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Abstract 

This dissertation was written as a part of the MSc in Mobile and Web Computing at the 

International Hellenic University.  

These days, the volume of data information in the globe always seems to grow continu-

ously with no turning back point. With enormously powerful machines, computers, 

phones and tablets saving information that earlier would be trashed is too simple. Af-

fordable multi-terabyte drives make it very easy to delay choices over what to do with 

all this information. Users and companies are just purchasing another drive and saving 

everything. Increasingly popular electronics document users' decisions, financial choic-

es, market habits, trips and photos. Users can access data from all way around the 

world, almost every record in a system, database or framework. The Internet and social 

media overwhelm more and more users with data information.  

Furthermore, more and more data are been stored regarding cities and urban areas. This 

information is critical for automatizing several procedures in these areas such as road 

traffic control. With urban living increased exponentially the last century, road traffic 

congestion has become one the most significant problems of this era.  

There is no panacea, but as far as the solution for this problem is concerned, analyzing 

the congestion data for future traffic prediction could do a significant difference.  

The current thesis is a presentation, analysis and construction of a model for predicting 

the traffic congestion for Tsimiski street in the city of Thessaloniki using data mining 

and machine learning algorithms, along with python, sql and gis technologies. 

 

 

Mystakidis Aristeidis 

30/12/2019 
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1 Introduction 

It is predicted that by 2050 more than 67 percent of overall population will live in urban 

areas, according to latest United Nations report (2018). The report also indicates that 

from 1950 to 2018, urban living exponentially increased from 751 million people to 4.2 

billion people. 

This overpopulation with the large amount of data which record procedures and func-

tionalities of smart cities, broaden the horizon of Data science for smart cities. This data 

can be analyzed for the sake of each city’s procedures and functionalities’ optimization. 

One these procedures that needs to be optimized is the traffic flow.  

The existing dissertation is a demonstration, study and development of a prototype 

model to forecast traffic congestion in Thessaloniki City with Tsimiski Street as an ex-

ample to be analyzed.  

Before the case is described, a literature part is preceded and several major key words 

like ‘data mining’, ‘machine learning’, ‘smart city’, ‘traffic congestion’ etc. as well as 

similar problem were explained and analyzed. 

After that, the case is explained, data origin, technologies that were used and several 

difficulties are presented with a comprehensive preprocess phase. Moreover, the select-

ed data mining algorithm for the traffic forecasting is demonstrated with Tsimiski Street 

as a mockup example (blueprint) and an evaluation. 

Finally, an evaluation of the algorithm is conducted comparing the result with other al-

gorithms. 
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2 Data mining 

2.1 General meanings - Data mining 

The readiness of sufficient data in nearly every sector and the eagerness to extract help-

ful knowledge and information from it have been substantiated as the primary motiva-

tion that has pulled scientists' eyes towards data mining and machine learning in past 

few years. For apps ranging from simple business management to complex engineering 

architecture to science exploration, the understanding of the information extracted can 

be unthinkably beneficial. Data mining is the study and examination of enormous da-

tasets, with the goal of uncovering important trends and rules that have not been found 

before. The main goal is to utilize the computer's data processing capacity with the hu-

man's brain's ability to detect patterns (Han & Kamber 2001). 

Tan, Steinbach, Karpatne and Kumar (2018) also stated that data mining is the process 

of extracting valuable information in large datasets automatically. Data mining algo-

rithms are used to scan large amounts of data to discover new and useful trends that 

may otherwise remain hidden. These algorithms also provide the ability to foresee fu-

ture observation outcomes. 

The most widely accepted terminology of "data mining" is the discovery of "models" 

for data, based on Rajaraman, Leskovec & Ullman (2014). A"model" may be one of the 

following things. 

• Statistical Modeling  

• Machine Learning  

• Computational Approaches to Modeling  

• Summarization  

• Feature Extraction 

 

There are different types of algorithms that can categorize the data, either automatically 

or semi-automatically, and seek for the aforementioned patterns within the data 

(Agrawal & Srikant, 1994). Such patterns are used to provide multiple sets of rules. 

The discovered patterns should have meaning so that they can open the way to several 

advantages such as economic growth, decision making, marketing research, project 
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management, etc. Also, considerable amounts of data are necessary to get all these 

meaningful trends. Data mining takes advantage of developed models from machine 

learning and statistics to deal with this enormous data. Data mining offers perspectives, 

data interpretation, and expertise. It also offers the ability to forecast future results. 

Data mining relies on the side of three different segments. First, statistics, then artificial 

intelligence and finally, machine learning (Zhou,2003). Statistics serves as the basis for 

multiple data mining methodologies, such as variance, standard deviation, regression, 

standard distribution, discriminatory analysis, confidence intervals and cluster analysis 

and so on. Artificial intelligence is based on heuristics, as it attempts to use statistical 

utilities as a human way of thinking. Thousands of high-end industry applications use 

numerous artificial intelligence methods, such as using query optimization algorithms 

for relational databases. Data and their relationships are analyzed using these (Wu, 

2004). Machine learning (ML) aggregates artificial intelligence and statistics (Michal-

ski, et al., 1998). Machine learning focuses on designing algorithms that can train them-

selves and evolve as new types of data are encountered. It also uses many methods for 

statistical analysis. Using these methods, individuals can make different decisions de-

pending on the data's dominance. 

According to Bishop (2006), machine learning (ML) is the scientific research of statisti-

cal models, algorithms and mathematical methods used by electronic systems to execute 

a particular task without using explicit instructions, focusing instead on trends, patterns 

and inferences. It is regarded as an artificial intelligence branch. ML algorithms develop 

a sample data-based mathematical model, referred as "training data," to make fore-

casts or decisions without been explicitly developed to do the task. 

Data mining is also effective to summarize the underlying relation in data in addition to 

predicting future observations. Data mining can process and collect data from various 

data storage systems such as txt, xlsx, xml, json and csv files, databases, servers, data 

warehouse, transactional data, multimedia data, lists, internet, stream, time series, 

graphical, spatiotemporal, charts, social and knowledge networks, etc. 
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2.2 Era of data mining 

Today, data mining is dominant among data analysts and statisticians, and other science 

communities.  

The era of data mining implementations initiated near 1980 primarily by science-driven 

tools embedded in solo chore (Piatetsky-Shapiro 2000).  

Term invention arises in the 1990s. As mentioned, the source of data mining on the side 

of artificial intelligence, machine learning and statistics. 

Piatetsky-Shapiro invented the term 'knowledge discovery in database' (KDD) during 

the first KDD workshop in 1989. Recognition of data mining and machine learning 

should not be surprising, due to the scale of data gathered from multiple available 

sources, the data obtained are very complex to be analyzed manually, and several times 

automated data analysis assisted by classical statistics and machine learning could be of 

concern once the process is comprehensive but the knowledge gathered is made up of 

problematic entities. The saved, huge data volume gathered from multiple sources and 

held in vast and varied archives. 

Data mining algorithms were developed primarily for numeral data initially, but it was 

expanded to all types of data such as multimedia, text, storage, image and internet etc. 

Originally, data mining started with individual database analysis, and progressively data 

mining techniques have been developed for conventional and relational databases, flat 

files and data warehouses. Subsequently, various algorithms evolved to process orga-

nized and unorganized data with the combination of machine learning techniques and 

statistics. Because of its tremendous achievement in terms of application scope, scien-

tific progress and understanding, the field of data mining has been increasing continu-

ously. The ever-increasing complexities in many industries and new technologies have 

introduced new challenges for data mining. The various areas of interest include hetero-

geneous data formats, networking development, computing power, fields of scientific 

research and business development demands, etc. Fayyad at 1996, mentioned that KDD 

will continue to develop in various sectors such as databases, artificial intelligence, ma-

chine learning, software discovery, scientific discovery and information retrieval, etc. 

(Fayyad et al., 1996). The different tools from all these areas are used throughout the 

cycle of knowledge discovery. 
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2.3 Data Mining Models 

As per convention, data mining model are mainly of two types i.e. predictive model and 

descriptive model. 

2.3.1 Predictive Model 

The concept behind such models is to develop a process using the results of the existing 

data and to predict the impact of new and unknown data sets (Han, Kamber & Pei, 

2012) (Witten, Frank, Hall & Pal, 2017). A financial institution, for instance, has the 

required data on previously issued loans. Independent variables in this data are the at-

tributes of the consumers to whom the loan has been given and the dependent variable 

would be if the loan is returned or not. In this manner, the framework generated by this 

data would help to decide if or not the loan should be issued to the consumer. Classifi-

cation and deviation detection are used for predictive data mining regression applica-

tions. 

2.3.2 Descriptive Model 

Such models' main objective is to determine patterns (correlation, trends) that describe 

the data relationship under laying. Descriptive data mining is usually used for generat-

ing correlation, cross tabulation and frequency (Witten, Frank, Hall & Pal, 2017). De-

scriptive model can also be illustrated to bring out important data trends, identify previ-

ously undiscovered patterns, and identify informative data subcategories. To classify, 

for instance, webpages that are visited by the type of user. Underneath the descriptive 

model, clustering, association rules, summarization and sequential pattern mining are 

used. 

 

2.4 Functionality of Data Mining 

Data mining's role is to extract the information and useful functionalities from the data. 

There are plenty of features available to detect patterns. Data mining is specializing in 

useful data trends. Such patterns are basically unknown at the initial stages but can po-

tentially be used. Data mining provides a number of functions. Depending on the do-

main field and the type of information to be obtained, a specific type of feature can be 

assigned. These functionalities can be used to exploit different kinds of information 
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such as association rules, clustering, classification, characterization, rule discrimination, 

deviation and predictive analysis, etc. The utility of data mining is rich and extensive; it 

can support many purposes and areas (Tan, Steinbach, Karpatne & Kumar, 2018) 

 

2.4.1 Clustering 

 

The role of clustering (Figure 1) is to categorize a collection of items so that related ob-

jects are held in the same clusters (Stutz & Cheeseman, 1996) (Ester & Kriegel, 1995) 

(Ng & Han, 1994).  It is an important data mining tool that is widely used to analyse 

statistical data like pattern recognition, machine learning, information retrieval, biosta-

tistics and image analysis. Essentially, in clustering, different types of partitions are 

generated (Witten, Frank, Hall & Pal, 2017). then participated variables are held in 

those partitions on the base level of similarity that is based on certain metric.  

Clustering follows the unsupervised methodology; so, categories / classes / groups are 

not already established in this method. As far as unsupervised methodology is con-

cerned, grouping of entities is performed on the basis of the proximity or similarity 

of collection of records. In this learning, the model itself will determine the classes, 

picking, for example, an attribute based on the data provided and will classify the data 

on the basis of that. It then selects one other attribute for partitioning the data and so on. 

Many objects are represented in clusters that are mutually exclusive. 

Clustering is a high effective tool in similarity terms. In the quantitative measure, it has 

the ability to interpret any instinctive measure of a similar nature (Zhang, Ramakrishan 

&  Livny 1996). There are plenty of prospects to create clusters. One is to establish 

rules for participation in the same group based on the level of similarity among mem-

bers. Another prospect is to develop a set of functions to calculate partition belongings 

as the method of partition parameter. Figure 1 illustrates an example of clustering. 
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Figure 1: Clustering 

 

2.4.2 Classification 

 

Figure 2: Classification 

 

The data mining classification method is capable of processing a large amount of data 

according to Han, Kamber & Pei (2012). Classification assigns objects to desired 

categories in a dataset. In each record in the dataset, classification recognizes the 

targeted category. Classification adds a category tag to a group of unclassified 

instances. This phase is called supervised learning because the classification tag is given 

to all the training data. Classification is used to recategorize data objects into specific 

predefined groups (Weiss & Kulikowski, 1991). First, the training samples are given in 
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this type of project. A model is developed based on these training datasets that works 

for values of new other attributes. 

The classification method is used as the identification of trends in financial markets by 

information disclosure frameworks and thus immediately identifies the interesting 

pattern of large databases. The strategies of classification deduce a model from the 

dataset. The data consists of various types of attributes that indicate any tuple's specific 

category and these attributes are titled predicted. In addition to all these attributes, there 

are remaining ones that considered as the predicting attributes. A variable aggregation 

defines a class for the desired attribute. ⠀ 

Firstly, regarding the learning process of the classification rules, the analyst must 

identify the criteria for all classes. The program determines the class based on these 

requirements. The data mining program then creates the specifications for these 

categories. Originally, the prerequisite of a process is a tuple or case with definite 

established attribute values so that it can forecast the case-related category. 

After identifying the class, The model becomes capable of predicting the patterns that 

define the category, thus becomes successful in finding the description of each class. 

In this scenario, the description will apply to the training set's attributes that are 

beneficial to forecast because it will consider similar properties that satisfy the 

description and disregard the others.  Figure  provides an example of the decision tree 

for classification. 

Several data mining classification methods exist such as Decision Tree (Figure 

2), Nearest Neighbor, Naïve Bayes, Logistic regression,  Neural Networks, Rule-based, 

 Bayesian Belief Networks, Ensemble Met and Support Vector Machines. 

2.4.3 Association Rules 

Association rule mining is a method of discovering interesting relationships in databases 

between records (Agrawal & Srikant, 1994). This distinguishes specific rules from 

datasets utilizing different types of metrics. There are two elements to an association 

rule, the one is antecedent and the other is consequent. Antecedent is the item detected 

in the dataset and consequent is the item identified with the antecedent in the 

aggregation. Association rules establishment is done through examination of the data 

for repeated trends and then utilization of the principle of support and confidence to 

assess the most important relations. 
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Support is the number of records that exist in the database, and trust relies on support, it 

is the percentage of the transaction that includes support record and their dependent 

record. For instance 'if 80 percent of all records containing products A also include 

products B'. So, A plays the role of antecedent and B is the consequent. The value of B 

depends on A. Support is the individual number of products A and B. The value of B 

relies on A and its confidence value is 80 percent. 

Association rules can be categorized into two classes.  

1) Single-level rules of association  

2) Multi-level rules of association 

 

2.4.4 Characterization and Discrimination 

Data characterization is a description or abstract type of a specific data class' general 

attributes (Witten, Frank, Hall & Pal, 2017). The abstraction takes place, regarding data 

characterization, upon request of the users' special requirement. Normally by using a 

query the data could be retrieved.  

Summarization is the process of finding a short description for a section of data (Fay-

yad, et al., 1996). There are many advanced summarization methods and they are com-

monly used to conduct data processing and to support in the production of automated 

documents. 

As far as data discrimination is concerned, class data target objects are contrasted with 

objects of one or many different classes in terms of specific generalized characteristics 

(Pitt & Nayak, 2007) (Dash & Liu, 1997). 

 

2.4.5 Outlier Analysis/ Deviation Detection 

Outliers are objects that do not comply with the general model or data behavior (Han, 

Kamber & Pei, 2012). When outliers are identified in the database, other data mining 

procedures are used to throw them away before processing 

Outliers generally reflect exceptions or noise. Figure 3 shows outer analyzes, with R 

representing outlier data. Deviation detection is used to detect the major changes in data 

from previous normalized or calculated values (Fayyad, et al., 1996). 
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Figure 3: Outlier Analysis / Deviation Detection 

 

2.4.6 Frequent Patterns Mining 

Frequent patterns are defined as patterns that occur repeatedly in the data (Agrawal & 

Srikant, 1994). Patterns can be assumed to be the itemsets, sequences and subsequences. 

An itemset that reaches the minimum support criteria is either a frequent pattern or 

large-itemset. An item's support is the amount of that item appearing in all transactions. 

For instance, if items A, B and C exist simultaneously in seven out of ten transactions, 

the meaning is that itemset {A, B, C} has 70 percent support. Discovering these fre-

quent patterns plays an important role in the relationship between the mining associa-

tion link and many other useful data relationships. Consequently, frequent pattern min-

ing has become a significant task in data mining and reflected a lot on data mining re-

search. Finding frequent patterns with various real-world applications is a rather signifi-

cant data mining concern. In many business decision-making processes like catalog lay-

out, cross marketing, consumer purchasing activity etc., the identification of frequent 

pattern makes a difference. Using frequent itemsets, association rules are created. Data 

mining functionality covers a variety of apps and allows different types of information 

to be discovered and abstracted at various levels. 
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2.5 Big Data 

Big data, business analytics, 'smart' working and 'smart' living are becoming increasing-

ly important in past couple of years. Although these discussions are primarily technical-

ly oriented, organizations are researching new ways to effectively deliver large amount 

of data to create and extract value for users, companies, societies, and governments 

(McKinsey Global Institute, 2011). Whether this is data mining or machine learning to 

forecast individual action, customer behaviour, sports analytics, traffic flow or pandem-

ic outbreaks, Big Data is increasingly becoming a method that not only investigates pat-

terns but can also provide the forecasting probability of an occurrence. 

Groups and individuals have stepped onto this path to use continuously increasing data, 

mostly in storage capacity of terabytes and petabytes, in order to accurately estimate 

results with higher accuracy. Organizations like United Nations are develop-

ing projects that use new digital data resources, like phone communications and 

online payment systems, with actual-time data collection and data mining to boost de-

velopment efforts and identify potential threats through underdeveloped economies.  

Although Big Data seems to have become increasingly common as a commercial term, 

hardly any published scholarship is available that addresses the issues of using such 

tools. 

2.5.1 Big Data meaning 

 

Big data refers to databases, measured in terabytes and above, that are too large and 

complex to be used effectively on conventional systems. (Kubick, 2012)  

Big data is formed by a growing variety of sources such as website page views, 

smartphone transaction processing, customer-generated content and social networking 

sites, as well as intentionally created content via sensor networks or business activities 

such as sales queries and purchases. However, biotechnology, medical services, opera-

tions research, engineering, environmental media, gaming industry, finance and other 

sciences contribute to the pervasiveness of big data. Such data involve the use of power-

ful statistical techniques to uncover patterns and trends among these extremely large 

socioeconomic repositories as well as between them. 

Important insights learned from this data exploitation can usefully help define official 

statistics, surveys and archival data sources which continue to remain static, adding 
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depth and perspective and while processing in in real time, reducing time gaps. It is said 

that the key is in big data's 'largeness' that always gets the attention of scientists to the 

size of the dataset. However, there is a rapidly growing dialog between specialists that 

'big' is no longer the defining parameter, but how 'smart' it is, for example the insights 

that the amount of data can provide sufficiently. 

In any case, either large or smart, the use of big-scale data to predict and determine be-

haviour and results is earning currency in the practice of corporate and government pol-

icies and in scientific fields in which social and physical sciences converge, recently 

referred to as social physics (Pentland, 2014). 

2.5.2 Big Data Vs 

 

Also, certain big data features and characteristics are labelled as big data management 

Vs as show in Figure 4. 

 

Figure 4: Original Big Data Vs 
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There are three (1,2,3) primary (Figure 4) and two (4,5) additional Vs according to Fan 

and Bifet (2013):  

1. Volume: applies to the data size generated by all resources.  

2. Velocity: applies to the velocity of data production, storage, analysis and pro-

cessing. Recently, a focus is being set up to assist real-time analysis of big data.  

3. Variety: references to the various kinds of data produced. It has become frequent 

for most data not to be structured and not feasibly categorized or analysed.  

4. Variability: applies on how data structure and data meaning are continuously 

evolving, particularly while facing, for instance, with data collected by natural 

language analysis.  

5. Value: applies for the potential benefits of utilizing big data technologies to an 

industry, depending on the way data collection, strategic planning and method-

ology of big data are utilized. 

 

 

Figure 5: Big Data Vs 

 

Some also note several extra Vs of big data representing a number of more topics 

(Figure 5). For instance, volatility, that applies to the formal data retention policy im-

plemented from various sources. In addition, there is validity, that applies to software 

reliability, accuracy, and validation. Furthermore, there is veracity, that alludes to the 

precision and trustworthiness of the data recorded and the significance of the results 

produced for specific issues from the data. All big data's different features show the 

huge potential for gains and advances. 
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3 Smart City 

Undoubtedly, the main strength of the big data concept is the high influence it will have 

on numerous aspects of a smart city and consequently on people’s lives (Koutroumpis 

& Aija, 2013). Big data is growing rapidly, currently at a projected rate of 40 % growth 

in the amount of global data generated per year versus only 5 % growth in global IT 

spending. Around 90 % of the world’s digitized data was captured over just the past 

years. As a result, many governments have started to utilize big data to support the de-

velopment and sustainability of smart cities around the world.  

That allowed cities to maintain standards, principles, and requirements of the applica-

tions of smart city through realizing the main smart city characteristics. These character-

istics include sustainability, resilience, governance, enhanced quality of life, and intelli-

gent management of natural resources and city facilities. There are well-defined com-

ponents of the smart city, such as mobility, governance, environment, and people as 

well as its applications and services such as healthcare, transportation, smart education, 

and energy (Khan, Anjum & Kiani, 2013). To facilitate such applications and services 

large computational and storage facilities are needed.  

Α method to produce this kind of technologies is to depend on cloud computing and use 

the several benefits of utilizing cloud services to support big data management and apps 

in smart cities. 

Continuously increasing working projects and studies in this sector have produced sev-

eral publications that emphasized the significance of big data in assisting smart city 

apps and services. However, several studies explored a few of the concerns of using big 

data in smart cities (Kitchin, 2013), (Townsend, 2013), (Batty, 2013) (Llosa, Martinez, 

Domingo-Prieto, Angles & Vilajosana, 2013). 
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3.1 Smart City Basic Term Background   

 

The description of the smart city has dissimilar meanings from the people's point of 

view and technology's point of view. That's evident as governments establish new smart 

cities projects and they create divergent perspectives around the smart city. Despite the 

fact that smart city trends are widespread worldwide, the meaning is elusive. In other 

words, a distributed concept of a smart city is still not available, and a generic interna-

tional connotation is hard to identify. Nevertheless, most meanings outline common el-

ements, characteristics and components that could define smart cities' points of view. 

Definitions involve improving the quality of life for a specific sector–residents–by using 

hardware equipment, software applications, ICT networks and information on various 

urban sectors and services for information systems. It might also include various ele-

ments of the city such as transport, education, natural resources, facilities, energy, uni-

versal healthcare, state department and public safety and security. 

According to Neirotti, De Marco, Cagliano, Mangano & Scorrano (2014), “The concept 

of Smart City (SC) as a means to enhance the life quality of citizen has been gaining 

increasing importance in the agendas of policy makers. However, a shared definition of 

SC is not available and it is hard to identify common global trends”. 

Moreover, Khan, Anjum & Kiani (2013) mentioned that “A smart city is a city which 

invests in ICT enhanced governance and participatory processes to define appropriate 

public service and transportation investments that can ensure sustainable socio-

economic development, enhanced quality-of-life, and intelligent management of natural 

resources”. 

Also, according to Aguilera, Galan, Campos & Rodríguez (2013) ‘’Smart city is a very 

broad concept, which includes not only physical infrastructure but also human and so-

cial factors”. 

What is more, Kitchin (2014) defined that smart city is “A city that monitors and inte-

grates conditions of all of its critical infrastructures, including roads, bridges, tunnels, 

rails, subways, airports, seaports, communications, water, power, even major buildings, 

can better optimize its resources, plan its preventive maintenance activities, and monitor 

security aspects while maximizing services to its citizens”. 
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From all the meanings provided, depending on the author’s point of view, the smart city 

can be described as an integrated living solution that brings together several aspects of 

life such as power, transportation, social factors and construction in a smart and effi-

cient way to enhance the quality for city's residents. However, the descriptions also rely 

on the future by highlighting the value of generations to come regarding 

the development of resources and applications. It can be noted that these aspects con-

centrate on each smart city plan irrespective of the size, location and resources availa-

ble. 

Generally, governments worldwide are most often worried about the price of develop-

ing a smart city because of the different economical resources and lack of natural or 

human resources. One of the obstacles of developing and operating a smart city is the 

accessibility and volume of these resources and their capabilities. A further obstacle is 

the regulatory frameworks which might have a significant impact on the odds of suc-

cess. What is more, there are also technical challenges that demand highly advanced 

innovative solutions to top of all that. New innovative technological advances, on the 

other hand, should assist reshape these challenges into opportunities. 

Data are produced from numerous sources, which contributes to the creation of the 

aforementioned big data. Information sources are everywhere, mobile devices, game 

consoles, laptops, weather detectors, images, or even humans. Over the past decade, 

numerous technologies such as social networking websites, electronic images and vide-

os, financial transactions, marketing apps, gaming, sports and many others have assisted 

boosting data cloud generation (Michalik, Stofa & Zolotova, 2014), (Khan, Anjum & 

Kiani, 2013). 

In addition, several possible applications for big data to address issues straight from the 

source are available as well as analysis for deeper insights through data mining, data 

analytics and machine learning. In order to facilitate this increasing demand for re-

sources to assist big data analytics, the Cloud jumped in and gave an innovative and ef-

fective solution. Cloud is an effective system for extremely intensive-resource apps for 

successful inter-applications coordination. 

All of these matches really good for smart city technologies requirements and may as-

sist to solve several of the possible obstacles. Smart cities have higher chances of being 

smarter than ever before via these innovative applications and achieving their targets 

being both efficient and effective. 



  -23- 

 

Smart city apps produce vast quantities of data while big data technologies use this data 

to give proper information to improve smart city apps. Big data platforms can effective-

ly archive, manage, and analyse data about smart cities apps and generate insights to 

improve various smart city utilities. Furthermore, big data may also assist decision-

makers manage any improvement in smart city infrastructure, resources or regions.  

 

3.2 Smart City’s benefits and opportunities 

Today, most cities are vying to be smart cities in financial, environmental and social 

terms, hoping to extract some of the benefits. As a consequence, they may capture op-

portunities created by big data analytics in smart city apps. There several advantages 

and opportunities following that could help to make the decision to transform or up-

grade a city into a smart city. By making such decision, increased levels of stability, du-

rability, and governance can be accomplished. Besides that, there is 

the improved quality of life of the resident by implementing smart infrastructure and 

natural resource management (Khan, Anjum & Kiani, 2013). Several of the advantages 

of having a smart city include: 

1. Effective use of resources: with several resources being either sparse or quite 

costly, it is crucial to implement strategies in order to use these resources more 

efficiently and more controlled. It could be helpful to begin with technological 

systems like Geo Information System (GIS) and Enterprise Resource Planning 

(ERP) (Al-Hader & Rodzi, 2009). Through monitoring systems at operation, 

identifying failure spots and efficiently distributing resources will be simpler 

whilst managing costs, increasing power and use natural resources. Furthermore, 

one crucial element of smart city implementations is that they are engineered for 

interconnectivity and data gathering which can also facilitate better collaborated 

apps and services. 

2. Higher life quality: Smart city residents can have a higher life quality with better 

services, more optimal living and working models, as well as less waste (in 

both time and resources). This would be the outcome of higher organising of 

working / living spaces and facilities, more effective transport infrastructure, 
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faster and better utilities, and the accessibility of adequate data to take better de-

cisions. 

3. Greater standards of openness and transparency: the desire for better supervi-

sion and management of the various aspects and technologies of smart cities 

would result to increased levels of openness and interoperability. The trend will 

be information exchange and resource sharing. This will also increase the acces-

sibility of data for everybody who is interested. This should motivate among the 

parties cooperation and communication and create more utilities and apps that 

further promote the smart city idea. For instance, the United states government 

which, in the name of transparency and openness, gathered and published a 

broad range of data, papers and information. 

 

To accomplish these benefits, higher standards of complexity, participations are needed 

in aspects of applications, resources and individuals involved. There are ways to ac-

complish such advantages; but there is a need for innovation in more software, im-

proved development strategies, and efficient utilization of big data. Moreover, it is nec-

essary to establish policies to guarantee data reliability, higher levels of quality, securi-

ty, confidentiality and data control, and to utilize data documentation principles to es-

tablish guidelines on the content and use of the datasets (Bertot & Choi, 2013). 

Additionally, technological advances could be quite effective when taking into account 

energy resources, infrastructure management and safety, as well as natural resources 

with the primary objective of raising sustainability (Kramers, Höjer, Lövehagen & 

Wangel, 2014). Big data technologies in a smart city have the capability to support mul-

tiple sectors (Fan & Bifet, 2013). It allows generate greater user experiences and utili-

ties that help businesses accomplish greater performance (e.g. bigger profits or greater 

market shares). They also help improve health services by developing programs for pre-

ventive care, methods for treatment, diagnosis and rehabilitation, maintenance of medi-

cal records and quality of patient care. 

Big data technologies could greatly be beneficial to transportation infrastructure to au-

tomate and improve routes and schedules, satisfy various requirements and become eco-

friendlier. The implementation of big data technologies involves the assistance of a 

great network for ICT (information and communication technologies). ICT promotes 

smart cities technologies because it really gives useful alternatives and completely 
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unique approaches that could not be reached without its use. An instance in this case, 

would be the effective transportation management, by providing better methods to man-

age their operations from various sectors / areas in order to minimize travel costs (Kra-

mers, Höjer, Lövehagen & Wangel, 2014). 

Many instances involve efficient water resource and waste disposal management 

through the implementation of technologies to operate these kinds of systems efficient-

ly. Waste disposal management, for instance, includes activities like collect, dis-

pose, recycle and recover (Neirotti, De Marco, Cagliano, Mangano & Scorrano, 2014), 

that could all be handled effectively utilizing ICT strategies. Further instances cover lat-

est engineering and construction technologies for maintaining good building condi-

tion and safer environment, risk assessment, security, dust emissions, employee’s health 

and effective energy consumption. 

In overall, by using information/communication technology and big data in most of 

these apps and services, a smart city could be more intelligent. Implementing infor-

mation/communication technologies, big data and cloud computing technologies can 

help overcome a number of challenges such as offering tools for processing and analy-

sis. This will also help to achieve great levels of innovation (Khan, Anjum & Kiani, 

2013) and promote cooperation and interaction among smart city's various stakeholders. 

This could be achieved by establishing big data communities to operate as single organ-

ization to promote innovative and practical approaches for applications in fields such as 

education, healthcare, energy, law, research and development, climate, and safe-

ty/security 

 

3.3 Traffic Congestion management 

 

Big data mining and machine learning for smart cities utilization assists to solve produc-

tion, transport, and traffic management problems in real-time approaches using frame-

works and systems that are incorporated and provide data transfer efficiently through 

apps and stakeholders (Bertot & Choi, 2013). There are several cases of smart cities 

supporting big data mining technologies like Smart education (West, 2012) and Smart 

grid (U.S. Department of Energy, 2015), however a very important aspect is the Smart 
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traffic lights (Aguilera, Galan, Campos & Rodríguez, 2013) and the Traffic congestion 

management and prediction (Thianniwet, Phosaard & Pattara-Atikom 2009). 

 

3.3.1 Smart traffic lights 

 

A key feature of a smart city is efficient traffic flow management throughout the city, 

that could boost transportation networks flow and optimize traffic conditions for people 

and cities in general (Aguilera, Galan, Campos & Rodríguez, 2013). As the population 

grows, there are traffic issues, increased emissions, and environmental and econom-

ic issues. Because of the above, the utilization of smart traffic lights is among the most 

relevant strategies used by smart cities to come face to face regarding increasing traf-

fic congestion problems. A strategy in order to provide enough data on traffic patterns, 

smart traffic lights and signals must be integrated throughout traffic grids. Every sensor 

could measure a particular traffic flow variable like vehicle velocity, traffic density, 

lights waiting time, distances, etc. 

Based on machine learning algorithms, the model could make decisions depending 

on these variables and provide the lights and signals with the suitable specifications. 

Therefore, more information that this framework has, the more intelligent decisions it 

could make. As a consequence, it would be better to collect and analyse from all traffic 

signals around the city and develop smart decision mechanisms utilizing this data to de-

liver the best potential solutions in smart traffic lights. It includes the usage of Big Data 

analytics and Machine learning in real time. For instance, the introduction of smart traf-

fic lights and signals developed by the Traffic21 project in Pittsburgh, Pennsylvania, 

USA, produced important results, reducing traffic delays and travel times, leading in 

emissions reduction by more than 20% (Kandappu, Koh, Daratan, Jaiman, 2018). 

 

3.3.2 Traffic congestion prediction and related work 

Real- or future-time traffic jam knowledge would be very important for congested and 

overpopulated locations. Intelligent or smart transportation system (ITS) could help de-

velop certain congestion data reports via sophisticated prediction algorithms. Many pro-

grams were developed and introduced both by corporate and state agencies to collect 
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traffic information to supply ITS systems. According to Thianniwet, Phosaard & Pat-

tara-Atikom (2009), many energies are based on selective setup of static detectors like 

loop coils and smart video processing recorders. That being said, considering the cost of 

the hardware, plus the setup and maintenance, the expenses of such technologies seem 

to be quite heavy. 

In addition, such static detectors have always been exposed in most locations to severe 

weather events. What is more, it is hardly cost effective or technically feasible to deploy 

fixed detectors to cover all streets in major urban areas. Therefore, an alternate method 

of collecting traffic information and predicting traffic congestion with greater coverage 

at a reduced cost is required. 

Estimation methodologies for the congestion rate can differ according on the character-

istics of the data gathered. There are two different kinds of detectors that can indeed au-

tomatically collect traffic data: a fixed sensor and a mobile detector. Street cameras, 

speedometers etc., considered to be fixed sensors/detectors while mobile phones, vehi-

cle GPS considered to be mobile sensors/detectors. The research of Pattara-Αtikom & 

Peachavanish (2007) utilized the algorithm of the neural network from the mobile 

phone data gathered. this study utilized Cell Dwell Time / CDT, the moment a mobile 

phone connects to a mobile phone service antenna, offering a rough travel velocity. Thi-

anniwet, Phosaard and Pattara-Atikom's research (2009) used another methodology of 

machine learning that was better suited to the data morphology. 

GPS measurements could offer further reliable traffic information rather than the CDT 

results. This study implemented decision tree (J48) approach using a decision tree Clas-

sification algorithm on mobile sensors to identify road traffic congestion rates from 

GPS data. Getting data via mobile sensors could monitor much broader areas of traffic. 

The machine learning algorithm would indeed learn about vehicle's motion patterns. 

Fixed window sliding methodology was also utilized. The studies of Pongpaibool, Tan-

gamchit, & Noodwong (2007) and Porikli & Li (2004) predicted the rate of traffic jams 

by implementing fuzzy logic and hidden Markov method, respectively, utilizing traffic 

camera information. 

In addition, the studies of Lu & Cao (2003), Krause & von Altrock (1996) and Alessan-

dri & Repetto (2003) explored numerous alternate approaches related to traffic conges-

tion research. For instance, in several countries, as shown in the survey of Lomax, Tun-

er, Shunk, Levinson, Pratt, Bay & Douglas (1997) and Bertini (2005), the key criteria 
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utilized to describe traffic congestion rates are duration, velocity, size, quality of ser-

vice, and the traffic signal periods that drivers need to stop for. 

With that being mentioned, it is clear that a cost-effective way to deal with traffic con-

gestion management is to utilize traffic congestion prediction methods with machine 

learning algorithms. 

The next section described the methodology of the research. 
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4 Case study and Methodology 

4.1 Methodology explanation 

 

The purpose of this thesis was to deal with traffic congestion management problems re-

garding the city of Thessaloniki. The main strategy was to develop data mining/machine 

learning techniques for traffic congestion prediction in order to predict the traffic de-

pending the street, the specific day and hour etc.  

This would cause the driver to avoid high traffic on the street and to choose routes with 

better flow. Another advantage of utilizing this strategy could be that in a city, like 

Thessaloniki, where the many transportation problems occur the use of intelligent or 

smart transportation system based on the traffic prediction algorithms could make a dif-

ference. What is more, based on these algorithms, smart traffic lights mechanisms could 

be utilized on future studies. 

The idea was to extract data from a specific api, get data from json array, use several 

technologies and techniques for preprocess and data mining – machine learning algo-

rithms to forecast the result. 

For this overall project three main tasks have been combined. 

• Data extraction phase using python 3.6 programming language with Spyder in-

terface development environment 

• Data preprocess phase using Oracle database development and SQL program-

ming language. 

• Classification machine learning algorithm for traffic congestion forecasting us-

ing python’s 3.6 scikit learn library with Jupyter Notebook interactive develop-

ment environment 

. 
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4.2 Data extraction phase 

4.2.1 Sources 

There were 3 different sources regarding the data extraction process.  

1. As for the traffic congestion data, they were originated from 

http://opendata.imet.gr/dataset/network-congestion. This is a website that contains 

traffic data regarding speed, congestion, road links, travel times, historical data etc. 

about the city of Thessaloniki (Figure 6). The data were gathered from various 

sources (Mitsakis, Salanova, Chrysohoou, Aifadopoulou, 2015) (Mitsakis, Stamos, 

Salanova, Chrysohoou, Aifadopoulou, 2013) (Salanova, Chaniotakis, Mitsakis, 

Aifandopoulou, Bischoff, 2016). 

In the downloadable json file for congestion, the provided data were 

Link_id;"Link_Direction";"Timestamp";"Congestion"; 

 

 

Figure 6: Website that contains traffic data 

2. Emisia Database: This postgress database, provided by Emisia S.A. company, was 

created for an application called Wiseride. This App used to provide real time data 

from osmosis database (database that contains data from taxi drivers and other 

sources). Although these real time data were no longer accessible, the database con-

http://opendata.imet.gr/dataset/network-congestion
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tains data about the Link_id‘s of part 1 and it could be very useful to have an idea 

about the street names of the top speed of each road. 

 

Figure 7: Emisia Wiseride Database 

 

3. Openstreetmaps and Postgis database. 

The data of part two can be visualized by QGIS 2.18 app in cooperation with open 

source opensteetmap.org. 

OpenStreetMap (OSM) is a community project involving a world map that is public 

open available to access. The data generated by the project is regarded to be its main 

output instead of the map itself. OSM's creation and growth has been driven by re-

strictions on the use or accessibility of map data throughout much of the world, as well 

as the advent of affordable portable satellite navigation devices. OSM is regarded to be 

a notable example of voluntary information on geography. 
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Figure 8: Thessaloniki via QGIS 

 

The Link_id’s of parts 1 and 2 were visualized in QGIS app as it can been seen in Fig-

ure 8. 

4.2.2 Storage 

For the purpose of this thesis, a localhost Oracle database has been developed in order 

to save the data.  

Initially, a Thessaloniki table has been created containing data about the streets such as 

street names, the allowed top speed, the road type (main, secondary road etc.) as shown 

in Table 1. This table’s data was originated from Emisia Wiseride application and con-

tained several information, some of them unknown. 

Table 1: Thessaloniki’s important parameters detailed description. 

Variable Type Description 

id NUMBER(15)  

UNIQUE NOT NULL 

Id of the part of the road of the wiseride app 

osm_id  NUMBER(15) 

UNIQUE NOT NULL 

Id of the open street map part of the road. 

This matches with the traffic data, therefore 

this is the part of the road for the traffic con-
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gestion prediction. 

osmname VARCHAR2(100) Name of the road 

osm_source_id NUMBER(15) The first osm_id of the road 

osm_target_id NUMBER(15) The last osm_id of the road 

clazz NUMBER(5) Unknown 

flags NUMBER(1) Unknown 

source NUMBER(15) Unknown 

Target NUMBER(15) unknown 

Length FLOAT The length of each Id 

Kmh NUMBER(3) Top speed 

Cost FLOAT unknown 

reverse_cost FLOAT unknown 

x1 FLOAT Map coordinates in X axis, where the Id starts   

y1 FLOAT Map coordinates in Y axis, where the Id starts   

x2 FLOAT Map coordinates in X axis, where the Id ends   

y2 FLOAT Map coordinates in Y axis, where the Id ends   

category VARCHAR2(10) Type of the road 

 

There were several important notes to be mentioned.  

• An osm_id included several id’s 

• In most of the cases an osm_id was the part of the road that describes the dis-

tance from one traffic light to the next traffic light 

• An Id described the road for one block. 

• There were several street categories as presented in the following Table 2. 
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Table 2: Street categories 

KS_2K Main collector road 2-way without median strip

DA_2K secondary arterial road 2-way without median strip

KS_1K Main collector road One-way or two-way with median strip

KT600 unknown unknown

KT100 unknown unknown

DS_XX Secondary collector road unknown

DA_1K secondary arterial road One-way or two-way with median strip

KA_1K main arterial road One-way or two-way with median strip

KA_2K main arterial road 2-way without median strip  

 

Also, a very important table was the traffic congestion table (Table 3). This table has the 

following variables 

Table 3: Traffic congestion table 

Variable Type Description 

LINK_TIMESTAMP_ID VARCHAR2(100) 

UNIQUE NOT 

NULL 

Unique Id of the open street map 

part of the road and timestamp  

LINK_ID NUMBER(10) NOT 

NULL 

Id of the open street map part of the 

road. This matches with the osm_id 

from Thessaloniki table 

LINK_DIRECTION NUMBER(1) NOT 

NULL 

If it has 2 directions, it is a two way 

road 

TIME_STAMP TIMESTAMP Exact time of the response data. The 

provided data renewed every 15 

minutes 

CONGESTION VARCHAR2(10) Low, Medium or High 

 

In order for this table to be filled, two data extracting methods were developed.  

• In early stages of the project, the data were downloaded from 

http://opendata.imet.gr/dataset/network-congestion to csv file or copied to a txt 

file as Json array. Later, all these files were parsed using python 3.6 program-

http://opendata.imet.gr/dataset/network-congestion
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ming language with Spyder IDE. As mentioned, each record of the json array 

contains information about Link_id, Link_Direction, Timestamp and Conges-

tion. The Link_id, Link_Direction and Timestamp provided the unique 

LINK_TIMESTAMP_ID of this table, while the other values were extracted as 

they are. 

•  In order to have the best possible algorithm for traffic prediction, the amount of 

data needed were vast. To achieve this, a python algorithm has been developed 

in order to extract the traffic data from the aforementioned api and instantly in-

sert them to the table without having duplicate records. The link was renewed 

almost every 15 minutes, so the algorithm could extract data every quarter of an 

hour. In total, 828897 records have been inserted. 

The code that was developed for this phase can be viewed in Appendix. The overall ex-

traction phase was done during the months August, September, October of 2019. 

4.3 Data preprocess phase 

Data preprocess phase was one of the most difficult parts of this project. In order to de-

velop the classification for the forecast of traffic congestion all of these data were to 

have a necessary preprocess phase.  

The idea was to combine parts 1,2,3 of the previous paragraph and turn continuous val-

ues to non-continuous ones. For example, timestamp was to be divided to different time 

categories like per 15 minutes or day of the week or shopping hours, as it can been seen 

in the next table. 

One other problem had to do with the allowed max speed of each road. New parameters 

had to be created that would give non-continuous values providing details about the 

road, for example road length and sequence. 

4.3.1 Timestamp 

After interviewing, several employees and freelancers about the store and office hours 

and the importance on traffic congestion, an empirical evaluation had been done about 

shopping - office hours and traffic congestion.  

The 24-hour cycle was divided into 4 segments. The segmentation would be different 

every day and would depend on store opening hours. 

• From 09:00 to 20:59 in Tuesday, Friday and Thursday the stores were 'open' 
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• From 09:00' to 17:59 in Monday, Wednesday and Saturday the stores were 

'open' 

• From 07:30 to 08:59 in all days except Sunday the stores were 'opening'  

• From 21:00 to 22:00 in Tuesday, Friday and Thursday the stores were 'closing' 

• From 18:00 to 19:00 in Monday, Wednesday and Saturday the stores were 'clos-

ing' 

• In all the other cases the stores were 'closed' 

Another important segmentation done, was based on the timestamp providing the day of 

the week. The prediction was modeled based on a weekly cycle model. 

4.3.2 Road length and sequence 

As already mentioned, an osm_id or link_id (they were the same object) contained sev-

eral simple ids (Table 1 - Table 3). It was easy to identify what ids contained a link_id 

using the database. However, the difficulty occurred when the sequence of osm_id was 

needed. To achieve that, the starting and the end point of each osm_id needed to be 

identified. 

Also, the sequence and the location of simple ids was known via x1, x2, y1 and y2 

(Table 1), so the end of each link_id was similar to where the spot of the end of id was 

while the link_id was not the same. A similar procedure was done to find the overall 

road length of link_id. 

Also, as far as the road length is concerned, the average link_id road length was meas-

ured almost 200 meters, as it can been seen in the next image (Figure 9). 

 

Figure 9: Average road length 

For this reason, a new categorical value was created and charactizes if the link_id is 

more or less than 200 meters. 
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5 Machine Learning Algorithm 

5.1.1 Selected data 

As it can been seen in Figure 13 and Figure 14 the data selected were:  

• Time 

• Day 

• Stores  

• Congestion 

• Osm_id 

• Road larger than 200 meters 

• Max kilometers allowed on the road 

• Road category 

The traffic prediction was done for one of the most important streets in Thessaloniki, 

the Tsimiski street, in osm_id that was between Venizelou street and Dragoumi street. 

The specific part of this street is generally not that long and very few traffic records of 

this osm_id were extracted.  

 

Figure 10: All OMS_ID’s vs OMS_ID’s that traffic data exists 
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Generally, this was a common issue regarding the extracted data for all the city of Thes-

saloniki. In the previous image (Figure 10), green color describes all the osm_id that 

Thessaloniki has, while brown color describes the osm_id that contained more than 10 

traffic congestion timestamp records. As it can been seen there were several streets that 

did not contain enough data. 

 

Figure 11: Tsimiski street 

 

Figure 12: 13769164 Osm_id in Tsimiski street 
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Similarly, the traffic congestion data about the 13769164 osm_id were not enough as it 

can be viewed in light blue color in Figure 11 and Figure 12. Dark blue describes 

osm_ids of Tsimiski with sufficient data. 

For this reason, the selected data would cover two exact previous osm_id’s and one ex-

act next. These 3 extra osm_id’s were 197107696,176665188 and 174019380 (dark blue 

in Figure 12). The selection can be viewed in the next images (Figure 13 and Figure 

14). 

 

 

Figure 13: Selected data  

 

As it can been seen, for low congestion output was 0, for medium output was 1 and for 

high congestion output was 2. Also, there was a chance that each osm_id contained sev-
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eral different street categories (Table 2). This may occured because each osm_id de-

scribed several ids and some of them could be in different road categories.  

There is no panacea, but as far as this issue was concerned, the osm_id gets the road 

category with the most occurrences for this specific osm_id. This can be also seen in the 

next image. 

The export of the selection was a csv file. 

 

Figure 14: Selected data 

 

5.1.2 Initial Prediction Algorithm 

In general, categorical data work well with Decision Trees1 and all the provided param-

eters of the traffic dataset were categorized. As a result, for this task, a decision tree 

Classification machine learning algorithm was developed for traffic congestion forecast-

ing using python’s 3.6 Scikit learn library with Jupyter Notebook. Initially the exported 

                                                 

1 https://dzone.com/articles/logistic-regression-vs-decision-tree 

https://dzone.com/articles/logistic-regression-vs-decision-tree
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csv had been read using Pandas library (Figure 15). The total records of the extracted 

were 2155. 

 

Figure 15: Reading csv data 

After that, removal and targeting of congestion column was done (Figure 16). 

 

 

Figure 16: Congestion targeting 

The next step was to use label encoder in order to categorize the values time, day, open 

stores, osm_id, road leght greater than 200 meters and road category. This process is 

presented in Figure 17.  

Generally, Scikit learn library can more easily read categorical values 0,1,2 etc. This 

occurs because sometimes there can be text values that may be full numeric, and this 

may complex the algorithm and lead to bugging issues. 

 

Figure 17: Using label encoder to categorize the values 
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The updated dataset is presented in Figure 18: 

 

Figure 18: Updated dataset 

 

After this, the text variables had removed and the dataset then contained only 

categorical ones, as it can been seen in Figure 19, 

 

Figure 19: Text variables removed 

 

while the targeted congestion transformed like in the Figure 20’s view. 

 

Figure 20: Targeted congestion 

 

The next step of this process was to train the algorithm, using a 80 percent of the dataset 

for training and 20 percent for testing. This split procedure can be seen in Figure 21 
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Figure 21: Spliting and training the algorithm 

 

After spliting the algorithm, tree from sklearn library was used and a decission tree 

classifier model was created. This model was trained from the train set, as it can been 

seen in Figure 22. Moreover, the score of the model was very high, skyrocketing to 

0.93. 

 

Figure 22: Creating a decission tree classifier 

 

After that, it was time to check the model. For example, it is almost sure that at 04.00 in 

the morning during a week day like Wednesday that traffic congestion is low. The 

categorical value for 04.00 was 16, while for Wednesday was 6. Also the categorical 

osm_id for 13769164 was 0, the kmh parameter 1 and the road category 1 as it can been 

seeen in Figure 23. 

TIME DAY STORES OSM_ID LARGER_THAN_200MKMH CATEGORY TIME_n DAY_n STORES_n OSM_ID_n LARGER_THAN_200M_nKMH_n CATEGORY_n

4:00 WEDNESDAY CLOSED 13769164 NO 70 KS_2K 16 6 0 0 0 1 1  

Figure 23: Example for osm_id 13769164 
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The next image shows that the model’s response was 0 (Figure 24). That means that the 

traffic congestion at the aforementioned case was low, which was expected. 

 

Figure 24: Model’s response 

 

After this prediction, it was time to check the model for a more uncertain different case. 

The model was tested for 20.30 in the afternoon during Wednesday. The categorical 

value for 20.30 was 82, while for Wednesday was 6. Also the categorical osm_id for 

13769164 was 0, the kmh parameter 1 and the road category 1. 

 

Figure 25: Model’s response 

 

The Figure 25 shows that the model’s response was 1. That means that the traffic 

congestion at the aforementioned case was medium, which was also expected. 

As far as the accuracy is concerned, Figure 26 shows that after importing the metrics, 

the model’s accuracy score was 0.678.  

 

Figure 26: Model’s accuracy 
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5.1.3 Improving Prediction Algorithms 

In this stage, several efforts were made for accuracy improvement.  

First, as far as criterion is concerned, the default was “gini”. This feature provides the 

user the ability to use different attribute selection measure. One possible attempt to im-

prove accuracy was to choose a different attribute selection measure (Figure 27). Two 

supported criteria are “gini” for the Gini index and “entropy” for the information gain. 

 

Figure 27: Choosing information gain 

 

After this change the model score remained similar (Figure 28). 

 

Figure 28: Model score 

 

As for the predictions, the Figure 29 shows that the results remained the same. 

 

Figure 29: Predictions 

 

However, the acuracy score droped to 0.675 from 0.678. As it seems, utilizing infor-

mation gain did not help the algorithm’s performance (Figure 30). 
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Figure 30: Acuracy while utilizing information gain 

 

For optimizing decision tree performance, another attempt was to change the split 

strategy of the algorithm. This feature gives the user the ability to select the split 

strategy. Two supported strategies were “best” to select the best split and “random” to 

select the best random split. The split strategy was changed from “best” to “random” 

(Figure 31) 

 

 

Figure 31: Changing the split strategy 

 

After this change the model score remained similar (Figure 32). 

 

Figure 32: Model score 

 

As for the predictions, the results did not remained the same (Figure 33). 
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Figure 33: Prediction results and acuracy 

 

However, the acuracy score droped to 0.671. As it can been seen in Figure 33, utilizing 

random split did not improve the algorithm’s performance. 

That being noted, implementing the decision tree algorithm with Gini index and best 

split was the best performed algorithm.  

An extra effort for improving the accuracy would be also to extract more data. For these 

reasons, an extra extraction stage was implemented gathering a total number of 4355 

records, almost twice than the original extracted registrations (Figure 34). 

 

Figure 34: Using the algorithm with more data 
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The initial decision tree algorithm with Gini index and best split was the best performed 

algorithm and selected for this attempt (Figure 35). 

 

Figure 35: Decision tree algorithm with Gini index and best split 

 

After this change the model score decreased to 0.867 (Figure 36). 

 

Figure 36: Model score 

 

As for the predictions, the prediction results remained the same (Figure 37). 

 

Figure 37: Predictions 

 

However, the acuracy score increased almost to 0.7 according to Figure 38. As it seems, 

gathering, extracting and selecting more data and utilizing more information increased 

the algorithm’s performance. 
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Figure 38: Acuracy score 

 

5.1.4 Decision tree vs Logistic regression algorithms 

 

In this phase, the so far developed Decision tree algorithm was compared to Logistic 

regression algorithm based on their accuracy score. 

As far as the selection was concerned, the only difference was to road length as it is pre-

sented 

in

 Figure 39 and Figure 40. 
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 Figure 39: Data selection for logistic regression algorithm 

 

 

Figure 40: Data selection for logistic regression algorithm 

After the data were imported via csv parsing (Figure 41), the label encoder was utilized 

so the data to be categorized (Figure 42). 
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Figure 41: Reading csv data and congestion targeting 

 

 

 

Figure 42: Using label encoder to categorize the values 

 

Before spliting the algorithm, LogisticRegression from sklearn library was used and a 

Logistic regression classifier model was created. This model was trained from the train 

set, as it can been seen in Figure 43.  
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Figure 43: Creating a Logistic regression classifier and spliting the data 

 

Moreover, the score of the model was low, close to 0.66. (Figure 44). 

 

Figure 44: Model score 

 

As for the predictions, the Figure 45 shows that the results did not remained the same.  

 

 

Figure 45: Predictions 

 

What is more, the acuracy score droped to 0.674 compared to 0.7 that Decission Tree 

scored. As it seems, utilizing a Logistic regression algorithm was not the best option 

while using the specific dataset (Figure 46). 
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Figure 46: Acuracy while utilizing Logistic regression 
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6 Conclusions 

This final chapter summarizes the results, the challenges and the suggested future work 

that would come after the end of this study. 

6.1.1 Summary and results 

This final chapter summarizes the results. This research was conducted for Thessaloniki 

city to deal traffic congestion issues. The example presented was for one of the most 

main streets in the city, Tsimiski street. After collecting, storing and preprocessing the 

data from an api for 3 months (August, September, October of 2019) using python, sql 

and gis technologies, a model for predicting the traffic congestion for Tsimiski street 

was developed using decision tree machine learning algorithm and python with scikit 

learn and pandas libraries. 

The model was used to solve a mockup example providing results for specific day and 

hour in a part of Tsimiski street. While the outcomes were reasonable, an effort was 

done for better accuracy score. For this reason, several tests were implemented with dif-

ferent strategies proposed and applied for the same algorithm.  

Finally, the result of these attempts shown that the most important part for improving 

the algorithm was the data. A second attempt was done utilizing the original algorithm, 

which was also had the best accuracy score, combined with more data extracted and as a 

consequence more data to be trained and the outcome showed that the accuracy score 

was higher than before. This accuracy score was also higher compared to Logistic re-

gression algorithm’s accuracy score. 

6.1.2 Challenges 

Although a specific data sets was used, the data extraction and preprocess phase was 

challenging. 

The first challenge was about finding the qualified data. The goal was to retrieve both 

sufficient and enough information that would also be originated and describe traffic in 

the city of Thessaloniki. After managing with this issue, the best suited method for data 

storage was needed.  
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A decision for utilizing Oracle 12C database was done. This occurred because Oracle is 

a database delivers excellent performance when challenged with demanding tasks and 

the sql query selection for providing the necessary data was complex. 

After that very important decision had to be done in order to select the most appropriate 

machine algorithm for traffic prediction. Generally, categorical data work well with De-

cision Tree algorithms, while continuous data work well with Logistic Regression algo-

rithms. All the provided parameters of the traffic dataset were categorized and as a re-

sult a Decision Tree algorithm was selected. 

 

6.1.3 Future work 

Such work and research process require time-consuming analysis and different ap-

proaches. It is never possible to explore every aspect, especially when the time of deliv-

ery of each project being limited.  

However, there are several ideas that could be implemented combing knowledge via 

this thesis. As mentioned, the concept of Smart City was created to enhance the life 

quality of citizen so an idea would be to automate the prediction procedure utilizing an 

application to provide traffic prediction to residents.  

What is more, it is already mentioned in 3.3.1 paragraph that a key feature of a smart 

city is efficient traffic flow management throughout the city, that could boost transpor-

tation networks flow and optimize traffic conditions for people and cities in general. As 

the population grows, there are traffic issues, increased emissions, and environmental 

and economic issues. Because of the above, the utilization of smart traffic lights is 

among the most relevant strategies used by smart cities to come face to face regarding 

increasing traffic congestion problems. An idea would be to use the prediction results 

utilizing a smart traffic lights framework that would operate dynamically based on the 

predicted traffic congestion. 
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Appendix 

Below one can find some code for data extraction, gathering, and database importing  

Besides that, all samples scripts were written in Python.  
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