. For example, not all 

juveniles will move around during the long overwinter occasion, and the fish that do 

move are more likely to be detected on antennas, but less likely to be captured at the 

smolt trap on the subsequent occasion, which skews the capture histories. Additionally, 

although I fixed the survival and transition parameters in the third interval for all of my 

study creeks, there may still be issues with my detection probability, especially in the 

creeks where I had to split my final detections between two antennas in the same array. 

Based on findings from Deibner-Hanson (2019) in a nearby, similar watershed, this lack 

of independence within sampling infrastructure may have biased our detection probability 

low, by violating the CJS assumption that all detection events are independent. 
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Although my fully parameterized global model was not functional, a simplified 

version of that model did converge and yield plausible estimates. Apparent survival in the 

second interval of the most parsimonious reduced model was 47.5% in 2017-18 and 

29.5% in 2018-19. The estimates for apparent survival in both years fell within the large 

range of published values of between 5-49% (Crone and Bond 1976; Quinn and Peterson 

1996; Solazzi et al. 2000; Brakensiek and Hankin 2007; Roni et al. 2012). It also 

supported my hypothesis that individuals tagged in creeks with a higher degree of 

connectedness (i.e. Freshwater, Wood and Ryan Creeks) will have a higher probability of 

transition than creeks with a lower degree of connectedness (i.e. Jacoby Creek to the 

others). This is in agreement with other studies that highlight the importance of estuarine 

habitat connectivity to support life history diversity in the juvenile stage (Beechie et al. 

2013, Bottom et al. 2005, Roegner et al. 2010).  

While this simplified model gives us some reasonable estimates and informative 

results, it unfortunately does not have the resolution to draw any conclusions regarding 

the variation in survival and movement among an individual’s states. My model selection 

analysis of the two years of data combined indicated that the most parsimonious model 

allows survival to vary by year, while holding transition probability constant between 

years. This agrees with similar research that highlights variation in survival due to 

changing ocean conditions and stream conditions (Nordholm 2014), but it appears to 

disagree with previous studies that suggests juvenile Coho movement could be a response 

to a variety of factors that vary inter-annually, including fish density (Chapman 1962), 

food availability (Mason 1976), or physical conditions such as temperature or instream 
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flows (Hartman et al. 1982, Koski 2009, Lawson et al. 2004). This lack of agreement 

might be due to sample size, as my study was confined to two years of data, and there 

were few or no individuals for in many of the transition categories. Typically, LCM data 

for Freshwater Creek is analyzed on an individual year basis for the annual report. I 

suggest that this aggregate reduced model structure continue to be in the future to see if 

estimates can be improved with additional years of data.  

Due to the lack of resolution in my empirical data analysis, I also ran series of 

simulations to evaluate the sample size needed to more accurately estimate cross-basin 

transitions, and the set of simulations with the highest accuracy was the largest sample 

size. This indicates that I may be able to get more accurate model results with a larger 

sample size, due to the difficulty of detecting such a low transition rate. However, the 

simulated model still converged with sample sizes similar to the empirical data, 

highlighting that sample size was not my only issue in the empirical analysis. The biggest 

problem I identified with my real data is that the small sample size makes it difficult to 

diagnose issues, and just one or two unusual capture histories can make it difficult to 

estimate the low probability estimates, such as the transition rates that are close to the 

zero boundary. Given the range in estimates in the simulations, we would likely never 

reach a sufficient sample size to accurately estimate these low-frequency transitions.  

Importantly, this exercise demonstrates that this model is functional if all of our 

data meets the assumptions of a multi-state CJS model, which clearly the empirical data 

for these particular study years do not. The simulations do suggest that it might be 

possible to estimate these parameters of interest with a larger sample size. This could be 
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achieved if we aggregate multiple years of data for a small coastal stream population like 

ours, or if this study structure were applied to a much larger study population, such as the 

Columbia River estuary. 

I did not have any of the same survival or detection parameter estimation issues in 

the simulated data that we had in the empirical data, which lead me to conclude that there 

may be one or more additional variables not accounted for in this model that are 

confounding the parameters for survival and detection in the monitoring dataset. This 

study was also limited in design because not all antenna arrays on every creek could 

detect both HDX and FDX tags, so some fish were not able to be detected on some 

antennas. RFID antennas are known to have reduced read capabilities in brackish or 

saline water (Bass et al. 2014), which may have affected detection in some of our estuary 

locations as well. 

While this study was primarily focused on juvenile movement among Humboldt 

Bay tributaries, I also evaluated the rate of adult straying between the study creeks. In the 

Bennett et al. (2015) study described above, 4 out of 86 returning Coho adults had 

swapped streams as fall-tagged juveniles, and returned as adults to the stream where they 

had overwintered. Two were eventually detected returning to the original stream where 

they had been tagged, while the other two were not detected leaving again, and assumed 

to stay in the non-natal streams to spawn. These rates are similar to the adult returns in 

my study years, although I was unable to conclusively say if any adults spawned in a 

non-natal stream. 
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 In other systems, adult Coho Salmon have been found to stray from a donor 

population at rates between 1-17% in California (Keefer and Caudill 2014). This low of a 

straying estimate would be difficult to correlate to juvenile movement in my study 

system, due to our small sample size and low overall adult return rate. This program first 

tagged Jacoby Creek YOY Coho in the fall of 2017, so 2020 will be the first year there 

are juveniles returning to Jacoby as adults that were tagged as juveniles in what we 

assume is their natal stream. With this additional data, a large sample size of tagged fish 

might be able to identify if any fish that move across the bay as juveniles come back to 

their non-natal stream. Other studies have been able to show that juvenile dispersal away 

from natal sites can lead to higher local straying by adults (Hamann and Kennedy 2012, 

Anderson et al. 2013), however it is relatively difficult to observe this phenomenon in a 

study system like ours, with such low return rates. With current tagging rates, the odds of 

identifying this in our system are very low, as there were only three known cross basin 

juveniles from Jacoby in the 2017 cohort, and two in the 2018 cohort. Starting with the 

winter of 2019-2020, it will be interesting to see if Jacoby Creek has the same level of 

site fidelity as Freshwater Creek in regards to the adults or if Jacoby Creek natal-rearing 

fish regularly stray up Freshwater Creek.  

I recommend to continue monitoring the additional creeks in this study, in order 

to conduct an analysis of annual covariates as predictors for transition probability, such as 

water year or total rainfall, or the date of first fish movement between streams and the 

first flow event. This will test if there is increased cross-basin movement during wet 

years or high flow events within years, as observed by Van Vleet (2019). An analysis of 
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covariates, such as water year, might lend better insight into the mechanism for why 

juveniles would use the strategy of rearing in non-natal watersheds. I also support the 

recommendations of the LCM monitoring report for 2018 (Anderson et al.), which calls 

for continuing to focus on Coho movement in lower basin, off channel or seasonal 

habitat, in order to evaluate restoration opportunities. Continuing to collect and analyze 

movement data will be helpful in that effort. Overall, this multistate modeling approach is 

more inclusive of life history variation. Accounting for movement in and out of 

Freshwater removes potential bias that could arise from counting juveniles from other 

streams as Freshwater smolts at the downstream migrant trap 

This study highlights the importance of long-term monitoring projects and the 

importance of adaptive monitoring. Demographic rates are typically estimated at a single 

watershed level due to existing monitoring structures, which may not account for the full 

spectrum of Coho Salmon life history diversity in a system. In my study system, 

movement between streams did not appear to drastically affect the apparent survival 

rates, but it might in other systems, depending on a variety of factors, including physical 

displacement, inherent life history traits, or environmental variables that we do not yet 

understand. Adjusting sampling techniques to ask new questions, such as adding PIT 

tagging and antenna array sites to Jacoby Creek for this study, are vital to increasing our 

understanding of Coho Salmon, in this and other study areas. So far, monitoring efforts 

have managed to expand the LCM through multi-agency collaboration between projects, 

but that has mostly been opportunistic. While it may not be necessary to include a large-

scale movement parameter to improve demographic estimates in this system, we do need 
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to keep expanding the LCM focus to include the highly connected network with Wood 

and Ryan Creeks below the Freshwater Creek smolt trap. Future studies in Humboldt Bay 

and elsewhere along the West Coast should continue to ask questions of both the 

monitoring and modeling structures, to ensure we are getting the best demographic 

estimates of our wild and threatened populations of Coho Salmon. 

 

 



56 

 

  

LITERATURE CITED 

Adams, P. B., L. B. Boydstun, S. P. Gallagher, M. K. Lacy, T. L. McDonald, and K. E. 

Shaffer. 2011. California coastal salmonid population monitoring: strategy, 

design, and methods. Department of Fish and Game. 

Anderson, J.H., G.R. Pess, P.M. Kiffney, T.R. Bennett, P.L. Faulds, W.I. Atlas, T.P. 

Quinn. 2013. Dispersal and Tributary Immigration by Juvenile Coho Salmon 

Contribute to Spatial Expansion During Colonization. Ecology of Freshwater Fish 

22: 30–42. 

Anderson, C.W., and D. Ward. 2016. Results of Freshwater Creek Salmonid Life Cycle 

Monitoring Station 2015-2016. Humboldt State University. 

Anderson, C.W., D. Ward, and M. Henderson. 2019. Draft Results of Freshwater Creek 

Salmonid Life Cycle Monitoring Station 2017-2018. Humboldt State University. 

Bass, A.L., G.R. Giannico, and G.T. Brooks. 2012. Performance of a Full-Duplex Passive 

Integrated Transponder (PIT) Antenna System in Estuarine Channels. Marine and 

Coastal Fisheries: Dynamics, Management, and Ecosystem Science 4(1): 145-

155. 

Beechie, T., H. Imaki,  J. Greene,  A. Wade,  H. Wu,  G. Pess,  P. Roni,  J. Kimball,  J. 

Stanford,  P. Kiffney,  N. Mantua. 2013. Restoring Salmon Habitat for a 

Changing Climate. River Research and Applications 29(8): 939-960. 

Bell, E., and W.G. Duffy. 2007. Previously undocumented two-year freshwater residency 

of juvenile Coho Salmon in Prairie Creek, California. Transactions of the 

American Fisheries Society 136(4): 966-970. 

Bennett, T. R., P. Roni, K. Denton, M. McHenry, and R. Moses. 2015. Nomads no more: 

early juvenile Coho salmon migrants contribute to the adult return. Ecology of 

Freshwater Fish 24(2): 264–275. 

Bottom, D.L., C.A. Simenstad, J. Burke, A.M. Baptista, D.A. Jay. 2005. Salmon at 

River's End: The Role of the Estuary in the Decline and Recovery of Columbia 

River Salmon. NOAA Technical Memorandum. 

Brakensiek, K.E. and D.G. Hankin. 2007. Estimating Overwinter Survival of Juvenile 

Coho Salmon in a Northern California Stream: Accounting for Effects of Passive 

Integrated Transponder Tagging Mortality and Size-Dependent Survival. 

Transactions of the American Fisheries Society 136(5): 1423-1437. 



57 

 

  

Bradford, M.J. and J.R. Irvine. 2000. Land use, fishing, climate change, and the decline 

of Thompson River, British Columbia, Coho salmon. Canadian Journal of 

Fisheries and Aquatic Sciences 57(1): 13-16. 

Brown, L. R., P. B. Moyle, and R. M. Yoshiyama. 1994. Historical decline and current 

status of Coho salmon in California. North American Journal of Fisheries 

Management 14(2):237–261. 

Burnham and Anderson. 2002. Model Selection and Multimodel Inference: A Practical 

Information-Theoretic Approach. Springer.  

Calvert, A. M., S. J. Bonner, I. D. Jonsen, J. M. Flemming, S. J. Walde, and P. D. Taylor. 

2009. A hierarchical Bayesian approach to multi-state mark–recapture: 

simulations and applications. Journal of Applied Ecology 46(3):610–620. 

Chapman, D.W. 1962. Aggressive Behavior in Juvenile Coho Salmon as a Cause of 

Emigration. Journal of the Fisheries Research Board of Canada 19(6):1047-1080. 

Cochran, S.M., S. Ricker, C. Anderson, S.P. Gallagher, and D.M. Ward. 2019. 

Comparing abundance‐based and tag‐based estimates of coho salmon marine 

survival. Fisheries Management and Ecology, 26(2):165-171. 

Crone, R.A. and C.E. Bond. 1976. Life History of Coho Salmon, Oncorhynchus kisutch, 

in Sashin Creek, Southeastern Alaska. National Marine Fisheries Service Fishery 

Bulletin 74(3): 897-923. 

Deibner-Hanson, J.D. 2019. Overwinter Survival and Movement of Juvenile Coho 

Salmon (Oncorhynchus kisutch) In Relation to Large Woody Debris and Low-

Velocity Habitat in Northern California Streams. Humboldt State University.  

Dittman, A. and T. Quinn. 1996. Homing in Pacific salmon: mechanisms and ecological 

basis. Journal of Experimental Biology 199: 83-91. 

Faukner, J., S. Silloway, M. Sparkman, and P. Drobny. 2017. A previously 

undocumented life history behavior in juvenile coho salmon (Oncorhynchus 

kisutch) from the Klamath River, California. California Fish and Game 103(2). 

Ghrist, G. K. 2019. Freshwater and Marine Survival of Coho Salmon (Oncorhynchus 

kisutch) as a Function of Juvenile Life History. Humboldt State University.  

Gorman, M.P. 2016. Juvenile Survival and Adult Return as a Function of Freshwater 

Rearing Life History for Coho Salmon in the Klamath River Basin. Humboldt 

State University. 



58 

 

  

Hamann, E.J. and B.P. Kennedy. 2012. Juvenile dispersal affects straying behaviors of 

adults in a migratory population. Encyclopedia of Water 93(4): 733-740. 

Hartman, G.F., B.C. Andersen and J.C. Scrivener. 1982. Seaward Movement of Coho 

Salmon (Oncorhynchus kisutch) Fry in Carnation Creek, an Unstable Coastal 

Stream in British Colombia. Canadian Journal of Fisheries and Aquatic Sciences 

39(4): 588-597. 

Hauer, J. J. 2013. Overwinter survival and growth of juvenile Coho Salmon, 

Oncorhynchus kisutch, in Freshwater Creek, California. PhD Thesis, Humboldt 

State University. 

Hendry, A. P., J.K. Wenburg, P. Bentzen, E.C. Volk, T.P. Quinn. 2000. Rapid Evolution 

of Reproductive Isolation in the Wild: Evidence from Introduced Salmon. Science 

290(5491): 516-518. 

Humboldt Bay Watershed Advisory Committee (HBWAC). 2005. Humboldt Bay 

Watershed Salmon and Steelhead Conservation Plan. 

Jones, K. K., T. J. Cornwell, D. L. Bottom, L. A. Campbell, and S. Stein. 2014. The 

contribution of estuary-resident life histories to the return of adult Oncorhynchus 

kisutch. Journal of Fish Biology 85(1):52–80. 

Keefer, M. L., and C. C. Caudill. 2012. A Review of Adult Salmon and Steelhead 

Straying with an Emphasis on Columbia River Populations. College of Natural 

Resources, University of Idaho.  

Keefer, M. L., and C. C. Caudill. 2014. Homing and straying by anadromous salmonids: 

a review of mechanisms and rates. Reviews in Fish Biology and Fisheries 

24(1):333–368. 

Koski, K. V. 2009. The Fate of Coho Salmon Nomads: The Story of an Estuarine-

Rearing Strategy Promoting Resilience. Ecology and Society 14(1). 

Lawson, P. W. 2009. What are we missing? Butterflies, flowers, and salmon models. 

Pacific Salmon Environmental and Life History Models: Advancing Science for 

Sustainable Salmon in the Future. American Fisheries Society.  

Mason, J.C. 1976. Response of Underyearling Coho Salmon to Supplemental Feeding in 

a Natural Stream. The Journal of Wildlife Management 40(4): 775-788. 

McElhany, P., M.H. Ruckelshaus, M.J. Ford, T.C. Wainwright, and E.P. Bjorkstedt. 

2000. Viable salmonid populations and the recovery of evolutionarily significant 

units. US Department of Commerce, National Oceanic and Atmospheric 



59 

 

  

Administration, National Marine Fisheries Service, Southwest Fisheries Science 

Center. 

Mobrand, L. E., J. A. Lichatowich, L. C. Lestelle, and T. S. Vogel. 1997. An approach to 

describing ecosystem performance“through the eyes of salmon.” Canadian 

Journal of Fisheries and Aquatic Sciences 54(12):2964–2973. 

National Marine Fisheries Service (NMFS). 2014. Final Recovery Plan for the Southern 

Oregon/Northern California Coast Evolutionarily Significant Unit of Coho 

Salmon (Oncorhynchus kisutch). National Marine Fisheries Service. 

Nordholm, K.E. 2014. Contribution of subyearling estuarine migrant Coho Salmon 

(Oncorhynchus kisutch) to spawning populations on the southern Oregon coast. 

Oregon State University. 

Olswang, M. 2017, October 18. Coho Salmon. 

https://www.wildlife.ca.gov/Conservation/Fishes/Coho-Salmon. 

Osterback, A.K., C.H. Kern, E.A. Kanawi, J.M. Perez, J.D. Kiernan. 2017. The effects of 

early sandbar formation on the abundance and ecology of Coho Salmon 

(Oncorhynchus kisutch) and steelhead trout (Oncorhynchus mykiss) in a central 

California coastal lagoon. Canadian Journal of Fisheries and Aquatic Sciences 75: 

2184-2197. 

Pagliuco, R. 2018. Wood Creek Habitat Restoration Field Note, September 2017 to 

March 2018. National Marine Fisheries Service. 

Quinn, T.P. and N.P. Peterson. 1996. The influence of habitat complexity and fish size on 

over-winter survival and growth of individually marked juvenile Coho Salmon 

(Oncorhynchus kisutch) in Big Beef Creek, Washington. Canadian Journal of 

Fisheries and Aquatic Sciences 53(7): 1555-1564. 

Quinn, T. P. 2011. The Behavior and Ecology of Pacific Salmon and Trout. UBC Press. 

Rebenack, J. J., S. Ricker, C. Anderson, M. Wallace, and D. M. Ward. 2015. Early 

Emigration of Juvenile Coho Salmon: Implications for Population Monitoring. 

Transactions of the American Fisheries Society 144(1):163–172. 

Rich, W. H. 1939. Local populations and migration in relation to the conservation of 

Pacific salmon in the western states and Alaska. Salem, OR: Fish Commission of 

the State of Oregon. 

Roegner, G.C., E.W. Dawley, M. Russell, A. Whiting, and D.J. Teel 2010. Juvenile 

Salmonid Use of Reconnected Tidal Freshwater Wetlands in Grays River, Lower 



60 

 

  

Columbia River Basin. Transactions of the American Fisheries Society 139 (4): 

1211-1232. 

Roni, P., T. Bennett, R. Holland, G. Pess, K. Hanson, R. Moses, M. McHenry, W. 

Ehinger, and J. Walter. 2012. Factors Affecting Migration Timing, Growth, and 

Survival of Juvenile Coho Salmon in Two Coastal Washington Watersheds. 

Transactions of the American Fisheries Society 141(4):890–906. 

Sandercock, F. K. 1991. Life history of Coho Salmon (Oncorhynchus kisutch). Pacific 

salmon life histories:395–445. 

Schtickzelle, N., and T. P. Quinn. 2007. A metapopulation perspective for salmon and 

other anadromous fish. Fish and Fisheries 8(4):297–314. 

Solazzi, M.F., T.E. Nickelson, S.L. Johnson, and J.D. Rodgers. 2000. Effects of 

increasing winter rearing habitat on abundance of salmonids in two coastal 

Oregon streams. Canadian Journal of Fisheries and Aquatic Sciences 57: 906–

914. 

Spence, B. C., E. P. Bjorkstedt, J. C. Garza, J. J. Smith, D. G. Hankin, D. Fuller, W. E. 

Jones, R. Macedo, T. H. Williams, and E. Mora. 2008. A framework for assessing 

the viability of threatened and endangered salmon and steelhead in the North-

Central California Coast Recovery Domain. US Department of Commerce, 

National Oceanic and Atmospheric Administration, National Marine Fisheries 

Service, Southwest Fisheries Science Center. 

Wallace, M., S. Ricker, J. Garwood, A. Frimodig, and S. Allen. 2015. Importance of the 

stream-estuary ecotone to juvenile Coho Salmon (Oncorhynchus kisutch) in 

Humboldt Bay, California. California Fish and Game 101(4):241-266. 

Waples, Robin S. 1991. Pacific Salmon, Oncorhynchus spp., and the Definition of 

"Species" Under the Endangered Species Act. Marine Fisheries Review, 53(3), 

pp. 11-22. 

Weybright, A. D., and G. R. Giannico. 2017. Juvenile Coho Salmon movement, growth 

and survival in a coastal basin of southern Oregon. Ecology of Freshwater Fish 

27(1):170–183. 

Van Vleet, N. 2019. A Time- and State-Based Approach to Estimate Winter Movement 

and Survival of Juvenile Coho Salmon (Oncorhynchus kisutch) in Freshwater 

Creek, California. Humboldt State University. 



61 

 

  

APPENDIX A 

Initial Simulation Results and Figures 

These initial simulations were based on empirical values of detection and survival 

of juvenile Coho Salmon, estimated from previous years of studies in the Freshwater 

Creek System. I first ran a simulation based on a dataset created in Excel to demonstrate 

that the model structure worked, and would produce similar ratios of capture histories to 

the empirical data (Figures A-1 and -2). One main difference between the data simulation 

and the empirical data was that in the Freshwater Creek fall-tagged fish. The empirical 

data had a much higher frequency of fish that were tagged in Freshwater Creek, not 

observed in Occasion 2, and then detected again at the Freshwater Creek Weir in 

Occasion 3 (Figure A-2).  

 

Figure A-1. Frequency histogram of capture histories F000, J000, and R000 observed in 

both study years compared to the simulations. 
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Figure A-2. Frequency histogram of all capture histories (except F000, R000, J000) 

observed in both study years compared to the simulated dataset created in Excel. 

  

0

20

40

60

80

100

120

140

160

180

200

Simulations 2017-18 2018-19



63 

 

  

APPENDIX B 

Humboldt Bay Monitoring Capture History Protocol 

Protocol Outline 

1. Obtain antenna detections and clean them up 

2. Create query → export file as Excel 

3. Process Excel file into capture histories 

4. Create Tag Size Groups 

5. Create .inp file for MARK 

 

Procedures 

1. Obtain antenna detections and clean them up (hours to days, depending on issues) 

From year to year, antennas can move locations, work during different periods of 

time, and all are different brands, so we have to clean up this data and put all antenna 

detections into the same format in order to query them for this study. The general 

procedure for this step is to clean all antennas separately (because they are in different 

formats), then combine them into one large Excel file of all antenna detections. 

I then verify that no zeros/digits were lost in cleaning using this formula:  

 

=IF(LEN(B2)<15, 1, " ")  
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Then I search for “1” with “Look in = values” in that column, and verify that all tag 

numbers have at least 15 digits. 

 

Figure B-1.  An example of cleaned antenna data after formatting. 

2. Create query → export file as Excel (~30 minutes) 

● Import antenna detection excel file into Access 

● Connect Header to Individual tables using "HeaderID", connect Individual to Tag 

using "IndividualID" 

● In Header table, use "group by" and the field "SurveyID" to select which surveys 

(i.e. adults, creek, etc. - see "Survey types" excel 

○ taxonID = 1595 for COHO, but that should be most of them 

○ In 2017-18 I used that to make a query for all 2017 Humboldt Bay fall 

tags applied (“2017 Fall tags”).  

● Example query: Connect “2017 Fall tags” to: 2017-2018 AllDetections (only 

Fall/Winter) AND 2017_18 Spring Detections by tag number 

● Query fields: tag number, length (for tax prefix check), GeoUnit (FW, Ryan, or 

Jacoby), ObsDate (from fall data), site and Date for each other occasion 

● Full query might not run instantaneously (can take up to 20 minutes depending on 

file size and the computer used) 

 

● Notes on queries: 

- “group by” to get rid of duplicate tags on same days (hit “totals” button) 

- “max” under Date to get only one detection for each tag number 

- TagID means different things in “Tag” table vs in my antenna detections 

- If one doesn’t open, right click, “open design view” 
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Figure B-2. A screen capture of the query used to create the detection file for one year of 

data. 

 

Figure B-3. A screen capture of the join property settings for this query. 

 

4. Process Excel file into capture histories (~5 hours) 

● Export Excel file from Access 

● Copy sheet so you have a clean Access copy without capture history edits 
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● Add column for capture history, equation:  

● Sort based on tag number  

● Highlight duplicate tags using: Home tab > Conditional Formatting > Highlight 

Cells Rules > Duplicate Values. 

● Assign 4-occasion capture histories manually using the rules below 

 

Table B-1. The occasion structure from 2017-18. 

 

 Occasion 1 Occasion 2 Occasion 3 Occasion 4 

10/1/17-11/20/17 11/21/17-03/09/18 3/10/18 - 6/13/18 

Freshwater Fall tagging Winter antenna 

(any) 

FWW antenna FW Weir DSMT 

Wood  Detection/in-hand  Detection/in-hand WC Phase 2  WC Tidegate 

Ryan Fall tagging Winter antenna 

(any) 

RC1 RC2 

Jacoby Fall tagging Winter antenna 

(any) 

JC1 or URP* JC2 

 

*URP = Upper Restoration Pond 

 

Criteria for choosing which detection to count for an occasion 

1. If it is detected making a state transition and then transitioning back to its original 

state during an occasion, use the state that it transitioned to in order to give it 

"credit" for making a transition. 

2. If it is detected in two states other than its original state during an occasion, use 

the most distant one to give it credit for its longest movement. 
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3. This model constrains the final interval so transition probability (Ψ) is zero. If a 

fish is found in different streams in Occasions 3 and 4, Occasion 4 must be 

recorded as a 0. 

The downside of these rules is that there's no straightforward way to automate them 

(e.g. you can't just use the one with the latest date). The upside is, it will give us the 

largest sample size for fish are moving to other states, particularly the more distant 

ones. 

 

Table B-2. An example of using the above criteria to determine the final capture history. 

This fish was tagged in Freshwater Creek in October 2017 (Occasion = Fall), then 

detected on antenna arrays in Ryan and Wood Creeks in November (Occasion = Winter). 

It was not detected in Occasions 3 and 4. This fish will be assigned capture history FR00, 

as moving from Freshwater to the Ryan Creek antenna array is a bigger movement than 

Freshwater to the Wood Creek Tide Gate.  

Antenna  Date Detected  Tag Number Possible Capture History 

RC 11/27/2017 982000402976259 FR00 

WCT 11/26/2017 982000402976259 FW00 

 

 

4. Create Tag Size Groups 

● Create a column for tag size, fill with tag numbers 

● Determine prefixes for each tag size (9mm and 11.5mm) 

● Find and replace tag numbers with tag sizes based on prefixes 

● Create another column for “attribute group” 0 1 or 1 0 based on tag size 

● 2016 example: 

All of the fish from 65mm to 69mm were tagged with the full duplex 9mm tags 



68 

 

  

and have the tag prefix "982000406 -”. All fish larger than that use  "9820004062 

-" , "982000403 -", or "989001004 -" and are the 11.5mm half duplex tags in fish 

70mm and up. 

 

5. Create .inp file for MARK 

● Copy/paste columns for tag number and capture history to a new sheet.  

Data > Remove Duplicates 

● Use linking equation to create data line for inp files: ="/*"&A2&"*/"&B2&" 

"&D2&";" 

Should look like: /*982126051768640*/00J0 1 0; 

● Copy column of capture histories, paste as “values only” in a new column.  

● Copy/paste that column of values only into a text file using Notepad ++  

○ Should look like figure below 

● Comment title of data and short description of it using /* */  

/* comment */ 

● Save as a .inp file 

 

 

Figure B-4. An screenshot example of an .inp file with individual capture histories. 
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APPENDIX C 

Humboldt Bay Adult Data Example 

 

This adult Coho Salmon was detected on the Freshwater Weir antenna (FWW) on 

2/2/2018 and then detected on the Ryan Creek array (RC) a few hours later the same day. 

In order to determine the path of this individual, we have to look at the time of detection 

on each antenna. 

 

Table C-1. The capture history for the adult Coho Salmon described anecdotally in the 

text of adult data for year 2017-18. It was tagged in Freshwater Creek on 11/3/2016, 

detected on multiple Freshwater Creek antennas (FWW, HHL, MMS) in 2018 before 

being detected on the Freshwater Weir antenna (FWW) and the Ryan Creek antenna 

array (RC) on the same day.  

Tag Number Survey Name Stage Antenna Date Detected 

982000403268301 NVA091616102419 yoy FWW 1/8/2018 

982000403268301 NVA091616102419 yoy HHL 1/9/2018 

982000403268301 NVA091616102419 yoy MMS 1/11/2018 

982000403268301 NVA091616102419 yoy MMS 1/12/2018 

982000403268301 NVA091616102419 yoy FWW 2/2/2018 

982000403268301 NVA091616102419 yoy RC 2/2/2018 

 

Table C-2. The raw antenna data for this individual, demonstrating that it moved into 

Ryan Creek after being detected on multiple Freshwater Creek antennas in the 

winter.  

 

Antenna Time Date Tag Number 

Freshwater Weir Antenna 02:37:08 02/02/2018 982.000403268301 

Ryan Creek Antenna Reader #1 07:39:11 02/02/18 982.000403268301 

Ryan Creek Antenna Reader #2 07:39:11 02/02/18 982.000403268301 
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APPENDIX D 

Global Model Results 

Table D-1. Parameters estimates for the 2017-18 data year from the global model. 

Parameter type: Φ (phi) represents survival, p represents detection probability and Ψ (psi) 

represents transition probability. State: initials represent the four study creeks, F for 

Freshwater, J for Jacoby, W for Wood, R for Ryan. Estimates, standard error and upper 

and confidence intervals are reported. 
 

Parameter 

Number 

Parameter 

Type 
State Estimate SE Lower Upper 

1 Φ F 1 7.71E-08 0.9999998 1.0000002 

2 Φ F 1 1.79E-05 0.9999649 1.0000351 

3 Φ F 0.7316612 22.680568 1.27E-98 1 

4 Φ J 0.0366837 0.0092746 0.0222599 0.0598813 

5 Φ J 0.0182229 3.1056896 3.20E-150 1 

6 Φ J 0.0756109 3.8989917 2.68E-49 1 

7 Φ R 0.8517139 0.1543486 0.3436166 0.9843796 

8 Φ R 0.4660959 0.6943208 0.003668 0.9951927 

9 Φ R 0.8916209 4.3541625 3.63E-38 1 

10 Φ W 0.5192508 0 0.5192508 0.5192508 

11 Φ W 0.4554537 0.0277845 0.4017372 0.5102272 

12 Φ W 0.8536479 21.899233 3.61E-149 1 

13 p F 0.1376166 0.0317582 0.0862961 0.2123639 

14 p F 0.9751387 0.0140953 0.9261978 0.9919086 

15 p F 0.5445604 19.257989 9.59E-67 1 

16 p F 0.0582458 0.0198051 0.0295767 0.1115108 

17 p F 0.949076 0.0493548 0.7157798 0.9928017 

18 p F 0.7521514 26.599399 1.06E-121 1 

19 p J 1 6.01E-05 0.9998822 1.0001178 

20 p J 0.0057262 0.005971 7.37E-04 0.0430502 

21 p J 0.7809996 120.78326 3.52E-304 1 

22 p J 0.5434699 0.3463883 0.0716213 0.9483722 

23 p J 1.11E-16 1.16E-09 -2.28E-09 2.28E-09 

24 p J 2.54E-11 3.05E-06 -5.98E-06 5.98E-06 

25 p R 1 2.77E-07 0.9999995 1.0000005 

26 p R 0.4744898 0.0724604 0.338116 0.6147782 

27 p R 0.9994439 0 0.9994439 0.9994439 
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Parameter 

Number 

Parameter 

Type 
State Estimate SE Lower Upper 

28 p R 1 1.44E-04 0.9997179 1.000282 

29 p R 0.2149588 0.0699982 0.1082929 0.3817136 

30 p R 0.3326812 0 0.3326812 0.3326812 

31 p W 0.1143406 0.0163213 0.0860343 0.1504272 

32 p W 0.8595519 0.0622759 0.6900788 0.943888 

33 p W 0.896156 22.98973 4.47E-210 1 

34 p W 0.1595467 0.0210086 0.1225302 0.2051316 

35 p W 0.3003162 0.0770371 0.1730201 0.4682398 

36 p W 0.7547376 19.362093 2.83E-89 1 

37 Ψ F to J 2.78E-16 8.10E-10 -1.59E-09 1.59E-09 

38 Ψ F to J 0.7592708 0.0521462 0.6432514 0.8465595 

39 Ψ F to J 1.11E-13 4.19E-08 -8.22E-08 8.22E-08 

40 Ψ F to R 0.0668426 0.0074067 0.0537088 0.0829067 

41 Ψ F to R 0.1869148 0.044559 0.1145744 0.2899717 

42 Ψ F to R 7.77E-16 2.91E-09 -5.69E-09 5.69E-09 

43 Ψ F to W 0.7277583 0.0421329 0.6379485 0.8021976 

44 Ψ F to W 1.43E-13 7.22E-08 -1.42E-07 1.42E-07 

45 Ψ F to W 0.115666 4.7564919 3.42E-41 1 

46 Ψ J to F 0.5325392 0.1236556 0.3008524 0.7509947 

47 Ψ J to F 0.6221937 106.04098 1.62E-304 1 

48 Ψ J to F 8.66E-13 4.87E-07 -9.55E-07 9.55E-07 

49 Ψ J to R 2.77E-13 1.18E-07 -2.32E-07 2.32E-07 

50 Ψ J to R 0.6781377 115.57263 2.08E-304 1 

51 Ψ J to R 3.88E-09 3.25E-04 -6.37E-04 6.37E-04 

52 Ψ J to W 6.72E-14 8.38E-08 -1.64E-07 1.64E-07 

53 Ψ J to W 2.35E-12 1.74E-06 -3.41E-06 3.41E-06 

54 Ψ J to W 0.6808645 34.3249 7.29E-135 1 

55 Ψ R to F 0.916195 0.0287044 0.8401039 0.957891 

56 Ψ R to F 8.12E-12 6.47E-07 -1.27E-06 1.27E-06 

57 Ψ R to F 3.82E-13 1.19E-07 -2.32E-07 2.32E-07 

58 Ψ R to J 1.32E-14 1.25E-08 -2.45E-08 2.45E-08 

59 Ψ R to J 0.0160541 1.5823647 8.79E-88 1 

60 Ψ R to J 0.0295363 4.4265188 1.07E-133 1 

61 Ψ R to W 0.0406746 0.0216096 0.014118 0.111534 

62 Ψ R to W 2.06E-11 1.40E-06 -2.75E-06 2.75E-06 

63 Ψ R to W 0.1689334 3.6132227 2.52E-23 1 

64 Ψ W to F 0.4626101 77.037193 1.44E-264 1 

65 Ψ W to F 0.7441983 0.0263874 0.6891661 0.7924219 

66 Ψ W to F 5.45E-12 5.01E-07 -9.82E-07 9.82E-07 
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Parameter 

Number 

Parameter 

Type 
State Estimate SE Lower Upper 

67 Ψ W to J 0.3950754 0 0.3950754 0.3950754 

68 Ψ W to J 3.99E-12 1.31E-06 -2.56E-06 2.56E-06 

69 Ψ W to J 9.01E-12 7.42E-07 -1.45E-06 1.45E-06 

70 Ψ W to R 0.4700631 0 0.4700631 0.4700631 

71 Ψ W to R 0.009877 0.0069654 0.0024637 0.0387313 

72 Ψ W to R 2.01E-12 3.78E-07 -7.42E-07 7.42E-07 
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APPENDIX E 

Power Analysis Model Accuracy 

I tested the full model structure on a simulated data set generated in Program 

MARK using preliminary estimates of model parameters from existing data and sample 

sizes similar to the field study. The model was able to accurately estimate the input 

parameters (Figures E-1 and E-2). 

 

 

Figure E-1. Input values (“true” values) for Program MARK simulations in solid black 

bars and estimated values in hatched bars. Error bars represent the standard deviation for 

each of the model estimates, average from the 1000 simulations for the first level of the 

power analysis, which had comparable fish release numbers to our empirical dataset. 

Parameters 1-12 are survival (φ) for each of four states, which would be the four creeks 

in my model. Parameters 3, 6, 9, and 12 (survival for the final interval for each state) 

were removed from the figure, as they were all fixed to 1 in the model. Parameters 13-24 

are detection probability for each state for occasions 2, 3, and 4.  
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Figure E-2. Input values (“true” values) for Program MARK simulations are shown here 

in solid black bars and estimated values are in hatched bars. Error bars 

represent the standard deviation for the model estimates. Parameters 25-60 

are transition probabilities (ψ) between different four different states. 

Parameters 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60 were removed from 

the figure, as they were all fixed to 0 in the model.  
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