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Abstract 

This dissertation was written as a part of the MSc in e-Business & Digital Marketing at 

the International Hellenic University. Travel and tourism industry has changed rapidly 

over the years as customers are using digital channels to make their bookings online. 

Hotel managers are making efforts to reach possible customers to this new digital mar-

ket, where the competition is fiercer than ever. One of the most important and effective 

strategies is the online reputation management. Online reputation consists of the elec-

tronic word of mouth created by online reviews and ratings provided by customers. 

The first part of this paper examines the impact online reputation has on the decisions of 

the consumers, as well as the importance of online review and ratings on the perfor-

mance of a hotel. By investigating previous research, it will explore the ways hotel 

managers can use the online generated content to improve their hotel’s performance and 

the effective ways they can should interact with it to improve their brand’s online pres-

ence. On the second part we will perform deep analysis of a dataset containing reviews 

from Booking.com customers, to discover new patterns and insights. Finally, we will 

build machine learning explanatory models to determine the most important factors af-

fecting the scores provided by reviewers. 
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1 Introduction 

Travel and tourism are already one of the biggest industries in the world. This already 

huge market is going to keep growing in the future, as the Internet, combined with tech-

nologies like machine learning and artificial intelligence have created unlimited poten-

tial for growth. Online bookings are now the main option for booking hotel accommo-

dation, flights and even the activities of preference before arriving at the destination. 

While traditional travel agents and tour operators still exist, most of them have also 

shifted their focus on building their online presence and conducting business through 

the internet. The biggest OTAs (booking.com, Expedia etc.) are also offering another 

option and have gained a significant amount of the Travel and Tourism market share. 

The final option, for a traveler to book online, is the official hotel websites. Big hotel 

chains have the brand name and resources to receive an important share of their total 

bookings through their website, but for smaller or less known hotels this is much more 

difficult. 

This new environment in the hospitality industry has created an abundance of options to 

consumers, for the same product (i.e. a specific hotel room). Travelers needs to scan and 

process a huge amount of information before deciding to book, since they not only have 

to decide on the destination and hotel, but also the channel they will use to book. On the 

other hand, hotel managers must be able to observe their online presence to all these 

channels and make sure that it aligns with their brand image. Aside from the infor-

mation and content hoteliers provide (professional photos, descriptions, amenities in-

formation etc.), user generated content plays an integral part on their brand’s image. 

This content comes in many shapes, but the most common are traveler photos, reviews 

and ratings. 

The purpose of this paper is to explore the importance of the online reviews and ratings 

for the hotels, and which are the factors that play the most prominent role on defining 

the latter. This process will be conducted in 2 parts. The first part is reviewing the litera-

ture around the subject of customer analytics related to the hospitality industry, while 

the second part is the analysis of a dataset extracted from one of the most prominent 
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OTAs, Booking.com. The analysis will be also broken down to 2 parts. The first part is 

the exploratory data analysis and feature engineering, which means that we will trans-

form and summarize the data, and then present them in a visual manner. Additionally, 

we will explore if there are more ways to transform the existing features, in order to 

create new ones to use in the next part. The goal of the first part is to explore possible 

insights and patterns that can be extracted by the dataset. On the second part, we will 

build two types of machine learning models. The first model is a classification algo-

rithm that predicts if an individual score will be higher than the dataset’s average. The 

second model is a regression algorithm that makes a prediction on the exact score a re-

viewer will provide. While the predictions are the main functionality of the models, our 

focus is to explain the predictions and the factors that affect them. 



  -3- 

2 Literature review 

On this chapter we will explore previous research on the importance of analytics on ho-

tel management. Specifically, we will explore what are the effects of different types of 

reviews and ratings on the customers’ decision to book. Furthermore, we will explore 

the connection of the eWOM (electronic word of mouth), which is created by the online 

reviews on hotel websites and third-party websites, with the successful performance of a 

hotel.  

2.1 Online Reviews’ effect on travelers’ decisions 

As the Hospitality industry is leaning on the digital presence and focusing its efforts to-

wards reaching possible customers on the internet, people are bombarded with unprece-

dented amounts of information. Hotels and third-party sellers are spending billions on 

digital advertising, in order to reach their customers on every stage of the buying pro-

cess. This makes it more difficult for possible customers to process all this information 

and make the final decision to book, since the customers are on a simpler state of mind 

when they are about to make a purchase, trying to make the decision that best fits their 

goals and maximize their benefits [1]. eWOM, in the shape of online reviews and rat-

ings, helps simplify this process.  

Online reviews are based on the concept of social proof [2]. According to this concept, 

consumers can significantly affect other consumers by sharing their opinions with them, 

since people have the tendency to follow the lead of the crowd when they are undecided 

[3]. Since the internet provides a connection between its users, the effects of social 

proof can be amplified and reach a consumer on every stage of the online booking pro-

cess, starting from the awareness until the final decision to book is made [4]. While 

hospitality companies are spending huge amounts of their budgets on online advertising, 

Nielsen reports that online reviews and ratings are the most important source of infor-

mation on a brand quality, apart from the suggestions of friends or family [5]. Moreo-

ver, people usually find these sources trustworthy, even though they do not know the 

actual reviewers. The use of the rating is particularly important on the first stages of the 
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booking process, since it can help customers filter the possible destinations and accom-

modations based on a simple criterion [6]. One example of this would be to filter all the 

hotels, on an OTA website, that have a rating lower than 4 out of 5 stars and then pro-

ceed with a closer examination of the presented hotels. It is clear that ratings can help 

customers save time and make the process more efficient, at least at the first stages of 

searching for a hotel. 

While online reviews and ratings can help customers on their decisions, there are some 

differences on how positive and negative reviews are perceived. This case was dis-

cussed on a research by Papathanassis and Knolle [7]. Customers generally trust nega-

tive, or reviews containing both positive and negative elements, much more than only 

positive reviews. They spend more time reading and interacting with negative or mixed 

reviews, compared to the positive reviews, and negative (and mixed) reviews usually 

work as an initial filter to disregard a set of options. Furthermore, the magnitude of the 

effect varies between the two. Chevalier and Maizline showed that while a higher rating 

can lead to more online sales, the effect of the low ratings was greater and led to a big-

ger drop in sales [8].  

This difference can be explained by the fact that customers tend to underestimate the 

possibility of a fake and malicious negative review, while they can label as such a posi-

tive review much easier [9]. There is also a connection between the number of reviews 

and their perceived trustworthiness, although the importance of this is different between 

good and bad rating reviews. A high number of positive reviews is required to make 

customers trust them, while even a really low number of negative reviews is enough to 

achieve high levels of perceived trustworthiness. 
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Figure 1: Relationship between number of reviews and trustworthiness 

In figure 1 we can see the results of the experiment from Gavilan (2018) [1]. We can 

see that higher number of reviews has much lower marginal effect on the perceived 

trustworthiness of negative reviews, while the effect is much higher for the positive re-

views.  

2.2 Usage of online reviews by hotel managers 

We have established that eWOM plays an integral part on the decision of customers that 

book online, but it is equally important to hotel managers. Since online reviews are, on 

their majority, honest depictions of the hotel services as experienced by its customers, 

hotel managers can use this valuable information to improve their services [11]. Using 

data analytics, hotel managers can even personalize their hotel’s services to achieve 

even higher levels of satisfaction [12]. The importance of this can be better understood 

by considering the fact that existing reviews can affect the ratings of future ones, creat-

ing a bias to reviewers that already know the previous rating of a hotel [13]. Social 

proof is the main reason for this, as new reviewers will be biased to agree with the exist-

ing reviews and ratings, at least on some level. This results in already high rated hotels 

receiving higher ratings from new customers and retaining their good brand reputation, 

while it is much more difficult for low rated hotels to improve their rating (and brand 

image along with it).  

While the perceived importance of analyzing and using this type of data is very high 

among hotel managers, it is not used as widely as one would except. The reason for this 

is that the complexity and sheer volume of data, that makes analyzing and using the data 
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to formulate the hotel’s strategy very difficult [14]. Considering that user generated con-

tent is produced at a much higher pace than it can be analyzed, its actual use by hotel-

iers remains limited [15]. Advanced technologies like machine learning and artificial 

intelligence can now fill this gap and can be used to extract important insights from 

huge amounts of data from various sources. The use of such technologies allows hotels 

that have adopted it to essentially create tailor made services and experiences according 

to their customers’ needs and preferences [16]. 

Data are included on the most important resources for hotels, so it is of utmost im-

portance for hotel managers to make sure that they maximize their usage. Advanced da-

ta analysis techniques are required to be able to gain even more meaningful insights and 

support the strategic decisions of managers. To achieve this, hotel managers need to 

build their teams with people that can understand data and present them on a clear and 

easily understood format to decision makers.  

2.3 eWOM and hotel performance  

Online reputation and eWOM not only offers feedback and insights to hotel managers, 

but they are also connected with the success and profitability of a hotel. In this digital 

era there are many sources that gather customer feedback and opinions, and then freely 

circulate this information to all internet users [17]. These sources can be the official 

website of a hotel, which shares the user generated content, but in most cases, they are 

third party platforms like TripAdvisor, Booking.com and even Facebook. Data are the 

most important resource for these companies, as through the monetization of data they 

make their biggest share of revenue; either by offering a huge audience to advertisers or 

by getting bookings directly from customers that consume this content. This fact creates 

a user generated content economy on the hospitality industry where platforms aim to not 

only receive online bookings, but also receive the customers feedback in terms of re-

views, ratings and even photos [18].  

The huge amount of data generated by all these sources, and specifically the eWOM 

created from the customers’ input, can work as predictor for various metrics measuring 

the effectiveness and success of a hotel’s operations. Kim and Park (2017) showed that 

online ratings from different websites can be used to predict occupancy and average dai-

ly rates with higher accuracy than internal customer satisfaction data, like surveys and 

questionnaires [19]. Online ratings and reviews have a significant correlation with a ho-
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tel’s revenue and occupancy, two of the most important metrics to measure hotel per-

formance and profitability. Furthermore, eWOM plays an important role on customer 

loyalty and helps hotels create a repeating customer base [20]. This is an important ben-

efit, since repeating customers tend to be the most profitable ones, as hotels need to 

spend less money to acquire them. Additionally, loyal customers can be the best repre-

sentatives of a brand by sharing their experiences on social media or travel websites. 

Although hotel managers are focusing more on the impact eWOM can have on their ho-

tel’s performance, it is not always possible to combine data from social media and travel 

websites (i.e. TripAdvisor) with the internal data measuring a hotel’s successful opera-

tion. Meanwhile, research has shown that positive polarity on online reviews has a posi-

tive relationship with a hotel’s performance [21]. Since the importance of these sharing 

platforms on the decision of a destination has only grown in recent years, customers 

consider the eWOM created as a representation of the quality of service provided by a 

hotel [22]. This association’s significance is amplified by the fact that the perceived 

quality of services strongly affects the price a possible customer is willing to pay for a 

service [23]. That means hotels with bad online reputation, in terms of low ratings and 

negative reviews, find it more difficult to offer the highest possible price, since their 

online reputation is closely connected with their perceived quality of service. As a re-

sult, hotels falling in this category have lower potential to generate revenue from book-

ings compared to high rated hotels [24].  

Hotel managers need to specifically manage their brand’s online reputation by studying 

and replying to their customers’ feedback. Studies has shown that those hotels that pro-

vide replies through their official representatives, tend to receive up to 60% more book-

ings, compared to hotels that do not follow this practice. As already discussed, the per-

ceived quality of service is very important for possible customers and the managerial 

responses to reviews is a clear representation of the level of this quality. While manag-

ing a hotel’s website to improve online reputation is very important, past research has 

dictated that customers value reviews and ratings on third-party websites even more 

[26]. This difference in value comes from the fact that third-party website reviews and 

ratings are perceived more trustworthy, compared to a hotel’s website. It should be not-

ed that the actual review can play a more significant part on the customers evaluation of 

a service, compared to just a numerical rating [27]. Consumers tend to make decisions 

based on their emotions, and not only on common sense, and previous customers’ de-
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scription of their experience can have higher impact on the decision making, compared 

to the ratings alone.  

3 Methods and Tools 

On this chapter we will explain the methods and tools that will be used on the next steps 

of the thesis. Those are the Exploratory Data Analysis and the Machine Learning Ex-

planatory models. Additionally, the dataset, programming language and algorithms will 

be described. 

3.1 Dataset description 

The data included on the dataset used for the purposes of this dissertation are publicly 

available and owned by Booking.com; the data were scraped from the official website 

of Booking.com. This platform was selected because they only allow customers that 

booked a vacation through them to leave a review, which ensures that the reviews are 

from actual customers. The dataset includes 515,000 reviews from Booking.com cus-

tomers and 1,493 reviewed hotels. These hotels are located on the following six Euro-

pean cities: Amsterdam, London, Paris, Barcelona, Milan and Vienna.  

 

Hotel_Address  The address of the hotel  Text

Review_Date  The date the review was submitted  Text

Average_Score  The average score of the hotel  Numerical

Hotel_Name  Name of the hotel  Text

Reviewer_Nationality  The nationality of the reviewer  Text

Negative_Review  The negative review written by a reviewer for the Hotel. If there is no negative review the value is “No Negative”  Text

Review_Total_Negative_Word_Counts  Number of words for the Negative Review  Text

Positive_Review  The positive review written by a reviewer for the Hotel. If there is no positive review the value is “No Positive”  Numerical

Review_Total_Negative_Word_Counts  Number of words for the Negative Review  Numerical

Reviewer_Score  The total score the reviewer attributed to the hotel based on their stay  Numerical

Total_Number_of_Reviews_Reviewer_

Has_Given  Total number of reviews the specific user gave on the booking.com system  Numerical

Total_Number_of_Reviews  Total number of reviews for the hotel  Numerical

Tags  Tags assigned to the hotel from the reviewer  Text

days_since_review  Days passed from the time of the review to the time of the dataset creation  Text

Additional_Number_of_Scoring
 This column shows how many scores a hotel has received on specific services  instead of total score for the Hotel  Numerical

lat  Latitude of the hotel  Numerical

lng  Longitude of the hotel  Numerical  

Figure 2: List of the dataset’s columns and description 

 

Figure 2 shows the 17 columns of data included on the dataset, accompanied by their 

description and the type of data those represent. There are both numerical values like 
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the ratings, as well as textual ones, like the written reviews provided by users. There is 

also information on the hotels; specifically, the address, hotel name, average score, total 

number of reviews, latitude and longitude of the hotel. Moreover, there are columns 

containing information about the reviewers, their nationality, how many reviews they 

have provided in the past and tags they have assigned to their trip. Finally, the rest of 

the columns provide information about the reviews. Those columns are the date of the 

review, the score accompanying the review, the actual texts of positive and negative re-

views, along with their word counts.  

3.2 Programming language and environment 

The next steps, those of the data analysis and machine learning explanatory models, are 

accomplished using the Python programming language. Python was released on 1991 

by its creator Guido van Rossum [28]. It is now one of the most popular programming 

languages used for data science projects. Python’s syntax is relatively close to human 

language, so it is easier to learn and easier to understand when reading the code, a fact 

that led to its widespread usage. But the main benefit is that there are countless open 

source libraries, created by many collaborators, that help users perform tasks that would 

require significant effort otherwise. Libraries are collections of code with ready to use 

commands. Two of the most popular libraries, used for data analysis and machine learn-

ing respectively, are Pandas [29] and scikit-learn [30]. Those two will be used for the 

purposes of this dissertation. 

The programming environment used is Google’s platform for data science, Kaggle [31]. 

It is free to use and provides users with computing power and the latest Python libraries 

used for data science projects, in the form of Jupyter notebooks. Jupyter notebooks al-

low users to combine code, comments and visualizations in a common environment 

[32].  

3.3 Algorithms 

We will use two different types of the XGB algorithm, the classifier and the regressor, 

to create two different models. The XGB algorithm is a machine learning algorithm, 

based on decision trees, but its difference is that it is an ensemble method. This means 

that it uses multiple algorithms to combine their predictions and make a final prediction 

that is more accurate than each of the individual ones [33].  
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Figure 3: An example of a decision tree 

Figure 3 is the visualization of a single decision tree, and shows the process followed 

until it makes its prediction. For classification purposes, a decision tree makes decisions 

based on the values of different features until it makes a prediction on whether the vari-

able belongs to a class or not. The difference between a classifier and regressor is that 

the latter’s final prediction can be a real number (i.e. the rating provided by a reviewer). 

Typically, decision trees like this one do not make very accurate predictions since they 

are weak learners, meaning that these have only a slight correlation with the predicted 

outcome [34]. Their prediction on a classification problem, for example, would be only 

be slightly better at predicting the correct class than random chance would. Boosting is 

used to transform this weak learner to a strong one, meaning that it improves its accura-

cy significantly [35]. The increased accuracy is exactly the reason we chose to use the 

XGB algorithm to create the machine learning models presented on this dissertation. 

4 Data Analysis 

This chapter contains all the data analysis part of the dissertation. It is separated in two 

main parts; the exploratory data analysis and the feature engineering part. The goal of 

the first part is to summarize and present the data using visualizations, in order to ex-

tract insights. The second part aims to further explore the existing features, in order to 

create new ones to be used on the machine learning models. 
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4.1 Exploratory Data Analysis 

We have the description of each variable along with its type. They are divided into two 

types, text and numerical. We will need to verify that the description is correct so we 

will use a few commands in Python to examine the dataset. We can also see that some 

features should be a different type so will make the transformations. The Review Date 

column should be date type and the days_since_review should be numerical. 

 

Figure 4: Presentation of all the features 

In figure 4 we can see the number of entries on each column, as well as the data type 

contained on them. All columns are now the proper type based on their data. From this 

table we can also check if there are any missing values on some of the columns. The 

only columns we have missing values on , are the latitude and longitude, the coordinates 

of some hotels. For now, this isn’t an issue so we will not fill those two columns. 

We will also need to have a look at the values each column has. 
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Figure 5: Statistical description of numerical features / first part 

 

Figure 6: Statistical description of numerical features / second part 

Figures 5 and 6 provide a holistic view on the data included in each column with some 

basic statistical description. We already had the count from the previous table, but we 

can also see the mean, standard deviation, minimum and maximum value of every col-

umn. Additionally, we are presented with the percentiles 25%, 50% and 75%.  

 

Figure 7: Violin plots, reviewer score and additional number of scoring 
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Figure 8: Violin plots, average score and additional number of scoring 

 

Figure 9: Violin plots, Total number of reviews per hotel (left plot) and per reviewer (right plot) 

 

Figure 10: Violin Plots, word counts on negative (left plot) and positive reviews (right plot) 

In figures 7,8,9 and 10 we can see the distribution of each numerical feature, in the for 

of violin plots. The small white dot is the median of the column, the bolder part of the 

line is the interquartile range (IQR) which includes all the observations between the 25th 

quartile(Q1) and the 75th (Q3) meaning. The thin line extending further than the bold 

one, covers the rest of the distribution and collectively includes 50% of the observations 

[36]. All observations further than the thin line are considered outliers, meaning that 

they are extremely rare. The outliers are the observations that are either smaller than the 

number calculated by subtracting the interquartile range, multiplied by 1.5, from the 25th 
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quartile (Q1 - 1,5xIQ) or bigger than adding the interquartile range, multiplied by 1.5, 

from the 75th quartile (Q3 + 1,5xIQR) . Essentially, outliers are observations that are far 

away from the rest of the observations [37]. 

The violin plots allow us to extract information on the features of the dataset. The posi-

tive and negative reviews word counts have similar distribution, something that we can 

also confirm from the descriptive statistics table. Both features are heavily concentrated 

between 0 and 50, which means that most reviews have less than 50 words. 

The total number of reviews and additional number of scoring columns have also simi-

lar distributions. There is an obvious correlation between these two features, since the 

higher the number of reviews is, the higher is the possibility for additional scorings to 

be provided. Most reviewers have provided a relatively low number of reviews as the 

average is 7.16 reviews per user. The interquartile range for the Reviewer Score is be-

tween 7.5 and 9.6, which means that half of the scores the reviewers provided are be-

tween those two ratings. The highest scored review is 10 (which is the max) and the 

lowest observation is 2.5. Most of the hotels have an average score between 7.5 and 9, 

with the lowest average being 5.2 and the highest being 9.8.  

The next step in the analysis is to check for correlations between the numerical features.  
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Figure 11: Correlation heatmap of features 

The lighter the color block between two columns the stronger the correlation between 

them. Some pairs that appear highly correlated are the following: Reviewer_Score and 

Average_Score, Total_Number_of_Reviews and Additional_Number_of_Scoring, lat 

and Additional_Number_of_Scoring and Reviewer_Score and Re-

view_Total_Positive_Word_Counts. By creating a scatterplot matrix for the features, 

we could visualize any linear correlation. 



-16- 

 

Figure 12: Scatterplot matrix 

 Figure 12 shows us that on one case there is a linear correlation, between the Addition-

al_Number_of_Scoring and the Total_Number_of_Reviews. As already mentioned, this 

correlation is natural since there are increased possibilities for more additional scorings 

when there are more reviews in general. We have explored the distributions of the nu-

merical features, along with their possible correlations. The next step is to explore the 

categorical features.  
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Figure 13: Reviewer nationality word cloud 

Figure 13 is a word cloud that was created based on how many times each country ap-

pears on the column containing the nationalities of the reviewers. The word cloud 

makes it possible to find out which are the most common nationalities; most reviewers 

are from the United Kingdom, followed by the likes of USA, Ireland, Australia and 

United Arab Emirates. The word cloud does not provide numerical values, so we will 

create some plots to get more precise answers. 

 

Figure 14: Top 10 nationalities of reviewers 
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Figure 14 confirms what was already shown on the word cloud; the fact that United 

Kingdom citizens have provided the most reviews by a wide margin, as they represent 

almost half of the dataset. The rest of the top 10 most common nationalities can be 

viewed on the plot and they are more balanced between them. United States citizens are 

the second most represented nationality at 36.000 reviewers and Australia is third with 

22.000 Australian reviewers. 

 

Figure 15: Average score provided by the most common nationalities 

Figure 15 shows the average score provided by reviewers from the 10 countries with the 

most reviews. It is clear from the graph that USA citizens have provided the highest av-

erage score, close to 8.8. The next two highest averages have been scored by Australian 

and Canadian reviewers. This is very interesting as there are some similarities between 

these three country groups. The distances all three of them had to travel are the highest 

among the top 10 countries with the most reviews, since all hotels on the dataset are in 

Europe. We can’t say with a high degree of certainty that any of these two cases have a 

high impact on the reviewer score, but the long-distance travel assumption could be fur-

ther investigated in future research. While it would be intuitive to think that the higher 

trouble and fatigue of long-distance travelling would bring the average score these peo-
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ple provided down, this is not the case here. Both United Kingdom and Ireland review-

ers have provided scores that their average is close to 8.5 and have the 4th and 5th high-

est average scores respectively. Another interesting observation is the fact that the top 5 

nationalities with the highest average scores have English as their mother tongue. 

 

Figure 16: Average number of reviews provided per nationality 

In Figure 16 we can see the average number of reviews provided on average by a re-

viewer, divided per nationality. Russian reviewers top the list with 15 total reviews on 

average per reviewer; reviewers from Italy and Switzerland come second and third with 

14 and 13 reviews per reviewer, respectively. On the other hand, United Kingdom, 

United States and Irish users have provided close to 5 reviews on average, which is the 

lowest number among the top 20 nationalities.  
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Figure 17: Top 10 most reviewed hotels 

Figure 17 presents the most reviewed hotels on this dataset. All the hotels, included on 

the top 10 most reviewed, are in London. This also explains the fact that almost half of 

the reviewers are from the United Kingdom. Britannia International Hotel Canary Warf 

has the most reviews, close to 5,000. Strand Palace Hotel and Park Plaza Westminster 

Bridge London are the next most reviewed hotels as they have received more than 4,000 

reviews each. 
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Figure 18: Average score per hotel 

In Figure 18 we can see that the most reviewed Hotel, which is the Britannia Interna-

tional Hotel Canary Wharf, has the lowest rating among the most reviewed at 6.7. The 

average reviewer score is at 8.4 so its rating is well below the average. On this case it 

could be assumed that the relatively low average score means that reviewers have a 

higher tendency to provide a review when they are not satisfied with the service. Inter-

continental London has the highest rating among the top 10 most reviewed hotels, close 

to 9.5. Performing a deeper analysis on the hotels would be out of scope, since it is 

harder to generalize the findings because of the differences between the individual ho-

tels.  

4.2 Feature engineering  

The first stage, that of the exploratory data analysis has been completed, since we have 

examined all the existing features. In order to achieve the best results on the machine 

learning models, we will explore the columns, in order to investigate if it is possible to 
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extract more information from them and create new features to use the models. Feature 

engineering is the process of creating new features (in our case new columns) by ex-

tracting data from the existing features or combining some of them to create new ones. 

In this case the column containing the tags will be used, since it contains valuable in-

formation provided by the guests. More specifically, the tags column contains tags that 

were chosen from the reviewers to further categorize their stay. An example of an as-

signed tag is choosing if the stay was for business or leisure purposes. Feature engineer-

ing requires strong knowledge of the industry that the dataset belongs to, in this case 

Hospitality, to be able to make assumptions and generate ideas [39]. By studying the 

dataset and the Hospitality industry in general, there are some typical categorizations 

assigned on online bookings. Those included the type of party staying (couple, family 

etc.), how many nights the guest stays on the hotel, what is the type of room, the reason 

for staying (business or leisure) and what device was used to book. 

Based on these assumptions, we apply a few functions on the tags column to create new 

features from the collected information. The function will check if a certain string (es-

sentially piece of text) is included on a row and will create a new column with new cat-

egories. Specifically, we can extract the room type each reviewer stayed on, how many 

days did they stay, if they provided the review using a mobile phone, the type of party 

(Family, Solo traveler, Couple etc.) and the reason of the trip (Leisure or Business), 

since there are tags for all the assumptions that were mentioned above .  

The new columns created are the following: 

• Triptype: The reason of the trip 

• Roomtype: The name of the room type 

• Pax : The type of party (group, family etc.) 

• LOS : The length of stay in days 

• Mobile: Checking if the review was submitted using a mobile device 

 

Before examining which feature should be used on the machine learning models, we 

perform the exploratory data analysis on the new features. 
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Figure 19: Purpose of the trip 

We can see in Figure 19 that most of the reviewers are on a leisure trip, about 80%, 

while slightly less than 20% are on business; there is also a small number of reviews 

that are not classified neither as business or leisure and those are labeled as Other.  
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Figure 20: Type of party 

As we can see in figure 20, almost half of the reviewers are couples, followed by 20% 

that are solo travelers; groups represent more than 10% of the total, while families (ei-

ther with young or older children) cover the rest of the dataset with total percentage of 

17%. Finally, there is a small percentage of reviewers that did not provide information 

on this subject. By combining these two features, the reason of the stay and the type of 

party, we can better understand the behavior of the reviewers. 
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Figure 21: Reason of the stay per type of party 

Figure 21 is a stacked bar chart that shows the reason of the stay per different type of 

party. Most of the reviewers travel for leisure purposes on more than 80% of the time. 

Specifically, couples and families have leisure as their reason for staying on more than 

90% of the cases; this is what common sense would suggest as people usually travel for 

business mainly alone or, less frequently, in groups. We can see that this is the case on 

this dataset since the reviewers that travel alone, are travelling for business on more 

than half of the cases. There is also a significant percentage of solo reviewers, more 

than 40%, that travel for leisure purposes; this percentage is quite high, considering that 

travelling alone for leisure is not the most common case.  

 

Figure 22: Average score per type of party 
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Figure 22 is a table generated on the notebook, that shows the average reviewer score 

per type of party. There is significant variance on average scores between types of par-

ties, ranging from 8.51 for couples, which is 0.11 above the 8.4 average for all review-

ers, to the lowest average score of 8.13 that belongs to solo travelers. As discussed al-

ready, while for all types of party the purpose of the trip is leisure with a percentage 

close to 90%, solo reviewers travel for business in 53.7% of the cases. The fact that 

more than half of the solo reviewers are staying in the hotel for business purposes 

means that it is harder for them to enjoy their stay, compared to stays connected with 

leisure. In contrast, couples that travel for leisure purposes in 93% of the cases have the 

highest average score. Families with young children are also below the average score 

for the whole dataset, at 8.3; at the same time families with older children and groups 

are slightly above the average.  

 

Figure 23: Average score per purpose of trip 

Figure 23 shows the average score grouped by the purpose of trip. There is a significant 

difference between business trips and leisure trips; reviewers travelling for business 

have an average score that is well below the average, specifically slightly less than 8. 

On the other hand, leisure travelers have provided scores with an average of 8.5; con-

sidering that they cover more than 80% of the dataset, it is normal that the total average 

(8.4) score is closer to their own. The difference in average scores between business and 
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leisure stays also explains the low average score of solo travelers, since more than half 

of them travel for business. 

Another feature extracted from the tags column is the room type of each reviewer. This 

is done by building a function that checks if a specific room type name is included in 

the tags column for each row and assigns the room type name on a new column called 

roomtype. Figure 24 shows what percentage of the total is tagged with the specific room 

type name. 

 

Figure 24: Room types 

Close to 60% of all reviews are from guests that stayed in Double Rooms. Considering 

that almost half of all reviewers are couples, this percentage fits the pattern. King and 

Queen rooms come second and third with less than 10% each. Single rooms cover a 5% 

of the total, meaning that a big percentage of the solo travelers stay on other room types, 

other than the single rooms, as well. It is important to note that the room type names 

may vary greatly between hotels. There are also instances that the booking includes 

more than one room type; those are referred as 2 rooms and 3 rooms on this dataset.  
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Figure 25: Average score per room type 

Figure 25 presents all the room types that were extracted from the tags column, sorted 

by the highest average score to the lowest. The Two Bedroom room has the highest av-

erage score at 9.5; at the same time there is a very low number of such room types on 

this dataset. The next highest average scores belong to the following room types: Luxu-

ry Room, Premium Room, Connecting Rooms, King Room and Suites. These room 

types are usually more expensive and can host at least 2 people. On the other hand, the 

single room has the lowest average score, close to 8; we already established that the so-

lo travelers have the lowest averages since they have a strong connection with the busi-

ness type stays.   

The analysis so far has shown that couples and bigger parties tend to give higher aver-

age scores, and this is further supported by the higher average score on bigger rooms. 

While the difference is small, we can see that average scores are lower on simpler and 

smaller rooms like Standard Room, Single Room and Twin Room. As discussed on the 

Literature Review part of this dissertation, more expensive services (in this case room 

types) tend to be perceived as more valuable and of higher quality by customers. This 

fact can partly explain the higher average scores on bigger and more expensive rooms. 
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Figure 26: Length of stay distribution 

Figure 26 shows the distribution of the length of stay feature. It is clear that the vast ma-

jority of reviewers have stayed between 1 and 3 days. There are very few cases that 

have a length of stay higher than 5 days. The average length of stay for the whole da-

taset is 2.36 nights. Considering that the hotels are located on big European cities, this is 

normal, since city hotels tend to have lower stays on average, compared to resorts. 
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Figure 27: Average length of stay per type of party 

In Figure 27 we are breaking down the length of stay by the type of party. Families, 

with younger or older children, tend to stay longer than the average. Couples and groups 

have average length of stays that are very close to the total average. Solo travelers have 

the shortest average stay on the dataset, slightly lower than the average for the whole 

dataset.  

 

Figure 28: Average length of stay per type of stay 
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Leisure travelers tend to stay longer than business traveler, as can be seen in Figure 28. 

We have examined the variance of the length of stay depending on the new features cre-

ated by analyzing the column containing the tags.   

 

Figure 29: Average score per length of stay 

Figure 29 shows the average reviewer score grouped by how many days the reviewer 

stayed. The black lines ranging above and below the bars, represent the standard devia-

tion, to provide a clearer picture of the distribution on each case. From this figure, there 

are not any clear patterns uncovered that connect the length of stay with significant dif-

ferences on the average scores. 

Finally, two more features will be created to be used on the models; those are the polari-

ties, for the positive and negative reviews. Polarity shows how positive or negative are 

the emotions expressed on a review [40], and it can take values between -1 (fully nega-

tive) and +1 (fully positive). The polarities can be generated using the TextBlob, which 

is a Python library providing the tools required to perform natural language processing 

tasks [41]. 
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Figure 30: Negative reviews polarity distribution 

Figure 30 shows the distribution of the negative polarities for the whole dataset. Most of 

the reviews are concentrated between 0 and 0.2, which means that they represent either 

neutral or slightly positive emotions. Many reviews do not have any negative parts and 

that is the reason for the positive polarities on negative reviews. There is a significant 

number of reviews that have negative polarities, but mostly less than -0.5; meaning that 

while the emotions expressed are calculated as negative but not too strong. 

 

Figure 31: Positive reviews polarity distribution 
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Positive reviews have strongly positive polarities in most cases, as seen on Figure 31. 

There is a small number of reviews with neutral or slightly negative polarities, as well. 

 

5 Machine learning models 

The exploratory data analysis and the feature engineering parts have been completed, 

and there is a clearer picture about the dataset and its observations. The next step is the 

creation of the machine learning models. Two models will be created, a classifier that 

predicts which reviews have above average score and a regression model that predicts 

the actual score on a review. The main goal of the models isn’t the final prediction, but 

the insights extracted by explaining how the models reach the prediction. This doesn’t 

mean that the accuracy of the predictions is not important, since the insights should be 

based on as accurate predictions as possible.  

5.1 Classifying reviews with above average score 

The goal of this model is to predict if a review will have a score higher than 8.4, which 

is the average score for all reviewers. As explained on chapter 3.3, the XGB classifier 

will be used, since it usually performs better in terms of accuracy, compared to Decision 

Trees and Random Forests algorithms. The algorithm needs to make a prediction on 

whether the review will have an above average score or not; which means that there are 

only two classes. In order to select the best features for the model the correlation of each 

feature with the above average score will be examined. 
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Figure 32: Features' correlation with above average reviews 

Figure 32 presents the Pearson correlation coefficient of each feature with the target 

variable, which is the above average reviewer scores. The Pearson correlation coeffi-

cient shows a perfect positive linear relationship when its value is +1 (plus one) and a 

perfect negative linear relationship when its value is –1 (minus one) [42]. Those two 

numbers are the maximum and minimum values the Pearson coefficients can receive. 

All the in-between values show a less than perfect linear correlation, while a value of 0 

means that there is no correlation between the two features. The features on the graph 

are filtered based on their correlation, so any features with correlation coefficient with 

absolute value lower than 0.04 were removed. This filtering is necessary since having 

more features with very small correlation (which means they do not contribute much to 

the final predictions) can have negative effects on the accuracy of the algorithm.  

It is important to note that 70% of the selected features data will be used to train the 

model and the remaining 30% will be used to test the accuracy. The strongest positive 
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correlation is the average score of each hotel, since this feature is partially dependent on 

the sum of the scores provided by the reviewers on this dataset. The other most im-

portant correlations are between the target and features about the text of the reviews. 

Polarities created on a previous step; both have positive correlations with the reviewer 

score. Positive and Negative word counts are also correlated with the score, positively 

and negatively respectively. There is no point to further explore the correlations, as 

there are more sophisticated ways to discover what effects, and how strong, each feature 

has on the predictions and those will be explained after receiving the predictions. 

The XGB Classifier has predicted correctly if a reviewer will provide an above average 

score on 76.50% of the times. The prediction accuracy is high enough to explain the 

model’s predictions, so no further attempts to improve the score will be performed.  

 

 

Figure 33: XGB classifier sample decision tree 

Figure 33 shows a sample decision tree that was create on this model; it has a max depth 

of 4, meaning it splits up to 4 levels until it makes a prediction. We have only visualized 

a decision tree with 4 levels but most of the decision trees split many times more. 

 

Figure 34: Three-level decision tree 
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Figure 34 presents a three-level decision tree which allows to understand the process of 

the algorithm better. Each node represents a feature and the decision is made based on 

its value; the arrows from one node to the next ones are the decision, whether the condi-

tion on the node is true or false and lead to the next decision. The last nodes at the base 

of the tree are the ‘leafs’ and those represent a prediction of the tree. Classification trees 

make their decision based on the gini impurity. Gini impurity shows how good the split 

is; when gini is 0 this means that all the samples on the specific node are from the same 

class [43]. The maximum value it can take is 0.5, which means that the half the samples 

belong to one class and the other half belongs to the other one.  

We can see that this decision tree has the positive polarity as its root node, and it splits 

the samples based on their positive polarity. Specifically, it checks if they have a posi-

tive polarity higher than 0.12 or not. On each node we can also see the class, which is 

the decision of the tree if it would be to stop on that level. 

There are multiple ways to measure the importance of the features. The first metric we 

will examine is the Permutation Importance. Permutation importance is calculated by 

randomly changing a column’s order and observing the effect on the prediction accura-

cy [44]. This process takes place after an algorithm has been trained and has provided 

results, which means that the metric shows the real effect on the actual predictions. 
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Figure 35: Permutation Importance 

 

In Figure 35 we can see the results of the Permutation Importance analysis. Apart from 

the feature name column, there is the Weight of each feature. The weight shows how 

much the final prediction has changed when the feature’s column was shuffled, and the 

effect is based on the metric we have used to measure the success of the algorithm; in 

our case it’s the accuracy of the predictions. The features are ranked based on the per-

mutation importance, and the number next to the weight (after the plus-minus sign) 

shows the range of variation for the feature’s weight, since it is calculated on the XGB 

algorithm that is an ensemble model with many different predictions.  

The weight represents the loss of accuracy when the feature is shuffled, so higher posi-

tive value means that the feature plays an important role on the prediction, while lower 

positive scores mean a smaller impact. A feature with a negative value weight, means 

that by shuffling the feature the accuracy of the prediction improved. The reason for this 

is randomness, and the feature doesn’t have a high importance for the predictions [45].  

Having explained the meaning of the metrics, we can see that the most important feature 

in our model number of words on the negative reviews, which decreases the accuracy 

by 0.1032 on average. The next most important features are the positive review word 

counts with a weight of 0.0448 and average score for the hotel with 0.0360. Positive and 
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negative polarities, extracted from the text of the reviews, play a minor role on the accu-

racy of the predictions. As mentioned, if the weight is 0 or negative, it means that this 

feature doesn’t help to make a better prediction and could possibly be removed from the 

model. 

Having established the importance of each feature on the classification of above average 

review scores, we have provided some more information on how the algorithm reaches 

the predictions. In a lot of cases the feature importance isn’t enough to disperse the be-

lief that machine learning algorithms are black boxes (meaning that we don’t actually 

know how they work their way to a prediction) and thus create a stronger sense of trust 

to users. Another side to the solution of this problem is to show how a prediction chang-

es based on the changes of the selected feature’s values, what we call the marginal ef-

fect. The first way to explore the marginal effect is to plot the Partial Dependence Plots 

(PDP) for the most important features. 

 

Figure 36: Partial dependence plot for negative reviews word count feature 

Figure 36 is the partial dependence plot for the negative reviews word counts feature. In 

our case, we have a classification problem, so the y axis shows the chances of a positive 

classification and the x axis shows the values of the selected feature. By keeping all 

other features at a fixed or average value, we can create a regression model between the 
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target variable and the one we examine on each case [47]. The shaded space surround-

ing the line is the confidence level. 

We can see that there is a negative linear relationship between the number of negative 

words and the chances that a reviewer score will be above average. Starting from 0, 

where the chances of a positive classification are not affected, we can see that increases 

on the total negative words decreases the chances that the score will be above 8.4. By 

examining the line, it seems that until reaching 50 words, each small increase has a 

higher negative effect; after the 50 words mark the line is not so steep, which means that 

the effect of each additional word is lower after that point.  

 

Figure 37: Partial dependence plot for positive reviews word count feature 

On the other hand, the positive word counts have the exact opposite effects, as seen in 

Figure 37. Each additional positive word increases the chances of a positive classifica-

tion, and the effect starts deteriorating after the first 45-50 words. It should be noted that 

the maximum increase in chances for an above average score can increase by 30% at 

most, when there are more than 350 words positive words. At the same time reaching 

more than 350 negative words decreases the chances for an above average prediction by 

60%. An important conclusion can be drawn from these insights, since it shows that 

people who write a lot of words on a negative review have stronger and maybe more 

extreme feelings than people who write a lot of words on a positive one. 



-40- 

 

Figure 38: Average hotel score partial dependence plot 

Figure 38 shows a clear positive linear relationship between a positive classification’s 

chances and the average score a hotel has achieved. As already noted, the average score 

is partially dependent on the reviewer scores from this dataset, since the average score is 

calculated as the average of all reviewer scores for each hotel. The hotel with the high-

est average score has close to 50% more chances to receive a higher than 8.4 review 

score than a hotel with average score of 5. 
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Figure 39: Positive polarity partial dependence plot 

 

Figure 40: Negative polarity partial dependence plot 
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Positive and negative polarities have similar plots as can be seen in figures 39 and 40. 

Polarities are dependent on the word counts, not only quantitively but also qualitatively 

since the polarity is calculated by examining how strong positive or negative feelings 

each word expresses and not only how many words are on a review. 

Partial dependence plots show the relationship between a feature and the output of the 

model, but there is another method that provides a clearer picture of the specific effect 

each feature has on an individual prediction. This method is calculating the SHAP val-

ues. The results are presented on log-odds and the connection with the simpler probabil-

ity interpretation is better understood on the below plot. 

 

Figure 41: Standard logistic sigmoid function 

The y-axis shows the probability, ranging from 0 to 1, while the x-axis shows the log of 

odds; the line shows the relationship between the two. When the a-axis is 0, this means 

that there is an even 50% chance for a positive classification (in our case, for the algo-

rithm to predict an above average review score). Positive values on the x-axis mean 

higher probability for positive classification, while negative values on the log of odds 

mean lower probability. Further explaining how this relationship is calculated is out of 

the purposes of this dissertation. 
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We have explained the relationship between probabilities and log-odds, so the results of 

the SHAP values for our model should be better understood. 

 

Figure 42: Individual prediction SHAP values 

Figure 42 shows the SHAP values for a randomly selected individual prediction. Start-

ing from a base value, which is the average prediction from our model, we can see how 

the specific prediction is reached [48]. Moreover, we can see the impact each feature 

had to drive the prediction to the final output value. Features in blue and pointing to the 

left, decrease the chances of a positive classification (the algorithm predicting that the 

score of the specific review will be higher than 8.4) and the length of each bar shows by 

how much. Pink bars represent the positive impact of the features.  

In this case we can see that the biggest negative impact is from the negative words 

which are 42, followed by an average hotel score of 7.7 and the nationality of the re-

viewer that is not from the United Kingdom, which has a small impact. Positive word 

counts (21 words in this case) have the most positive effect, followed by positive polari-

ty calculated at 0.46. This method allows us to see exactly why the algorithm made this 

prediction and how much each feature affected it. In our case we can see that the output 

value is -0.87, which means that the odds are in favor of a lower than 8.4 review score. 

By generalizing this method to include 1,500 predictions of the model, we can see how 

a feature affects the final prediction over a range of its values. 

 

Figure 43: Negative word counts SHAP values 

We can see in Figure 43 that the negative word counts affect the prediction towards a 

positive classification only if the words are less than 10. After that point, there is a rap-
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idly increasing negative effect towards a negative classification for up to 120-130 words 

and then the negative effect keeps increasing but at a slower pace. What that means is 

that every extra negative word up to 120-130 has a bigger marginal effect on the chanc-

es of the review score being higher than 8.4, while additional negative words after that 

range decrease the chances but at a decreasing rate. 

 

Figure 44: Positive word counts SHAP values 

The same plot about the positive word counts (Figure 44) shows an opposite symmet-

rical pattern, where up to 10 positive words have a negative marginal effect on the 

chances of a predicted above average score, and after that number there is a positive 

marginal effect that keeps increasing with every additional word. 

 

Figure 45: Average Score SHAP values 

The Average Score plot shows us that the effect of the feature is decreasing the chances 

for an above average score up to 8.5; after this mark, the effect shifts to positive and 

keeps increasing until the higher average score observed (which is over 9). 
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Figure 46: Average SHAP value per feature 

In Figure 46 we can see the average SHAP value per feature, which essentially shows 

the marginal effect (on average) each feature has on the predictions. The pattern is iden-

tical to the feature importance we calculated earlier and confirms which are the most 

important features for this model. There are some features with 0 average SHAP value, 

which means they do not have any effect on the predictions and could be removed. 

While the average SHAP value plot shows us the average effect of each feature, it 

doesn’t show us to which direction this effect pushes the prediction. 
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Figure 47: SHAP values summary 

The best way to show the complete picture of each features effect, is to plot the sum-

mary of all the findings. Figure 47 is the summary of the SHAP values; this plot has a 

different and a bit more complex approach. The left y-axis has the name of each feature, 

while the right y-axis shows the range of the values in color ranges where blue is the 

lower value and red is the higher one (including all the in-between values). The x-axis 

shows the effect each feature’s value has on the prediction. Every data point is repre-

sented with a colored dot, so the lines are thicker when there is a high number of points 

with similar marginal effects.  

Using this plot, we can identify some very interesting patterns about the effects of the 

features and how the model makes its predictions. We can see that the most important 

feature, the negative word counts, affect the prediction towards a below average score 

when its values are higher. At the same time, there is a high concentration of observa-

tions on the positive side of the predictions. This means that there are a lot of reviews 

with very low number of negative words (or no negative words at all) and those reviews 

push the algorithm toward a positive classification. The average score feature is more 

balanced and its values are concentrated closer to 0 (on a symmetrical pattern both on 

the negative and positive sides of 0), which means that those values are closer to the av-
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erage for the whole dataset and don’t have a big marginal effect. Additionally, there are 

average scores that are higher or lower than the average, and those affect the prediction 

by a significant margin. The positive word counts have a positive relationship with the 

predictions, meaning that higher values lead to increased possibility of a positive classi-

fication. We can see that a lot of data points affect negatively the prediction, and the 

reason is that there are a lot of reviews with less than 10 positive words (and on the pre-

vious graph about the feature we established that up to 10 words the effect is negative). 

Polarities below zero, on the positive reviews, significantly decrease the chances of an 

above average score, while positive values increase the chances by a lower margin. On 

negative reviews, positive polarities have a bigger (positive) impact on the chances of a 

positive classification compared to the (negative) impact of a below zero polarity. 

5.2 Predicting review scores 

While the XGB classifier’s goal was to predict if a reviewer will provide a score higher 

than 8.4, we will now use a model to try and predict the score for each review. The idea 

behind this model is similar to the classification model we used, but the prediction is 

different. The XGB regressor is based again on decision trees, but instead of predicting 

the class of a variable, it predicts the exact score. 

Before we build the model, we need to select the features that have high enough correla-

tions with the reviewer score.  

 

Figure 48: Reviewer score correlations 
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In Figure 48 we can see the correlation between the reviewer score and every feature on 

the dataset. We will select all the features that have an absolute correlation coefficient 

higher than 0.1, since lower correlations usually do not add value on the predictions. 

 

Figure 49: XGB regressor selected features 

Figure 49 shows a screen with the selected features, according to the filter mentioned. 

These features will be used to train and test the algorithm. 

 

Figure 50: Predictions’ mean absolute error 

Figure 50 presents a snippet of the code producing the mean absolute error of the pre-

dictions. Mean absolute error is one of the most common metrics used in machine learn-

ing, to measure the accuracy of a model’s predictions. In this case, the mean absoluter 

error is 0.878, which means that the predictions of the model are off by this number, on 

average. Considering the complexity of the dataset and the number of features, the pre-

diction accuracy is high enough for the purposes of this dissertation. 
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Figure 51: XGB regressor sample decision tree 

Figure 51 illustrates a single decision tree used on our model, so we can better under-

stand how the model makes a prediction. This is one of the many trees used and com-

bined for a single prediction. Both the features and their order can be different on each 

tree but visualizing it can help us better understand the process of making a prediction. 

In this case the first decision is the number of negative words, specifically if there are 

less than 4 words on the negative review. The value part of each node shows the pre-

dicted score based on this decision and since this is the ‘root’ node, the value is the av-

erage for the whole dataset. The mse value is the mean squared error and it is a metric to 

measure the accuracy of each prediction, while the samples part is the number of obser-

vations on each node. We can extract some insights by examining the tree, for example 

a lower number of negative words counts predictably results on a higher reviewer score. 

Based on the condition of the root node, the next steps are differentiated. The most ac-

curate prediction on this tree, is the leaf with lowest mean squared error at 0.43; the 

predicted reviewer score is 9.57. We can understand the conditions required for this 

prediction by examining the tree. The negative review should have less than 4 words 

and the polarity of the positive review should be higher than 0.11; finally, the average 

score of this hotel should be higher than 8.55. It should be noted that the decision tree 

checks these conditions is succession, as presented in Figure 51. 
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Figure 52: XGB regressor permutation Importance 

Figure 52 illustrates the permutation importance of each feature. In this model the accu-

racy is measured by the mean absolute error, so the weight represents the change of it. 

The negative word counts have the highest weight at 0.3329, which means that random-

ly changing the observations on this column, will result in an increase of the metric by 

this number. Positive word counts, positive polarity, average Score and negative polari-

ty follow in terms of weight, while the type of trip doesn’t affect the prediction much. It 

is important to see which feature has the biggest effect on the predictions, but we also 

need to see in which direction it affects it. SHAP values can provide a clear image on 

the marginal effect of each feature.  

 

Figure 53: Single prediction SHAP values 

Figure 53 shows how a single prediction is affected by the specific values of the fea-

tures. Starting from the average reviewer score for the dataset (8.395), we can see the 

marginal effect of each feature. There are 33 negative words in this case which has the 

biggest negative effect on the prediction, alongside the Average Score of 7.7 that also 

pushes the predicted score to a lower number. Positive words, which are 18 in this case, 

alongside Positive polarity of 0.5167, push the final prediction to 7.93. This is an exam-

ple that helps us see how each feature affects the predicted score. We can visualize the 

SHAP values for several predictions to better understand the marginal effect changes 

based on different values of the features.   
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Figure 54: Negative reviews word counts SHAP values 

The first feature we will examine is the negative word counts, since it is also weighted 

as the most important. In Figure 54, we can see that up to 10 words the impact is posi-

tive on the predicted score and it is slightly higher than the average. After the first 10 

words on negative reviews, the predicted score keeps decreasing and can drop by max-

imum of 3 points to 5.395 when the negative words are close to 400.  

 

Figure 55: Positive reviews word counts SHAP values 

The number of words on positive reviews has the opposite effect, compared to the nega-

tive review words. We can see that when the words on a positive review are less than 

10, this affects negatively the predicted score and can decrease it down to 7.795. On the 

other hand, when there are more than 10 positive words, the predicted score increases 

up to 9.795, in instances that the words on the positive review are more than 180. We 

can see that the words used on either positive or negative reviews play an important role 

on the predicted score. Since more words on a review usually show stronger feelings 

from the reviewer, either negative or positive, this in turn affects the score provided by a 

reviewer. 
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Figure 56: Hotel average score SHAP values 

Figure 56 shows the effects of the Average score of the hotels on the predicted reviewer 

score.  When the average hotel score is below 8.5 the predicted reviewer score decreases 

down to 7.995 at its lowest point. Higher than 8.5 average score has a positive effect on 

the predicted reviewer score. The highest average hotel score, which is close to 9.2, im-

proves the predicted score by 0.4 compared to the average. 

In this case, reviewers are affected about the average score of a hotel when they provide 

their own evaluation, which means that they are affected by other people’s opinions 

about the hotel. As discussed on previous chapters, social proof has an impact on the 

minds of the reviewers and the perceived quality of the services they have received. 

This is an important insight and shows that hoteliers should strive to keep their hotel’s 

average score as high as possible, since a low average can lead to even lower score in 

the future. 

The next features we need to examine are the polarities of positive and negative re-

views. Positive polarity refers to the calculated polarity of positive reviews and it shows 

how strong are the feelings of the reviewer, while the negative polarity examines the 

negative reviews in the same way.  

 

Figure 57: Positive polarity SHAP values 
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In Figure 57 we can see the positive polarity effects on the predicted score. While there 

are reviews that are labeled as positive ones, their calculated polarities are slightly nega-

tive. Those have a negative effect and can drop the predicted score down to 7, a maxi-

mum decrease of more than 1 point. This shows a pretty significant effect, while polari-

ties higher than 0 do not have so strong effects, increasing the predicted score only by 

0.4 on the best-case scenario.  

 

Figure 58: Negative polarity SHAP values 

There is a big variation on the polarities of negative reviews, as their observations are 

covering the full range of polarity scores. A polarity of close to 0 is the point of balance, 

where there is minimal or no effect on the predicted score. Fully negative polarities 

(value of -1) drag the predicted score down to 7.2, while positive polarities can improve 

the predicted score up to 9. Considering that the average reviewer score is 8.4, the po-

tential negative effects are again higher than the potential positive; the same pattern  

Polarity is calculated by considering words, exclamation points and context. While 

these are not perfect metrics, combined with the marginal effect (SHAP values) they 

can show us that the feelings of the reviewers are strong predictors of the score they will 

provide.  

The last features are the type of trip, whether it is a trip for business or for leisure. Both 

features are binary (0 if the condition is false and 1 if the condition is true), so there are 

only two cases to explore. For this reason, these two features will not be explored indi-

vidually but they will be included in the SHAP values summary. 
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Figure 59: XGB regressor SHAP values summary 

Figure 59 illustrates the SHAP values summary. The left y-axis has the names of the 

features; the right y-axis shows the variation of the values ranging from the highest val-

ue (red color) to the lowest (blue color), represent in a color range. The x-axis shows the 

marginal effect each feature has, in reviewer score points.  We can see all the features 

and their effects, based on their values. The type of trip has minimal impact on our 

model, since all their points are gathered around 0. We can see that positive reviews’ 

word counts and hotel average score have symmetrical distributions, since their nega-

tive and positive effects have similar maximum impact. Negative reviews’ word counts 

have much stronger negative effect but in most cases their effect is positive. This hap-

pens because a lot of negative reviews have very few, or no words at all. Positive polari-

ty has a lot of observations with a positive effect, when the emotions of the reviewers 

are positive; on the other hand, when the calculated polarity score is low, this feature 

has the highest negative effect of all the features. It can decrease the predicted score by 

up to 4 points which is the highest predicted decrease, followed by the negative reviews 

word counts that can cause a decrease of up to 3.5 points. 
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6 Conclusions 

Through the previous chapters of this dissertation, we have explored the importance of 

online reviews and ratings. Previous studies have deeply discussed the major effect 

eWOM has on the decisions and behavior of the customers during all stages of the buy-

ing process. While the focus of many hotels is mainly on digital advertising, it would 

very wise to invest more on managing and improving their online reputation; online re-

views from previous customers are considered the second most important source of in-

formation on a brand, behind only suggestions by friends and family. Consumers have a 

very high influence on each other, a fact that was further proved by our research on this 

paper. We showed that the existing average score of a hotel is one of the most important 

factors determining the score provided by a reviewer. Higher average score positively 

affects a new reviewer’s score, since the heuristic of social proof creates a bias that is 

hard to overcome. 

Positive and negative reviews have different effects on possible customers; the magni-

tude of the effects is higher on a negative review than a positive one. This difference is 

caused by the perceived trustworthiness of the negative reviews, since customers place a 

lot of trust in them and tend to ignore the possibility of a fake. On the other hand, posi-

tive reviews are not considered as trustworthy as negative ones, and a significant num-

ber of them is needed to affect a customer’s decision. Our analysis further proved this 

point, since the number of words on negative reviews and the negative polarities have 

higher marginal effects on reviewer scores, compared to the positive reviews and polari-

ties respectively. Furthermore, the negative words are the most important factor and can 

cause a big decrease on reviewers’ scores as we showed while explaining the predic-

tions of our models. This makes clear the fact that managers need to put much effort on 

improving their services and facing the concerns of their customers, in an attempt to 

avoid receiving negative word of mouth. 

Improving a hotels online reputation can be achieved by focusing on two courses of ac-

tion; using the feedback of customers to improve the quality of services and responding 

to the concerns of the customers. Managers can use analytics to extract insights from the 
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reviews of previous customers to identify common issues and concerns. Reviews are 

usually the most honest source of feedback and effectively using this feedback to 

change the operation of the hotel can lead to improved hotel performance and profitabil-

ity. Additionally, studies have shown that management responses on bad reviews can 

lead to increased online bookings received. Since addressing the concerns of the cus-

tomers is important, managers should focus on providing responses that represent the 

high quality of their brand. Systematically working on these two strategies can lead to 

improved online brand reputation and increased hotel performance as a result. 

Achieving highly positive brand reputation is closely connected with the profitability of 

a hotel since previous research has proven that there is a correlation between positive 

online reviews of a hotel and important metrics as the average daily rate and the occu-

pancy rate. An additional benefit of high ratings and positive word of mouth is that cus-

tomers tend to pay more for high quality services; this means that a hotel can offer 

higher prices and improve its profitability by managing its online reputation effectively. 

Loyalty is also connected with positive eWOM, as customers tend to be more loyal to 

brands that are perceived to be of high quality by previous guests.  

Our analysis provided many insights on the behavior of reviewers and the factors that 

affect their provided scores. These scores tend to reflect the emotions of the reviewers 

and the satisfaction about their stay on the hotel. As already mentioned, the most im-

portant feature in determining good scores is the number of words on negative reviews, 

followed by the number of words on positive reviews. These features have a strong 

connection with the emotions of the reviewers, and combined with the negative and 

positive polarities, determine the chances of a review being above average. Future re-

search could use Natural Language Processing techniques to further investigate the con-

nection between the feelings of the reviewers and their perception of a hotel’s quality of 

services. We also showed that while the nationality, reason of trip (business or leisure), 

type of party and length of stay are not as important on our models’ prediction, there are 

differences on the average reviewer scores between these categories. For example, we 

showed that solo travelers tend to provide lower scores, compared to couples, families 

and groups. This difference is closely associated with the fact that more than half of so-

lo reviewers are staying for business purposes and business trips tend to have lower av-

erage scores than leisure trips. 
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Since internal hotel data like revenue, room nights and occupancy rates were not availa-

ble for this analysis, future researches could combine public data like those scraped 

from booking.com with a hotel’s sales data. This combination of data could help inves-

tigate the correlation between the scores and reviews with the sales data, and provide an 

even higher motive for hotel managers to use data analytics on their operations. 

7 References 

[1] Salmon, S. J., De Vet, E., Adriaanse, M. A., Fennis, B. M., Veltkamp, M., & De-

Ridder, D. T. (2015). Social proof in the supermarket: Promoting healthy choicesunder 

low self-control conditions.Food Quality and Preference, 45, 113e120. 

https://doi.org/10.1016/j.foodqual.2015.06.004 

[2] Cialdini, R. (2009). Influence: Science and practice. Boston, MA: Pearson Educa-

tion. http://refhub.elsevier.com/S0261-5177(17)30237-6/sref11 

[3] Jacobson, R. P., Mortensen, C. R., & Cialdini, R. B. (2011). Bodies obliged and un-

bound: Differentiated response tendencies for injunctive and descriptive social norms. 

Journal of Personality and Social Psychology, 100(3), 433 - 448. 

https://doi.org/10.1037/a0021470 

[4] Amblee, N., & Bui, T. (2011). Harnessing the influence of social proof in online 

shopping: The effect of electronic word of mouth on sales of digital micro-products. In-

ternational Journal of Electronic Commerce, 16(2), 91 - 114. 

https://doi.org/10.2753/JEC1086-4415160205 

[5] Nielsen. (2012). State of the Media: The social media report. Retrieved: 12.07.17 

from https://postmediavancouversun.files.wordpress.com/2012/12/nielsen-social-media-

report-20122.pdf 

[6] Pennington, D. C. (2000). Social cognition. London: Routledge modular psychology 

series. http://refhub.elsevier.com/S0261-5177(17)30237-6/sref40 

[7] Papathanassis, A., & Knolle, F. (2011). Exploring the adoption and processing of 

online holiday reviews: A grounded theory approach. Tourism Management,32(2), 

215e224. http://refhub.elsevier.com/S0261-5177(17)30237-6/sref37 

https://doi.org/10.1016/j.foodqual.2015.06.004
http://refhub.elsevier.com/S0261-5177(17)30237-6/sref11
https://doi.org/10.1037/a0021470
https://doi.org/10.2753/JEC1086-4415160205
https://postmediavancouversun.files.wordpress.com/2012/12/nielsen-social-media-report-20122.pdf
https://postmediavancouversun.files.wordpress.com/2012/12/nielsen-social-media-report-20122.pdf
http://refhub.elsevier.com/S0261-5177(17)30237-6/sref40
http://refhub.elsevier.com/S0261-5177(17)30237-6/sref37


-58- 

[8] Chevalier, J., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online 

bookreviews.Journal of Marketing Research, 43(3), 345e354. 

https://doi.org/10.1509/jmkr.43.3.345 

[9] Hu, N., Bose, I., Koh, N. S., & Liu, L. (2012). Manipulation of online reviews: 

Analysis of ratings, readability, and sentiments. Decision Support Systems, 

52(3),674e684. https://dx.doi.org/10.1016/j.dss.2011.11.002 

[10] Gavilan, Diana & Avello, Maria & Martinez, Gema. (2017). The influence of 

online ratings and reviews on hotel booking consideration. Tourism Management. 66. 

53-61. 10.1016/j.tourman.2017.10.018. 

[11] Carrasco, R. A., & Villar, P. (2012). A new model for linguistic summarization of 

heterogeneous data: An application to tourism web data sources. Soft Computing, 16(1), 

135-151. https://doi.org/10.1007/s00500-011-0740-1 

[12] Han, H. J., Mankad, S., Gavirneni, N., & Verma, R. (2016). What guests really 

think of your hotel: Text analytics of online customer reviews. Cornell Hospitality Re-

port, 16(2), 3-17. 

[13] Αral, S., & Walker, D. (2012). Identifying influential and susceptible members of 

social networks. Science, 337(6092), 337e341. https://doi.org/10.1126/science.1215842 

[14] He, W., Tian, X., Tao, R., Zhang, W., Yan, G., & Akula, V. (2017). Application of 

social media analytics: A case of analyzing online hotel reviews. Online Information 

Review, 41(7), 921-935. https://doi.org/10.1108/oir-07-2016-0201 

[15] Del Vecchio, P., Mele, G., Ndou, V., & Secundo, G. (2018). Creating value from 

social big data: Implications for smart tourism destinations. Information Processing & 

Management, 54(5), 847-860. https://doi.org/10.1016/j.ipm.2017.10.006 

[16] Buhalis, D., and Leung, R., (2018), “Smart Hospitality – Interconnectivity and In-

teroperability towards an Ecosystem”, International Journal of Hospitality Management, 

Vol. 71, pp. 41-50. Buhalis, D., and Sinarta, Y., (2019), “Real-time co-creation and 

nowness service: Lessons from tourism and hospitality”, Journal of Travel and Tourism 

Marketing, Vol. 36, No. 5, pp. 563-582. 

[17] Yoo, K. H., Sigala, M., & Gretzel, U. (2016). Exploring TripAdvisor. In R. Egger, 

I. Gula, & D. Walcher (Eds), Open tourism (pp. 239-255). Berlin, Germany: Springer-

Verlag Berlin Heidelberg. 

https://doi.org/10.1509/jmkr.43.3.345
https://dx.doi.org/10.1016/j.dss.2011.11.002
https://doi.org/10.1007/s00500-011-0740-1
https://doi.org/10.1126/science.1215842
https://doi.org/10.1108/oir-07-2016-0201
https://doi.org/10.1016/j.ipm.2017.10.006


  -59- 

[18] Langley, P., & Leyshon, A. (2017). Platform capitalism: The intermediation and 

capitalization of digital economic circulation. Finance and Society, 3(1), 11-31. 

[19] Kim, W. G., & Park, S. A. (2017). Social media review rating versus traditional 

customer satisfaction: Which one has more incremental predictive power in explaining 

hotel performance? International Journal of Contemporary Hospitality Management, 

29(2), 784-802. https://doi.org/10.1108/ijchm-11-2015-0627 

[20] Cantallops, A. S., & Salvi, F. (2014). New consumer behavior: A review of re-

search on eWOM and hotels. International Journal of Hospitality Management, 36, 41-

51. https://doi.org/10.1016/j.ijhm.2013.08.007 

[21] Phillips, P., Barnes, S., Zigan, K., and Schegg, R. (2017), “Understanding the im-

pact of online reviews on hotel performance: An empirical analysis”, Journal of Travel 

Research, Vol. 56, No. 2, pp. 235-249. 

[22] Sparks, B. A., & Browning, V. (2011). The impact of online reviews on hotel 

booking intentions and perception of trust. Tourism Management, 32(6), 1310-1323. 

https://doi.org/10.1016/j.tourman.2010.12.011 

[23] Israeli, A.A. (2002), “Star rating and corporate affiliation: Their influence on room 

price and performance of hotels in Israel”, International Journal of Hospitality Man-

agement, Vol. 21, No. 4, pp. 405-424. 

[24] Torres, E.N., Singh, D., and Robertson-Ring, Al. (2015), “Consumer reviews and 

the creation of booking transaction value: Lessons from the hotel industry”, Internation-

al Journal of Hospitality Management, Vol. 50, pp. 77-83. 

[25] Ye, Qiang; Gu, Bin; Chen, Wei; and Law, Rob, "Measuring the Value of Manage-

rial Responses to Online Reviews - A Natural Experiment of Two Online Travel Agen-

cies" (2008). ICIS 2008 Proceedings. Paper 115. http://aisel.aisnet.org/icis2008/115 

[26] Ye, Q., Law, R., & Gu, B. (2009). The impact of online user reviews on hotel room 

sales. International Journal of Hospitality Management, 28(1), 180-182. 

https://doi.org/10.1016/j.ijhm.2008.06.011  

[27] Sparks, B. A., & Browning, V. (2011). The impact of online reviews on hotel 

booking intentions and perception of trust. Tourism Management, 32(6), 1310-1323. 

https://doi.org/10.1016/j.tourman.2010.12.011 

[28] Venners, Bill (13 January 2003). "The Making of Python". Artima Developer. Ar-

tima. Retrieved 22 March 2007. 

https://doi.org/10.1108/ijchm-11-2015-0627
https://doi.org/10.1016/j.ijhm.2013.08.007
https://doi.org/10.1016/j.tourman.2010.12.011
http://aisel.aisnet.org/icis2008/115
https://doi.org/10.1016/j.ijhm.2008.06.011
https://doi.org/10.1016/j.tourman.2010.12.011


-60- 

[29] https://pandas.pydata.org/  

[30] https://scikit-learn.org/stable/  

[31] https://www.kaggle.com/  

[32] https://jupyter.org/  

[33] Rokach, L. (2010). "Ensemble-based classifiers". Artificial Intelligence Review. 33 

(1–2): 1–39. doi:10.1007/s10462-009-9124-7.  

[34] V. B. Vaghela, A. Ganatra and A. Thakkar, "Boost a Weak Learner to a Strong 

Learner Using Ensemble System Approach," 2009 IEEE International Advance Compu-

ting Conference, Patiala, doi: 10.1109/IADCC.2009.4809227 

[35] Zhou Zhi-Hua (2012). Ensemble Methods: Foundations and Algorithms. Chapman 

and Hall/CRC. p. 23. ISBN 978-1439830031. 

[36] Upton, Graham; Cook, Ian (1996). Understanding Statistics. Oxford University 

Press. p. 55. ISBN 0-19-914391-9. 

[37] Zwillinger, D., Kokoska, S. (2000) CRC Standard Probability and Statistics Tables 

and Formulae, CRC Press. ISBN 1-58488-059-7 page 18. 

[38] Maddala, G. S. (1992). "Outliers". Introduction to Econometrics (2nd ed.). New 

York: MacMillan. pp. 89. ISBN 978-0-02-374545-4. 

[39] Jalal, Ahmed Adeeb (January 1, 2018). "Big data and intelligent software systems". 

International Journal of Knowledge-based and Intelligent Engineering Systems. 22 (3): 

177–193. doi:10.3233/KES-180383 – via content.iospress.com.  

[40] Allouch, Nada (2018). "Sentiment and Emotional Analysis: The Absolute Differ-

ence". Emojics Blog. 

[41] https://textblob.readthedocs.io/en/dev/  

[42] "SPSS Tutorials: Pearson Correlation". Retrieved 14 May 2017. 

[43] Shalev-Shwartz, Shai; Ben-David, Shai (2014). "18. Decision Trees". Understand-

ing Machine Learning. Cambridge University Press. 

[44] Breiman L: Random Forests. Machine Learning 2001, 45: 5–32. 

10.1023/A:1010933404324 

[45] Breiman L: Random Forests. Machine Learning 2001, 45: 5–32. 

10.1023/A:1010933404324 

[46] https://www.kaggle.com/dansbecker/partial-plots  

https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://www.kaggle.com/
https://jupyter.org/
https://textblob.readthedocs.io/en/dev/
https://www.kaggle.com/dansbecker/partial-plots


  -61- 

[47] Jerome H. 2001. “Greedy Function Approximation: A Gradient Boosting Ma-

chine.” Annals of Statistics. JSTOR, 1189–1232 

[48] Lundberg, Lee 2017 : A Unified Approach to Interpreting Model Predictions 

 

 


