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Abstract 
This dissertation was written as a part of the MSc in Data Science at the International 

Hellenic University. NLP applications often use text-to-text transformations, in which a 

system given a natural language word sequence as input, is expected to generate an alter-

native version of this text as output, also in natural language. In Machine Translation, the 

evaluation of this output can be done in two ways. Firstly, by comparing the MT output 

to one or more reference outputs with the help of distance-based evaluation metrics and 

secondly, by building ML models, trained on large human-annotated datasets, that aim at 

predicting the quality of MT outputs when reference translations are not known. Follow-

ing the second approach, the goal of this dissertation is to develop a Quality Estimation 

(QE) model able to predict confidence scores for given English to Greek automated trans-

lations. For that, several machine learning algorithms are explored and trained on a da-

taset of 77720 human-annotated English to Greek translation tuples, where each of these 

tuples consists of the source, the target and the edited segment. 

I would first like to thank my thesis supervisor Professor Konstantinos Diamantaras for 
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providing me with this dataset and the continuous support. My deepest gratitude goes to 

my family, friends, and colleagues for their support, encouragement, and patience 
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1 Introduction 

1.1 Problem Statement 
In the era of AI, where various NLP applications aim to produce high quality natural 

language output, the task of evaluating such systems has become mandatory defining a 

new topic of research. In Machine Translation, where the goal of systems is to produce 

outputs as close as possible to human-like translations, the progress over the past years 

has been tremendous and systems especially in Statistical Machine Translation (SMT) 

and in Neural Machine Translation (which is currently the state-of-the-art in the field), 

appear to reach impressive breakthroughs. Despite their high performance, these systems 

are not yet in a position to deliver highly trustable output making the task of post-editing, 

and therefore the human factor, a necessary step before publishing an output. Post-editing 

is usually performed by a human annotator (HT), a translator or a linguist, who reviews 

a translation output generated by an MT system and corrects it where needed to make it 

intelligible. This task can become very costly (timewise but not only) and usually requires 

even more time than the translation process itself, especially in cases where reviewers 

have little or no knowledge of the source language or in cases where the load of transla-

tions to be judged keeps increasing and instant quality-responses are needed. Considering 

that as a motivation, several different methods have been developed aiming at minimizing 

human effort during the post-editing phase. One of them, and probably the most im-

portant, is widely known under the name of Confidence Estimation (CE) or Quality Esti-

mation (QE). The idea behind QE is to build a machine learning model that is capable of 

pointing out the correct parts, detecting translation errors, concluding the overall quality 

and providing a confidence score for each MT hypothesis without having access to hu-

man-reference translations (Blatz et al., 2004). Such an indication can improve accuracy 

and reduce considerably the time needed for post-editing, as it reveals whether a specific 

translation is worthy of being corrected or not (needs less time to be corrected than to 

reproduce another one from scratch) redrawing post-editors’ focus to the sentences that 

likely needs editing. It is important to distinguish the difference between the terms Esti-

mation and Evaluation. In Quality Evaluation the system compares MT outputs with their 
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corresponding reference translations and turns differences and similarities into a score 

that indicates the quality of each output, such as BLEU (BiLingual Understudy) (Papineni 

et al., n.d.), NIST (Martin & Przybocki, n.d.). The key differentiator between these two 

approaches is that quality estimation does not require a human reference translation. 

1.2 Thesis Objectives 
The aim of this thesis is to develop a machine learning model capable of predicting the 

quality of MT system outputs without the need of reference texts. To achieve that, a pipe-

line-system is built that handles all the required steps that take place during this super-

vised-learning ML task. 

More specifically the objectives to achieve this are as follows: 

• Thorough research regarding Machine Translation Quality Estimation. Why QE 

is needed, and how it can be applied. Investigation of common and latest models 

and frameworks. 

• The collection of a relatively large corpus of bilingual data from English to Greek. 

This dataset is provided by TAUS1 a language technology company and it consists 

of approximately 77720 segment-pairs, each one with its corresponding reference 

post-edited translation text by a human translator (HT). 

• The preprocessing of the collected dataset using several different manual cleaning 

methods and tools including Bicleaner2 and Bifixer3. After this stage, the dataset 

ends up with a significantly smaller size of approximately 16000 data points. 

• Computing HTER (Human-targeted Translation Edit Rate) (Matthew Snover et 

al., n.d.) scores between each MT translation and the corresponding post-edited 

version, using a tool written in Java named TERcom4 (Matthew Snover et al., 

n.d.). HTER score is considered as the “golden standard” and everything is calcu-

lated with respect to that. 

• The training of both source and target language models on large corpora, neces-

sary for generating n-gram and POS-tagged n-gram language model features. 

 
1 https://www.taus.net/ 
2 https://github.com/bitextor/bicleaner 
3 https://github.com/bitextor/bifixer 
4 http://www.cs.umd.edu/~snover/tercom/ 
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• The feature engineering process where the main goal is to transform the previ-

ously cleaned dataset into a form easier to interpret by algorithms, and often by 

people without a data-related background (mainly through data visualizations). 

To generate meaningful features, various techniques were applied including di-

mensionality reduction, log-transformations, categorical grouping, data-scaling 

and more. 

• Implementation of several ML algorithms in an attempt to address the sentence-

level QE confidence score prediction as a supervised machine learning regression 

task. Support Vector Machine, Random Forest, eXtreme Gradient Boosting and 

Multilayer Perceptron feedforward neural network were deployed to tackle the 

task. 

• Evaluation and comparison of the models with respect to Pearson's correlation 

coefficient r. 
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Picture 1: Dissertation’s implementation workflow 
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1.3 Thesis Composition 
The rest of the dissertation is formed as follows: 

• In Chapter 2, the relevant literature and the latest developments in the field of 

Machine Translation Quality Estimation are summarized and the background the-

ory, which is necessary for the comprehension of the problem, is outlined. 

• In Chapter 3, the data and methods used in this thesis are analyzed. Acquisition 

of data and data preprocessing methods are introduced, and the process of feature 

extraction is described. 

• In Chapter 4, the implementation of several shallow machine-learning algorithms 

is performed. The results obtained from testing the trained model on the selected 

dataset, are then presented. 

• In Chapter 5, the conclusions are summarized, and the direction of future studies 

is suggested. 
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2 Literature Review 

2.1 Machine Translation 

2.1.1 Overview 
Globalization 

In the era of globalization, where the interdependence of the world’s economies, cultures, 

and populations is constantly growing, a new landscape of challenges has already been 

introduced. Over the years, serious efforts have been made towards the path of facilitating 

an interconnected world that serves and benefits the masses. These efforts, which are 

directly or indirectly related to human communication, affect multiple-different contexts 

such as international trade, culture, media, products, public services and have a common 

mission, to reduce barriers allowing the emergence of an international network of eco-

nomic systems. Reducing the factor of time, distance and making information more easily 

accessible than ever, the last remaining barrier to overcome while moving from local to 

global, as the term globalization suggests, is language. 

Machine Translation 

The ever-increasing need for inter-regional communication and language translation in 

recent years has made translation nowadays a key mediator of global communication. 

Every day, soaring flows of information in the form of text, including scientific and tech-

nical reports, legal documents and more, are requested to be translated. However, tradi-

tional translation, due to its tedious and repetitive nature that requires consistency and 

precision, can become a very time-consuming task that is unable to meet this growing 

demand. Thus, MT has become the preferred method of translating content. 

Although its effectiveness, MT still faces numerous challenges some of which are listed 

below (Garg & Agarwal, 2018): 

• Not every word in source language has an equivalent word in the target language 

• Words in a language can have a number of meanings 

• Differences in the grammatical rules and syntax of source and target languages 
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Aiming at solving these issues, among others, different approaches have been introduced 

over the last fifty years from MT researchers who will to increase the quality of MT and 

build robust MT systems that perform well on different language pairs. 

In the following section, the main MT architectures are described in more detail. 

2.1.2 MT architectures 
Rule-Based Machine Translation (RBMT) 

The first actual implementation of machine translation was RBMT developed many dec-

ades ago. The idea is, to first tokenize a source sentence into words trying to identify their 

meaning and then, to map them into tokens of the target language based on a set of rules 

defined manually by linguists. These rules are designed to map the relationships between 

the structure of the source and the target language. One of the upsides of RBMT is that in 

the case of a well-developed system, a wide scope of content can be translated without 

the requirement of huge bilingual corpora, as in SMT. However, the process of building 

an RBMT framework only for one language-pair may take several-years as it is intensive 

and time-consuming work. Moreover, human-defined rules are not able to cover perfectly 

all conceivable linguistic phenomena, which may result in bad quality outputs when fac-

ing real-world input texts. For instance, it has been shown that RBMT does not perform 

satisfactorily in cases of slang or metaphors. Nowadays, most of rule-based MT systems 

have been replaced by SMT or Hybrid architectures to a great extent. Nevertheless, in 

cases of less common languages where training data is limited Hybrid systems are pre-

ferred since SMT systems require very large bilingual corpora to be trained. 

 

Statistical Machine Translation (SMT) 

Statistical machine translation models are trained on an enormous size of high-quality 

bilingual and monolingual corpora. The idea that an SMT engine follows is to search for 

statistical correlations between source and target texts, looking both for whole segments 

and smaller text sequences inside each segment as it builds the model. There is no usage 

of grammar or any rule by the model as in RBMT, instead, it generates confidence-scores 

that represent the possibility of a source sentence to map to a specific translation text. 

SMT is one of the most commonly used MT architectures in the industry. Popular systems 

like Google Translate and Bing Translator are using SMT in their implementation. De-

spite that with a large enough training corpora you can train generic language-pair inde-

pendent translation models, the main weakness of SMT is that it requires enormous and 
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efficient bilingual corpora to be properly trained. Also, SMT performs poorly when it is 

required to translate texts that are not similar to already seen training corpora. For in-

stance, a system trained with texts coming from a technical domain will face problems 

trying to translate texts coming from a different domain. In this manner, it is essential that 

models are trained on data similar to the texts that later will be requested to translate. 

 

Example-Based Machine Translation (EBMT) 

EBMT engines employ translation by analogy. To do so, the system looks for existing 

identical translation pairs of source and target sentence examples. When a new input text 

comes in, the system looks for examples that are identical in their source text. After it 

finds the required examples, the target sentence is generated by imitating the translation-

part of the previously matched examples. And conversely, when no similar examples are 

found, the translation quality may be very poor. Because of this uncertainty, EBMT was 

not widely adopted in the industry. 

 

Neural Machine Translation (NMT) 

NMT uses neural networks comprised of nodes that are designed inspired by the human 

brain architecture. Each node represents a single word, a sentence, or a longer segment 

that interacts with another node in a framework of complex relationships where bilingual 

texts are used to train the network. The design complexity of these networks allows the 

meaning of any word to be transformed into considerably more educated guesses about 

its context. Neural Machine Translation systems are continuously being adjusted during 

the training process. NMT systems require a lot of processing power and their training 

can become a very computationally intensive task. This is the reason why this type of MT 

systems has become feasible only in recent years, in which the latest developments in the 

field of hardware have introduced new solutions able to address such computationally 

intensive tasks. 

 

Hybrid Machine Translation 

Hybrid machine translation systems combine multiple MT approaches in a single trans-

lation system, as all of the previously mentioned systems have their shortcomings Hybrid 

systems are divided into two categories. The first consists of rule-based engines that em-

ploy SMT for post-processing and cleanup whereas, the second category consists of SMT 

systems guided by rule-based engines. Either of the above is used with some input from 
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an NMT system. In the first scenario, after the source segment is translated from an 

RBMT system, it is processed by an SMT engine that searches for any errors. In the sec-

ond case, the RBMT engine aims simply at inserting metadata (e.g. noun/verb/adjective, 

present/past tense, etc.) as a support to the SMT engine. To a certain extent, all real-world 

MT systems adopt hybrid systems that combine rule-based and statistical approaches. 

2.1.3 Computer Assisted Translation tools (CAT tools) 

CAT tools (Computer-Assisted Translation tools) are computer programs employed by 

professional translators, linguists, and language service providers in order to improve the 

quality of their work. They are designed to help users translate faster and more efficiently 

documents from one language to another. A CAT tool typically divides texts into sen-

tences or even smaller pieces and shows them in an easily understandable way to the user. 

Segments are usually displayed in a special box, close to which there is a translation editor 

where users are allowed to enter a translation or modify a machine translation suggestion. 

Once a translation is approved and submitted, alongside its source segment, it is treated 

as a translation unit and is stored for later use as translation memory. Translation memory 

(TM), among others, is an essential feature of a CAT tool. Its mission is to store transla-

tion units after they are created into a database so that they can be reused during the 

translation of related new texts. Apart from perfect matches, segments that do not match 

100% can also be detected and retrieved using special "fuzzy-search" features. Allowing 

previously processed, related translation-parts to be reused, Translation Memory saves 

time and helps the translators to use consistent terminology. Another important feature 

that most of CAT tools now support is the interactive Machine Translation. This feature 

aims at predicting the translation that a human is about to enter by providing a number of 

translations. These suggestions can refer either to a part or to the whole sentence to be 

translated. There are more automation tools that a CAT tool comes with, including auto-

matic translation following glossaries and quality checks, dynamic machine learning, 

spell checkers and other translation automation tools. It is estimated that nowadays over 

85% of translators take advantage of CAT tools to improve their productivity. 

2.1.4 Post Editing for Machine Translation 
Regardless of the automation that CAT systems provide to users, the human factor, in the 

role of post-editors, is still required during the translation process as in many cases, qual-

ity levels of MT output are still far from human standards (HT). According to the “Post-



-10- 

editing in Practice” report5 by TAUS, “Postediting is the process of improving a machine-

generated translation with a minimum of manual labor. The result will be either a pub-

lishable document (full post-editing) comparable to high-quality human translation or an 

understandable document (light post-editing), containing correct terminology and names, 

expressed in unambiguous but not necessarily elegant sentences”. Post Editing for Ma-

chine Translation combines the best of both human quality and machine efficiency, and 

this is why PEMT over the last years has become an integral part of almost every work-

flow in the translation industry. At the same time, the smooth adaptation of the PEMT 

practice by the industry has created the need for organizations to be able to effortlessly 

train and review their post-editors. Given that there is a number of different PE method-

ologies in use nowadays, organizations adopt different approaches to evaluate perfor-

mance. There are systems that evaluate PE performance counting only on post-editor's 

productivity, others that mark the output as “over-edit” or “under-edit” based on the post-

editor’s effort and there are systems that measure the percentage of the accepted MT hy-

potheses against the rejected MT hypotheses in the final output. Most of them, are mainly 

distinguished by quality and time-spent due to the customers’ expectations and needs, but 

other characteristics such as turnaround time, MT acceptability and costs are also consid-

ered. 

 
5 https://www.taus.net/think-tank/reports/postedit-reports/postediting-in-practice 
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2.2 Workshop for Machine Translation (WMT) 
The Conference on Machine Translation (WMT) provides a venue, annually since 2006, 

for researchers from the area of machine translation to compete on various MT shared 

tasks and build state-of-the-art systems. To do so, participants are able to use, rare and 

valuable data sets, provided by the competition to experiment and facilitate further re-

search. Its main focus is to gather both academic and commercial researchers in a well-

defined and controlled framework that allows the evaluation and consequently the im-

provement of MT technologies. In the past and before it is presented as a conference, 

WMT was being held as a workshop for ten years from 2006 to 2015 under the name of 

Workshop on Statistical Machine Translation. However, because of the movement from 

Statistical to Neural Machine Translation, the name of the conference changed to Confer-

ence on Machine Translation. The WMT shared tasks are open to every academic and 

commercial research lab across the world, to compete and present their own research pa-

pers. Nowadays, the WMT campaign consists of 8 shared tasks. The most popular of 

them, are the machine translation tasks, where contestants test their MT system on a 

shared test set, in any of the 18 language pairs, trying to reach the best performance. In 

all MT tasks, systems are evaluated in terms of the human judgment of translation quality. 

There are 4 MT shared tasks, the machine translation of news and the similar language 

translation (Barrault et al., 2019), the machine translation robustness (Li et al., 2019) and 

the biomedical translation (Bawden et al., 2019). Apart from the MT tasks the competition 

includes also, the Automatic Post-Editing (Chatterjee et al., 2019) task that aims at devel-

oping methods used to automatically identify and fix errors that are generated by un-

known MT engines, and the Parallel Corpus Filtering (Koehn et al., 2019) task where the 

goal is to develop methods able to automatically extract good quality sentence pairs from 

a given noisy bilingual corpus. (2019 Fourth Conference on Machine Translation 

(WMT19), n.d.). In addition, WMT includes 2 more shared tasks on evaluation. The first 

task is focusing on MT automatic evaluation metrics. The main goal of this task is to find 

the automatic metric that achieves the strongest correlation with human judgments of MT 

quality. For that task, participants have access both on the target and reference transla-

tions. The second task of the evaluation shared tasks is the MT quality estimation. In this 

task, participants are required to develop systems that are able to estimate how good MT 

translation output is, without having access to reference translations. This task offers an 
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analysis of the current evaluation methodologies applied widely within the quality esti-

mation landscape. 

2.3 MT Quality Assessment 
Because of the rapid development of MT technology and the continuous efforts for pro-

gress towards different directions, the need for benchmarking MT systems’ performance 

has become necessary. However, MT quality evaluation can become a very challenging 

task. Natural languages are often ambiguous and in many cases, the same content in dif-

ferent languages is not reflected in a similar fashion (Arnold, 2003). MT quality evalua-

tion is not only useful for benchmarking newly developed MT systems, it is also a very 

important task for users during the translation process of unseen data. For many years, 

translators were responsible for judging whether a translation was good or not, given a 

source text and its translation. Nevertheless, the task of MT quality evaluation by humans 

turned out to be very costly in terms of time, and in some cases, where users did not have 

enough experience in the source or target language, it was not even possible. As a result, 

automatic methods for evaluating the quality of MT systems has become a real need. 

These methods are applied either by filtering out low-quality segment pairs to prevent 

translators from spending time on bad translations or by presenting translations in a way 

that the level of their quality is known to the end-users. Depending on their application 

and purpose, these methods can be easily distinguished on the ones that use reference 

translations, known as MT Evaluation metrics and the ones that do not, known as MT 

Quality Estimation systems. The design of automatic MT evaluation metrics is a hard task 

due to the multiple possibly acceptable reference translations for each source text. These 

systems need to be adaptable and flexible enough allowing variations in translation and 

also be able to identify and penalize oddities and deviations. Furthermore, a strong corre-

lation with human judgments is important for their reliability.  



  -13- 

2.4 Evaluating MT Evaluation systems 
The most widely used method for measuring the distance between the automatic evalua-

tion predictions of a system and their corresponding human judgments (golden standards), 

is the correlation coefficient r. A correlation coefficient measures how similarly two var-

iables change, as well as the direction and strength of this relationship. It is also employed 

in multiple tasks of WMT workshops. Two most popular types of correlation metrics are 

Pearson and Spearman rank correlation: 

 

Pearson Correlation 

Pearson’s correlation coefficient ρ (Pearson, 1895), evaluates the linear relationship be-

tween two continuous variables. It describes how a change in one variable is associated 

with a proportional change in the other. Given two random variables X and Y, the corre-

lation is calculated as follows (Montgomery & Runger, 1994). 

 
 On a set of paired data (X, Y ) as (xi , yi) and i = 1..n, the Pearson correlation coefficient 

is described as: 

 
where µx and µy are the means of discrete random variable X and Y. 

 

Spearman rank Correlation 

Spearman rank correlation coefficient is a simplified alternative to Pearson’s correlation 

coefficient used also for measuring how correlated automatic evaluations and golden 

standards are. 

Provided there are no ties, Spearman’s rank correlation coefficient (rs) is described as 

follows: 

 
Where di gives the difference between the two rank variables (xi − yi) 

for X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn} that describes the system ϕ. 
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In the case of tied ranks, the Spearman’s rank correlation coefficient is: 

 
 

Mean Absolute Error (MAE), Root of Mean Squared Error (RMSE) 

Two of the most widely used evaluation metrics for measuring performance on regression 

are employed in the QE scoring: 

• Mean Absolute Error (MAE) 

• The Root of Mean Squared Error (RMSE) 

On a set of observations S, where 1 < i < |S| and N=|S|, H(si) is the predicted score of an 

item si and V (si) stamds for the expected value of item si. 

 
MAE and RMSE are automatic, nonparametric and deterministic metrics. 
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2.5 MT Reference-based Evaluation 

2.5.1 Automatic Evaluation Metrics 
Since human evaluation faces some weaknesses being time-consuming, not reproducible 

and expensive, automatic evaluation metrics are the preferred way of evaluating machine 

translation. The general goal of MT Evaluation is to compare a machine translation to its 

corresponding human reference translation(s) providing a score that indicates how close 

the texts are (L Specia et al., n.d.). Therefore, quality depends on human-likeness, alt-

hough this claim is not accepted by all (Albrecht & Hwa, 2007). Typically, there are two 

categories of classifying Automatic MT evaluation metrics. There are metrics that rely on 

Lexical features and metrics that focus more on Linguistic features. Although they differ 

a lot, in some cases, it is difficult to separate them clearly as they may integrate with each 

other (e.g. there are lexical metrics that also use certain linguistic features). Another dif-

ferentiation is, on how they account for reordering and synonyms. Both metric categories 

are analyzed in the following section.  

2.5.2 Lexical Features 
Common Lexical evaluation metrics measure the word order, n-gram overlapping, the num-

ber of words and word sequences in common, and the edit-distance. Some of the ad-

vantages of those metrics are, that they are good at detecting the translation fluency (Han, 

2016) and that they are low cost and very fast. On the other hand, there are also few 

disadvantages as the syntactic information is rarely considered and lexical similarity does 

not necessarily reflect the similarity in meaning. Some metrics from this category that 

focus on edit-distance are: 
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•  WER (Tillmann et al., 1997; Vidal, 1997) 

Word Error Rate (WER) metric calculates the minimum number of edits (insertion, 

deletion, and replacement of a word by another) that must be performed on the ma-

chine translation to be identical to the reference translation. It takes word order into 

account, and in case of a “wrong”, according to reference translation, word order in 

translation hypothesis the WER metric can become significantly low. 

 
where dL(refk,r,hypk) stands for the  Levenshtein distance between reference and hypoth-

esis texts. 

 

• PER (Tillmann et al., 1997) 

Position-independent word Error Rate (PER) measures the difference in the number 

of times that identical words appear in hypothesis and reference sentences, normalized 

by the number of words in the reference. As the name suggests PER doesn’t take word 

order into account. 

 
and 

 
where 

o n(e,hypk) is the number of times the word e appeared in hypothesis 

o n(e,refk,r) is the number of times the word e appeared in reference 

 

• TER (Matthew Snover et al., n.d.) 

Translation Error Rate looks for the minimum number of edits required to transform 

a hypothesis into a reference translation. These edit operations are the deletion, the 

insertion, the word substitution, and word-sequence shifts. The difference between 

TER and WER metrics is that the latest is not taking into account the shift operation. 

Shifts avoid the excessive penalization of word-sequence reordering. When the low-

est number of operations is measured, TER is computed by dividing the number of 
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edit operations to the number of tokens of the reference translation, or the average 

number of tokens of reference translations if a number of references are available. 

 
 

• TERp (M. Snover et al., 2008) 

TER-Plus follows the idea of TER and additionally incorporates three more opera-

tions in order to optimize the correlation between the metric scores and human judg-

ments. The word stem matches, the multiword matches using a table of scored para-

phrases and the WordNet synonym matches. In that way, instead of aligning only 

exact matches of words between the hypothesis and target reference, TERp aligns 

words also when they have a stem in common or are synonyms 

 

• HTER 

Human-mediated Translation Error Rate is a variant of the TER metric that is also 

used on WMT QE evaluation tasks. Instead of just measuring the edit distance of a 

machine translation hypothesis to its corresponding target, as TER does, HTER first 

requires human factor in selecting the best reference out of a list of fluent references 

that are provided by the system. 

 

• BLEU (Papineni et al., n.d.) 

BiLingual Evaluation Understudy aims at evaluating the quality of a machine trans-

lation by measuring the percentage of n-grams that appear in both the machine trans-

lations and the reference translations. The final score is generated by using the n-

gram precisions for n = 1..4 in a geometric mean, multiplied by a brevity penalty that 

comes from cases of machine translations being shorter than the references sentences 

as seen in the equation below: 

 
The following equation then 
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More metrics that were developed on similar logic are: 

• NIST (Doddington, 2002) 

• ROUGE (Lin, 2004) 

• GTM (Turian et al., 2003)  

• METEOR (Lavie & Agarwal, 2007) 

2.5.3 Linguistic Features 
In contrast to the previously mentioned methods that emphasize mainly on lexical fea-

tures, most recently developed metrics focus on linguistic information, like syntax and 

semantics, by taking into consideration features like part-of-speech tags, synonyms, tex-

tual entailment (TE), sentence structure, paraphrase, named entities, semantic roles and 

more. Some examples of these metrics are: 

• ULC (Giménez & Màrquez, 2008) 

ULC is a linear combination of standard lexical metrics, of equal importance, with syn-

tactic and semantic information. 

• ROSE (Song & Cohn, 2011) 

ROSE combines n-gram and linguistic features using supervised ML techniques. It also 

uses recall and precision for different size lexical n-grams and information on punctua-

tion, content and part-of-speech (PoS). 
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2.6 MT Reference-free Quality Estimation 
The task of MT Quality Estimation aims at predicting the quality of a system's output for 

a given source text without any human intervention. To do so, models need to be trained 

on a large dataset of already annotated source-target sentence pairs with a size that de-

pends on its quality and the selected ML algorithm. While a few thousand examples are 

usually enough, larger numbers of train datasets lead to higher quality models. 

QE covers multiple different levels of prediction, although most of the current efforts aim 

at the Word-level, Sentence-Level, and Document-level. QE is not intended to estimate 

the overall performance of MT systems, but rather to estimate if an individual MT unit 

is worth to be manually corrected (PE). For example, QE applied in a number of sentences 

to find which of them should be post-edited by ranking them, and QE applied for finding 

words to be reviewed by the post-editor. 

2.6.1 Motivation 
Reference-free MT assessment approaches were developed as an attempt for real-world 

applications to overcome the dependency of automated evaluation metrics on human ref-

erences. At the early stages of QE, the idea was to predict how confident a particular 

system was regarding its output (Confidence Estimation), taking into account its system-

dependent, glass-box, features. This is not the case any-more as the focus now, is on any 

helpful quality feature that a system can offer, regardless of the type of features in use 

(glass-box or black-box). Influenced by this idea, most works nowadays focus on the 

black box only features as they seem more beneficial for a number of reasons. Black-box 

features are typically generated from the source and target text such as number of com-

mas, sentence length, n-gram LM probabilities, and POS tags, whereas, glass-box refers 

to the internal features of the MT engine that were produced the translation such as SMT 

model score, hypothesis scores and n-best lists (L Specia et al., n.d.). Black-box features 

handle the assessment of translations without being dependent on the access of the inter-

nal components of an MT system. This leads to a less computationally costly assessment 

solution, which is preferable, especially in cases of commercial systems. Additionally, 

system-independent features are able to evaluate translations that are coming from any 

MT system, regardless of the type of the system (rule-based, statistical, hybrid, NMT, 

etc.). This idea has allowed researchers to focus on how good a translation is on its own, 

using black-box features, and experiment with features from different sources. 
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2.6.2 Applications 
There are several examples of Quality Estimation for Machine Translation being applied 

for different purposes including: 

• Minimizing post-editing effort by filtering out segments with bad quality as they 

need more time to be corrected than translating from scratch 

• Rerank candidate translation hypotheses produced by an MT system, using an-

other method to help choosing the best candidate (Luong et al., 2015) 

• Publish good-quality translations as they are, without the need of being post-ed-

ited (Soricut & Echihabi, 2010) 

• Selecting a translation from either an MT system or a TM for post-editing (He et 

al., 2010) 

• Selecting the best translation from multiple MT systems (Avramidis, 2013) 

• Estimate post-editing effort and time 

• Highlighting subsegments that need to be reviewed (Bach et al., 2011) 

 

In what follows, some of the latest developments that outperform in the field of QE are 

presented. 

2.6.3 Shallow feature-engineered QE methods 
Traditional approaches consist of two main parts. The first one employs feature engineer-

ing technics to extract a list of features out of the source and target sentences, that explain 

the fluency, the adequacy, and the complexity of the translation using external language 

resources. The second is focusing on building the machine learning model that is finally 

going to predict the quality of the translations. While simplistic features including lan-

guage model scores, token counts and punctuation counts are relatively easy to extract, 

feature engineering can become very cumbersome when it comes to extracting more so-

phisticated and valuable features. In the case of document, paragraph or sentence levels, 

QE is approached as a supervised regression problem using algorithms such as Support 

Vector Machines (SVMs) and Multilayer Perceptron to predict automatic scores (e.g., 

BLEU, HTER, etc.). Whereas in the case of word-level and phrase-level, QE is ap-

proached as a classification task and algorithms such as Conditional Random Fields 

(CRFs) and Random Forests are employed to classify data points to OK or BAD. 
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QUEST++ (Lucia Specia et al., 2015) 

One of the most widely used implementations on MT QE is the QuEst++ framework. Its 

development took place at the University of Sheffield by Lucia Specia and her team, and 

it includes a number of contributions by the research community. It is an open-source tool 

that supports QE for MT at word, sentence and document level. It provides pipelined 

processing, meaning that predictions made at a lower level (e.g. for words) can be used 

as input while training models at a higher level (e.g. sentences). QUEST++ enables a 

variety of features to be extracted and supports different machine learning algorithms for 

building and evaluating QE models. For a number of years and in certain language-pairs, 

QUEST++ has been shown to achieve state-of-the-art performance. Most recent work 

focuses on sentence-level QE. This variant approaches the task as supervised machine 

learning using different algorithms to build models out of a large dataset with annotated 

(e.g. 1-5 likert scores) sentence translation pairs. Sentence-level QE has been one of the 

main WMT shared tasks, annually since 2012. While standard algorithms can be used to 

build prediction models, the key to this task is the work of feature engineering. Quest++ 

consists of two main modules, the feature extractor and a module for machine learning. 

For many years, the feature-extractor module was used as the official baseline set of fea-

tures for the QE task in WMT shared tasks. The basic requirements for the feature extrac-

tion module to function, are the raw source and translation text files, and a few resources 

(where available) such as the MT source training corpus and source and target language 

models. The features in QUEST++ depending on the language pair range from 80 to 123. 

Some examples of these features are: 

• number of tokens in s & t and their ratio 

• Source & target LM probability  

• Source & target punctuation symbols ratio  

• Source & target punctuation symbols ratio 

• Source & target proportion of dependency relations between (aligned) constitu-

ents 

• Source & target difference in depth of their syntactic trees. 

 

In the following image, the architecture of the QUEST++ framework is described. 
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Picture 2: QUEST++ framework architecture 
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2.6.4 Neural-based QE methods 
Neural network based approaches have been recently used successfully to boost QE per-

formance. NQE systems compared to traditional feature-based QE approaches, seems to 

be better on modeling non-linear associations between the input and target variables, and 

hence being able to deliver more generalized and language-independent models. Moreo-

ver, unlike shallow QE architectures, NQE systems employ neural networks for pro-

cessing source and target texts in an end-to-end way. 

The idea of explicitly defining QE features as the input for the neural system is not man-

datory. Inspired by the encoder-decoder (Sutskever et al., 2014) architecture on machine 

translation, NQE systems provide a number of encoders to transform a source sentence 

into a context vector that can later be used on quality score prediction.   

NQE architectures can easily be distinguished on one-phase and two-phase systems. 

• One-phase Neural QE systems 

One-phase systems follow a unified architecture with no intermediate stages, trained to 

produce QE scores in an end-to-end fashion. 

• Two-phase Neural QE systems 

It typically consists of two independently trained neural networks, with the first focusing 

on extracting features using the source and target sentences as input and the second net-

work aiming at using previously generated features to produce QE scores. 
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POSTECH Predictor-Estimator (Kim et al., 2017) 

POSTECH is a two-phase purely neural architecture with the best performance at the 

WMT17 QE shared task, at the levels of word, phrase and sentence prediction. The first 

part is a bidirectional RNN language model, inspired by the encoder-decoder, known as 

word predictor. The predictor is trained separately as a pre-task on an additional large-

scale parallel corpus to generate QE feature vectors (QEFVs). The second part, known as 

the Estimator, is a bidirectional RNN that uses QE feature vectors as inputs to predict a 

multi-level quality estimation score. Note that, to be effective this architecture has to be 

pre-trained on a very large parallel bilingual corpus that leads to high training require-

ments in terms of time and processing. 

 
Picture 3: Predictor-Estimator architecture 
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deepQuest (Ive et al., 2018) 

It is a Neural-based framework that supports all three levels of Quality Estimation and it 

was developed at the University of Sheffield. It reimplements, the state of the art POS-

TECH neural-based architecture to date for sentence-level quality prediction, and 

BiRNN, a light-weight neural architecture. BiRNN is a one-phase architecture that uses 

two bidirectional RNNs with Gated Recurrent Units encoders to learn the source-target 

pair representations. These representations are then being weighted by an attention mech-

anism generating a vector representation that is afterward used to predict a quality score. 

One-phase systems, like BiRNN, require only source, MT output, and the golden-stand-

ard. Its sentence-level approach can score state-of-the-art results, whereas its document-

level approach scores significantly better over previous work.  

 
Picture 4: BiRNN architecture 
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OpenKiwi (Kepler et al., 2019) 

OpenKiwi is an open-source framework developed by Unbabel and is focusing on the 

task of machine translation quality estimation. It embeds the best-performing systems of 

the WMT15–18 QE tasks. It supports the training and evaluation of both sentence and 

word levels QE systems. OpenKiwi reaches near state-of-the-art performance when ap-

plied on the En-De SMT and NMT datasets of WMT18 at word and sentence-level tasks. 

As it is highly customizable, it allows users to combine and modify all systems’ key com-

ponents, while experimenting under the same framework. OpenKiwi addresses the sen-

tence-level QE by implementing the two-following neural-based systems: 

• Predictor-Estimator (Kim et al., 2017) 

• A stacked ensemble with a linear system (Martins et al., 2016, 2017) 

It also includes pre-trained QE models on data from the WMT 2018 campaign, ready for 

evaluating MT systems. OpeKiwi uses PyTorch as the deep learning framework and it 

can be imported as a python package in other projects or run through cmd. 
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3 Data and Methods 
In the following chapter, every preprocessing step that took place in the raw machine 

translation dataset is described in detail, and the feature engineering procedure is exten-

sively explained. More specifically,  

In section 3.1 the acquired raw dataset used for the experiments is described. 

In section 3.2 the required data-preprocessing steps that took place during the dataset 

preparation are analyzed. 

In section 3.3 the scoring-standard generation for each data point using the TERcom tool 

is examined. 

In section 3.4 the feature-engineering process which includes the training of language 

models, extraction features and reduction of dimensionality is thoroughly investigated. 

3.1 Datasets 

3.1.1 TAUS raw dataset 
The MT Quality Estimation model was trained on a dataset obtained from the TAUS data 

repository. TAUS in the role of language data network develops communities and pro-

vides data services to buyers and LSPs (language service providers) through a number of 

applications and APIs including the Matching Data, the Data Cloud and more. 

 

For the purpose of this thesis, a dataset of 77733 raw human-annotated from English to 

Greek translation segments was extracted from the TAUS data repository. This dataset 

consists of entries from a variety of different MT engines, industries and content-types 

which helps on the generalization of the trained model. Despite the large number of col-

umns that the dataset originally had, after the redundant ones were removed and only the 

necessary ones were kept, the dataset ended up with the following features for each entry: 

• the source sentence 

• the target sentence 

• the human-edited sentence  

• the content type of the translation (legal, user manual, marketing material, etc.) 

• the industry that it refers to (automotive, healthcare/medical, finance, technology) 
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• the name of the MT engine from which it was initialized (Microsoft Translator 

Hub, Google translate) 

• the origin, which indicates whether the system it was initialized from is a Machine 

Translation engine (MT) or a Translation system (TM) 

• the match rate, that refers to the percentage by which a translation was suggested 

by a TM. In case of MT its value is null 

3.2 Data Preprocessing 

3.2.1 Noise Removal 
The initial raw dataset acquired by TAUS consisted of 77720 rows. After further analysis, 

rows found with empty values in the source, target or in the reference text, considered as 

invalid were removed. Furthermore, rows with inaccessible or missing values that could 

not be used in our experiment, were considered as noise and therefore were removed. 

Excluding noisy rows from the dataset, the number of rows reduced to 77614. 

3.2.2 Tokenization 
Tokenization is a method in which a given text, document, phrase or sentence is split into 

smaller units called tokens. These tokens are usually words or numbers or punctuation 

marks. It is a very common process used for manipulating text in NLP applications such 

as sentimental analysis, text classification and machine translation. It can be used to trans-

form large texts to numeric vector representations that are more suitable for machine 

learning and it is also a necessary step before stemming and lemmatization. For the needs 

of the current implementation, the word tokenizer module from NLTK6 library and the 

SpaCy7 library was tested. After using both libraries into the raw dataset, it was found 

that the NLTK library performs approximately 37 times faster than Spacy for word to-

kenization and therefore it was selected. 

 

NLTK word tokenizer 71.44 seconds 

Spacy tokenizer 2621 seconds 

Time spent on tokenization 

 
6 https://www.nltk.org/api/nltk.tokenize.html 
7 https://spacy.io/api/tokenizer 
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3.2.3 Identify translation duplicates using Bifixer 
Before any further analysis is applied on our dataset, it had to be ensured that it includes 

only unique triplets of source, target, reference so that the model will not process the same 

data multiple times. For that, the Bifixer tool was used. It was developed within the frame-

work of the ParaCrawl (Espì A-Gomis et al., n.d.), EU-funded, project. Bifixer is used to 

handle duplicated or near-duplicated parallel sentences by appending to each parallel sen-

tence two new fields. A hash, that is produced using the XXHash8 algorithm, and a rank-

ing score. In case of entries that are identical and share the same hash, the ranking number 

is used to help the algorithm to choose the best sentence from those. 

3.2.4 Remove noisy translation pairs using Bicleaner 
Bicleaner is another tool developed in the context of the ParaCrawl project. It is written 

in Python and it aims at detecting noisy sentence pairs and misalignments in a parallel 

corpus. It assigns scores to translation pairs, from 0 to 1, which indicates the likelihood 

of them to be mutual translations. Translation pairs that seem to be very clean are assigned 

with a score close to 1, whereas sentence pairs that are considered noisy are assigned with 

a score close to 0. To integrate Bicleaner classifier into the proposed pipeline implemen-

tation, all the required steps described here9 took place. After applying the Bifixer and 

Bicleaner tools to further clean the dataset, the number of data points was again reduced 

to 34850. 

 

3.3 Scoring Standard Generation 

3.3.1 HTER (Human-targeted Translation Edit Rate) 
For the purpose of this research, the HTER (human-targeted translation edit rate) metric 

was selected as the golden standard. It is the most widely used human-targeted metric for 

machine translation-related tasks. It has been shown that HTER yields a higher correla-

tion to human judgment than BLEU (Matthew Snover et al., n.d.) at a lower computa-

tional cost. It is also used in the WMT10 (Workshop in Statistical Machine Translation) 

annual Evaluation Campaigns, as the primary prediction label in the evaluation of quality 

 
8 http://cyan4973.github.io/xxHash/ 
9 https://github.com/bitextor/bicleaner/#installation--requirements 
10 http://statmt.org/wmt19 
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estimation task. In order to obtain the number of required edits for every target-reference 

pair, the TERcom tool was integrated into the pipeline, according to the publisher’s doc-

umentation instructions, and was applied on the machine-translated and post-edited sen-

tences. Generating scores for the dataset took approximately 80 seconds. 

3.3.2 Levenshtein Distance Selection 
The Levenshtein distance or edit distance was invented in 1965 by the Russian Mathe-

matician Vladimir Levenshtein (1935-2017) and is used to measure how similar two 

strings are. It does that, by calculating the required number of single-character substitu-

tions, insertions, or deletions that are required to convert a string into another. Unlike 

HTER that calculates similarity at a word level, Levenshtein distance does that at a char-

acter level. There is a number of cases where QE solutions were developed using the 

Levenshtein distance as the scoring standard. In our case, we generated and used it to 

observe the correlation between ED and HTER variables. In the initial raw dataset that 

was given by TAUS, edit-distance is one of the features for each entry and is calculated 

by the system in which this particular translation took place, questioning the reliability of 

its values. To address that, the Levenshtein distance between every translation of the da-

taset and its corresponding reference was calculated again using a common method. The 

relationship between the vector of already defined distance values and the vector of newly 

generated edit distance values can be seen as below. 

 
Picture 5: correlation between edit_distance and edit_distance_new variables 



  -31- 

Their high correlation can be confirmed by the values of their Spearman and Pearson 

correlation coefficient: 

df[['edit_distance', 'edit_distance_new']].corr(method ='pearson')

 

Pearson’s correlation coefficient = 0.950822 

Spearman’s correlation coefficient = 0.970357 

 

Another encouraging observation for using the newly generated edit distance-vector, 

compared to the given one in the initial dataset, is the higher Pearson’s correlation coef-

ficient it has with the HTER scoring-standard vector as seen below: 

df_clean_data[['edit_distance', 'hter_score']].corr(method ='pearson') 

 

 

df_clean_data[['edit_distance_new', 'hter_score']].corr(method ='pearson') 

 
 

'edit_distance', 'hter_score' Pearson’s correlation coefficient = 0.767724 

'edit_distance_new', 'hter_score' Pearson’s correlation coefficient = 0.790007 

 

The way of how the values of HTER and edit-distance are related can be seen in the 

following plot: 

 
Picture 6: correlation between edit_distance_new and the target variable hter_score 

 

And the following Pearson’s and Spearman’s correlation coefficients: 

Pearson’s correlation coefficient = 0.790007 

Spearman’s correlation coefficient = 0.984032 
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3.4 Feature Engineering 
After completing the preprocessing phase, having a clean raw dataset, free of noise data 

and missing values, the next step is to transform these data into a more digestible format 

that machine learning algorithms can easier interpret. 

3.4.1 Feature Extraction 
The process of feature extraction in this work is mainly based on lexical features such as 

punctuation counts, number of words and word sequences in common and language 

model probabilities. The feature selection strategy that the current implementation fol-

lows, is an extension of another research11 on QE at sentence level that was made by the 

students of UVA. In more detail, the following list describes the 61 features that were 

selected: 

Punctuation features 

• commaDif - difference in commas 

• exclamationDif - difference in exclamation marks 

• questionmarkDif - difference in question marks 

• dotDif - difference in dots 

• hyphenDif - difference in hyphens 

• underscoreDif - difference in underscores 

• slashDif - difference in slashes 

• colonDif - difference in colons 

• semicolonDif - difference in semicolons 

• capitalCountDif - difference in capital letters 

• misMatch - mismatches in brackets or accolades 

• wordCountSrc - number of words in the source sentence 

• wordCountTgt - number of words in the target sentence 

• wordCountDif - difference in the number of tokens 

Statistical features 

• commaDifNorm - difference in commas, normalized 

• exclamationDifNorm - difference in exclamation, normalized by the amount of 

characters in target sentence 

 
11 https://github.com/LucSkyvvalker/TAUS 
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• questionmarkDifNorm - difference in question marks, normalized by the amount 

of characters in target sentence 

• dotDifNorm - difference in dots, normalized by the amount of characters in target 

sentence 

• hyphenDifNorm - difference in hyphens, normalized by the amount of characters 

in target sentence 

• underscoreDifNorm - difference in underscores, normalized by the amount of 

characters in target sentence 

• slashDifNorm - difference in slashes, normalized by the amount of characters in 

target sentence 

• colonDifNorm - difference in colons, normalized by the amount of characters in 

target sentence 

• semicolonDifNorm - difference in semicolons, normalized by the amount of char-

acters in target sentence 

Lexical features 

• verbDif - difference in verbs using spaCy POS tagger 

• nounDif - difference in nouns using spaCy POS tagger 

Language model features 

• logPerpSrc0 - source sentence unigram LM perplexity, trained on the europarl v7 

large corpus of the source language, transformed with base 2 log 

• logPerpTgt0 - target sentence unigram LM perplexity, trained on the europarl v7 

large corpus of the target language, transformed with base 2 log 

• logPerpSrc1 - source sentence bigram LM perplexity, trained on the europarl v7 

large corpus of the source language, transformed with base 2 log 

• logPerpTgt1 - target sentence bigram LM perplexity, trained on the europarl v7 

large corpus of the target language, transformed with base 2 log 

• logPerpSrc2 - source sentence trigram LM perplexity, trained on the europarl v7 

large corpus of the source language, transformed with base 2 log 

• logPerpTgt2 - target sentence trigram LM perplexity, trained on the europarl v7 

large corpus of the target language, transformed with base 2 log 

• logPerpSrcPos0 - source sentence unigram LM perplexity, trained on the POS 

tagged version of the europarl v7 large corpus of the source language, transformed 

with base 2 log 
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• logPerpTgtPos0 - target sentence unigram LM perplexity, trained on the POS 

tagged version of the europarl v7 large corpus of the target language, transformed 

with base 2 log 

• logPerpSrcPos1 - source sentence bigram LM perplexity, trained on the POS 

tagged version of the europarl v7 large corpus of the source language, transformed 

with base 2 log 

• logPerpTgtPos1 - target sentence bigram LM perplexity, trained on the POS 

tagged version of the europarl v7 large corpus of the target language, transformed 

with base 2 log 

• logPerpSrcPos2 - source sentence trigram LM perplexity, trained on the POS 

tagged version of the europarl v7 large corpus of the source language, transformed 

with base 2 log 

• logPerpTgtPos2 - target sentence trigram LM perplexity, trained on the POS 

tagged version of the europarl v7 large corpus of the target language, transformed 

with base 2 log 

• logProbSrc0 - source sentence unigram LM probability, trained on the europarl 

v7 large corpus of the source language, transformed with base 2 log 

• logProbTgt0 - target sentence unigram LM probability, trained on the europarl v7 

large corpus of the target language, transformed with base 2 log 

• logProbSrc1 - source sentence bigram LM probability, trained on the europarl v7 

large corpus of the source language, transformed with base 2 log 

• logProbTgt1 - target sentence bigram LM probability, trained on the europarl v7 

large corpus of the target language, transformed with base 2 log 

• logProbSrc2 - source sentence trigram LM probability, trained on the europarl v7 

large corpus of the source language, transformed with base 2 log 

• logProbTgt2 - target sentence trigram LM probability, trained on the europarl v7 

large corpus of the target language, transformed with base 2 log 

• logProbSrcPos0 - source sentence unigram LM probability, trained on the euro-

parl v7 large corpus of the source language, transformed with base 2 log 

• logProbTgtPos0 - target sentence unigram LM probability, trained on the europarl 

v7 large corpus of the target language, transformed with base 2 log 

• logProbSrcPos1 - source sentence bigram LM probability, trained on the europarl 

v7 large corpus of the source language, transformed with base 2 log 
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• logProbTgtPos1 - target sentence bigram LM probability, trained on the europarl 

v7 large corpus of the target language, transformed with base 2 log 

• logProbSrcPos2 - source sentence trigram LM probability, trained on the europarl 

v7 large corpus of the source language, transformed with base 2 log 

• logProbTgtPos2 - target sentence trigram LM probability, trained on the europarl 

v7 large corpus of the target language, transformed with base 2 log 

• unk_ngramsSrc0 - unigram LM probability for unknown words in the source sen-

tence, trained on the europarl v7 large corpus of the source language, transformed 

with base 2 log 

• unk_ngramsTgt0 - unigram LM probability for unknown words in the target sen-

tence, trained on the europarl v7 large corpus of the target language, transformed 

with base 2 log 

• unk_ngramsSrc1 - bigram LM probability for unknown words in the source sen-

tence, trained on the europarl v7 large corpus of the source language, transformed 

with base 2 log 

• unk_ngramsTgt1 - bigram LM probability for unknown words in the target sen-

tence, trained on the europarl v7 large corpus of the target language, transformed 

with base 2 log 

• unk_ngramsSrc2 - trigram LM probability for unknown words in the source sen-

tence, trained on the europarl v7 large corpus of the source language, transformed 

with base 2 log 

• unk_ngramsTgt2 - trigram LM probability for unknown words in the target sen-

tence, trained on the europarl v7 large corpus of the target language, transformed 

with base 2 log 

• unk_ngramsSrcPos0 - unigram LM probability for unknown words in the POS 

taged source sentence, trained on the POS tagged version of the europarl v7 large 

corpus of the source language, transformed with base 2 log 

• unk_ngramsTgtPos0 - unigram LM probability for unknown words in the POS 

taged target sentence, trained on the POS tagged version of the europarl v7 large 

corpus of the target language, transformed with base 2 log 

• unk_ngramsSrcPos1 - bigram LM probability for unknown words in the POS 

taged source sentence, trained on the POS tagged version of the europarl v7 large 

corpus of the target language, transformed with base 2 log 
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• unk_ngramsTgtPos1 - bigram LM probability for unknown words in the POS 

taged target sentence, trained on the POS tagged version of the europarl v7 large 

corpus of the target language, transformed with base 2 log 

• unk_ngramsSrcPos2 - trigram LM probability for unknown words in the POS 

taged source sentence, trained on the POS tagged version of the europarl v7 large 

corpus of the source language, transformed with base 2 log 

• unk_ngramsTgtPos2 - trigram LM probability for unknown words in the POS 

taged target sentence, trained on the POS tagged version of the europarl v7 large 

corpus of the target language, transformed with base 2 log 
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3.4.2 Feature Generation 
Language Models Training 
In contrast to the quite straight-forward way that some of the listed above features were 

generated (punctuation, lexical features), to generate the n-gram language model features 

a more demanding process took place. In more detail, a unigram, a bigram and a trigram 

LMs were trained on both the source and target language texts and their POS-tagged ver-

sions, ending up with a total of 12 different n-gram language models. The bigram and 

trigram language models were built using the KenLM (Heafield, 2011) LM implementa-

tion, whereas for the unigram language models, an implementation provided by previ-

ously mentioned project10 was used. For the training of these LMs, the Europarl v7 Greek-

English parallel corpus was selected. More specifically, this large bilingual corpus was 

divided into two monolingual corpora and models that were addressed for source-lan-

guage, were trained on the English corpus, whereas models related to the target-language 

were trained on the Greek monolingual corpus. 

As data sparsity is almost always an issue in statistical modeling, LMs were required to 

adopt a smoothing method to improve their prediction performance and avoid zero prob-

abilities by unseen n-grams. To do so, the method of modified Kneser-Ney smoothing 

(Heafield et al., 2013) was applied.  

A detailed analysis on how n-gram LMs function and the required resources for their 

training follows below. 

KenLM Language Models 
KenLM is a fast and low-memory language modeling toolkit. It implements two data 

structures for fast LM queries, achieving substantial reductions in time and memory cost. 

The “PROBING” data-structure is designed for speed, being 2,4 times faster than the 

widely known SRILM only by using the 57% of the memory. On the other hand, “TRIE” 

data structure is designed for low memory consumption. It is open-source and is offered 

on both C++ and Java interfaces. 

European Parliament Parallel Corpus v7 
For the training of the language models (LMs), which are described in more detail in a 

later section, the Greek–English Europarl parallel corpus v7 (Koehn, n.d.) was used. Eu-

roparl is a parallel corpus extracted from the European Parliament proceedings and is 

available for 21 European languages including Romanic, Germanic, Slavic, Finni-Ugric, 

Baltic languages and Greek. The Greek–English parallel corpus consists of 1,235,976 
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bilingual sentence pairs. Before feeding the corpora to LMs, some preparation was re-

quired. At first, these texts were tokenized using NLTK’s word tokenizer. And then, the 

PoS-tagged corpora was generated out of the original texts, using the “el_core_news_md” 

and the “en_core_web_lg” pre-trained statistical models of spaCy12 library. 

 

Table 1: Greek-English Europarl v7 parallel corpus counts 

 English Greek 

Sentence count 1,235,976 1,235,976 

Tokens count  31,953,210 37,122,787 

Vocabulary 123,521 260,521 

 

N-gram Language Models 
The N-gram model is the simplest form of language models and its role is to assign prob-

abilities to sentences and sequences of words. The intuition behind n-gram LMs is to 

compute the probability of a word to occur given all the previous n words, by using only 

the conditional probability of n previous words. In that way, it approximates the history 

of a word given only the last few terms, instead of computing the probability using its 

entire history. In case of bigrams for instance, the probability of a term to occur is pre-

dicted using only the conditional probability of its previous word. 

 
This approximation is also known as the Markov assumption. 

 
By generalizing the bigram model, the trigram and therefore the n-gram model can be 

easily produced. The equation that expresses the general n-gram approximation for the 

conditional probability of the next word in a sequence of words is 

 
The decomposition of the probability of entire sequences, using the chain rule of proba-

bility combined with the previously mentioned bigram assumption, allows us to compute 

the probability of a complete sequence of words. 

 
12 https://spacy.io/usage/models 
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For the estimation of each n-gram probability, the maximum likelihood estimation or 

MLE method is used. As such, in order to calculate a bigram probability of a word wn-1 

followed by a word wn, we divide the count of the bigram C(wn-1,wn) with the sum of all 

the bigrams that have the same first word wn-1. 

 
To avoid numerical underflow while multiplying the number of n-grams together (since 

probabilities range from 0 to 1) the language model probabilities are converted to log 

probabilities. 

Smoothing 
Like many statistical models, n-grams are significantly dependent on the training corpus.  

As a fact, MLE based models are exposed to the issue of data sparsity. More specifically, 

any n-grams in a querying sentence that don’t appear in the corpus during the training 

process are assigned with a 0 probability. This is happening as LMs cannot cover all the 

possible n-grams that could appear in a language no matter how large the corpus they 

were trained on is. However, this is incorrect as perfectly acceptable word sequences can 

be, incorrectly, considered by the model as impossible events. To face that, the method 

of smoothing is introduced. Smoothing aims at moving a bit of probability from more 

frequent events to unseen events. Even though there are multiple techniques (Laplace, 

Add-k smoothing, etc.) to apply smoothing, the current solution implements the modified 

Kneser-Ney (Heafield et al., 2013) smoothing. 

LM Evaluation 
Perplexity is a metric used for the evaluation of language models. In general, as a meas-

urement, it indicates how well a model predicts a test set. The perplexity for a test set W 

= w1,w2…wN is the multiplicative inverse probability that is given by a model to the test 

set, normalized by the number of words in it. 
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From the equation above, it is clear that the higher the conditional probability of a se-

quence of words, the lower the perplexity is. 

3.4.3 Feature Evaluation 
Before moving forward into the machine learning regression process, an evaluation anal-

ysis was performed on the 61 extracted features. In order to identify linear relationships 

between the selected features, the following correlation matrix, based on Pearson’s cor-

relation coefficient, was generated.  

 
Picture 7: correlation matrix heatmap showing the correlation between all the features 

Furthermore, a correlation attribute evaluation was implemented in order to identify 

which features reveal a higher absolute correlation with the "hter_score" target variable. 

The results are presented in the image below. 
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Picture 8: correlation between all features and the target variable hter_score 

 

 
Picture 9: frequency distribution of correlation coefficients 
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By observing the plots above, it is obvious that there are many features whose correlation 

coefficient is really low, and thus could be removed. Further analysis is performed in the 

following section examining the way to reduce the dimensionality of the dataset. 

3.4.4 Dimensionality Reduction 
High dimensionality in Machine Learning can often cause multiple issues. The reason 

that these issues occur is that when the dimensionality of a dataset increases, the volume 

of the space increases so fast that the available data becomes sparse, and therefore models 

are led to high computing time and overfitting. There are multiple different approaches 

to apply on a dataset in order to reduce the number of its features. In the current work, the 

method of Principal Component Analysis (PCA) was chosen. 

Principle Component Analysis 
The idea of Principal Component Analysis is to transform a dataset of possibly correlated 

variables, into a dataset of linearly uncorrelated variables called principal components, 

while keeping the variance of the transformed data set as high as possible. A requirement 

for applying PCA is to define the number of principal components. To find out this num-

ber, several steps had to take place. First, we transformed our data using the Standard-

Scaler and the ColumnTransformer to apply standard scaling on groups of columns. Be-

low the piece of code responsible for the scaling process is presented. 
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Picture 10: Scaling applied on groups of features 
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After having the dataset scaled, the next step was to measure the explained variance of 

the existing features using the sklearn library and plot it using the matplotlib library. The 

results can be seen below. 

 
Picture 10: Relationship between the number of components and the amount of variance they 

cover 

 

In the plot above, it can be observed that approximately the 100% of the total variance of 

the data could be explained by using 30 components. After implementing the PCA using 

the best 30 components, we generated again the correlation attribute evaluation to illus-

trate the correlation of the final components with the "hter_score" target variable. The 

results are presented below. 
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Picture 11: correlation between the new components/features and the target variable hter_score 

  



-46- 

4 Experiments 
The main scope of this chapter was to explore various regression models, trained to esti-

mate the quality of translations from English to Greek. In order to find the most useful 

and effective algorithm, many trials on various models were performed. 

Before applying any machine learning, our dataset was split randomly into the train set 

and the test set. For the train set the 80% of the initial dataset was used, whereas for the 

test set, the rest 20% was kept. 

4.1 Hyperparameter optimization 
As the performance of ML models depends heavily on the hyperparameters, an important 

task was to manage to select optimal values during the training process. For that, the 

process of hyper-parameter tuning took place using the GridSearcCV that is provided by 

the sklearn library with 5-fold cross-validation. Grid search CV trains a machine learning 

model by testing multiple combinations of training hyperparameters over a cross-valida-

tion procedure and then selects the combination of parameters that optimizes the desired 

evaluation metric. The experiments were conducted using a train set of 27879 entries and 

30 features (principal components) on the following 4 regression algorithms. 

Support Vector Machine Regressor  

• Support Vector Machine Regressor 

• Random Forest Regressor 

• Multilayer Perceptron Regressor 

• Extreme Gradient Boosted Trees Regressor 
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4.2 Support Vector Machine 
Although SVM has been used extensively (Felice & Specia, 2012; Langlois, 2015) in the 

bibliography with success, in the current experiments it didn’t manage to achieve opti-

mum results. More specifically, using the following hyper-parameters:  

 

Table 2: SVM hyperparameter values 

kernel Rbf 

C 1000 

gama 0.01 

 

SVR achieved the following scores: 

 

Table 3: SVM regression scores 

Pearson correlation coefficient r 0.376 

Spearman correlation coefficient ρ 0.381 

Mean Absolute Error (MAE) 0.136 

Root Mean Square Error (RMSE) 0.205 

 

4.3 Random Forest 
Random Forests (Tezcan et al., 2016) 

Using the following hyper-parameters:  

 

Table 4: RF hyperparameters values 

bootstrap true 

max_depth 200 

max_features auto 

min_samples_leaf 2 

min_samples_split 4 

n_estimators 1000 
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RF achieved the following scores: 

 

Table 5: RF regression scores 

Pearson correlation coefficient r 0.715 

Spearman correlation coefficient ρ 0.693 

Mean Absolute Error (MAE) 0.079 

Root Mean Square Error (RMSE) 0.153 

 

4.4 Multilayer Perceptron 
Using the following hyper-parameters: 

 

Table 6: MLP hyperparameters values 

Solver adam 

hidden_layer_sizes 800 

max_iter 1000 

 

MLP achieved the following scores: 

 

Table 7: MLP regression scores 

Pearson correlation coefficient r 0.561 

Spearman correlation coefficient ρ 0.505 

Mean Absolute Error (MAE) 0.121 

Root Mean Square Error (RMSE) 0.186 
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4.5 eXtreme Gradient Boosting  
Using the following hyper-parameters: 

 

Table 8: XGBoost hyperparameters values 

colsample_bytree 0.8 

gamma 0.5 

learning_rate 0.02 

max_depth 10 

n_estimators 500 

objective reg:squarederror 

subsample 0.8 

 

XGBoost achieved the following scores: 

 

Table 9: XGBoost regression scores 

Pearson correlation coefficient r 0.652 

Spearman correlation coefficient ρ 0.623 

Mean Absolute Error (MAE) 0.108 

Root Mean Square Error (RMSE) 0.169 
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5 Conclusions 

5.1 Conclusions 
This work presented an application of machine learning models trying to estimate the 

quality of machine translation outputs. To do so, several algorithms were used and gave 

interesting results. The implementation of this project is divided in 3 main phases. The 

first is the phase of the dataset preprocessing, the second is the phase of the language 

model training and feature extraction and the last phase is focused on the machine learn-

ing experiments. From the scores of the models in Chapter 4, it can be seen that, for the 

given dataset and language pair, the Random Forest regressor achieved the highest Pear-

son correlation with the target variable and thus, is considered to perform better than other 

models on this task. On the other hand, since the features that were used during the model 

training are based mainly on lexical similarity, a high score does not guarantee a high 

similarity in the meaning between the source and target sentences. 

5.2 Further work 
Further improvement in the current work can be achieved in multiple ways. By training 

Language Models on larger corpora, more accurate n-gram probabilities can be generated 

and therefore construct better features. Finally, since this solution is not focusing as much 

as it should into the context of the texts, a way to improve the semantic performance of 

the model would be to incorporate Neural Networks in it. 
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