
-i-

Supply chain optimization using

machine learning methods.

A manufacturing case study.

Manasas Vasileios
SID: 33081170010

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

December 2019, Thessaloniki - Greece

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Hellenic University: IHU Open Access Repository

https://core.ac.uk/display/328007216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

-ii-

Supply chain optimization using

machine learning methods.

A manufacturing case study.

Manasas Vasileios
SID: 33081170010

Supervisor: Prof. Konstantinos Diamantaras

Supervising Committee Members: -

-

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

-iii-

Abstract

This dissertation was written as a part of the MSc in Data Science at the International Hellenic

University. The aim of the thesis, is to present ways that machine learning methods can facilitate

in supply chain management, specifically as regards lead time prediction and reduction. Since lead

time has been acknowledged as a key factor in supply chain planning and in customer’s

satisfaction as well, it has been seen fit to research this topic in depth. These methods were applied

to a big multi- product and multi-stage aluminum manufacturing group of companies

headquartered in Greece. In detail two predictive models were examined to predict the lead time

of the company’s major product groups, architectural aluminum profiles and accessories, and one

model for the demand forecasting of aluminum accessories to prevent stock outs which heavily

affect customer’s orders lead time. The results of this case study were more than satisfactory,

having outperformed the performance of existing systems concerning lead time prediction and

demand forecasting.

For the completion of this research, I would like to sincerely thank my supervisor, Konstantinos

Diamantaras, for his constructive advice, as well as the company’s staff for their valuable help in

collecting the material and business knowledge used in this thesis.

Manasas Vasileios

December 2019.

1 | P a g e

Table of Contents

1 Introduction ... 3

1.1 Problem statement ... 4

2 Background and preliminaries ... 5

2.1 Machine Learning .. 5

3 Literature review ... 13

3.1 Relevance of reducing and predicting LT ... 13

3.2 Lead Time prediction .. 14

3.3 Demand forecasting ... 17

4 Data Engineering & technologies involved ... 18

5 Feature engineering ... 23

5.1 Lead time prediction (Accessories) ... 24

5.2 Lead Time Prediction for architectural profiles... 27

6 Predictive modeling – Machine learning methods .. 30

7 Future work and challenges ... 35

8 Bibliography .. 36

9 Appendix ... 38

9.1 Code for Accessories lead time prediction .. 38

2 | P a g e

9.2 Code for accessories demand forecasting .. 40

9.3 Lead time prediction for aluminum profiles .. 47

3 | P a g e

1 Introduction

 Order lead time is the time period between the customer’s order placement and the

receiving of the order. For years, organizations and businesses of all sectors are trying to add

business value by minimizing the lead time, delivering products at the shortest possible time and

by providing an accurate estimation of the order delivery date at the placement of the order.

While the reduction of LT (Lead Time) through demand forecasting and the prediction of its

value is a key factor in production programming and scheduling, it has proven to be a deciding

factor for customer satisfaction too. The complexity of the in between processes, the huge range

of products and the variability that external factors bring in, is making the modeling of this

matter extremely complicated. In this thesis we are attempting to minimize the lead time of

orders placed by customers of Alumil, a big manufacturing industry in Greece, by forecasting

the demand for inventory control, thus preventing stock-outs which can cause serious delays in

the delivery of the products. Also, it is attempted to build a software that dynamically predicts

each order’s delivery date based on historical data.

Case Study – Alumil SA

 ALUMIL S.A. is a big manufacturing group of companies that designs, produces and

distributes aluminum architectural systems. Alumil’s data containing customer’s orders,

production routings in a granular level was utilized for this thesis. As the main webpage of

ALUMIL SA states: [1] “The company is considered as one of the largest industries in the

extrusion of aluminum in Greece and southern Europe. Specifically, the company is specialized

in the research, development and production of aluminum architectural systems. The company

is headquartered in the Industrial Area of Stavrochori Kilkis, Greece and has more than 2,000

employees. ALUMIL S.A. operates worldwide with over 30 subsidiaries

 ALUMIL, has its own production plants in Greece, Serbia, Bosnia and Albania where the

demands of its customers for aluminum profiles are being met. Specifically, the facilities that

the company is equipped with are the following:

• 11 aluminum extrusion lines with a capacity of 100.000 tons per year,

• 8 powder coating lines (7 horizontal, 1 vertical).

• 3 sublimation lines for wood imitation and special effect colors.

• 3 anodizing plants.

• 2 foundry for aluminum billet production with a capacity of 80.000 tons per year,

• 8 thermal break assembly lines.

4 | P a g e

• 1 production site for various prefabricated entrance & interior doors

• 1 manufacturing plant for roll-formed aluminum-foam filled profiles.

• 1 production site for elevators and automated systems through METRON, an

autonomous subsidiary specialized in automation.

• 3 manufacturing plants for production, processing and assembling of accessories.

• 1 manufacturing plant for aluminum composite panels with a capacity of 950.000 m2.

• 1 manufacturing plant for polycarbonate sheets”.

1.1 Problem statement

 In this thesis, is presented ways that machine learning can support the supply chain of a

big industry, in this case ALUMIL S.A. in two ways;

First by providing an accurate demand forecast for aluminum accessories used in architectural

and industrial aluminum systems and by estimating the lead time between the order and the

delivery date in architectural profiles and accessories.

While aluminum profiles are being produced by the production plants inside the company,

accessories that are part of aluminum architectural systems, are for the most part, ordered by

external suppliers. The reason these two supply chain aspects were chosen for this thesis, is the

Picture 1: Picture of aluminum accessories taken at the
company's headquarters

5 | P a g e

challenges that the company has to face regarding the timely order of aluminum accessories from

suppliers and the accurate prediction of the lead time between customer’s order date and order

delivery date. In detail, customer’s demand for aluminum accessories has to be predicted in

order to optimize supply decisions. Stock outs are a common phenomenon that is observed, due

to unexpected demand. Consequently, the order lead time, of an unpredicted demand in

accessories is rising. As for the lead time prediction, high accuracy can lead to customer

satisfaction.

2 Background and preliminaries

 This thesis is going to address some of the issues of supply chain optimization, modeling

the given problems with machine learning. In this chapter, background theory about machine

learning is going to be laid out. Specifically, since the problems that are going to be modeled

in this thesis have numerical targets, meaning that the algorithms which are applied attempt to

predict numerical values, regression techniques are below presented.

2.1 Machine Learning

 Machine learning is the study of statistically modeling a problem to perform a task

without specifically setting the rules and instructions to do so. It’s a counter intuitive set of

techniques which changes the order of tasks in comparison to traditional programming. In

traditional programming a well-defined set of rules are applied to existing data in order to

calculate the desired outcome. In machine learning programming pre-known data and desired

outcome are modeled in a way that a previously unknown set of rules is discovered. This

relatively new approach to problems can be found extremely useful in business in general but

especially in the supply chain management. The number of hidden and volatile factors that

interrelates and correlates with the desired outcome in a complex ecosystem like the supply

chain, can make the effort of its modeling with traditional methods, extremely difficult or even

impossible.

6 | P a g e

Machine learning consists of five steps (on a high level):

1. Data Collection (Feature Selection)

2. Data preparation (Feature Engineering)

3. Model selection and training

4. Model Evaluation

5. Prediction

Supply Chain Analytics

 Analytics and predictive modeling can be utilized practically in every stage of the supply

chain, to enable efficient and accurate planning in both sales, operations and inventory level. In

detail:

 Sourcing: The process of acquiring and purchasing essential goods, like raw materials.

Predictive modeling may be used to detect the balance point between supply and

demand, to identify the cost factors

 Production: Quality control, optimized scheduling based on inventories and production

stage capacities.

 Warehousing: Workload optimization, stock relocation.

 Transportation: Routing optimization and scheduling

 Consumer: Credit scoring, recommender systems, fraud detection.

Picture 2: Traditional Vs Machine learning programming.

7 | P a g e

Machine learning techniques

Knowledge data discovery (KDD) is the process of gaining insights and value from the

thorough analysis of data. While in medicine and biology, finance and innovation related fields

the process of KDD have been applied for several decades now, in the field of production and

supply chain planning and control the research interest has not been this vivid, until the past

few years. Rainer states that the application of KDD processes in production and supply chain

areas in business such as analytic methods had resulted in a return of at least ten times of their

investment.

KDD processes (also found in literature as “Data mining”) are divided into two big

categories, that are, descriptive and predictive analytics. Descriptive analytics focuses on the

discovery of patterns, rules, associations in the data, like the name indicates, its aim is to

“describe” the data. Some applications are association rule learning, causal discovery

techniques and clustering algorithms like KNN (K- Nearest Neighbors) algorithm. Predictive

analytics aims at predicting future values of one or many target variables. Depending on the

target variable, the predictive analytics can be assorted in continuous or categorical. Examples

of continuous predictive analytics is the famous regression technique with its many variants.

Categorical predictive analytics like classification, aims to classify correctly the target variable

into two or more categories.

 The well-applied KDD techniques in production planning and supply chain management

all belong to APS thus far (Advanced planning and scheduling, fault diagnosis, quality

improvement and defect analysis). Lead time (else known as flow time) prediction is a field

which only in the last decade has been dealt with analytical techniques.

2.1.1 Linear Regression

Picture 3: Each data point of feature "x" corresponds to a respective
target "y"

8 | P a g e

 Linear regression, is a machine learning technique for the prediction of a continuous

numerical target variable. Its approach is simple, yet it manages to capture the linear

relationships (and near linear) between the features applied in the model. It stands as a basis for

more advanced techniques, so the understanding of linear regression is fundamental for

approaching more complex techniques. [2]

 The equation above captures the problem of the regression problem. The Y variable

(dependent variable) is the target continuous variable, the X is the independent variable, with

the betas are called the coefficients. Regression is trying to estimate the betas so that the right

side of the equation is as close as possible to the actual target. This is done by minimizing the

squares of sum of squared errors. The difference between the actual target variable and the

predicted one are called residuals and it is captured by the following equation.

 The reason why the evaluation metric is the squared error, is that the prediction may be

below or above the desired outcome. So the difference between the true and predicted value

may be positive or negative. Lest we square the errors, the sum of errors will be decreased,

because the positive differences will be canceled out by the negative difference. One additional

advantage of squaring the errors is that it penalizes the bigger difference from the desired target

values, thus securing a more accurate model.

Picture 4: Linear regression: The straight line that minimizes the
sum of squared residuals.

9 | P a g e

 Above in the visual, the red dots represent the true values, the blue line represents the

linear model while the grey lines are the difference between the true values and the predicted

ones. The blue line the linear model that minimizes the summation of the squared errors.

Another issue that has to be addressed is the relevancy of the betas coefficients concerning the

target variable. P-values indicate the statistical significance. Every modeling task starts with

the hypothesis that there is correlation between the chosen features and the target variable.

Therefore the null hypothesis is that there is no correlation between the dependent variable and

the independent ones. The metric of p-values for every beta coefficient indicates whether the

independent variable (predictor) is statistically significant in relation with the target variable. A

value of 0.05 or less is generally considered in the literature as an indication of strong

relationship between the dependent variable and the predictor. Lastly, two other KPIs for the

linear model are the R² statistic and the RSE (Standard error of the residuals).

2.1.2 Multiple Regression

 Just like linear regression, multiple regression models attempt to predict a target

continuous variable, but this time multiple features are used. In real life one independent

variable is not enough to explain the variation of the dependent variable, so two or more

variables are added. The equation remains the same as in the simple linear regression, with the

addition of the variable and their corresponding betas coefficients. Furthermore, unlike simple

regression’s p- value for examining the relevancy of the independent variables, in the case of

multiple regression the F- statistic metric is measured. The F- statistic formula is displayed by

the equation:

p: the number of independent variables.

n: is the number of data rows.

TSS: Total Sum of Squares

RSS: Residual Sum of Squares

 Unlike p-value, which examines each feature individually, the F-statistic formula assess

the whole model. As a rule of thumb, if the relationship is strong enough, the F measure will be

bigger than 1, otherwise it will be close to the value of one. (Actually, the value of F-statistic

must be assessed in companion with the number of data points, since in big dataset even slightly

bigger value than 1indicate strong relationship, while in small ones, the value of the measure

10 | P a g e

must be significantly bigger than one. In the case of many predictors, the use of p-values is not

trustworthy, because unimportant features may be evaluated as significant because of their low

p-value. The F-statistic can overcome this obstacle, and this is the reason it is used in the case

of multiple regression. The R² is again the measure which can be used to evaluate the

interpretability of the model. It is a fact that adding more features to the model will lead to an

increase of the model but it does not mean necessarily that the performance of the algorithm

will increase as well.

 In multiple regression there critical issues that need to be addressed such as

multicollinearity, heteroscedasticity and autocorrelation. The aim of this paper is to be present

practical applications of machine learning applications in supply chain’s operational

management, and it is not seen fit to delve into regression’s issues in more detail.

2.1.3 Ensemble Methods for numerical prediction (regression)

 Ensemble learning is the technique of combining multiple machine learning algorithms

on a problem in order to obtain better accuracy. The three most popular ensemble practices are:

1. Bagging: Using the same training data, use different subsamples to apply multiple

models on them.

2. Boosting: Construct many models of the same type, each one taking account the error

of the previous model, learning to fix the errors.

3. Voting: Multiple models of different type are applied to the training data and then

aggregate the result to combine the predictions (max voting, mean voting)

In more detail:

 Bagging, is considered a bootstrap technique which subsamples the training set and

applies and trains a regression model on each random distributed sample. Each sub-dataset of

Picture 5: In multiple regression the goal is to fit a hyper-plane
than minimizes the sum of squared errors.

11 | P a g e

the total N samples, is created by sampling with replacement. Some data points may occur in

many of the subsamples, while others may be left out at all. After the training of the model to

each subsample, the outcome is averaged and it is presented as the model outcome. Another

ensemble approach which uses subsamples of the original training data is the boosting

technique. What differentiates boosting from bagging is that each algorithm is aware of the

errors that the prior algorithm/ subset of data has produced. Instead of using randomly

distributed samples of the data, each subsequent algorithm chooses the data that the previous

algorithm has not predicted accurately. After several algorithm steps, all the outcomes of the

models are weighted averaged. The weights are related to each model’s accuracy, that is, bigger

accuracy implies bigger weight. An example of this ensemble technique is the additive

regression model. Voting is using a variety of machine learning models to the same training

dataset and then it combines the different predictions. Especially in the case of implementing

voting in regression, using the averaging technique, it is expected a good performance, based

that the majority of the algorithms will be correct when their “opinions” are close to each to

other. Another ensemble method is called stacked generalization, also known as stacking.

Stacking combines predictions of different machine learning algorithms in levels. Level zero is

the original dataset and all the algorithms are applied to this level. Level one is composed by

the by the outputs of the base models and so on and so forth.

12 | P a g e

2.1.4 Artificial Neural Networks

Picture 6: An example of an artificial neural network. [Image downloaded from https://deepai.org/machine-learning-glossary-and-
terms/multilayer-perceptron in December 2019]

 Artificial neural networks are computing networks which are inspired by the way

biological networks are working. In comparison to traditional programming, the neural network

learns to perform tasks from the training data without being given explicit rules. Simple

components, called neurons perform simple numerical operations, which combined with some

predefined thresholds (activation functions) perform decisions. These neurons are ordered into

layers. The first layer is the input layer the second one is called the hidden layer and the last

one (in a shallow networks) is called the output layer. The number of input layer is equal with the

distinct number of features of the training dataset and the output layer is comprised of one

neuron for regression tasks (numerical outcome). If the network consists of more than one

hidden layer is called a deep neural network. Adding hidden layers leads to more complex

network which is able to reproduce complex functions, thus achieving more accurate

predictions.

 The learning process of the network takes place in the updating of the parameters

(weights) of the neurons. It is an iterative process of forward - propagation and back -

propagation trying to find the optimal values for the weights of the neurons, so that the

prediction is as much closer as possible.

 According to the Universal approximation theorem [3], it has been proven that “a feed-

forward network with a single hidden layer containing a finite number of neurons can

13 | P a g e

approximate continuous functions on compact subsets of Rn (Euclidean Space), under mild

assumptions on the activation function”.

Picture 7: Gradient descent, a core aspect of machine learning.

3 Literature review

3.1 Relevance of reducing and predicting LT

 In this chapter the relevance and importance of reducing and predicting Lead Times is

going to be examined. This thesis is trying to address the issue of inventory control through the

use of demand forecasting.

 "The No. 1 thing that has made us successful by far is an obsessive-compulsive focus on

the customer as opposed to obsession over the competitor," [4] said Jeff Bezos, CEO, and

founder of “Amazon” in a talk at the Economic Club of Washington. Nowadays it is a common

knowledge among big industries and companies that customer satisfaction is a key factor, if not

-the- key factor, to the growth of an organization. Towards this goal, this consulting project is

an effort to improve “Alumil” customer satisfaction by estimating and distributing a realistic

order delivery date, utilizing business analytics. Business analytics is defined as “the scientific

process of transforming data into insight for better decision making”. According to a study

carried out by Milo [5] (titled: “No cart left behind”), the bigger the estimated delivery time is,

the bigger is the probability that a customer will not complete the order but rather abandon it.

While the above study was carried out for the business to customer industry, it remains true for

the business to business organizations. This project’s aim is to provide an estimated delivery

time closest to the real one.

14 | P a g e

Picture 8: Part of “milos”' infographic about customer's behavior

 Muddassir Ahmed, in his article [6]“Seven reasons why you need to forecast in supply

chain” in 2016, states that demand forecasting plays a critical role in the supply chain function

regarding stock outs, especially when the suppliers are delivering the product in long lead times.

This type of forecasting can ensure efficiency in two key aspects of the business, namely sales

fulfilment time and short inventory times that can lead to reducing warehousing costing in

general. Also, having in mind the customer satisfaction factor, Ahmed suggested that demand

forecasting can help increase the business’ customer’s satisfaction by having already available

in stock the products that they are ordering in the time of the ordering. In addition to these

benefits, Ahmed concluded that manufacturing demands for production, planning of new

products by the team of product managers and planning for promotions by the marketing team

can all be harmonized together by accurate demand forecasting. This fact could lead to the

reduction of safety stock necessities thus reducing the associated costs. In their 2010 released

book, “Operations Management”, Slack, Chambers and Johnston claimed that accurate demand

forecasting aids the business at achieving effective production schedule by maintaining the

balance between supply and with SIOP (Sales Inventory and Operations Planning).

3.2 Lead Time prediction

Little’s Law:

 Queuing theory, a mathematical sub discipline of the theory of probability, states that the

average number of customers on a system is equal to the product of their average arrival rate

and the average lead time that is the amount of time that the customer spends in the stationary

system. This is famously known as [7]“Little’s Law”.

15 | P a g e

 In the formula above the “L” declare the work in progress, also known as “WIP”. Put

simply, it is the number of items/ products/ services inside the queuing system that is being

examined. Lambda stands for the average arrival and departure rate and W represents the time

that each item must spend on the system, also known as lead time. For years, this simple yet

effective formula was utilized in the manufacturing business world with quite remarkable

results. The reason for that is that the formula is not influenced by external factors such as

service distribution and order or the arrival distribution.

 Since the decade of the seventies, considerable amount of researchers have been

publishing papers concerning the determination of production lead times. Weeks, 1979 [8],

published his research on the impact of the predicted lead time in production based on statistical

measures. His three hypotheses that he put to the test were: Lead time rules based on forecasting

of individual jobs’ delivery time have a better outcome than rules based on total work,

concerning workshop congestion. Rules focused on lead time perform better than the “shortest

imminent-processing” rule. Lead time tends to be bigger when the workshop system becomes

more complicated. Weeks claimed that this research was just a beginning, and the topic of

predicting lead times has many unanswered questions and plenty of room for further

investigating. In 1991, [9] Vig and Dooley, utilized existing data of completed orders to obtain

rules and patterns in them concerning the orders’ lead time. They discovered that existing data

can be of use, since they concluded that the characteristics of the placed order and the kind of

production affect the lead time and are very important for the forecasting. In 1994, [10] Enns

stated that two were the factors of success for job shop (a manufacturing practice in which

batches of custom products are made) customers: high supply reliability and short lead times.

A methodology that describes the success factors of negotiating the due dates in a production

environment, with complex processes and high variety of products where research by Lawrence

S.R., 1994 [11]. Production order’s flow time in small and medium-sized enterprises in a

dynamic market was the research topic for Wiendahl and Dammann in 2006. They quantified

the influences inside this dynamic market and developed a tool that prescripts which response is

the best to this influences. He used a model for production and capacity control which was

targeted at order’s delivery time. In 1983, [12]Tatsiopoulos I. and Kingsman in their paper

“Lead Time Management”, presented their research which dealt with defining manufacturing

flow times used in PPC. The main two methods they used included were: A probabilistic

approach which treats manufacturing lead time as unpredictable and chaotic. The second

approach highlights the importance of control in manufacturing in order to manage the lead

time to confront to predefined ranges. In the paper it is concluded, that the second approach is

16 | P a g e

more reliable, but it requires very close cooperation between the functions of production and

commercial inside the organization to achieve that. [13] Kingsman, in his research “A structural

methodology for managing manufacturing lead times in make-to-order companies”, 1989,

proposed a different approach to controlling manufacturing lead times. While in the past, the

scheduling of orders in the shop floor were made in order to meet their predefined delivery

dates, he proposed that the ordering and scheduling must be defined at a higher level when the

customer inquiry arrives and the prices and the delivery dates are determined. The same

researcher, in the year of 2000 issued an article in the “International journal of production

economics” under the title: [14]“Modelling input–output workload control for dynamic

capacity planning in production planning systems”. In his research of workload control in

PPC, he concluded that in the produce-to-order companies the arrival of orders cannot be

predicted, and that managing is a better practice than forecasting lead times. Ooijen and

Bertrand in 2001 [15], researched the tradeoff between the reliability of the company and the

length of lead times from an economic perspective. They tried to find a cost optimal delivery

due date, having in mind lead time and cost related factors.

Following the review of research projects in general there the pattern that has been

revealed is that most of the researchers’ work is concentrated on the whole lead time, gathering

data from simulation processes and applying few machine learning algorithms. In 2006, [16]

Ozturk found that because lead time does not include only the processing time in the shop floor,

but contains also transportation and queue, it is very a very difficult task to forecast it. In this

research “Manufacturing lead time estimation using data mining”, the group of researchers

attempted to predict lead times using basic machine learning algorithms like regression trees

and linear regression. In 2018, Pfeifer A. [17] applied and evaluated the performance of three

different machine learning models and presented the outcomes to the 6th CIRP Global Web

Conference – Envisaging the future manufacturing, design, technologies and systems in

innovation era. Data were extracted by simulation processes (discrete event) with 8 features.

The random forest machine learning outperformed the other two models. Gyulai D. in the 16th

IFAC Symposium on Information Control Problems in Manufacturing (2018, Bergamo, Italy)

[18] presented a paper which contacted machine learning and analytical techniques and methods

to a manufacturing execution system, which due to changing order stream is exposed to changes

and is overall complex. [19] Meidan in his paper stated that the research should not focus on

lead times in general but rather in waiting times between different stages in the manufacturing

flow shop environment. The team of researchers applied neural networks, Bayesian classifiers

and decision trees. After excessive feature engineering they concluded that only the 11% of

original’s dataset features were enough to perform the forecast. [20] Alenezi in 2008, compared

the performance of an SVM (support vector machine) model with an ANN (artificial neural

network) and time series models for flow time prediction in real time problem. Another

17 | P a g e

comparison between different machine learning models concerning lead time prediction was

contacted by Mori in 2015 [21] . He estimated lead time in production using Bayesian networks

and compared its results with SVM and ANN models in the steel industry. An example of

classification model was conducted by De Cos Juez [22] . Specifically he built a machine

learning algorithm which classifies a batch of metallic components of aerospace engines into

two categories: completed in the forecasted time or not. Susanto [23] , Raaymakers are two

other researchers who utilized ANN to estimate accurately the lead time of customer’s orders.

To our knowledge this is the first attempt to predict customer’s order lead time in the aluminum

manufacturing industry with machine learning and non-simulated data.

3.3 Demand forecasting

 Most of the research conducted concerning demand forecasting contained traditional time

series analysis methods such as Autoregressive Integrated Moving Average (ARIMA) or

exponential smoothing method for decades. In last years of the decade of 1990 it is observed

that along traditional time series forecasting methods, various machine learning methods were

implemented, starting from the simplest ones such as linear/ multiple regression and getting to

the more complex ones like ensemble methods, SVM artificial and neural networks.

The ARIMA technique was used in a variety of demand forecasting studies. Williams

B. in the year of 2003 [24] , applied the forecasting technique of ARIMA in the vehicular traffic

flow. Non-stationary time series data, like international tourism was the object of forecast of

Lim in 2002 [25] . She used Box Jenkins ARIMA and evaluated her forecasting accuracy by

MAPE (Mean Absolute Percentage Error) and RMSE (Root Mean Squared Error). In 2003, [26]

Ching-Wu Chu compared linear methods such as ARIMA with nonlinear models like ANN. He

concluded that ANN were performing better with de-seasonilized data while ARIMA was

performing better with the original data. Mupparaju K. in 2018 [27] performed a comparative

study of various machine learning models for demand forecasting of grocery items. The main

comparison was between LGBM (Light Gradient Boosting) and ANN. While ANN are very

reliable and efficient with high dimensional data, they are not accurate if the training data is not

large enough. Furthermore there is always an interpretability – accuracy trade off. ANN are

known as “black boxes” meaning that even if the accuracy of the model is high there is no way

of interpreting the causal relationships and the calculations that took place inside the model and

how eventually the model arrived in the given result. Two similar approaches of neural

networks to time series data, recurrent backpropagation and Long Short Term Memory (LSTM)

model were utilized by Goyal A., who observed that LSTM Neural Network outperformed other

baseline models, it is fairly simple to implement and it does not require much feature

engineering. LSTM models are storing information for extended time interval, truncating the

gradient where the model sees fit. While Graves in 2013 [28] used LSTM to forecast next

18 | P a g e

sequence of text, Mupparaju K. in 2018 [27] , implemented LSTM for sales forecasting. Liu

Yue in 2007 [29] performed demand forecasting with a variant of SVM model, which he called

“SHEnSVM” (Selective and Heterogeneous Ensemble of Support Vector machines) in which

each SVM is trained with different samples of data which is generated by a bootstrap algorithm.

He then applied this model to forecast the demand of beer in a retail company with good

generalization ability. He then concluded that forecasting accuracy can be increased by using

ensemble- learning techniques. I. Watanabe and his research team published an “AI based

demand forecasting” [30] method in the Fujitsu scientific & technical journal. The team

combined conventional time series modeling with machine learning. They also proposed an

attribute decomposition method for the forecasting of new products which have no previous

sales. Last, they concluded that the fact that the optimum forecasting method differs depending

to the life cycle of the product is a major challenge.

4 Data Engineering & technologies involved

Technologies Involved in this thesis

 All raw, transactional data reside inside Oracle’s relational databases. From there, using

SQL and PLSQL data are integrated into a unique data repository (data warehouse). Data

exploration is performed using Microsoft’s business intelligence platform PowerBI which live

connects to the data warehouse. Lastly, data from the data warehouse are analyzed and used in

analysis, feature engineering and predictive modeling with Python’s programming language,

utilizing its most well-known libraries and APIs, like Pandas, NumPy, ScikitLearn, Tensorflow

and Keras.

Data Engineering

 Data engineering is the process of acquiring, wrangling, cleaning and modeling the data

from disperse and different sources into a single and unified data repository [31]. The data that

are going to be utilized in the predictive modeling is not going to be static, but dynamic. ETL

pipelines (Extract – Transform – Load) had been constructed so that the data is being refreshed

daily. After that, the data is modeled in a star schema and it resides in a multidimensional data

warehouse. The original data, resides in the transactional databases of the application that the

organization is using for its everyday needs. Specifically, the main resource of data is the

company’s ERP. Besides that the company uses a complex B2B software designed for customer

to place their orders, explore the products and the pricelist, a CRM software, an Advanced

Planning and scheduling software and a production management software.

19 | P a g e

 For years, the company made sure that historical data of every day’s pending orders are

stored in the transactional database of planning’s software. This means that an order is present

through all its stages, from the first date that it was registered, to the last date, when all the

requested kilos of the aluminum profile were ready for loading in the warehouse. About 24

million rows worth of data is stored for reporting reasons (for example, the number of open

orders per day, kilos that are pending and must go through various production lines). This huge

volume of raw data triggered the initial idea, that it can be utilized in order to gain predictive

and prescriptive insights, rather than plain descriptive, using machine learning methods.

Picture 9: The flow of predictive modeling: data from source systems, data warehouse, predictive modeling, database

programming and back to business users.

 As expected, even simple queries on this huge dataset can be restrictive on a transactional

database. The attempt of providing predictive analytics with a machine or worse, deep learning

with data that comes from this database was unsuccessful. For this reason, the data needed for

20 | P a g e

this purpose is daily extracted from the software’s database, transformed and then loaded into

the data warehouse, which is built for analytical purposes, with the method of ETL (Extract –

Transform – Load). The data needs a lot of manipulation, pre-processing and cleansing in order

to be used in the correct form by machine learning algorithms. This process was decided to be

implemented with PL/SQL and not with Python since PL/SQL engine resides inside the Oracle

database (the data warehouse used is Oracle’s) and the data manipulation is much faster there.

(Analysis inside python takes place inside RAM memory, making analysis infeasible there, due

to the volume of data). The historical data of orders reside inside the data warehouse in the well-

known architecture of a star schema. That means that a fact table holds the measurable,

quantitative data about each order line and dimension tables are linked with the fact table. In

each dimension table, there is a primary key relating to one of the columns in the fact table with

a one to many relationship.

 The data in the data warehouse is refreshed daily. An automated job is scheduled inside

the database to extract the new data from the transactional databases (capacity planning

software, ERP system) and insert it into the data warehouse. On top of this star schema

structure, a database (materialized) view is constructed, containing all the information in the

form that is needed for the machine learning algorithm (a materialized view is selected for

performing issues). The application of machine learning modeling is implemented in a Python

3 environment. Access to the Oracle database is given to python with the cx_Oracle version 7.1

module, and specifically to the view that was mentioned before. The data from the view is then

inserted into a pandas’ data frame for further preprocessing and analysis.

Data Visualization and exploration

Picture 10: Star schema used in company's data warehouse

21 | P a g e

 Prior business knowledge is essential for the predictive modeling of demand and lead

time. In addition to a priori knowledge, data exploration and visualization can lead to discoveries,

trends and patterns that may prove of usefulness to the machine learning algorithms later used.

For this purpose the business intelligence platform of Microsoft’s PowerBI is used.

 The great usefulness of this platform is that the visualizations that are built with the data

are being refreshed daily (or even hourly) in sync with the data in the data warehouse, so that

the analyst with a single click can explore daily the new data and find anomalies or new trends

previously unknown. Some diagrams exported from the business intelligence platform are

displayed below:

Picture 11: Order value by month. Line chart example from BI Platform

In the line chart above, a clear trend and seasonality is discovered. It is obvious that the value of orders

during the August is much less. It is concluded that the month feature will greatly help the algorithm

explain the variance of the problem.

22 | P a g e

Picture 12: Examples of visual representation that helped to understand the problem of lead
time prediction (1)

Picture 13: Examples of visual representation that helped to understand the problem of lead time prediction
(2)

23 | P a g e

Picture 14: Examples of visual representation that helped to understand the problem of lead time prediction (3)

5 Feature engineering

 Feature engineering is the method of applying domain knowledge of the modeling problem to

create features that will make the machine learning model able to predict a desired outcome. Feature

engineering is a core aspect of machine learning, and as Andrew Ng states: “Coming up with features is

difficult, time-consuming, requires expert knowledge. «Applied machine learning» is basically feature

engineering.”

There are three predictive objectives that this thesis is dealing with:

1. Lead Time Prediction for customers’ orders of aluminum profiles

2. Lead Time Prediction for customers’ orders of aluminum accessories

3. Demand forecasting for customers’ orders of aluminum accessories.

 Combining these three results the supply chain will be in position to perform a “what if”

analysis. In detail, utilizing the results of lead time prediction and the demand forecasting the

logistics professional will estimate the amount of product loadings for the next month.

The three major categories of data that explains the variability in demand forecasting

24 | P a g e

1. Static product characteristics

2. Dynamic product characteristics

3. Product’s life cycle state

4. External factors (aluminum raw material price, temperature, competing materials price

(steel)).

5.1 Lead time prediction (Accessories)

 Aluminum accessories are the second most sold (and ordered) item category in

the group after aluminum profiles. Its sales account for the 15% of the total revenue

that the group produces. Accessories are being grouped into commercial categories and

groups. While most of the accessories products (like door handles and hinges) are parts

of aluminum systems, some commercial categories, like solar panels, are being sold

separately and are not part of the aluminum systems for windows & doors. The table

below displays the most common commercial categories that accessories belong to:

Accessories Grouping - Commercial Category

Adhesives And Sealants Other Accessories

Aluminum Sheets Other Industrial

Connectors Packaging

Corners Photovoltaics (Pv)

Cremones Pl Polyamides

Door Automations Plastic Covers

Electric Motion Kit For Doors Polyamides

Facade Accessories Polycarbonates

Fire Rated Accessories / Doors Premade Pergola

Flyscreen Systems Pressed Panels

Foam Insulation Punching Machines

Gaskets Pvc Profiles

Mechanisms - Locks Railing Systems

Handles Roller Shutter Accessories

Hinges Rollers - Inox Rails

Hoppe Handles Screws And Rivets

Industrial Accessories Second Sash Latches

25 | P a g e

Interno Shading Systems

Jbond Shutters Accessories

Levelers / Wedges Skylights

Locks For Opening Systems Slats-Axles

Locks For Sliding Systems Soundwalls

Machines - Tools Special Steel Systems

Motor Steel Goods

Motor Asa T/T Mechanisms

Motors Nice Wood Composite Panels

 A very important distinction which takes place in both the profiles and the

accessories is the line of business categorization. Each product can either belong to the

architectural or the industrial line of business. While the architectural products are part

of window and door, interior and facade systems the industrial products are utilized in

the industry (automotive and construction industry, machine construction, ladders

scaffoldings facilities). This characteristic is very important especially in the lead time

estimation problem, because the industrial products are always “make to order” and are

being delivered based on contracts with the customers, while the architectural ones are

for the most part “make to stock” since there is a pretty steady order flow from the

customers. The majority of the accessories products are being delivered by external

suppliers.

Feature selection:

 Several meetings with the supply chain stakeholders took place in order to

conclude to several features that are considered to affect the accessories’ orders lead

time. Again, order’s details like the date of order placement, product characteristics and

most importantly daily data from the accessories’ capacity planning software (MRP)

were taken into account as features for the predictive modeling. In detail:

Features taken into account:

Order Number,

Ordered Date,

Line Number,

Ordered Quantity,

Item Code,

26 | P a g e

Line Of Business,

Log Category,

Commercial Code,

Commercial Description

Commercial Group Code,

Commercial Group Description,

Proforma Hold Flag,

Credit Hold Flag,

Mrp Available Stock,

Mrp Production Quantity,

Mrp Reserved Quantity,

Mrp Expected Quantity,

Mrp Remaining Quantity,

Mrp Receipt Stock,

Mrp ΜΤΟ Status,

Mrp Status,

Schedule Ship Date Estimated,

Mrp Estimated Days,

Actual Delivery Date

Feature explanation:

 Order Number: Each order obtain a unique id

 Order Date: The date that the order was placed by the customer

 Line Number: Each order may contain one or more lines. Each line is a

different product and may contain the ordered quantity. Each line in the order

has a unique identifier

 Ordered Quantity: The ordered quantity for each product in different unit of

measure (it may be pair, pack, piece etc.)

 Item Code: The product’s item code

27 | P a g e

 Line of business: Distinction between the values of line of business is described

above.

 Log Xar: This feature indicates whether the product is manufactured in house

or it is being delivered by an external supplier.

 Commercial Category Code/ Description: The commercial category described

before with its respective code.

 Commercial Group Code/ Description: A more detailed categorization

concerning only accessories.

 Proforma/ Credit Hold Flags: Reasons to hold a customer’s order based on his

credit view. For example, if a customer’s balance exceeds his credit limit, his

orders are being held. It is expected that this feature affects the order lead time.

 ΜΤΟ status: Based on each product’s stock turnover rate, each item code is

characterized with a MTO status.

 MRP (Stocks): MRP (abbreviation for Materials Requirement Planning) is an

in house built software which calculates the materials and several components

which are needed to manufacture and offer a product. It consists of three steps:

1. Considers the available inventory of materials and components and

distributes the stock to the customers’ orders (mostly FIFO).

2. Identifies which additional resources are needed

3. Provides action for scheduling of purchasing/ production

The distributed stock by the MRP software (MRP Production Quantity, MRP

Reserved Quantity, MRP Expected Quantity, MRP Remaining Quantity, and

MRP Receipt Stock) is a feature that affects the customer’s order lead time.

5.2 Lead Time Prediction for architectural profiles

Features for LT Prediction of Architectural Profiles

Order Year Expressorder Flag

Order Day Name Express Line Flag

Order Month Is Sm Replenishment

Order Number Preason

Line Number Prioritydescr

Line Id Hasloaded

Ordered Date Ordercomplete

Schedule Ship Date Remainnotloadedkilos

28 | P a g e

Request Date Pickedqtykilos

Order Line Status Remainpicklistkilos

Proforma Hold Flag Prosdesmeusikilos

Ordered Quantity Diadikasiaparagogiskilos

Ordered Quantity2 Programmatismenakilos

Ordered Uom Apoapothikikilos

Ordered Uom2 Apoparagogikilos

Schedule Ship Date Estimated
Diekperaiosikgs

Country Subsidiaty

Wms Dt Is Industrial

Predicttime Dt Express Flag

Shipment Dt Ral Categories

Shipment No Is Thermo

On Hold Days Supreme Flag

Abc Code Daily Load Kgs

Promised Dt Lag Orders Day Count

Orderremarks In Warehouse Dt

Has Remarks Planning Difference

Notproformapayed Delivery Days

Feature explanation:

1. Data describing the product that the order contains:

Architectural or industrial aluminum profile. This project is focused on architectural

profiles. The process of satisfying industrial aluminum profiles’ demand is different

and cannot be described and modeled in the same way of architectural profiles.

Heat insulation. Architectural profiles can be insulated or not. This feature is very

important for the determination of the production duration, given that heat insulated

profiles must come through an extra production stage, insulation foil production line.

Profile’s surface treatment. There are 4 available surfaces for the profiles: Not painted,

electrostatic painting, anodized and wood effect painting (sublimation). The surface of

each product, affects the production duration. For example, if the product contained in

order is not painted it is not necessary to go through the powder coating line. If the

requested product is anodized, then it must come through the anodizing plant. Each

production stage has its own production capacity and lead time (the latency between

29 | P a g e

the initiation and execution of each production’s stage process).

ABC Product Priority. Depending on the stock turnover ratio and popularity of each

product, each aluminum profile is characterized as:

 A

 B

 C

 D

 E (Express Order)

 MTO (Make to Order)

2. Data describing the details of the order:

The amount of the ordered kgs, per order line.

The amount of kgs that are already available in the warehouse, per order line.

The amount of kgs that must come through the production stages, per order

line.

Customer data (subsidiary or not, credit control flag),

Seasonality of order. The year, month and day name of the order placement

day is taken into account as a feature that can affect the lead time,

The existence of comments on order.

Line ID/Number: Each order may contain multiple lines. Prediction is going to

be performed on the order line level and then is going to be aggregated to the

order level. (Maximum delivery date of all line numbers in an order is going to

be the delivery date of the whole order).

3. Data describing the daily production load:

Number of open orders that must be satisfied through the production facilities

Pending kilos of aluminum profiles that are not yet produced.

Feature engineering

 The part of data engineering, is followed by feature engineering. Machine learning

models are based on data that can interpret the problem and sufficiently explain the complexity

of the given problem, in a way the algorithm can comprehend. For example, most of the machine

30 | P a g e

learning algorithms don’t know how to handle categorical variables.

For both demand forecasting and lead time prediction the following data preprocessing steps

are taken:

1. Outlier and anomalies detection

2. Filling missing values

3. Creating rolling window / lag features

4. Encoding categorical values

6 Predictive modeling – Machine learning methods

 Since the desired outcome of the predictive algorithms that we are going to use is

numerical this thesis is concerned with Regression Techniques.

 Regression algorithms are machine learning techniques for predicting continuous

numerical values. They are supervised learning tasks which means they require labelled training

examples.

Demand Forecasting:

The aim of demand forecasting that this thesis is concerned is to predict the value of the orders

that are going to be placed in the next month for accessories.

As for now ensemble methods, namely “xgboost” and “catboost” have been implemented, in

the process of predicting the orders’ value of June 2019. In total for all aluminum accessories

except the solar commercial category, predicted values display a 3% difference from actual

ones.

The strategy for predictive future (next month’s) sales orders was as follows:

 Load the data into python

 Perform exploratory analysis, remove outliers

 Create features related with commercial categories/ commercial groups

 Create a matrix, which is the Cartesian product of all products and calendar dates and

fill it with data from sales orders. If an item was not ordered fill the blanks with zero

values. This is especially important, because we the model needs to be informed about

zero sales too.

31 | P a g e

 Add lag features

 add mean encoded data

 add price trend data

 add month

 add days

 add months since last sale/months since first sale features

 cut first year and drop columns which cannot be calculated for the test set

 fit the model, predict and clip targets for the test set

The best performing algorithm for the demand forecasting was the xgboost regressor with the following

parameters:

max_depth= 8,

n_estimators= 500,

min_child_weight= 1000,

colsample_bytree= 0.7,

subsample= 0.7,

eta= 0.3,

seed= 0

XGBoost is an extremely efficient algorithm which delivers accuracy coupled with high performance in

comparison to other algorithms. XGBoost, also known as regularized version of GBM (Gradient Boosting

Machine). has to offer the following advantages [32]:

1. Regularization: XGBoost has in-built Lasso Regression and Ridge Regression regularization which

prevents the model from overfitting. That the reason why XGBoost is also called regularized form

of GBM.

2. Parallel Processing: XGBoost uses the power of parallel processing and this is the reason why it is

much faster than Gradient Boosting Machine. It utilized many CPU cores to execute the prediction.

3. Missing Values handling: The algorithm contains a built-in capability to handle missing values.

The moment XGBoost encounters a missing value at a tree node, it attempts both a left and a right

hand split and learns the way leading to higher loss for each node.

4. Cross Validation: XGBoost is capable to run at each iteration, a cross-validation of the boosting

process. This enables the user to get the optimum number of boosting iterations.

32 | P a g e

5. Tree Pruning: While the GBM algorithms stops splitting a tree node when it encounters a negative

loss in the split, XGBoost on the other hand make splits taken into consideration the “max_depth”

parameter and then and then it starts pruning the tree backwards where there is no positive gain.

 The model’s maximum depth of the tree was set to 8, because increasing even more makes the

model very complex and the consumption of memory aggressively rises with the increase of the maximum

depth. Along with the complexity the danger of overfitting the model to the training data arises with a big

number of tree depth. The learning rate of the model, defined by the parameter “eta”, was set to .3 which

acts as the step size shrinkage in order to prevent overfitting. The feature weights are extracted after each

step of boosting. The “eta” parameter shrinks the weights to prevent overfitting. “min_child_weight”

parameter s set to 1.000, generally the larger value that this parameter is set to the more conservative the

model is going to be. “Colsample_bytree”, is the ratio of columns when constructing the tree. Every time a

tree is constructed the subsampling occurs. Subsample set to 0.7 means the algorithm will randomly sample

30% of the training data before growing the trees. Again this subsample which occurs in every boosting

turn, is used to prevent the overfitting of the model.

Lead Time Prediction

The algorithms used for predicting the delivery days (lead time) in this research are:

• Linear Regression,

• Decision Trees,

• Ensemble techniques, gradient boosting methods on top of regression and decision

trees,

• Neural Networks,

• Deep Neural Networks.

 A sample of 38.500 orders of architectural aluminum profiles have been used in order to

examine and compare the performance between the existing capacity planning software, and

the best performing algorithm so far (a Sequential neural network model with two densely

connected hidden layers, and an output layer that returns a single, continuous value using

Keras). The orders are from 2018 and the first 4 months of 2019. The best – performing

algorithm was implemented as follows: The number of neurons in the input layer equals the

number of input variables (features) in the data being processed. In this case, 90 input features

33 | P a g e

require 90 input neurons. Then, a dense hidden layer with 64 neurons is added to the model.

The layer manages its own weight matrix, containing all the connection weights between the

neurons and their inputs. It also manages a vector of bias terms (one per neuron). Next, a second

dense hidden layer with another 64 neurons is added, also using the ReLU activation function.

Finally, a dense output layer with only 1 neuron without an activation function is needed

(because the outcome is a continuous variable).

Performance so far:

 For the three topics that this thesis is dealing with, the machine learning algorithms that

were applied in the company’s data performed much better than the techniques that supply

chain’s division was utilizing so far. In a glance, the performance of the algorithms is displayed

in the following table:

34 | P a g e

Topic Performance Remarks

Lead time prediction for

aluminum accessories

Average Absolute

Error of 9 Days

Industrial orders, whose lead time is

affected by contracts (>2 month) are

included. Overall a very good

performance.

Lead Time Prediction for

customer orders of

aluminum architectural

profiles

Average Absolute

Error of 3,4 Days

Very Good performance.

Demand forecasting of next

month for aluminum

accessories.

 Total error of 3%

Decent performance overall, a deeper

analysis is required for commercial

groups with bigger error.

Picture 15: Comparison of performance between existing system (planning) and ML Algorithm VS Actuals

 The main conclusions that have been drown so far are non-technical. When dealing with

predictive modeling with machine learning in the business area, it has been deduced that two

main factors of success are quality data collection and business knowledge. Poor performance

in the algorithms has been improved drastically by acquiring more data (from previous not

currently operating ERP) and by having meetings and conversations with supply chain

professionals who have the business know how and indicated some pitfalls, exceptions and

35 | P a g e

outliers that otherwise it would be extremely difficult to realize and detect.

7 Future work and challenges

 A very important factor for the determination and prediction of production lead times are the

production routing that each product has to follow. When ordered, the product may be ready in the warehouse

and only needs to be wrapped, while other products needs to be extruded, painted or anodized, cut or drilled

etc. For future research concerning the enhancement of the lead time prediction’s accuracy, waiting times

between stages should be taken into account since this “dead time” affects the total cycle time.

 The following Sankey chart depicts the possible routing that each order line may follow. Containing

extra details about the capacity of each production stage and the resource that is being used (for example there

are four extrusion presses each one with different capacity) is going to provide valuable insights to the

machine learning model, thus explain the outcome’s variance better.

Picture 16: Sankey Chart: Possible production routings that each ordered item may follow.

36 | P a g e

 Another challenge that has to be taken into account, is the dynamic changes that the production

environment is being subject to. While the machine learning algorithms are excellent at detecting the

environment’s changes when being retrained major changes in the systems like the adoption of new planning

methods and systems are not easy to be realized by the algorithms without sufficient data.

8 Bibliography

[1] "Corporate profile," [Online]. Available: https://www.alumil.com/greece/en/corporate/about-

us/corporate-profile.

[2] "Linear Regression — Understanding the Theory - Towards Data Science," [Online]. Available:
https://towardsdatascience.com/linear-regression-understanding-the-theory-7e53ac2831b5.

[3] "Can neural networks solve any problem? - Towards Data Science," [Online]. Available:
https://towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6.

[4] "Jeff Bezos: Amazon succeeds through focus on customer over competitor - Business Insider,"
[Online]. Available: https://www.businessinsider.com/amazon-jeff-bezos-success-customer-
obsession-2018-9.

[5] "55% of shoppers abandon carts due to shipping costs: infographic – Econsultancy," [Online].
Available: https://econsultancy.com/55-of-shoppers-abandon-carts-due-to-shipping-costs-
infographic/.

[6] "Seven reasons why you need to forecast in supply chain | Top 10 | Supply Chain Digital," [Online].
Available: https://www.supplychaindigital.com/top-10/seven-reasons-why-you-need-forecast-supply-
chain.

[7] D. Simchi-Levi and M. A. Trick, "Introduction to "little's law as viewed on its 50th anniversary","
Operations Research, vol. 59, no. 3, p. 535, 5 2011.

[8] W. J.K., " A simulation study of forecastable due-dates, Management science, Vol. 25, No.4," 1979,,
pp. pp. 363-373.

[9] M. M. Vig and K. J. Dooley, "Dynamic rules for due-date assignment," International Journal of
Production Research, vol. 29, no. 7, pp. 1361-1377, 1991.

[10] S. T. Enns, "Job shop leadtime requirements under conditions of controlled delivery performance,"
European Journal of Operational Research, vol. 77, no. 3, pp. 429-439, 29 9 1994.

[11] S. R. Lawrence, "Negotiating due-dates between customers and producers," International Journal of
Production Economics, vol. 37, no. 1, pp. 127-138, 1994.

[12] I. P. Tatsiopoulos and B. G. Kingsman, Lead time management, vol. 14, 1983, pp. 351-358.

[13] B. G. Kingsman, I. P. Tatsiopoulos and L. C. Hendry, "A structural methodology for managing
manufacturing lead times in make-to-order companies," European Journal of Operational Research,
vol. 40, no. 2, pp. 196-209, 25 5 1989.

[14] "Modelling input-output workload control for dynamic capacity planning in production planning
systems - Research Portal | Lancaster University," [Online]. Available:
http://www.research.lancs.ac.uk/portal/en/publications/modelling-inputoutput-workload-control-for-
dynamic-capacity-planning-in-production-planning-systems(a7736d91-fd7e-4e8c-8719-
281f554f70dd)/export.html.

[15] H. P. Van Ooijen and J. W. Bertrand, "Economic due-date setting in job-shops based on routing and
workload dependent flow time distribution functions," International Journal of Production
Economics, vol. 74, no. 1-3, pp. 261-268, 12 2001.

[16] A. Öztürk, S. Kayaligil and N. E. Özdemirel, "Manufacturing lead time estimation using data
mining," European Journal of Operational Research, vol. 173, no. 2, pp. 683-700, 1 9 2006.

37 | P a g e

[17] A. Simeone and P. C. Priarone, Envisaging the Future Manufacturing, Design, Technologies and
Systems in Innovation Era, 2018.

[18] D. Gyulai, A. Pfeiffer, G. Nick, V. Gallina, W. Sihn and L. Monostori, "Lead time prediction in a
flow-shop environment with analytical and machine learning approaches," IFAC-PapersOnLine, vol.
51, no. 11, pp. 1029-1034, 1 1 2018.

[19] Y. Meidan, B. Lerner, G. Rabinowitz and M. Hassoun, "Cycle-time key factor identification and
prediction in semiconductor manufacturing using machine learning and data mining," in IEEE
Transactions on Semiconductor Manufacturing, 2011.

[20] A. Alenezi, S. A. Moses and T. B. Trafalis, "Real-time prediction of order flowtimes using support
vector regression," Computers and Operations Research, vol. 35, no. 11, pp. 3489-3503, 11 2008.

[21] J. Mori and V. Mahalec, "Planning and scheduling of steel plates production. Part I: Estimation of
production times via hybrid Bayesian networks for large domain of discrete variables," Computers
and Chemical Engineering, vol. 79, pp. 113-134, 4 8 2015.

[22] F. J. de Cos Juez, P. J. García Nieto, J. Martínez Torres and J. Taboada Castro, "Analysis of lead
times of metallic components in the aerospace industry through a supported vector machine model,"
Mathematical and Computer Modelling, vol. 52, no. 7-8, pp. 1177-1184, 10 2010.

[23] S. Susanto, P. I. Tanaya and A. S. Soembagijo, "Formulating standard product lead time at a textile
factory using artificial neural networks," in Proceeding of 2012 International Conference on
Uncertainty Reasoning and Knowledge Engineering, URKE 2012, 2012.

[24] B. M. Williams, M. Asce, L. A. Hoel and F. Asce, "Modeling and Forecasting Vehicular Traffic Flow
as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results".

[25] C. Lim and M. McAleer, "Time series forecasts of international travel demand for Australia,"
Tourism Management, vol. 23, no. 4, pp. 389-396, 2002.

[26] &. G. P. Z. Ching-Wu Chu, "A comparative study of linear and nonlinear models for aggregate retail
sales forecasting.," International Journal of Production Economics, pp. 217-231.

[27] K. Mupparaju, A. Soni, P. Gujela and M. A. Lanham, "A Comparative Study of Machine Learning
Frameworks for Demand Forecasting".

[28] A. Graves, "Generating Sequences With Recurrent Neural Networks".

[29] L. Yue, L. Zhenjiang, Y. Yafeng, T. Zaixia, G. Junjun and Z. Bofeng, "Selective and Heterogeneous
SVM Ensemble for demand forecasting," in Proceedings - 10th IEEE International Conference on
Computer and Information Technology, CIT-2010, 7th IEEE International Conference on Embedded
Software and Systems, ICESS-2010, ScalCom-2010, 2010.

[30] I. Watanabe, Tooru and Y. Tateki Imaoka, "AI-Based Demand Forecasting for Both Reliable
Forecasting and Efficient Operation: Dynamic Ensemble Forecasting," 2019.

[31] "The Future of Data Integration is No ETL," [Online]. Available:
https://www.splicemachine.com/future-data-integration-is-no-etl/.

[32] "The Professionals Point: Advantages of XGBoost Algorithm in Machine Learning," [Online].
Available: http://theprofessionalspoint.blogspot.com/2019/03/advantages-of-xgboost-algorithm-
in.html.

[33] G. P. Zhang, "A Comparative Study of Linear and Nonlinear Models for Aggregate Retail Sales
Forecasting," in Proceedings - Annual Meeting of the Decision Sciences Institute, 2002.

[34] N. Slack and S. Chambers, Operations management, Prentice Hall/Financial Times, 2007, p. 728.

[35] L. Lingitz, V. Gallina, F. Ansari, D. Gyulai, A. Pfeiffer and W. Sihn, "Lead time prediction using
machine learning algorithms: A case study by a semiconductor manufacturer," in Procedia CIRP,
2018.

[36] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye and T.-Y. Liu, "LightGBM: A Highly
Efficient Gradient Boosting Decision Tree".

[37] D. Gyulai, A. Pfeiffer, J. Bergmann and V. Gallina, "Online lead time prediction supporting situation-
aware production control," in Procedia CIRP, 2018.

[38] T. Berlec and M. Starbek, "Forecasting of Production Order Lead Time in Sme’s," in Products and

38 | P a g e

Services; from R&D to Final Solutions, Sciyo, 2010.

[39] "A Solution to Forecast Demand Using Long Short-Term Memory Recurrent Neural Networks for
Time Series Forecasting - Purdue Krannert," [Online]. Available:
https://krannert.purdue.edu/masters/business-analytics-and-information-management/student-
experiences/experiential-learning/2018/a-solution-to-forecast-demand-using-long-short-term-
memory-recurrent-neural-networks-for-time-series-forecasting.php.

9 Appendix

In the following appendix is displayed the SQL view that reads the tables from the tables in the data
warehouse and the source code from the predictive modeling in python:

9.1 SQL View in company’s Data Warehouse

- The view that reads from the data warehouse and
--it is used as the dataset in python’s predictive modeling:

CREATE OR REPLACE FORCE VIEW "ML_ACCESS_DEMAND_V"

("ORDER_DATE", "DAY_OF_MONTH", "DAY_NAME", "CAL_MONTH", "YEARMONTH", "DATE_BLOCK_NUM", "

MONTH", "YEAR", "ITEM_CODE", "ITEM_CATEGORY", "LINE_OF_BUSINESS", "COMMERCIAL_CATEGO

RY", "COMMERCIAL_GROUP", "UNIT_PRICE", "VALUE", "TRANSACTIONS") AS

select

a.order_date, d.day_of_month, d.day_name, d.cal_month,

case

when d.cal_month > 9 then to_number(d.year || d.cal_month) else to_number(d.year

|| '0'|| d.cal_month) end yearmonth,

dense_rank() over(order by

case

when d.cal_month > 9 then to_number(d.year || d.cal_month) else to_number(d.year

|| '0' || d.cal_month) end

) date_block_num, d.month,

d.year, b.item_code, b.item_category, b.line_of_business,

b.commercial_descr, b.commercial_group_descr, a.unit_price, a.line_amount,

1 transactions from

w_order_line_f a

join w_product_d b on a.item_wid = b.row_wid

join w_day_d d on to_char(a.order_date,'rrrrmmdd') = d.row_wid where

item_category = 'ΕΞΑΡΤΗΜΑΤΑ' and d.year >= 2016

;

9.2 Code for Accessories lead time prediction

import pandas as pd

path = r'C:\Users\v.manasas\Documents\Subject Areas\Thesis\Lead Time Predict

ion'

train = pd.read_excel(path+r'\Training Data - Lead Time Prediction (Accesso

39 | P a g e

ries).xlsx')

actual_LT = pd.read_excel(path+r'\Training Data - Lead Time Actual Delivery

Dates.xlsx')

train = pd.merge(train, actual_LT, on = ['ORDER_NUMBER','LINE_NUMBER'])

train.dropna(subset=['LAST_LINE_SHIP_DT'],inplace = True)

train['ORDERED_DATE'] = pd.to_datetime(train['ORDERED_DATE'],

format='%d-%m-%Y %H:%M:%S', utc=True)

train['LAST_LINE_SHIP_DT'] = pd.to_datetime(train['LAST_LINE_SHIP_DT'], form

at='%d-%m-%Y %H:%M:%S', utc=True)

train['ORDERED_DATE'] = pd.to_datetime(train['ORDERED_DATE'])

train['LAST_LINE_SHIP_DT'] = pd.to_datetime(train['LAST_LINE_SHIP_DT'])

train['ACTUAL_LT'] = (train['LAST_LINE_SHIP_DT'] -

train['ORDERED_DATE']).dt.days

train['DAY'] = pd.DatetimeIndex(train['ORDERED_DATE']).day

train['YEAR'] = pd.DatetimeIndex(train['ORDERED_DATE']).year

train['MONTH'] = pd.DatetimeIndex(train['ORDERED_DATE']).month

train['WEEKDAY'] = pd.DatetimeIndex(train['ORDERED_DATE']).weekday_name

train = train.dropna(subset=['ORDERED_DATE', 'LAST_LINE_SHIP_DT'])

train.drop(columns = ['ORDER_NUMBER','ORDERED_DATE','LINE_NUMBER','ITEM_COD

E','COMMERCIAL_DESCR','COMMERCIAL_GROUP_DESCR','SCHEDULE_SHIP_DATE_ESTIMATED

','LAST_LINE_SHIP_DT'],axis = 1, inplace = True)

train = train.fillna(0)

x = train.drop(['ACTUAL_LT'], axis=1)

y = train['ACTUAL_LT']

categorical_cols = ['LOG_XAR', 'COMMERCIAL_CODE','LINE_OF_BUSINESS',

'COMMERCIAL_GROUP_CODE', 'PROFORMA_HOLD_FLAG', 'CREDIT_HOLD_FLAG','MR

P_MTO_STATUS',

'MRP_STATUS','DAY', 'YEAR', 'MONTH', 'WEEKDAY']

x = pd.get_dummies(x,columns = categorical_cols, prefix = categorical_cols)

from sklearn import preprocessing

import numpy as np

X_scaled = preprocessing.scale(x)

from sklearn.model_selection import train_test_split

xTrain, xTest, yTrain, yTest = train_test_split(X_scaled, y, test_size = 1/3

, random_state = 0)

from sklearn import ensemble

params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 2,

'learning_rate': 0.01, 'loss': 'ls'}

clf = ensemble.GradientBoostingRegressor(**params)

clf.fit(xTrain, yTrain)

prediction = clf.predict(xTest)

prediction_ens = pd.DataFrame(prediction)

real_ens = pd.DataFrame(yTest)

prediction_ens.to_excel(r'C:\Users\v.manasas\Desktop\prediction.xlsx',inde

x= False)

real_ens.to_excel(r'C:\Users\v.manasas\Desktop\actual.xlsx',index= False)

xTrain = pd.DataFrame(xTrain)

from future import absolute_import, division, print_function

40 | P a g e

import pathlib

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

def huber_loss(y_true, y_pred, clip_delta=1.0):

error = y_true - y_pred

cond = tf.keras.backend.abs(error) < clip_delta

squared_loss = 0.5 * tf.keras.backend.square(error)

linear_loss = clip_delta * (tf.keras.backend.abs(error) - 0.5 * clip_delt

a)

return tf.where(cond, squared_loss, linear_loss)

def build_model():

model = keras.Sequential([

layers.Dense(64, activation=tf.nn.relu, input_shape=[len(xTrain.keys())]

),

layers.Dense(64, activation=tf.nn.relu),

layers.Dense(1)

])

optimizer = tf.keras.optimizers.RMSprop(0.001)

model.compile(loss=huber_loss,

optimizer=optimizer,

metrics=['mean_absolute_error', 'mean_squared_error'])

return model

model = build_model()

Display training progress by printing a single dot for each completed epoc

h

class PrintDot(keras.callbacks.Callback):

def on_epoch_end(self, epoch, logs):

if epoch % 100 == 0: print('')

print('.', end='')

EPOCHS = 100

history = model.fit(

xTrain, yTrain,

epochs=EPOCHS, validation_split = 0.2, verbose=0,

callbacks=[PrintDot()])

loss, mae, mse = model.evaluate(xTest, yTest, verbose=0)

print("Testing set Mean Abs Error: {:5.2f} days".format(mae))

9.3 Code for accessories demand forecasting

import numpy as np

import pandas as pd

path = r'C:\Users\v.manasas\Documents\Subject Areas\Thesis'

41 | P a g e

train = pd.read_excel(path+r'\train.xlsx')

items = pd.read_excel(path+r'\items.xlsx')

test = pd.read_excel(path+r'\test.xlsx')

train = train.query('UNIT_PRICE > 0')

#outliers

train= train.query('VALUE<1000000')

train= train.query('VALUE>0')

exculed_commercials = ['ΦΩΤΟΒΟΛΤΑΙΚΑ','ΛΑΣΤΙΧΑ']

train = train[~train.COMMERCIAL_CATEGORY.isin(exculed_commercials)]

train[['COMMERCIAL_CATEGORY', 'COMMERCIAL_GROUP']] =

train[['COMMERCIAL_CATEGORY','COMMERCIAL_GROUP']].fillna(value='GOOGLE')

train['YEARMONTH'] = train['YEAR'].map(str) + train['MONTH'].map(str)

train['DATE_BLOCK_NUM'] = train.YEARMONTH.rank(method='dense').astype(int)

Group by month in this case "date_block_num" and aggregate features.

train_monthly =

train.sort_values('DATE_BLOCK_NUM').groupby(['DATE_BLOCK_NUM', 'ITEM_CODE',

'COMMERCIAL_CATEGORY', 'COMMERCIAL_GROUP','YEAR','MONTH'], as_index=False)

train_monthly = train_monthly.agg({'UNIT_PRICE':['mean'], 'VALUE':['sum',

'mean'],'TRANSACTIONS':['sum']})

train_monthly.head()

Rename features.

train_monthly.columns = ['date_block_num', 'item_code',

'commercial_category', 'commercial_group','year','month', 'mean_item_price',

'value', 'mean_value', 'transactions']

Build a data set with all the possible combinations of

['date_block_num','item_code'] so we won't have missing records.

each item code corresponds to 1 commercial category and 1 commercial group

so there is no need to include commercial category and commercial groups.

date_block_num_unique = train_monthly['date_block_num'].unique()

item_unique = items['ITEM_CODE'].unique()

empty_df = []

for i in date_block_num_unique:

for item in item_unique:

empty_df.append([i, item])

empty_df = pd.DataFrame(empty_df, columns=['date_block_num','item_code'])

42 | P a g e

Merge the train set with the complete set (missing records will be filled

with 0).

train_monthly = pd.merge(empty_df, train_monthly,

on=['date_block_num','item_code'], how='left')

train_monthly['year'] = train_monthly['date_block_num'].apply(lambda x:

((x//12) + 2013))

train_monthly['month'] = train_monthly['date_block_num'].apply(lambda x: (x %

12))

train_monthly.fillna(0, inplace=True)

#get the commercial category and commercial group for months with zero sales

train_monthly = pd.merge(train_monthly, items, left_on='item_code',

right_on='ITEM_CODE', how='left')

train_monthly.drop(['ITEM_CODE', 'commercial_category','commercial_group'],

axis = 1, inplace = True)

train_monthly.rename(columns={"COMMERCIAL_CATEGORY": "commercial_category",

"COMMERCIAL_GROUP": "commercial_group","YEAR":"year","MONTH":"month"},inplace

= True)

train_monthly['surrogate_key'] = train_monthly.item_code + '-'

+train_monthly.date_block_num.map(str)

train_monthly.head()

for months that we have zero sales we do not know the item's unit price

so for each combination of item and month we are going to get the nearest

mean unit price

s=train_monthly.loc[train_monthly.mean_item_price!=0]

s=pd.merge_asof(train_monthly.sort_values('date_block_num'),s.sort_values('d

ate_block_num'),on='date_block_num',by='item_code',direction='nearest')

s.fillna(0, inplace=True)

s = s[['surrogate_key_x','mean_item_price_y']]

train_monthly = pd.merge(train_monthly, s, left_on='surrogate_key',

right_on='surrogate_key_x', how='left')

train_monthly.drop(['mean_item_price','surrogate_key_x'],axis = 1, inplace =

True)

train_monthly.rename(columns={"mean_item_price_y": "mean_item_price"},inplace

= True)

train_monthly.loc[train_monthly['item_code'] == 'EX-7651382273'].tail()

Extract time based features.train_monthly['year'] =

train_monthly['date_block_num'].apply(lambda x: ((x//12) + 2016))

43 | P a g e

train_monthly['month'] = train_monthly['date_block_num'].apply(lambda x: (x %

12))

Creating the label value for our model

Our label will be the "value" of the next month, as we are dealing with a

forecast problem.

train_monthly['value_month'] =

train_monthly.sort_values('date_block_num').groupby(['item_code',

'commercial_category','commercial_group'])['value'].shift(-1)

gp_item_price =

train_monthly.sort_values('date_block_num').groupby(['item_code'],

as_index=False).agg({'mean_item_price':[np.min, np.max]})

gp_item_price.columns = ['item_code', 'hist_min_item_price',

'hist_max_item_price']

train_monthly = pd.merge(train_monthly, gp_item_price, on='item_code',

how='left')

train_monthly['price_increase'] = train_monthly['mean_item_price'] -

train_monthly['hist_min_item_price']

train_monthly['price_decrease'] = train_monthly['hist_max_item_price'] -

train_monthly['mean_item_price']

Rolling window based features (window = 3 months)

Min value

f_min = lambda x: x.rolling(window=12, min_periods=1).min()

Max value

f_max = lambda x: x.rolling(window=12, min_periods=1).max()

Mean value

f_mean = lambda x: x.rolling(window=12, min_periods=1).mean()

Standard deviation

f_std = lambda x: x.rolling(window=12, min_periods=1).std()

function_list = [f_min, f_max, f_mean, f_std]

function_name = ['min', 'max', 'mean', 'std']

for i in range(len(function_list)):

train_monthly[('value_%s' % function_name[i])] =

train_monthly.sort_values('date_block_num').groupby(['commercial_group',

'commercial_category', 'item_code'])['value'].apply(function_list[i])

Fill the empty std features with 0

train_monthly['value_std'].fillna(0, inplace=True)

lag based features

44 | P a g e

lag_list = [1, 2, 3, 6, 12, 24]

for lag in lag_list:

ft_name = ('value_shifted_%s' % lag)

train_monthly[ft_name] =

train_monthly.sort_values('date_block_num').groupby(['commercial_category',

'commercial_group', 'item_code'])['value'].shift(lag)

Fill the empty shifted features with 0

train_monthly[ft_name].fillna(0, inplace=True)

Item sales count trend.

train_monthly['item_trend'] = train_monthly['value']

for lag in lag_list:

ft_name = ('value_shifted_%s' % lag)

train_monthly['item_trend'] -= train_monthly[ft_name]

train_monthly['item_trend'] /= len(lag_list) + 1

train_monthly.fillna(0, inplace=True)

train_monthly = pd.get_dummies(train_monthly,columns =

'commercial_category', prefix = 'cc_')

#Our train set will be the first 25 - 76 blocks, and test will be block 77 (

because we are trying to predict

block number 78. The label value_month of block 77 represents the sales of

block 78.

#leaving the first 3 months out because we use a 3 month window to generate

features, so these first 3 month won't have really windowed useful features

train_set = train_monthly.loc[(train_monthly['date_block_num'] > 24) &

(train_monthly['date_block_num'] < 77)]

test_set = train_monthly.loc[train_monthly['date_block_num'] == 77]

#mean encodings

gp_commercial_group_mean =

train_set.groupby(['commercial_group']).agg({'value': ['mean']})

gp_commercial_group_mean.columns = ['commercial_group_mean']

gp_commercial_group_mean.reset_index(inplace=True)

gp_commercial_category_mean =

train_set.groupby(['commercial_category']).agg({'value': ['mean']})

gp_commercial_category_mean.columns = ['commercial_category_mean']

gp_commercial_category_mean.reset_index(inplace=True)

45 | P a g e

gp_item_code_mean = train_set.groupby(['item_code']).agg({'value': ['mean']})

gp_item_code_mean.columns = ['item_code_meand']

gp_item_code_mean.reset_index(inplace=True)

gp_category_item_mean = train_set.groupby(['commercial_category',

'item_code']).agg({'value': ['mean']})

gp_category_item_mean.columns = ['category_item_mean']

gp_category_item_mean.reset_index(inplace=True)

gp_year_mean = train_set.groupby(['year']).agg({'value': ['mean']})

gp_year_mean.columns = ['year_mean']

gp_year_mean.reset_index(inplace=True)

gp_month_mean = train_set.groupby(['month']).agg({'value': ['mean']})

gp_month_mean.columns = ['month_mean']

gp_month_mean.reset_index(inplace=True)

Add mean encoding features to train set.

train_set = pd.merge(train_set, gp_commercial_group_mean,

on=['commercial_group'], how='left')

train_set = pd.merge(train_set, gp_commercial_category_mean,

on=['commercial_category'], how='left')

train_set = pd.merge(train_set, gp_item_code_mean, on=['item_code'],

how='left')

train_set = pd.merge(train_set, gp_category_item_mean,

on=['item_code','commercial_category'], how='left')

train_set = pd.merge(train_set, gp_month_mean, on=['month'], how='left')

Add mean encoding features to test set.

test_set = pd.merge(test_set, gp_commercial_group_mean,

on=['commercial_group'], how='left')

test_set = pd.merge(test_set, gp_commercial_category_mean,

on=['commercial_category'], how='left')

test_set = pd.merge(test_set, gp_item_code_mean, on=['item_code'], how='left')

test_set = pd.merge(test_set, gp_category_item_mean,

on=['item_code','commercial_category'], how='left')

test_set = pd.merge(test_set, gp_month_mean, on=['month'], how='left')

Create train and validation sets and labels.

X_train = train_set.drop(['value_month', 'date_block_num'], axis=1)

Y_train = train_set['value_month'].astype(int)

X_test = test_set.drop(['value_month', 'date_block_num'], axis=1)

Y_test = test_set['value_month'].astype(int)

validation = test_set[['item_code','value_month']]

46 | P a g e

X_train.columns

X_test.drop(['item_code','commercial_category', 'commercial_group',

'surrogate_key','year', 'month'],inplace = True, axis = 1)

X_train.drop(['item_code','commercial_category', 'commercial_group',

'surrogate_key','year', 'month'],inplace = True, axis = 1)

import datetime

import warnings

import numpy as np

import catboost

from catboost import Pool

from catboost import CatBoostRegressor

from xgboost import XGBRegressor

from xgboost import plot_importance

from sklearn.metrics import mean_squared_error

from sklearn.linear_model import LinearRegression

from sklearn.neighbors import KNeighborsRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.preprocessing import StandardScaler, MinMaxScaler

get_ipython().run_line_magic('matplotlib', 'inline')

pd.set_option('display.float_format', lambda x: '%.2f' % x)

warnings.filterwarnings("ignore")

X_train[X_train.columns] = X_train[X_train.columns].astype('int32')

X_test[X_test.columns] = X_test[X_test.columns].astype('int32')

cat_features = [0, 1, 7, 8]

catboost_model = CatBoostRegressor(

iterations=500,

max_ctr_complexity=4,

random_seed=0,

od_type='Iter',

od_wait=25,

verbose=50,

depth=4

)

catboost_model.fit(

X_train, Y_train,

cat_features=cat_features

)

catboost_test_pred = catboost_model.predict(X_test)

catboost_test_pred = pd.DataFrame(catboost_test_pred)

47 | P a g e

validation.to_excel(r'C:\Users\v.manasas\Documents\Subject

Areas\Thesis\validation.xls', index=False)

catboost_test_pred.to_excel(r'C:\Users\v.manasas\Documents\Subject

Areas\Thesis\prediction.xls', index=False)

train_monthly.head()

xgb_features = X_train.columns

xgb_train = X_train[xgb_features]

xgb_test = X_test[xgb_features]

xgb_model = XGBRegressor(max_depth=8,

n_estimators=500,

min_child_weight=1000,

colsample_bytree=0.7,

subsample=0.7,

eta=0.3,

seed=0)

xgb_model.fit(xgb_train,

Y_train,

verbose=20,

)

xgboost_test_pred = xgb_model.predict(X_test)

xgboost_test_pred = pd.DataFrame(xgboost_test_pred)

validation.to_excel(r'C:\Users\v.manasas\Documents\Subject

Areas\Thesis\validation_x.xls', index=False)

xgboost_test_pred.to_excel(r'C:\Users\v.manasas\Documents\Subject

Areas\Thesis\xg_prediction.xls', index=False)

9.4 Lead time prediction for aluminum profiles

import pandas as pd

import numpy as np

from sklearn.preprocessing import MinMaxScaler

train = pd.read_excel(r'C:\Users\v.manasas\Desktop\Subject Areas\Alumil -

IHU\ORDER LINES.xlsx')

train.columns.values.tolist()

drop_columns = ['ORDER_NUMBER',

'LINE_NUMBER',

'PROFORMA_HOLD_FLAG',

'ORDER_LINE_STATUS',

'LINE_ID',

'ORDERED_DATE',

48 | P a g e

'SCHEDULE_SHIP_DATE',

'REQUEST_DATE',

'ORDERED_QUANTITY',

'ORDERED_QUANTITY2',

'ORDERED_UOM',

'ORDERED_UOM2',

'SCHEDULE_SHIP_DATE_ESTIMATED',

'PLN_PREDICTTIME_DT',

'SHIPMENT_DT',

'SHIPMENT_NO',

'ON_HOLD_DAYS',

'IN_WAREHOUSE_DT',

'PLN_WMS_DT',

'PLN_PROMISED_DT_LAG',

'DAILY_LOAD_KGS',

'ORDERS DAY COUNT',

'PLN_ORDERREMARKS',

'PLANNING_PROMISED_DATE'

]

train = train.drop(drop_columns,axis =1,inplace = False)

train.info()

train.dropna(axis = 0, inplace = True)

train.info()

orders= train

orders.info()

x = orders.drop(['DELIVERY_DAYS'], axis=1)

y = orders['DELIVERY_DAYS']

categorical_cols = ['AUDIT_YEAR',

'ORDER_DAY_NAME',

'AUDIT_MONTH',

'COUNTRY',

'ABC_CODE',

'PLN_NOTPROFORMAPAYED',

'PLN_EXPRESSORDER',

'PLN_EXPRESS_LINE_FLAG',

'PLN_IS_SM_REPLENISHMENT',

'PLN_PREASON',

'PLN_PRIORITYDESCR',

'PLN_HASLOADED',

'PLN_ORDERCOMPLETE',

'HAS REMARKS',

'SUBSIDIATY',

'IS_INDUSTRIAL',

'EXPRESS_FLAG',

'RAL_CATEGORIES',

'IS_THERMO',

'SUPREME_FLAG']

49 | P a g e

x = pd.get_dummies(x,columns = categorical_cols, prefix = categorical_cols)

x.columns.values.tolist()

x.drop(['PROFIL_USE'],axis =1, inplace = True)

from sklearn.model_selection import train_test_split

xTrain, xTest, yTrain, yTest = train_test_split(x, y, test_size = 1/3,

random_state = 0)

from sklearn import preprocessing

import numpy as np

x_Train = preprocessing.scale(xTrain)

x_Test = preprocessing.scale(xTest)

from future import absolute_import, division, print_function

import pathlib

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

x_Train = pd.DataFrame(x_Train)

def huber_loss(y_true, y_pred, clip_delta=1.0):

error = y_true - y_pred

cond = tf.keras.backend.abs(error) < clip_delta

squared_loss = 0.5 * tf.keras.backend.square(error)

linear_loss = clip_delta * (tf.keras.backend.abs(error) - 0.5 * clip_delta)

return tf.where(cond, squared_loss, linear_loss)

def build_model():

model = keras.Sequential([

layers.Dense(64, activation=tf.nn.relu,

input_shape=[len(x_Train.keys())]),

layers.Dense(64, activation=tf.nn.relu),

layers.Dense(1)

])

optimizer = tf.keras.optimizers.RMSprop(0.001)

model.compile(loss=huber_loss,

optimizer=optimizer,

metrics=['mean_absolute_error', 'mean_squared_error'])

50 | P a g e

return model

model = build_model()

Display training progress by printing a single dot for each completed epoch

class PrintDot(keras.callbacks.Callback):

def on_epoch_end(self, epoch, logs):

if epoch % 100 == 0: print('')

print('.', end='')

EPOCHS = 1000

history = model.fit(

x_Train, yTrain,

epochs=EPOCHS, validation_split = 0.2, verbose=0,

callbacks=[PrintDot()])

loss, mae, mse = model.evaluate(x_Test, yTest, verbose=0)

print("Testing set Mean Abs Error: {:5.2f} days".format(mae))

test_predictions = model.predict(x_Test).flatten()

model.summary()

hist = pd.DataFrame(history.history)

hist['epoch'] = history.epoch

hist.tail(10)

def plot_history(history):

hist = pd.DataFrame(history.history)

hist['epoch'] = history.epoch

plt.figure()

plt.xlabel('Epoch')

plt.ylabel('Mean Abs Error [Days]')

plt.plot(hist['epoch'], hist['mean_absolute_error'],

label='Train Error')

plt.plot(hist['epoch'], hist['val_mean_absolute_error'],

label = 'Val Error')

plt.ylim([0,5])

plt.legend()

plt.figure()

plt.xlabel('Epoch')

plt.ylabel('Mean Square Error [$Days$]')

plt.plot(hist['epoch'], hist['mean_squared_error'],

label='Train Error')

51 | P a g e

plt.plot(hist['epoch'], hist['val_mean_squared_error'],

label = 'Val Error')

plt.ylim([0,20])

plt.legend()

plt.show()

plot_history(history)

class PrintDot(keras.callbacks.Callback):

def on_epoch_end(self, epoch, logs):

if epoch % 100 == 0: print('')

print('.', end='')

model = build_model()

The patience parameter is the amount of epochs to check for improvement

early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)

history = model.fit(x_Train, yTrain, epochs=1000,

validation_split = 0.2, verbose=0, callbacks=[early_stop,

PrintDot()])

plot_history(history)

loss, mae, mse = model.evaluate(x_Test, yTest, verbose=0)

print("Testing set Mean Abs Error: {:5.2f} days".format(mae))

error = abs(test_predictions - yTest)

plt.hist(error, bins = 10000)

plt.xlim(xmin=0, xmax = 100)

plt.xlabel("Prediction Error [Days]")

_ = plt.ylabel("Count")

saver = tf.train.Saver()

model_json = model.to_json()

with open(r"C:\Users\v.manasas\Desktop\Subject Areas\Alumil -

IHU\model_huber.json", "w") as json_file:

json_file.write(model_json)

model.save_weights(r"C:\Users\v.manasas\Desktop\Subject Areas\Alumil -

IHU\model_huber.h5")

