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Abstract 
 

This dissertation was written as a part of the MSc in Data Science at the International Hellenic 

University. The aim of the thesis, is to present ways that machine learning methods can facilitate 

in supply chain management, specifically as regards lead time prediction and reduction. Since lead 

time has been acknowledged as a key factor in supply chain planning and in customer’s 

satisfaction as well, it has been seen fit to research this topic in depth. These methods were applied 

to a big multi- product and multi-stage aluminum manufacturing group of companies 

headquartered in Greece. In detail two predictive models were examined to predict the lead time 

of the company’s major product groups, architectural aluminum profiles and accessories, and one 

model for the demand forecasting of aluminum accessories to prevent stock outs which heavily 

affect customer’s orders lead time. The results of this case study were more than satisfactory, 

having outperformed the performance of existing systems concerning lead time prediction and 

demand forecasting. 

 

For the completion of this research, I would like to sincerely thank my supervisor, Konstantinos 

Diamantaras, for his constructive advice, as well as the company’s staff for their valuable help in 

collecting the material and business knowledge used in this thesis. 
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1 Introduction 

 Order lead time is the time period between the customer’s order placement and the 

receiving of the order. For years, organizations and businesses of all sectors are trying to add 

business value by minimizing the lead time, delivering products at the shortest possible time and 

by providing an accurate estimation of the order delivery date at the placement of the order. 

While the reduction of LT (Lead Time) through demand forecasting and the prediction of its 

value is a key factor in production programming and scheduling, it has proven to be a deciding 

factor for customer satisfaction too. The complexity of the in between processes, the huge range 

of products and the variability that external factors bring in, is making the modeling of this 

matter extremely complicated. In this thesis we are attempting to minimize the lead time of 

orders placed by customers of Alumil, a big manufacturing industry in Greece, by forecasting 

the demand for inventory control, thus preventing stock-outs which can cause serious delays in 

the delivery of the products. Also, it is attempted to build a software that dynamically predicts 

each order’s delivery date based on historical data. 

Case Study – Alumil SA 

 

 ALUMIL S.A. is a big manufacturing group of companies that designs, produces and 

distributes aluminum architectural systems. Alumil’s data containing customer’s orders, 

production routings in a granular level was utilized for this thesis. As the main webpage of 

ALUMIL SA states: [1] “The company is considered as one of the largest industries in the 

extrusion of aluminum in Greece and southern Europe. Specifically, the company is specialized 

in the research, development and production of aluminum architectural systems. The company 

is headquartered in the Industrial Area of Stavrochori Kilkis, Greece and has more than 2,000 

employees. ALUMIL S.A. operates worldwide with over 30 subsidiaries 

 ALUMIL, has its own production plants in Greece, Serbia, Bosnia and Albania where the 

demands of its customers for aluminum profiles are being met. Specifically, the facilities that 

the company is equipped with are the following: 

• 11 aluminum extrusion lines with a capacity of 100.000 tons per year, 

• 8 powder coating lines (7 horizontal, 1 vertical). 

• 3 sublimation lines for wood imitation and special effect colors. 

• 3 anodizing plants. 

• 2 foundry for aluminum billet production with a capacity of 80.000 tons per year, 

• 8 thermal break assembly lines. 
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• 1 production site for various prefabricated entrance & interior doors 

• 1 manufacturing plant for roll-formed aluminum-foam filled profiles. 

• 1 production site for elevators and automated systems through METRON, an 

autonomous subsidiary specialized in automation. 

• 3 manufacturing plants for production, processing and assembling of accessories. 

• 1 manufacturing plant for aluminum composite panels with a capacity of 950.000 m2. 

• 1 manufacturing plant for polycarbonate sheets”. 

 

1.1 Problem statement 

 In this thesis, is presented ways that machine learning can support the supply chain of a 

big industry, in this case ALUMIL S.A. in two ways;  

First by providing an accurate demand forecast for aluminum accessories used in architectural 

and industrial aluminum systems and by estimating the lead time between the order and the 

delivery date in architectural profiles and accessories. 

While aluminum profiles are being produced by the production plants inside the company, 

accessories that are part of aluminum architectural systems, are for the most part, ordered by 

external suppliers. The reason these two supply chain aspects were chosen for this thesis, is the 

Picture 1: Picture of aluminum accessories taken at the 
company's headquarters 
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challenges that the company has to face regarding the timely order of aluminum accessories from 

suppliers and the accurate prediction of the lead time between customer’s order date and order 

delivery date. In detail, customer’s demand for aluminum accessories has to be predicted in 

order to optimize supply decisions. Stock outs are a common phenomenon that is observed, due 

to unexpected demand. Consequently, the order lead time, of an unpredicted demand in 

accessories is rising. As for the lead time prediction, high accuracy can lead to customer 

satisfaction. 

 

2 Background and preliminaries 

 

 This thesis is going to address some of the issues of supply chain optimization, modeling 

the given problems with machine learning. In this chapter, background theory about machine 

learning is going to be laid out. Specifically, since the problems that are going to be modeled 

in this thesis have numerical targets, meaning that the algorithms which are applied attempt to 

predict numerical values, regression techniques are below presented. 

 

2.1 Machine Learning 

 Machine learning is the study of statistically modeling a problem to perform a task 

without specifically setting the rules and instructions to do so. It’s a counter intuitive set of 

techniques which changes the order of tasks in comparison to traditional programming. In 

traditional programming a well-defined set of rules are applied to existing data in order to 

calculate the desired outcome. In machine learning programming pre-known data and desired 

outcome are modeled in a way that a previously unknown set of rules is discovered. This 

relatively new approach to problems can be found extremely useful in business in general but 

especially in the supply chain management. The number of hidden and volatile factors that 

interrelates and correlates with the desired outcome in a complex ecosystem like the supply 

chain, can make the effort of its modeling with traditional methods, extremely difficult or even 

impossible.  
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Machine learning consists of five steps (on a high level): 

 

1. Data Collection (Feature Selection) 

2. Data preparation (Feature Engineering) 

3. Model selection and training 

4. Model Evaluation 

5. Prediction 

 

Supply Chain Analytics 

 Analytics and predictive modeling can be utilized practically in every stage of the supply 

chain, to enable efficient and accurate planning in both sales, operations and inventory level. In 

detail: 

 Sourcing: The process of acquiring and purchasing essential goods, like raw materials. 

Predictive modeling may be used to detect the balance point between supply and 

demand, to identify the cost factors 

 Production: Quality control, optimized scheduling based on inventories and production 

stage capacities. 

 Warehousing: Workload optimization, stock relocation. 

 Transportation: Routing optimization and scheduling 

 Consumer: Credit scoring, recommender systems, fraud detection. 

 

Picture 2: Traditional Vs Machine learning programming. 
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Machine learning techniques 

 

Knowledge data discovery (KDD) is the process of gaining insights and value from the 

thorough analysis of data. While in medicine and biology, finance and innovation related fields 

the process of KDD have been applied for several decades now, in the field of production and 

supply chain planning and control the research interest has not been this vivid, until the past 

few years. Rainer states that the application of KDD processes in production and supply chain 

areas in business such as analytic methods had resulted in a return of at least ten times of their 

investment. 

KDD processes (also found in literature as “Data mining”) are divided into two big 

categories, that are, descriptive and predictive analytics. Descriptive analytics focuses on the 

discovery of patterns, rules, associations in the data, like the name indicates, its aim is to 

“describe” the data. Some applications are association rule learning, causal discovery 

techniques and clustering algorithms like KNN (K- Nearest Neighbors) algorithm. Predictive 

analytics aims at predicting future values of one or many target variables. Depending on the 

target variable, the predictive analytics can be assorted in continuous or categorical. Examples 

of continuous predictive analytics is the famous regression technique with its many variants. 

Categorical predictive analytics like classification, aims to classify correctly the target variable 

into two or more categories. 

 The well-applied KDD techniques in production planning and supply chain management 

all belong to APS thus far (Advanced planning and scheduling, fault diagnosis, quality 

improvement and defect analysis). Lead time (else known as flow time) prediction is a field 

which only in the last decade has been dealt with analytical techniques. 

2.1.1 Linear Regression 
 

 

Picture 3: Each data point of feature "x" corresponds to a respective 
target "y" 
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 Linear regression, is a machine learning technique for the prediction of a continuous 

numerical target variable. Its approach is simple, yet it manages to capture the linear 

relationships (and near linear) between the features applied in the model. It stands as a basis for 

more advanced techniques, so the understanding of linear regression is fundamental for 

approaching more complex techniques. [2] 

 

 

 The equation above captures the problem of the regression problem. The Y variable 

(dependent variable) is the target continuous variable, the X is the independent variable, with 

the betas are called the coefficients. Regression is trying to estimate the betas so that the right 

side of the equation is as close as possible to the actual target. This is done by minimizing the 

squares of sum of squared errors. The difference between the actual target variable and the 

predicted one are called residuals and it is captured by the following equation. 

 

 

 The reason why the evaluation metric is the squared error, is that the prediction may be 

below or above the desired outcome. So the difference between the true and predicted value 

may be positive or negative. Lest we square the errors, the sum of errors will be decreased, 

because the positive differences will be canceled out by the negative difference. One additional 

advantage of squaring the errors is that it penalizes the bigger difference from the desired target 

values, thus securing a more accurate model. 

 

 

 

Picture 4: Linear regression: The straight line that minimizes the 
sum of squared residuals. 
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 Above in the visual, the red dots represent the true values, the blue line represents the 

linear model while the grey lines are the difference between the true values and the predicted 

ones. The blue line the linear model that minimizes the summation of the squared errors. 

Another issue that has to be addressed is the relevancy of the betas coefficients concerning the 

target variable. P-values indicate the statistical significance. Every modeling task starts with 

the hypothesis that there is correlation between the chosen features and the target variable. 

Therefore the null hypothesis is that there is no correlation between the dependent variable and 

the independent ones. The metric of p-values for every beta coefficient indicates whether the 

independent variable (predictor) is statistically significant in relation with the target variable. A 

value of 0.05 or less is generally considered in the literature as an indication of strong 

relationship between the dependent variable and the predictor. Lastly, two other KPIs for the 

linear model are the R² statistic and the RSE (Standard error of the residuals). 

2.1.2 Multiple Regression 

 Just like linear regression, multiple regression models attempt to predict a target 

continuous variable, but this time multiple features are used. In real life one independent 

variable is not enough to explain the variation of the dependent variable, so two or more 

variables are added. The equation remains the same as in the simple linear regression, with the 

addition of the variable and their corresponding betas coefficients. Furthermore, unlike simple 

regression’s p- value for examining the relevancy of the independent variables, in the case of 

multiple regression the F- statistic metric is measured. The F- statistic formula is displayed by 

the equation: 

 

 

p:  the number of independent variables.  

n: is the number of data rows. 

TSS: Total Sum of Squares 

RSS: Residual Sum of Squares 

 

 Unlike p-value, which examines each feature individually, the F-statistic formula assess 

the whole model. As a rule of thumb, if the relationship is strong enough, the F measure will be 

bigger than 1, otherwise it will be close to the value of one. (Actually, the value of F-statistic 

must be assessed in companion with the number of data points, since in big dataset even slightly 

bigger value than 1indicate strong relationship, while in small ones, the value of the measure 
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must be significantly bigger than one. In the case of many predictors, the use of p-values is not 

trustworthy, because unimportant features may be evaluated as significant because of their low 

p-value. The F-statistic can overcome this obstacle, and this is the reason it is used in the case 

of multiple regression. The R² is again the measure which can be used to evaluate the 

interpretability of the model. It is a fact that adding more features to the model will lead to an 

increase of the model but it does not mean necessarily that the performance of the algorithm 

will increase as well. 

 

 

 In multiple regression there critical issues that need to be addressed such as 

multicollinearity, heteroscedasticity and autocorrelation. The aim of this paper is to be present 

practical applications of machine learning applications in supply chain’s operational 

management, and it is not seen fit to delve into regression’s issues in more detail. 

2.1.3 Ensemble Methods for numerical prediction (regression) 

 

 Ensemble learning is the technique of combining multiple machine learning algorithms 

on a problem in order to obtain better accuracy. The three most popular ensemble practices are: 

1. Bagging: Using the same training data, use different subsamples to apply multiple 

models on them. 

2. Boosting: Construct many models of the same type, each one taking account the error 

of the previous model, learning to fix the errors. 

3. Voting: Multiple models of different type are applied to the training data and then 

aggregate the result to combine the predictions (max voting, mean voting) 

 

In more detail: 

 

 Bagging, is considered a bootstrap technique which subsamples the training set and 

applies and trains a regression model on each random distributed sample. Each sub-dataset of 

Picture 5: In multiple regression the goal is to fit a hyper-plane 
than minimizes the sum of squared errors. 
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the total N samples, is created by sampling with replacement. Some data points may occur in 

many of the subsamples, while others may be left out at all. After the training of the model to 

each subsample, the outcome is averaged and it is presented as the model outcome. Another 

ensemble approach which uses subsamples of the original training data is the boosting 

technique. What differentiates boosting from bagging is that each algorithm is aware of the 

errors that the prior algorithm/ subset of data has produced. Instead of using randomly 

distributed samples of the data, each subsequent algorithm chooses the data that the previous 

algorithm has not predicted accurately. After several algorithm steps, all the outcomes of the 

models are weighted averaged. The weights are related to each model’s accuracy, that is, bigger 

accuracy implies bigger weight. An example of this ensemble technique is the additive 

regression model. Voting is using a variety of machine learning models to the same training 

dataset and then it combines the different predictions. Especially in the case of implementing 

voting in regression, using the averaging technique, it is expected a good performance, based 

that the majority of the algorithms will be correct when their “opinions” are close to each to 

other. Another ensemble method is called stacked generalization, also known as stacking. 

Stacking combines predictions of different machine learning algorithms in levels. Level zero is 

the original dataset and all the algorithms are applied to this level. Level one is composed by 

the by the outputs of the base models and so on and so forth. 
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2.1.4 Artificial Neural Networks 

 

 
Picture 6: An example of an artificial neural network. [Image downloaded from https://deepai.org/machine-learning-glossary-and-
terms/multilayer-perceptron in December 2019] 

 
 Artificial neural networks are computing networks which are inspired by the way 

biological networks are working. In comparison to traditional programming, the neural network 

learns to perform tasks from the training data without being given explicit rules. Simple 

components, called neurons perform simple numerical operations, which combined with some 

predefined thresholds (activation functions) perform decisions. These neurons are ordered into 

layers. The first layer is the input layer the second one is called the hidden layer and the last 

one (in a shallow networks) is called the output layer. The number of input layer is equal with the 

distinct number of features of the training dataset and the output layer is comprised of one 

neuron for regression tasks (numerical outcome). If the network consists of more than one 

hidden layer is called a deep neural network. Adding hidden layers leads to more complex 

network which is able to reproduce complex functions, thus achieving more accurate 

predictions. 

 The learning process of the network takes place in the updating of the parameters 

(weights) of the neurons. It is an iterative process of forward - propagation and back -

propagation trying to find the optimal values for the weights of the neurons, so that the 

prediction is as much closer as possible. 

 According to the Universal approximation theorem [3], it has been proven that “a feed-

forward network with a single hidden layer containing a finite number of neurons can 
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approximate continuous functions on compact subsets of Rn (Euclidean Space), under mild 

assumptions on the activation function”. 

 

 
Picture 7: Gradient descent, a core aspect of machine learning. 

 

3 Literature review 

3.1 Relevance of reducing and predicting LT 

 In this chapter the relevance and importance of reducing and predicting Lead Times is 

going to be examined. This thesis is trying to address the issue of inventory control through the 

use of demand forecasting. 

 "The No. 1 thing that has made us successful by far is an obsessive-compulsive focus on 

the customer as opposed to obsession over the competitor," [4] said Jeff Bezos, CEO, and 

founder of “Amazon” in a talk at the Economic Club of Washington. Nowadays it is a common 

knowledge among big industries and companies that customer satisfaction is a key factor, if not 

-the- key factor, to the growth of an organization. Towards this goal, this consulting project is 

an effort to improve “Alumil” customer satisfaction by estimating and distributing a realistic 

order delivery date, utilizing business analytics. Business analytics is defined as “the scientific 

process of transforming data into insight for better decision making”. According to a study 

carried out by Milo [5] (titled: “No cart left behind”), the bigger the estimated delivery time is, 

the bigger is the probability that a customer will not complete the order but rather abandon it. 

While the above study was carried out for the business to customer industry, it remains true for 

the business to business organizations. This project’s aim is to provide an estimated delivery 

time closest to the real one. 
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Picture 8: Part of “milos”' infographic about customer's behavior 

 Muddassir Ahmed, in his article [6]“Seven reasons why you need to forecast in supply 

chain” in 2016, states that demand forecasting plays a critical role in the supply chain function 

regarding stock outs, especially when the suppliers are delivering the product in long lead times. 

This type of forecasting can ensure efficiency in two key aspects of the business, namely sales 

fulfilment time and short inventory times that can lead to reducing warehousing costing in 

general. Also, having in mind the customer satisfaction factor, Ahmed suggested that demand 

forecasting can help increase the business’ customer’s satisfaction by having already available 

in stock the products that they are ordering in the time of the ordering. In addition to these 

benefits, Ahmed concluded that manufacturing demands for production, planning of new 

products by the team of product managers and planning for promotions by the marketing team 

can all be harmonized together by accurate demand forecasting. This fact could lead to the 

reduction of safety stock necessities thus reducing the associated costs. In their 2010 released 

book, “Operations Management”, Slack, Chambers and Johnston claimed that accurate demand 

forecasting aids the business at achieving effective production schedule by maintaining the 

balance between supply and with SIOP (Sales Inventory and Operations Planning).  

3.2 Lead Time prediction 

 

Little’s Law: 

 

 Queuing theory, a mathematical sub discipline of the theory of probability, states that the 

average number of customers on a system is equal to the product of their average arrival rate 

and the average lead time that is the amount of time that the customer spends in the stationary 

system. This is famously known as [7]“Little’s Law”. 
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 In the formula above the “L” declare the work in progress, also known as “WIP”. Put 

simply, it is the number of items/ products/ services inside the queuing system that is being 

examined. Lambda stands for the average arrival and departure rate and W represents the time 

that each item must spend on the system, also known as lead time. For years, this simple yet 

effective formula was utilized in the manufacturing business world with quite remarkable 

results. The reason for that is that the formula is not influenced by external factors such as 

service distribution and order or the arrival distribution. 

 Since the decade of the seventies, considerable amount of researchers have been 

publishing papers concerning the determination of production lead times. Weeks, 1979 [8], 

published his research on the impact of the predicted lead time in production based on statistical 

measures. His three hypotheses that he put to the test were: Lead time rules based on forecasting 

of individual jobs’ delivery time have a better outcome than rules based on total work, 

concerning workshop congestion. Rules focused on lead time perform better than the “shortest 

imminent-processing” rule. Lead time tends to be bigger when the workshop system becomes 

more complicated. Weeks claimed that this research was just a beginning, and the topic of 

predicting lead times has many unanswered questions and plenty of room for further 

investigating. In 1991, [9] Vig and Dooley, utilized existing data of completed orders to obtain 

rules and patterns in them concerning the orders’ lead time. They discovered that existing data 

can be of use, since they concluded that the characteristics of the placed order and the kind of 

production affect the lead time and are very important for the forecasting. In 1994, [10] Enns 

stated that two were the factors of success for job shop (a manufacturing practice in which 

batches of custom products are made) customers: high supply reliability and short lead times. 

A methodology that describes the success factors of negotiating the due dates in a production 

environment, with complex processes and high variety of products where research by Lawrence 

S.R., 1994 [11]. Production order’s flow time in small and medium-sized enterprises in a 

dynamic market was the research topic for Wiendahl and Dammann in 2006. They quantified 

the influences inside this dynamic market and developed a tool that prescripts which response is 

the best to this influences. He used a model for production and capacity control which was 

targeted at order’s delivery time. In 1983, [12]Tatsiopoulos I. and Kingsman in their paper 

“Lead Time Management”, presented their research which dealt with defining manufacturing 

flow times used in PPC. The main two methods they used included were: A probabilistic 

approach which treats manufacturing lead time as unpredictable and chaotic. The second 

approach highlights the importance of control in manufacturing in order to manage the lead 

time to confront to predefined ranges. In the paper it is concluded, that the second approach is 
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more reliable, but it requires very close cooperation between the functions of production and 

commercial inside the organization to achieve that. [13] Kingsman, in his research “A structural 

methodology for managing manufacturing lead times in make-to-order companies”, 1989, 

proposed a different approach to controlling manufacturing lead times. While in the past, the 

scheduling of orders in the shop floor were made in order to meet their predefined delivery 

dates, he proposed that the ordering and scheduling must be defined at a higher level when the 

customer inquiry arrives and the prices and the delivery dates are determined. The same 

researcher, in the year of 2000 issued an article in the “International journal of production 

economics” under the title: [14]“Modelling input–output workload control for dynamic 

capacity planning in production planning systems”. In his research of workload control in 

PPC, he concluded that in the produce-to-order companies the arrival of orders cannot be 

predicted, and that managing is a better practice than forecasting lead times. Ooijen and 

Bertrand in 2001 [15], researched the tradeoff between the reliability of the company and the 

length of lead times from an economic perspective. They tried to find a cost optimal delivery 

due date, having in mind lead time and cost related factors. 

Following the review of research projects in general there the pattern that has been 

revealed is that most of the researchers’ work is concentrated on the whole lead time, gathering 

data from simulation processes and applying few machine learning algorithms. In 2006, [16] 

Ozturk found that because lead time does not include only the processing time in the shop floor, 

but contains also transportation and queue, it is very a very difficult task to forecast it. In this 

research “Manufacturing lead time estimation using data mining”, the group of researchers 

attempted to predict lead times using basic machine learning algorithms like regression trees 

and linear regression. In 2018, Pfeifer A. [17] applied and evaluated the performance of three 

different machine learning models and presented the outcomes to the 6th CIRP Global Web 

Conference – Envisaging the future manufacturing, design, technologies and systems in 

innovation era. Data were extracted by simulation processes (discrete event) with 8 features. 

The random forest machine learning outperformed the other two models. Gyulai D. in the 16th 

IFAC Symposium on Information Control Problems in Manufacturing (2018, Bergamo, Italy) 

[18] presented a paper which contacted machine learning and analytical techniques and methods 

to a manufacturing execution system, which due to changing order stream is exposed to changes 

and is overall complex. [19] Meidan in his paper stated that the research should not focus on 

lead times in general but rather in waiting times between different stages in the manufacturing 

flow shop environment. The team of researchers applied neural networks, Bayesian classifiers 

and decision trees. After excessive feature engineering they concluded that only the 11% of 

original’s dataset features were enough to perform the forecast. [20] Alenezi in 2008, compared 

the performance of an SVM (support vector machine) model with an ANN (artificial neural 

network) and time series models for flow time prediction in real time problem. Another 
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comparison between different machine learning models concerning lead time prediction was 

contacted by Mori in 2015 [21] . He estimated lead time in production using Bayesian networks 

and compared its results with SVM and ANN models in the steel industry. An example of 

classification model was conducted by De Cos Juez [22] . Specifically he built a machine 

learning algorithm which classifies a batch of metallic components of aerospace engines into 

two categories: completed in the forecasted time or not. Susanto [23] , Raaymakers are two 

other researchers who utilized ANN to estimate accurately the lead time of customer’s orders. 

To our knowledge this is the first attempt to predict customer’s order lead time in the aluminum 

manufacturing industry with machine learning and non-simulated data. 

3.3 Demand forecasting 

 Most of the research conducted concerning demand forecasting contained traditional time 

series analysis methods such as Autoregressive Integrated Moving Average (ARIMA) or 

exponential smoothing method for decades. In last years of the decade of 1990 it is observed 

that along traditional time series forecasting methods, various machine learning methods were 

implemented, starting from the simplest ones such as linear/ multiple regression and getting to 

the more complex ones like ensemble methods, SVM artificial and neural networks. 

The ARIMA technique was used in a variety of demand forecasting studies. Williams 

B. in the year of 2003 [24] , applied the forecasting technique of ARIMA in the vehicular traffic 

flow. Non-stationary time series data, like international tourism was the object of forecast of 

Lim in 2002 [25] . She used Box Jenkins ARIMA and evaluated her forecasting accuracy by 

MAPE (Mean Absolute Percentage Error) and RMSE (Root Mean Squared Error). In 2003, [26] 

Ching-Wu Chu compared linear methods such as ARIMA with nonlinear models like ANN. He 

concluded that ANN were performing better with de-seasonilized data while ARIMA was 

performing better with the original data. Mupparaju K. in 2018 [27] performed a comparative 

study of various machine learning models for demand forecasting of grocery items. The main 

comparison was between LGBM (Light Gradient Boosting) and ANN. While ANN are very 

reliable and efficient with high dimensional data, they are not accurate if the training data is not 

large enough. Furthermore there is always an interpretability – accuracy trade off. ANN are 

known as “black boxes” meaning that even if the accuracy of the model is high there is no way 

of interpreting the causal relationships and the calculations that took place inside the model and 

how eventually the model arrived in the given result. Two similar approaches of neural 

networks to time series data, recurrent backpropagation and Long Short Term Memory (LSTM) 

model were utilized by Goyal A., who observed that LSTM Neural Network outperformed other 

baseline models, it is fairly simple to implement and it does not require much feature 

engineering. LSTM models are storing information for extended time interval, truncating the 

gradient where the model sees fit. While Graves in 2013 [28] used LSTM to forecast next 
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sequence of text, Mupparaju K. in 2018 [27] , implemented LSTM for sales forecasting. Liu 

Yue in 2007 [29] performed demand forecasting with a variant of SVM model, which he called 

“SHEnSVM” (Selective and Heterogeneous Ensemble of Support Vector machines) in which 

each SVM is trained with different samples of data which is generated by a bootstrap algorithm. 

He then applied this model to forecast the demand of beer in a retail company with good 

generalization ability. He then concluded that forecasting accuracy can be increased by using 

ensemble- learning techniques. I. Watanabe and his research team published an “AI based 

demand forecasting” [30] method in the Fujitsu scientific & technical journal. The team 

combined conventional time series modeling with machine learning. They also proposed an 

attribute decomposition method for the forecasting of new products which have no previous 

sales. Last, they concluded that the fact that the optimum forecasting method differs depending 

to the life cycle of the product is a major challenge. 

 

4 Data Engineering & technologies involved 

Technologies Involved in this thesis 

 

 All raw, transactional data reside inside Oracle’s relational databases. From there, using 

SQL and PLSQL data are integrated into a unique data repository (data warehouse). Data 

exploration is performed using Microsoft’s business intelligence platform PowerBI which live 

connects to the data warehouse. Lastly, data from the data warehouse are analyzed and used in 

analysis, feature engineering and predictive modeling with Python’s programming language, 

utilizing its most well-known libraries and APIs, like Pandas, NumPy, ScikitLearn, Tensorflow 

and Keras. 

 

Data Engineering 

 

 Data engineering is the process of acquiring, wrangling, cleaning and modeling the data 

from disperse and different sources into a single and unified data repository [31]. The data that 

are going to be utilized in the predictive modeling is not going to be static, but dynamic. ETL 

pipelines (Extract – Transform – Load) had been constructed so that the data is being refreshed 

daily. After that, the data is modeled in a star schema and it resides in a multidimensional data 

warehouse. The original data, resides in the transactional databases of the application that the 

organization is using for its everyday needs. Specifically, the main resource of data is the 

company’s ERP. Besides that the company uses a complex B2B software designed for customer 

to place their orders, explore the products and the pricelist, a CRM software, an Advanced 

Planning and scheduling software and a production management software. 
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 For years, the company made sure that historical data of every day’s pending orders are 

stored in the transactional database of planning’s software. This means that an order is present 

through all its stages, from the first date that it was registered, to the last date, when all the 

requested kilos of the aluminum profile were ready for loading in the warehouse. About 24 

million rows worth of data is stored for reporting reasons (for example, the number of open 

orders per day, kilos that are pending and must go through various production lines). This huge 

volume of raw data triggered the initial idea, that it can be utilized in order to gain predictive 

and prescriptive insights, rather than plain descriptive, using machine learning methods. 

 
Picture 9:  The flow of predictive modeling: data from source systems, data warehouse, predictive modeling, database  

programming and back to business users. 

 As expected, even simple queries on this huge dataset can be restrictive on a transactional 

database. The attempt of providing predictive analytics with a machine or worse, deep learning 

with data that comes from this database was unsuccessful. For this reason, the data needed for 
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this purpose is daily extracted from the software’s database, transformed and then loaded into 

the data warehouse, which is built for analytical purposes, with the method of ETL (Extract – 

Transform – Load). The data needs a lot of manipulation, pre-processing and cleansing in order 

to be used in the correct form by machine learning algorithms. This process was decided to be 

implemented with PL/SQL and not with Python since PL/SQL engine resides inside the Oracle 

database (the data warehouse used is Oracle’s) and the data manipulation is much faster there. 

(Analysis inside python takes place inside RAM memory, making analysis infeasible there, due 

to the volume of data). The historical data of orders reside inside the data warehouse in the well-

known architecture of a star schema. That means that a fact table holds the measurable, 

quantitative data about each order line and dimension tables are linked with the fact table. In 

each dimension table, there is a primary key relating to one of the columns in the fact table with 

a one to many relationship. 
 

 

 The data in the data warehouse is refreshed daily. An automated job is scheduled inside 

the database to extract the new data from the transactional databases (capacity planning 

software, ERP system) and insert it into the data warehouse. On top of this star schema 

structure, a database (materialized) view is constructed, containing all the information in the 

form that is needed for the machine learning algorithm (a materialized view is selected for 

performing issues). The application of machine learning modeling is implemented in a Python 

3 environment. Access to the Oracle database is given to python with the cx_Oracle version 7.1 

module, and specifically to the view that was mentioned before. The data from the view is then 

inserted into a pandas’ data frame for further preprocessing and analysis. 

Data Visualization and exploration 

Picture 10: Star schema used in company's data warehouse 
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 Prior business knowledge is essential for the predictive modeling of demand and lead 

time. In addition to a priori knowledge, data exploration and visualization can lead to discoveries, 

trends and patterns that may prove of usefulness to the machine learning algorithms later used. 

For this purpose the business intelligence platform of Microsoft’s PowerBI is used. 
 

 

 The great usefulness of this platform is that the visualizations that are built with the data 

are being refreshed daily ( or even hourly ) in sync with the data in the data warehouse, so that 

the analyst with a single click can explore daily the new data and find anomalies or new trends 

previously unknown. Some diagrams exported from the business intelligence platform are 

displayed below: 

 

 
Picture 11: Order value by month. Line chart example from BI Platform 

 
In the line chart above, a clear trend and seasonality is discovered. It is obvious that the value of orders 

during the August is much less. It is concluded that the month feature will greatly help the algorithm 

explain the variance of the problem. 
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Picture 12: Examples of visual representation that helped to understand the problem of lead 
time prediction (1) 

Picture 13: Examples of visual representation that helped to understand the problem of lead time prediction 
(2) 



23 | P a g e   

 
Picture 14: Examples of visual representation that helped to understand the problem of lead time prediction (3) 

 

5 Feature engineering 

 

 Feature engineering is the method of applying domain knowledge of the modeling problem to 

create features that will make the machine learning model able to predict a desired outcome. Feature 

engineering is a core aspect of machine learning, and as Andrew Ng states: “Coming up with features is 

difficult, time-consuming, requires expert knowledge. «Applied machine learning» is basically feature 

engineering.” 

 

There are three predictive objectives that this thesis is dealing with: 

 

1. Lead Time Prediction for customers’ orders of aluminum profiles 

2. Lead Time Prediction for customers’ orders of aluminum accessories 

3. Demand forecasting for customers’ orders of aluminum accessories. 

 

 Combining these three results the supply chain will be in position to perform a “what if” 

analysis. In detail, utilizing the results of lead time prediction and the demand forecasting the 

logistics professional will estimate the amount of product loadings for the next month. 

The three major categories of data that explains the variability in demand forecasting 
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1. Static product characteristics 

2. Dynamic product characteristics 

3. Product’s life cycle state 

4. External factors (aluminum raw material price, temperature, competing materials price 

(steel)). 

 

 

5.1 Lead time prediction (Accessories) 

 Aluminum accessories are the second most sold (and ordered) item category in 

the group after aluminum profiles. Its sales account for the 15% of the total revenue 

that the group produces. Accessories are being grouped into commercial categories and 

groups. While most of the accessories products ( like door handles and hinges) are parts 

of aluminum systems, some commercial categories, like solar panels, are being sold 

separately and are not part of the aluminum systems for windows & doors. The table 

below displays the most common commercial categories that accessories belong to: 

 

Accessories Grouping - Commercial Category 

Adhesives And Sealants Other Accessories 

Aluminum Sheets Other Industrial 

Connectors Packaging 

Corners Photovoltaics (Pv) 

Cremones Pl Polyamides 

Door Automations Plastic Covers 

Electric Motion Kit For Doors Polyamides 

Facade Accessories Polycarbonates 

Fire Rated Accessories / Doors Premade Pergola 

Flyscreen Systems Pressed Panels 

Foam Insulation Punching Machines 

Gaskets Pvc Profiles 

Mechanisms - Locks Railing Systems 

Handles Roller Shutter Accessories 

Hinges Rollers - Inox Rails 

Hoppe Handles Screws And Rivets 

Industrial Accessories Second Sash Latches 
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Interno Shading Systems 

Jbond Shutters Accessories 

Levelers / Wedges Skylights 

Locks For Opening Systems Slats-Axles 

Locks For Sliding Systems Soundwalls 

Machines - Tools Special Steel Systems 

Motor Steel Goods 

Motor Asa T/T Mechanisms 

Motors Nice Wood Composite Panels 

 

 A very important distinction which takes place in both the profiles and the 

accessories is the line of business categorization. Each product can either belong to the 

architectural or the industrial line of business. While the architectural products are part 

of window and door, interior and facade systems the industrial products are utilized in 

the industry (automotive and construction industry, machine construction, ladders 

scaffoldings facilities). This characteristic is very important especially in the lead time 

estimation problem, because the industrial products are always “make to order” and are 

being delivered based on contracts with the customers, while the architectural ones are 

for the most part “make to stock” since there is a pretty steady order flow from the 

customers. The majority of the accessories products are being delivered by external 

suppliers. 

Feature selection: 

  Several meetings with the supply chain stakeholders took place in order to 

conclude to several features that are considered to affect the accessories’ orders lead 

time. Again, order’s details like the date of order placement, product characteristics and 

most importantly daily data from the accessories’ capacity planning software (MRP) 

were taken into account as features for the predictive modeling. In detail: 

 

 

Features taken into account: 

Order Number, 

Ordered Date, 

Line Number, 

Ordered Quantity, 

Item Code, 
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Line Of Business, 

Log Category, 

Commercial Code, 

Commercial Description 

Commercial Group Code, 

Commercial Group Description, 

Proforma Hold Flag, 

Credit Hold Flag, 

Mrp Available Stock, 

Mrp Production Quantity, 

Mrp Reserved Quantity, 

Mrp Expected Quantity, 

Mrp Remaining Quantity, 

Mrp Receipt Stock, 

Mrp ΜΤΟ Status, 

Mrp Status, 

Schedule Ship Date Estimated, 

Mrp Estimated Days, 

Actual Delivery Date 

 

Feature explanation: 

 

 Order Number: Each order obtain a unique id

 Order Date: The date that the order was placed by the customer

 Line Number: Each order may contain one or more lines. Each line is a 

different product and may contain the ordered quantity. Each line in the order 

has a unique identifier

 Ordered Quantity: The ordered quantity for each product in different unit of 

measure (it may be pair, pack, piece etc.)

 Item Code: The product’s item code
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 Line of business: Distinction between the values of line of business is described 

above.

 Log Xar: This feature indicates whether the product is manufactured in house 

or it is being delivered by an external supplier.

 Commercial Category Code/ Description: The commercial category described 

before with its respective code.

 Commercial Group Code/ Description: A more detailed categorization 

concerning only accessories.

 Proforma/ Credit Hold Flags: Reasons to hold a customer’s order based on his 

credit view. For example, if a customer’s balance exceeds his credit limit, his 

orders are being held. It is expected that this feature affects the order lead time.

 ΜΤΟ status: Based on each product’s stock turnover rate, each item code is 

characterized with a MTO status.

 MRP (Stocks): MRP (abbreviation for Materials Requirement Planning) is an 

in house built software which calculates the materials and several components 

which are needed to manufacture and offer a product. It consists of three steps:

1. Considers the available inventory of materials and components and 

distributes the stock to the customers’ orders (mostly FIFO). 

2. Identifies which additional resources are needed 

3. Provides action for scheduling of purchasing/ production 

The distributed stock by the MRP software (MRP Production Quantity, MRP 

Reserved Quantity, MRP Expected Quantity, MRP Remaining Quantity, and 

MRP Receipt Stock) is a feature that affects the customer’s order lead time. 

 

 

5.2 Lead Time Prediction for architectural profiles 

Features for LT Prediction of Architectural Profiles 

Order Year Expressorder Flag 

Order Day Name Express Line Flag 

Order Month Is Sm Replenishment 

Order Number Preason 

Line Number Prioritydescr 

Line Id Hasloaded 

Ordered Date Ordercomplete 

Schedule Ship Date Remainnotloadedkilos 
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Request Date Pickedqtykilos 

Order Line Status Remainpicklistkilos 

Proforma Hold Flag Prosdesmeusikilos 

Ordered Quantity Diadikasiaparagogiskilos 

Ordered Quantity2 Programmatismenakilos 

Ordered Uom Apoapothikikilos 

Ordered Uom2 Apoparagogikilos 

Schedule Ship  Date Estimated 
Diekperaiosikgs 

Country Subsidiaty 

Wms Dt Is Industrial 

Predicttime Dt Express Flag 

Shipment Dt Ral Categories 

Shipment No Is Thermo 

On Hold Days Supreme Flag 

Abc Code Daily Load Kgs 

Promised Dt Lag Orders Day Count 

Orderremarks In Warehouse Dt 

Has Remarks Planning Difference 

Notproformapayed Delivery Days 

 

 

Feature explanation: 

 

1. Data describing the product that the order contains: 

Architectural or industrial aluminum profile. This project is focused on architectural 

profiles. The process of satisfying industrial aluminum profiles’ demand is different 

and cannot be described and modeled in the same way of architectural profiles. 

Heat insulation. Architectural profiles can be insulated or not. This feature is very 

important for the determination of the production duration, given that heat insulated 

profiles must come through an extra production stage, insulation foil production line. 

Profile’s surface treatment. There are 4 available surfaces for the profiles: Not painted, 

electrostatic painting, anodized and wood effect painting (sublimation). The surface of 

each product, affects the production duration. For example, if the product contained in 

order is not painted it is not necessary to go through the powder coating line. If the 

requested product is anodized, then it must come through the anodizing plant. Each 

production stage has its own production capacity and lead time (the latency between 
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the initiation and execution of each production’s stage process). 

ABC Product Priority. Depending on the stock turnover ratio and popularity of each 

product, each aluminum profile is characterized as: 

 A 

 B 

 C 

 D 

 E (Express Order) 

 MTO (Make to Order) 

2. Data describing the details of the order: 

The amount of the ordered kgs, per order line. 

The amount of kgs that are already available in the warehouse, per order line. 

The amount of kgs that must come through the production stages, per order 

line. 

Customer data (subsidiary or not, credit control flag), 

Seasonality of order. The year, month and day name of the order placement 

day is taken into account as a feature that can affect the lead time, 

The existence of comments on order. 

Line ID/Number: Each order may contain multiple lines. Prediction is going to 

be performed on the order line level and then is going to be aggregated to the 

order level. (Maximum delivery date of all line numbers in an order is going to 

be the delivery date of the whole order). 

 

3. Data describing the daily production load: 

Number of open orders that must be satisfied through the production facilities 

Pending kilos of aluminum profiles that are not yet produced. 

 

 

Feature engineering 

 

 The part of data engineering, is followed by feature engineering. Machine learning 

models are based on data that can interpret the problem and sufficiently explain the complexity 

of the given problem, in a way the algorithm can comprehend. For example, most of the machine 
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learning algorithms don’t know how to handle categorical variables. 

For both demand forecasting and lead time prediction the following data preprocessing steps 

are taken: 

1. Outlier and anomalies detection 

2. Filling missing values 

3. Creating rolling window / lag features 

4. Encoding categorical values 

 

6 Predictive modeling – Machine learning methods 

 

 Since the desired outcome of the predictive algorithms that we are going to use is 

numerical this thesis is concerned with Regression Techniques. 

 Regression algorithms are machine learning techniques for predicting continuous 

numerical values. They are supervised learning tasks which means they require labelled training 

examples. 

Demand Forecasting: 

 

The aim of demand forecasting that this thesis is concerned is to predict the value of the orders 

that are going to be placed in the next month for accessories. 

As for now ensemble methods, namely “xgboost” and “catboost” have been implemented, in 

the process of predicting the orders’ value of June 2019. In total for all aluminum accessories 

except the solar commercial category, predicted values display a 3% difference from actual 

ones. 

The strategy for predictive future (next month’s) sales orders was as follows: 

 
 Load the data into python

 Perform exploratory analysis, remove outliers

 Create features related with commercial categories/ commercial groups

 Create a matrix, which is the Cartesian product of all products and calendar dates and 

fill it with data from sales orders. If an item was not ordered fill the blanks with zero 

values. This is especially important, because we the model needs to be informed about 

zero sales too.



31 | P a g e   

 Add lag features

 add mean encoded data

 add price trend data

 add month

 add days

 add months since last sale/months since first sale features

 cut first year and drop columns which cannot be calculated for the test set

 fit the model, predict and clip targets for the test set

 

The best performing algorithm for the demand forecasting was the xgboost regressor with the following 

parameters: 

 

max_depth= 8, 

n_estimators= 500, 

min_child_weight= 1000, 

colsample_bytree= 0.7, 

subsample= 0.7, 

eta= 0.3, 

seed= 0 

 

XGBoost is an extremely efficient algorithm which delivers accuracy coupled with high performance in 

comparison to other algorithms. XGBoost, also known as regularized version of GBM (Gradient Boosting 

Machine). has to offer the following advantages [32]: 

 

1. Regularization: XGBoost has in-built Lasso Regression and Ridge Regression regularization which 

prevents the model from overfitting. That the reason why XGBoost is also called regularized form 

of GBM.  

 

2.  Parallel Processing: XGBoost uses the power of parallel processing and this is the reason why it is 

much faster than Gradient Boosting Machine. It utilized many CPU cores to execute the prediction.  

 

3. Missing Values handling: The algorithm contains a built-in capability to handle missing values. 

The moment XGBoost encounters a missing value at a tree node, it attempts both a left and a right 

hand split and learns the way leading to higher loss for each node. 

 
 

4. Cross Validation: XGBoost is capable to run at each iteration, a cross-validation of the boosting 

process. This enables the user to get the optimum number of boosting iterations.  
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5. Tree Pruning: While the GBM algorithms stops splitting a  tree node when it encounters a negative 

loss in the split, XGBoost on the other hand make splits taken into consideration the “max_depth” 

parameter and then and then  it starts pruning the tree backwards where there is no positive gain.  

 

 The model’s maximum depth of the tree was set to 8, because increasing even more makes the 

model very complex and the consumption of memory aggressively rises with the increase of the maximum 

depth. Along with the complexity the danger of overfitting the model to the training data arises with a big 

number of tree depth. The learning rate of the model, defined by the parameter “eta”, was set to .3 which 

acts as the step size shrinkage in order to prevent overfitting. The feature weights are extracted after each 

step of boosting. The “eta” parameter shrinks the weights to prevent overfitting. “min_child_weight” 

parameter s set to 1.000, generally the larger value that this parameter is set to the more conservative the 

model is going to be. “Colsample_bytree”, is the ratio of columns when constructing the tree. Every time a 

tree is constructed the subsampling occurs. Subsample set to 0.7 means the algorithm will randomly sample 

30% of the training data before growing the trees. Again this subsample which occurs in every boosting 

turn, is used to prevent the overfitting of the model. 

 

 

Lead Time Prediction 

 

The algorithms used for predicting the delivery days (lead time) in this research are: 

 

• Linear Regression, 

• Decision Trees, 

• Ensemble techniques, gradient boosting methods on top of regression and decision 

trees, 

• Neural Networks, 

• Deep Neural Networks. 

 

 A sample of 38.500 orders of architectural aluminum profiles have been used in order to 

examine and compare the performance between the existing capacity planning software, and 

the best performing algorithm so far ( a Sequential neural network model with two densely 

connected hidden layers, and an output layer that returns a single, continuous value using 

Keras). The orders are from 2018 and the first 4 months of 2019. The best – performing 

algorithm was implemented as follows: The number of neurons in the input layer equals the 

number of input variables (features) in the data being processed. In this case, 90 input features 
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require 90 input neurons. Then, a dense hidden layer with 64 neurons is added to the model. 

The layer manages its own weight matrix, containing all the connection weights between the 

neurons and their inputs. It also manages a vector of bias terms (one per neuron). Next, a second 

dense hidden layer with another 64 neurons is added, also using the ReLU activation function. 

Finally, a dense output layer with only 1 neuron without an activation function is needed 

(because the outcome is a continuous variable). 

 

 

Performance so far: 

 

 For the three topics that this thesis is dealing with, the machine learning algorithms that 

were applied in the company’s data performed much better than the techniques that supply 

chain’s division was utilizing so far. In a glance, the performance of the algorithms is displayed 

in the following table: 
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Topic Performance Remarks 

 

Lead time prediction for 

aluminum accessories 

 

Average Absolute 

Error of 9 Days 

Industrial orders, whose lead time is 

affected by contracts (>2 month) are 

included. Overall a very good 

performance. 

Lead Time Prediction for 

customer orders of 

aluminum architectural 

profiles 

Average Absolute 

Error of 3,4 Days 

 

Very Good performance. 

Demand forecasting of next 

month for aluminum 

accessories. 

 

  Total error of 3% 

 

Decent performance overall, a deeper 

analysis is required for commercial 

groups with bigger error. 

 

 

Picture 15: Comparison of performance between existing system (planning) and ML Algorithm VS Actuals 

 

 The main conclusions that have been drown so far are non-technical. When dealing with 

predictive modeling with machine learning in the business area, it has been deduced that two 

main factors of success are quality data collection and business knowledge. Poor performance 

in the algorithms has been improved drastically by acquiring more data (from previous not 

currently operating ERP) and by having meetings and conversations with supply chain 

professionals who have the business know how and indicated some pitfalls, exceptions and 
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outliers that otherwise it would be extremely difficult to realize and detect. 

 

7 Future work and challenges 

 A very important factor for the determination and prediction of production lead times are the 

production routing that each product has to follow. When ordered, the product may be ready in the warehouse 

and only needs to be wrapped, while other products needs to be extruded, painted or anodized, cut or drilled 

etc. For future research concerning the enhancement of the lead time prediction’s accuracy, waiting times 

between stages should be taken into account since this “dead time” affects the total cycle time. 

 The following Sankey chart depicts the possible routing that each order line may follow. Containing 

extra details about the capacity of each production stage and the resource that is being used (for example there 

are four extrusion presses each one with different capacity) is going to provide valuable insights to the 

machine learning model, thus explain the outcome’s variance better. 

 

 

Picture 16: Sankey Chart: Possible production routings that each ordered item may follow. 
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 Another challenge that has to be taken into account, is the dynamic changes that the production 

environment is being subject to. While the machine learning algorithms are excellent at detecting the 

environment’s changes when being retrained major changes in the systems like the adoption of new planning 

methods and systems are not easy to be realized by the algorithms without sufficient data. 
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9 Appendix 

 
In the following appendix is displayed the SQL view that reads the tables from the tables in the data 
warehouse and the source code from the predictive modeling in python: 
 

9.1   SQL View in company’s Data Warehouse 
  
- The view that reads from the data warehouse and  
--it is used as the dataset in python’s predictive modeling:    
 
CREATE OR REPLACE FORCE VIEW "ML_ACCESS_DEMAND_V"  

("ORDER_DATE", "DAY_OF_MONTH", "DAY_NAME", "CAL_MONTH", "YEARMONTH", "DATE_BLOCK_NUM", "

MONTH", "YEAR", "ITEM_CODE",  "ITEM_CATEGORY",    "LINE_OF_BUSINESS", "COMMERCIAL_CATEGO

RY", "COMMERCIAL_GROUP", "UNIT_PRICE", "VALUE", "TRANSACTIONS") AS 

select 

a.order_date, d.day_of_month, d.day_name, d.cal_month, 

case 

when d.cal_month > 9 then to_number(d.year || d.cal_month) else to_number(d.year 

|| '0'|| d.cal_month) end yearmonth, 

dense_rank() over( order by 

case 

when d.cal_month > 9 then to_number(d.year || d.cal_month) else to_number(d.year 

|| '0' || d.cal_month) end 

) date_block_num, d.month, 

d.year, b.item_code, b.item_category, b.line_of_business, 

b.commercial_descr, b.commercial_group_descr, a.unit_price, a.line_amount, 

1 transactions from 

w_order_line_f a 

join w_product_d b on a.item_wid = b.row_wid 

join w_day_d d on to_char(a.order_date,'rrrrmmdd') = d.row_wid where 

item_category = 'ΕΞΑΡΤΗΜΑΤΑ' and d.year >= 2016 

; 
 

9.2 Code for Accessories lead time prediction 

import pandas as pd 

path = r'C:\Users\v.manasas\Documents\Subject Areas\Thesis\Lead Time Predict 

ion' 

train = pd.read_excel(path+r'\Training Data - Lead Time Prediction ( Accesso 
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ries).xlsx') 

actual_LT = pd.read_excel(path+r'\Training Data - Lead Time Actual Delivery 

Dates.xlsx') 

 
train = pd.merge(train, actual_LT, on = ['ORDER_NUMBER','LINE_NUMBER']) 

train.dropna(subset=['LAST_LINE_SHIP_DT'],inplace = True) 

train['ORDERED_DATE'] = pd.to_datetime(train['ORDERED_DATE'], 

format='%d-%m-%Y %H:%M:%S', utc=True) 

train['LAST_LINE_SHIP_DT'] = pd.to_datetime(train['LAST_LINE_SHIP_DT'], form 

at='%d-%m-%Y %H:%M:%S', utc=True) 

train['ORDERED_DATE'] = pd.to_datetime(train['ORDERED_DATE'] ) 

train['LAST_LINE_SHIP_DT'] = pd.to_datetime(train['LAST_LINE_SHIP_DT'] ) 

train['ACTUAL_LT'] = (train['LAST_LINE_SHIP_DT'] - 

train['ORDERED_DATE']).dt.days 

train['DAY'] = pd.DatetimeIndex(train['ORDERED_DATE']).day 

train['YEAR'] = pd.DatetimeIndex(train['ORDERED_DATE']).year 

train['MONTH'] = pd.DatetimeIndex(train['ORDERED_DATE']).month 

train['WEEKDAY'] = pd.DatetimeIndex(train['ORDERED_DATE']).weekday_name 

train = train.dropna(subset=['ORDERED_DATE', 'LAST_LINE_SHIP_DT']) 

train.drop( columns = ['ORDER_NUMBER','ORDERED_DATE','LINE_NUMBER','ITEM_COD 

E','COMMERCIAL_DESCR','COMMERCIAL_GROUP_DESCR','SCHEDULE_SHIP_DATE_ESTIMATED 

','LAST_LINE_SHIP_DT'],axis = 1, inplace = True) 

train = train.fillna(0) 

x = train.drop(['ACTUAL_LT'], axis=1) 

y = train['ACTUAL_LT'] 

categorical_cols = ['LOG_XAR', 'COMMERCIAL_CODE','LINE_OF_BUSINESS', 

'COMMERCIAL_GROUP_CODE', 'PROFORMA_HOLD_FLAG', 'CREDIT_HOLD_FLAG','MR 

P_MTO_STATUS', 

'MRP_STATUS','DAY', 'YEAR', 'MONTH', 'WEEKDAY'] 

x = pd.get_dummies(x,columns = categorical_cols, prefix = categorical_cols) 

from sklearn import preprocessing 

import numpy as np 

X_scaled = preprocessing.scale(x) 

from sklearn.model_selection import train_test_split 

xTrain, xTest, yTrain, yTest = train_test_split(X_scaled, y, test_size = 1/3 

, random_state = 0) 

# from sklearn import ensemble 

# params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 2, 

# 'learning_rate': 0.01, 'loss': 'ls'} 

# clf = ensemble.GradientBoostingRegressor(**params) 

# clf.fit(xTrain, yTrain) 

# prediction = clf.predict(xTest) 

# prediction_ens = pd.DataFrame(prediction) 

# real_ens = pd.DataFrame(yTest) 

# prediction_ens.to_excel(r'C:\Users\v.manasas\Desktop\prediction.xlsx',inde 

x= False) 

# real_ens.to_excel(r'C:\Users\v.manasas\Desktop\actual.xlsx',index= False) 

xTrain = pd.DataFrame(xTrain) 

from  future  import absolute_import, division, print_function 
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import pathlib 

import matplotlib.pyplot as plt 

import pandas as pd 

import seaborn as sns 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras import layers 

def huber_loss(y_true, y_pred, clip_delta=1.0): 

error = y_true - y_pred 

cond = tf.keras.backend.abs(error) < clip_delta 
 

squared_loss = 0.5 * tf.keras.backend.square(error) 

linear_loss = clip_delta * (tf.keras.backend.abs(error) - 0.5 * clip_delt 

a) 

 
return tf.where(cond, squared_loss, linear_loss) 

def build_model(): 

model = keras.Sequential([ 

layers.Dense(64, activation=tf.nn.relu, input_shape=[len(xTrain.keys())] 

), 

layers.Dense(64, activation=tf.nn.relu), 

layers.Dense(1) 

]) 

optimizer = tf.keras.optimizers.RMSprop(0.001) 

model.compile(loss=huber_loss, 

optimizer=optimizer, 

metrics=['mean_absolute_error', 'mean_squared_error']) 

return model 

model = build_model() 

# Display training progress by printing a single dot for each completed epoc 

h 

class PrintDot(keras.callbacks.Callback): 

def on_epoch_end(self, epoch, logs): 

if epoch % 100 == 0: print('') 

print('.', end='') 

 
EPOCHS = 100 

history = model.fit( 

xTrain, yTrain, 

epochs=EPOCHS, validation_split = 0.2, verbose=0, 

callbacks=[PrintDot()]) 

loss, mae, mse = model.evaluate(xTest, yTest, verbose=0) 

print("Testing set Mean Abs Error: {:5.2f} days".format(mae)) 

 
9.3  Code for accessories demand forecasting 
 

import numpy as np 

import pandas as pd 

path = r'C:\Users\v.manasas\Documents\Subject Areas\Thesis' 
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train = pd.read_excel(path+r'\train.xlsx') 

items = pd.read_excel(path+r'\items.xlsx') 

test = pd.read_excel(path+r'\test.xlsx') 

train = train.query('UNIT_PRICE > 0') 

 
#outliers 

train= train.query('VALUE<1000000') 

train= train.query('VALUE>0') 

exculed_commercials = ['ΦΩΤΟΒΟΛΤΑΙΚΑ','ΛΑΣΤΙΧΑ'] 

train = train[~train.COMMERCIAL_CATEGORY.isin(exculed_commercials)] 

train[['COMMERCIAL_CATEGORY', 'COMMERCIAL_GROUP']] = 

train[['COMMERCIAL_CATEGORY','COMMERCIAL_GROUP']].fillna(value='GOOGLE') 

 
 
 
 
 
train['YEARMONTH'] = train['YEAR'].map(str) + train['MONTH'].map(str) 

train['DATE_BLOCK_NUM'] = train.YEARMONTH.rank(method='dense').astype(int) 

# Group by month in this case "date_block_num" and aggregate features. 

 
train_monthly = 

train.sort_values('DATE_BLOCK_NUM').groupby(['DATE_BLOCK_NUM', 'ITEM_CODE', 

'COMMERCIAL_CATEGORY', 'COMMERCIAL_GROUP','YEAR','MONTH'], as_index=False) 

train_monthly = train_monthly.agg({'UNIT_PRICE':['mean'], 'VALUE':['sum', 

'mean'],'TRANSACTIONS':['sum']}) 

train_monthly.head() 

# Rename features. 

train_monthly.columns = ['date_block_num', 'item_code', 

'commercial_category', 'commercial_group','year','month', 'mean_item_price', 

'value', 'mean_value', 'transactions'] 

 
# Build a data set with all the possible combinations of 

['date_block_num','item_code'] so we won't have missing records. 

 
# each item code corresponds to 1 commercial category and 1 commercial group 

# so there is no need to include commercial category and commercial groups. 

date_block_num_unique =  train_monthly['date_block_num'].unique() 

item_unique = items['ITEM_CODE'].unique() 

empty_df = [] 

for i in date_block_num_unique: 

for item in item_unique: 

empty_df.append([i, item]) 
 

empty_df = pd.DataFrame(empty_df, columns=['date_block_num','item_code']) 
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# Merge the train set with the complete set (missing records will be filled 

with 0). 

 
train_monthly = pd.merge(empty_df, train_monthly, 

on=['date_block_num','item_code'], how='left') 

train_monthly['year'] = train_monthly['date_block_num'].apply(lambda x: 

((x//12) + 2013)) 

train_monthly['month'] = train_monthly['date_block_num'].apply(lambda x: (x % 

12)) 

train_monthly.fillna(0, inplace=True) 
 
 
 
 
#get the commercial category and commercial group for months with zero sales 

train_monthly = pd.merge(train_monthly, items, left_on='item_code', 

right_on='ITEM_CODE', how='left') 

train_monthly.drop(['ITEM_CODE', 'commercial_category','commercial_group'], 

axis = 1, inplace = True) 

train_monthly.rename(columns={"COMMERCIAL_CATEGORY": "commercial_category", 

"COMMERCIAL_GROUP": "commercial_group","YEAR":"year","MONTH":"month"},inplace 

= True) 

train_monthly['surrogate_key'] = train_monthly.item_code + '-' 

+train_monthly.date_block_num.map(str) 

train_monthly.head() 

 
# for months that we have zero sales we do not know the item's unit price 

# so for each combination of item and month we are going to get the nearest 

mean unit price 

s=train_monthly.loc[train_monthly.mean_item_price!=0] 

s=pd.merge_asof(train_monthly.sort_values('date_block_num'),s.sort_values('d 

ate_block_num'),on='date_block_num',by='item_code',direction='nearest') 

s.fillna(0, inplace=True) 

s = s[['surrogate_key_x','mean_item_price_y']] 

train_monthly = pd.merge(train_monthly, s, left_on='surrogate_key', 

right_on='surrogate_key_x', how='left') 

train_monthly.drop(['mean_item_price','surrogate_key_x'],axis = 1, inplace = 

True) 

train_monthly.rename(columns={"mean_item_price_y": "mean_item_price"},inplace 

= True) 
 
 
 
 
train_monthly.loc[train_monthly['item_code'] == 'EX-7651382273'].tail() 

 

# Extract time based features.train_monthly['year'] = 

train_monthly['date_block_num'].apply(lambda x: ((x//12) + 2016)) 
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train_monthly['month'] = train_monthly['date_block_num'].apply(lambda x: (x % 

12)) 

# Creating the label value for our model 

 
# Our label will be the "value" of the next month, as we are dealing with a 

forecast problem. 

train_monthly['value_month'] = 

train_monthly.sort_values('date_block_num').groupby(['item_code', 

'commercial_category','commercial_group'])['value'].shift(-1) 

 

 
gp_item_price = 

train_monthly.sort_values('date_block_num').groupby(['item_code'], 

as_index=False).agg({'mean_item_price':[np.min, np.max]}) 

gp_item_price.columns = ['item_code', 'hist_min_item_price', 

'hist_max_item_price'] 

train_monthly = pd.merge(train_monthly, gp_item_price, on='item_code', 

how='left') 

 
 
train_monthly['price_increase'] = train_monthly['mean_item_price'] - 

train_monthly['hist_min_item_price'] 

train_monthly['price_decrease'] = train_monthly['hist_max_item_price'] - 

train_monthly['mean_item_price'] 

 

 
# Rolling window based features (window = 3 months) 

# Min value 

f_min = lambda x: x.rolling(window=12, min_periods=1).min() 

# Max value 

f_max = lambda x: x.rolling(window=12, min_periods=1).max() 

# Mean value 

f_mean = lambda x: x.rolling(window=12, min_periods=1).mean() 

# Standard deviation 

f_std = lambda x: x.rolling(window=12, min_periods=1).std() 
 

function_list = [f_min, f_max, f_mean, f_std] 

function_name = ['min', 'max', 'mean', 'std'] 

 
for i in range(len(function_list)): 

train_monthly[('value_%s' % function_name[i])] = 

train_monthly.sort_values('date_block_num').groupby(['commercial_group', 

'commercial_category', 'item_code'])['value'].apply(function_list[i]) 

 
# Fill the empty std features with 0 

train_monthly['value_std'].fillna(0, inplace=True) 

 
 
# lag based features 
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lag_list = [1, 2, 3, 6, 12, 24] 
 

for lag in lag_list: 

ft_name = ('value_shifted_%s' % lag) 

train_monthly[ft_name] = 

train_monthly.sort_values('date_block_num').groupby(['commercial_category', 

'commercial_group', 'item_code'])['value'].shift(lag) 

# Fill the empty shifted features with 0 

train_monthly[ft_name].fillna(0, inplace=True) 

 

 
# Item sales count trend. 

train_monthly['item_trend'] = train_monthly['value'] 

 
for lag in lag_list: 

ft_name = ('value_shifted_%s' % lag) 

train_monthly['item_trend'] -= train_monthly[ft_name] 

 
train_monthly['item_trend'] /= len(lag_list) + 1 

 
 

train_monthly.fillna(0, inplace=True) 
 
 

# train_monthly = pd.get_dummies(train_monthly,columns = 

'commercial_category', prefix = 'cc_') 

 

 
#Our train set will be the first 25 - 76 blocks, and test will be block 77 ( 

because we are trying to predict 

# block number 78. The label value_month of block 77 represents the sales of 

block 78. 

#leaving the first 3 months out because we use a 3 month window to generate 

features, so these first 3 month won't have really windowed useful features 

train_set = train_monthly.loc[(train_monthly['date_block_num'] > 24) & 

(train_monthly['date_block_num'] < 77)] 

test_set = train_monthly.loc[train_monthly['date_block_num'] == 77] 

#mean encodings 

gp_commercial_group_mean = 

train_set.groupby(['commercial_group']).agg({'value': ['mean']}) 

gp_commercial_group_mean.columns = ['commercial_group_mean'] 

gp_commercial_group_mean.reset_index(inplace=True) 

 
gp_commercial_category_mean = 

train_set.groupby(['commercial_category']).agg({'value': ['mean']}) 

gp_commercial_category_mean.columns = ['commercial_category_mean'] 

gp_commercial_category_mean.reset_index(inplace=True) 
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gp_item_code_mean = train_set.groupby(['item_code']).agg({'value': ['mean']}) 

gp_item_code_mean.columns = ['item_code_meand'] 

gp_item_code_mean.reset_index(inplace=True) 

 
gp_category_item_mean = train_set.groupby(['commercial_category', 

'item_code']).agg({'value': ['mean']}) 

gp_category_item_mean.columns = ['category_item_mean'] 

gp_category_item_mean.reset_index(inplace=True) 

 
gp_year_mean = train_set.groupby(['year']).agg({'value': ['mean']}) 

gp_year_mean.columns = ['year_mean'] 

gp_year_mean.reset_index(inplace=True) 

 
gp_month_mean = train_set.groupby(['month']).agg({'value': ['mean']}) 

gp_month_mean.columns = ['month_mean'] 

gp_month_mean.reset_index(inplace=True) 

 
 
 

# Add mean encoding features to train set. 

train_set = pd.merge(train_set, gp_commercial_group_mean, 

on=['commercial_group'], how='left') 

train_set = pd.merge(train_set, gp_commercial_category_mean, 

on=['commercial_category'], how='left') 

train_set = pd.merge(train_set, gp_item_code_mean, on=['item_code'], 

how='left') 

train_set = pd.merge(train_set, gp_category_item_mean, 

on=['item_code','commercial_category'], how='left') 

train_set = pd.merge(train_set, gp_month_mean, on=['month'], how='left') 

# Add mean encoding features to test set. 

test_set = pd.merge(test_set, gp_commercial_group_mean, 

on=['commercial_group'], how='left') 

test_set = pd.merge(test_set, gp_commercial_category_mean, 

on=['commercial_category'], how='left') 

test_set = pd.merge(test_set, gp_item_code_mean, on=['item_code'], how='left') 

test_set = pd.merge(test_set, gp_category_item_mean, 

on=['item_code','commercial_category'], how='left') 

test_set = pd.merge(test_set, gp_month_mean, on=['month'], how='left') 
 
 

# Create train and validation sets and labels. 

X_train = train_set.drop(['value_month', 'date_block_num'], axis=1) 

Y_train = train_set['value_month'].astype(int) 

X_test = test_set.drop(['value_month', 'date_block_num'], axis=1) 

Y_test = test_set['value_month'].astype(int) 

 
 
validation = test_set[['item_code','value_month']] 
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X_train.columns 

 
 

X_test.drop(['item_code','commercial_category', 'commercial_group', 

'surrogate_key','year', 'month'],inplace = True, axis = 1) 

X_train.drop(['item_code','commercial_category', 'commercial_group', 

'surrogate_key','year', 'month'],inplace = True, axis = 1) 

 
 
import datetime 

import warnings 

import numpy as np 

import catboost 

from catboost import Pool 

from catboost import CatBoostRegressor 

from xgboost import XGBRegressor 

from xgboost import plot_importance 

from sklearn.metrics import mean_squared_error 

from sklearn.linear_model import LinearRegression 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.preprocessing import StandardScaler, MinMaxScaler 
 

get_ipython().run_line_magic('matplotlib', 'inline') 

pd.set_option('display.float_format', lambda x: '%.2f' % x) 

warnings.filterwarnings("ignore") 

X_train[X_train.columns] = X_train[X_train.columns].astype('int32') 

 
X_test[X_test.columns] = X_test[X_test.columns].astype('int32') 

cat_features = [0, 1, 7, 8] 

catboost_model = CatBoostRegressor( 

iterations=500, 

max_ctr_complexity=4, 

random_seed=0, 

od_type='Iter', 

od_wait=25, 

verbose=50, 

depth=4 

) 
 

catboost_model.fit( 

X_train, Y_train, 

cat_features=cat_features 

) 

catboost_test_pred = catboost_model.predict(X_test) 

catboost_test_pred = pd.DataFrame(catboost_test_pred) 
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validation.to_excel(r'C:\Users\v.manasas\Documents\Subject 

Areas\Thesis\validation.xls', index=False) 

catboost_test_pred.to_excel(r'C:\Users\v.manasas\Documents\Subject 

Areas\Thesis\prediction.xls', index=False) 

train_monthly.head() 

xgb_features = X_train.columns 

xgb_train = X_train[xgb_features] 

xgb_test = X_test[xgb_features] 

xgb_model = XGBRegressor(max_depth=8, 

n_estimators=500, 

min_child_weight=1000, 

colsample_bytree=0.7, 

subsample=0.7, 

eta=0.3, 

seed=0) 

xgb_model.fit(xgb_train, 

Y_train, 

verbose=20, 

) 
 
 
 
 
xgboost_test_pred = xgb_model.predict(X_test) 

xgboost_test_pred = pd.DataFrame(xgboost_test_pred) 

validation.to_excel(r'C:\Users\v.manasas\Documents\Subject 

Areas\Thesis\validation_x.xls', index=False) 

xgboost_test_pred.to_excel(r'C:\Users\v.manasas\Documents\Subject 

Areas\Thesis\xg_prediction.xls', index=False) 

 
 

9.4 Lead time prediction for aluminum profiles 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler 
 

train = pd.read_excel(r'C:\Users\v.manasas\Desktop\Subject Areas\Alumil - 

IHU\ORDER LINES.xlsx') 

train.columns.values.tolist() 

drop_columns = ['ORDER_NUMBER', 

'LINE_NUMBER', 

'PROFORMA_HOLD_FLAG', 

'ORDER_LINE_STATUS', 

'LINE_ID', 

'ORDERED_DATE', 
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'SCHEDULE_SHIP_DATE', 

'REQUEST_DATE', 

'ORDERED_QUANTITY', 

'ORDERED_QUANTITY2', 

'ORDERED_UOM', 

'ORDERED_UOM2', 

'SCHEDULE_SHIP_DATE_ESTIMATED', 

'PLN_PREDICTTIME_DT', 

'SHIPMENT_DT', 

'SHIPMENT_NO', 

'ON_HOLD_DAYS', 

'IN_WAREHOUSE_DT', 

'PLN_WMS_DT', 

'PLN_PROMISED_DT_LAG', 

'DAILY_LOAD_KGS', 

'ORDERS DAY COUNT', 

'PLN_ORDERREMARKS', 

'PLANNING_PROMISED_DATE' 

] 

train = train.drop(drop_columns,axis =1,inplace = False) 

train.info() 

train.dropna(axis = 0, inplace = True) 

train.info() 

orders= train 

orders.info() 

x = orders.drop(['DELIVERY_DAYS'], axis=1) 

y = orders['DELIVERY_DAYS'] 

categorical_cols = ['AUDIT_YEAR', 

'ORDER_DAY_NAME', 

'AUDIT_MONTH', 

'COUNTRY', 

'ABC_CODE', 

'PLN_NOTPROFORMAPAYED', 

'PLN_EXPRESSORDER', 

'PLN_EXPRESS_LINE_FLAG', 

'PLN_IS_SM_REPLENISHMENT', 

'PLN_PREASON', 

'PLN_PRIORITYDESCR', 

'PLN_HASLOADED', 

'PLN_ORDERCOMPLETE', 

'HAS REMARKS', 

'SUBSIDIATY', 

'IS_INDUSTRIAL', 

'EXPRESS_FLAG', 

'RAL_CATEGORIES', 

'IS_THERMO', 

'SUPREME_FLAG'] 
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x = pd.get_dummies(x,columns = categorical_cols, prefix = categorical_cols) 
 
 

x.columns.values.tolist() 

x.drop(['PROFIL_USE'],axis =1, inplace = True) 

 
from sklearn.model_selection import train_test_split 

xTrain, xTest, yTrain, yTest = train_test_split(x, y, test_size = 1/3, 

random_state = 0) 

from sklearn import preprocessing 

import numpy as np 

x_Train = preprocessing.scale(xTrain) 

x_Test = preprocessing.scale(xTest) 

from  future  import absolute_import, division, print_function 

import pathlib 

import matplotlib.pyplot as plt 

import pandas as pd 

import seaborn as sns 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras import layers 
 
 
 
 
x_Train = pd.DataFrame(x_Train) 

def huber_loss(y_true, y_pred, clip_delta=1.0): 

error = y_true - y_pred 

cond = tf.keras.backend.abs(error) < clip_delta 
 

squared_loss = 0.5 * tf.keras.backend.square(error) 

linear_loss = clip_delta * (tf.keras.backend.abs(error) - 0.5 * clip_delta) 
 

return tf.where(cond, squared_loss, linear_loss) 

def build_model(): 

model = keras.Sequential([ 

layers.Dense(64, activation=tf.nn.relu, 

input_shape=[len(x_Train.keys())]), 

layers.Dense(64, activation=tf.nn.relu), 

layers.Dense(1) 

]) 

optimizer = tf.keras.optimizers.RMSprop(0.001) 

model.compile(loss=huber_loss, 

optimizer=optimizer, 

metrics=['mean_absolute_error', 'mean_squared_error']) 
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return model 
 
 

model = build_model() 

# Display training progress by printing a single dot for each completed epoch 

class PrintDot(keras.callbacks.Callback): 

def on_epoch_end(self, epoch, logs): 

if epoch % 100 == 0: print('') 

print('.', end='') 

 
EPOCHS = 1000 

 

history = model.fit( 

x_Train, yTrain, 

epochs=EPOCHS, validation_split = 0.2, verbose=0, 

callbacks=[PrintDot()]) 

 

 
loss, mae, mse = model.evaluate(x_Test, yTest, verbose=0) 

 

print("Testing set Mean Abs Error: {:5.2f} days".format(mae)) 

test_predictions = model.predict(x_Test).flatten() 

 
model.summary() 

 

hist = pd.DataFrame(history.history) 

hist['epoch'] = history.epoch 

hist.tail(10) 

 
 
def plot_history(history): 

hist = pd.DataFrame(history.history) 

hist['epoch'] = history.epoch 

 
plt.figure() 

plt.xlabel('Epoch') 

plt.ylabel('Mean Abs Error [Days]') 

plt.plot(hist['epoch'], hist['mean_absolute_error'], 

label='Train Error') 

plt.plot(hist['epoch'], hist['val_mean_absolute_error'], 

label = 'Val Error') 

plt.ylim([0,5]) 

plt.legend() 

 
plt.figure() 

plt.xlabel('Epoch') 

plt.ylabel('Mean Square Error [$Days$]') 

plt.plot(hist['epoch'], hist['mean_squared_error'], 

label='Train Error') 
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plt.plot(hist['epoch'], hist['val_mean_squared_error'], 

label = 'Val Error') 

plt.ylim([0,20]) 

plt.legend() 

plt.show() 

 
 
plot_history(history) 

class PrintDot(keras.callbacks.Callback): 

def on_epoch_end(self, epoch, logs): 

if epoch % 100 == 0: print('') 

print('.', end='') 

 
model = build_model() 

 

# The patience parameter is the amount of epochs to check for improvement 

early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) 

 
history = model.fit(x_Train, yTrain, epochs=1000, 

validation_split = 0.2, verbose=0, callbacks=[early_stop, 

PrintDot()]) 
 

plot_history(history) 

loss, mae, mse = model.evaluate(x_Test, yTest, verbose=0) 
 

print("Testing set Mean Abs Error: {:5.2f} days".format(mae)) 

error = abs(test_predictions - yTest) 

plt.hist(error, bins = 10000) 

plt.xlim(xmin=0, xmax = 100) 

plt.xlabel("Prediction Error [Days]") 

_ = plt.ylabel("Count") 
 

saver = tf.train.Saver() 

model_json = model.to_json() 

with open(r"C:\Users\v.manasas\Desktop\Subject Areas\Alumil - 

IHU\model_huber.json", "w") as json_file: 

json_file.write(model_json) 
 

model.save_weights(r"C:\Users\v.manasas\Desktop\Subject Areas\Alumil - 

IHU\model_huber.h5") 


