

 1

Implementation of a ChatBot
for helping users find the
nearest and cheapest gas
station

Aristotelis Gorgias

SID: 3306160001

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Mobile and Web Computing

DECEMBER 2019

THESSALONIKI – GREECE

 2

Implementation of a ChatBot
for helping users find the
nearest and cheapest gas
station

Aristotelis Gorgias

SID: 3306160001

Supervisor: Dr. Ioannis Magnisalis

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Mobile and Web Computing

DECEMBER 2019

THESSALONIKI – GREECE

 3

Abstract

The present dissertation was written as a part of the MSc in Mobile and Web Computing at

the International Hellenic University by the student Gorgias Aristotelis under the supervision

of Dr. Ioannis Magnisalis in cooperation with Dr.Stergios Tegos.

The terrifying rapid growth of technology has led humanity towards new

implementations, expertise and best practices in all aspects of production and creation. This

growth comes from the humans’ continuous effort to evolve, to create and to improve the

way of living and working by researching and experimenting. A critical outcome coming

from all this effort, is the continuous creation of data. Humongous amounts of data are being

generated everyday which has also led to the naming of our current epoch to, “The era of

Big Data”. The constant need of automating things and trying to make life easier in general,

has played a big role in the growth of artificial intelligence in combination with automations.

Speaking of automations, one can easily refer to robots, either hardware or software, that

have a specific set of functionalities to provide assistance when needed. These robots are

mainly created to make things and life easier. As already mentioned, these can either be

consisted by both hardware and software, where software gives meaning to the hardware,

like those you see in movies, or only by software itself.

A software bot is actually a clever algorithm which gets fed by data and gives as an

output some best results. The outcome of the bot can be based on multiple factors. Some of

these factors may be, the user’s needs, the amount of data that will be fed to the bot, technical

criteria, location criteria and more, but the most import factor is the purpose of the bot and

the reason that it has been created (e.g. a medical bot will provide different output to doctors

in contrast to humans with no medical knowledge).

The present dissertation will be consisted of two main chapters. The first will be a brief

review on the current status of the existing chatbots, a report on technologies and tools that

are being used to implement them and finally the scenarios and methods with which these

can be implemented. The second chapter is going to be the implementation of a Chatbot

prototype which will provide the best results to users who want to find the lowest price gas

stations near them.

The implementation will be divided in four parts which are, first, the implementation of

a web scraper which is a process to gather information from the Ministry’s of Development

and Competitiveness website for gas prices for all the gas stations in Greece, second, the

design and creation of a Database to store the data extracted from the scraper, third, the

implementation of a RESTful API which will be available at any time to serve and respond

to requests, and finally the design and implementation of the Chatbot prototype.

 4

At this point, I would like to deeply thank my supervisor Dr. Ioannis Magnisalis in

cooperation with Dr. Stergios Tegos for giving me this opportunity to work alongside them

on this interesting project.

I would also like to deeply thank my family for the consistent support they provided me

throughout these two years for successfully graduating and also for all of the years that I

have been a student, as they have always stood by my side and provided me the assistance

that I needed.

Gorgias Aristotelis

02/12/2019

 5

Contents

Abstract .. 3

Contents ... 5

Figures .. 6

Chapter 1: Introduction ... 7

1.1 Overview .. 7

1.2 Problem Statement and Objectives .. 8

1.3 Solving the problem ... 9

Chapter 2: Literature Review .. 10

2.1 What are the chatbots ... 10

2.2 Chatbot Frameworks ... 12

Chapter 3: Implementation ... 18

3.1 Tools, programming languages & technologies .. 18

3.1.1 Tools .. 18

3.1.2 Programming Languages .. 26

3.2.3 Technologies .. 29

3.2 Implementation Process ... 33

3.2.1 Scraper .. 33

3.2.2 Database Schema .. 41

3.2.3 PHP Rest API .. 45

3.2.4 The Chatbot prototype ... 47

Chapter 4: Discussion and results .. 54

4.1 Goals and implementation targets .. 54

4.2 Challenges and problems tackled ... 55

4.3 Limitations of current work .. 55

4.4 Future research .. 56

Chapter 5: Conclusions ... 57

Bibliography .. 58

 6

Figures

Figure 1 – Integration between bots and channels .. 12

Figure 2 – Microsoft Bot Framework Flow Diagram .. 13

Figure 3 – Dialogflow Flow Diagram .. 14

Figure 4 – ChatterBot Flow Diagram ... 16

Figure 5 – Screenshot of Sublime .. 19

Figure 6 – Screenshot of XAMPP .. 20

Figure 7 – Screenshot of Chrome Developer Tools .. 21

Figure 8 – Screenshot of Postman .. 22

Figure 9 – Screenshot of Datagrip .. 23

Figure 10 – Screenshot of Botsociety UI .. 24

Figure 11 – Screenshot of Dialogflow UI ... 25

Figure 12 – PHP Sample Code... 26

Figure 13 – SQL Sample Code .. 27

Figure 14 – Javascript written inside a JS Node running in Google’s servers 28

Figure 15 – cURL initialization, setting of options, execution and closing of session 30

Figure 16 – Datasets in XML form and browser’s output in raw text .. 30

Figure 17 – XML structure of response shown in developer tools .. 31

Figure 18 – XAMPP interface and services .. 32

Figure 19 – Datasets in Object form. Structured, readable and manageable 34

Figure 20 – Task scheduler interface .. 35

Figure 21 – Edit trigger interface ... 36

Figure 22 – Cron job scheduler .. 37

Figure 23 – Iteration through objects ... 38

Figure 24 – Total results of elements stored to the database ... 39

Figure 25 – Code sample of update file .. 39

Figure 26 – Update.php file output on browser .. 40

Figure 27 – Visual representation of the database schema .. 42

Figure 28 – Screenshot of Regions (dd) table ... 42

Figure 29 – Screenshot of Companies table.. 43

Figure 30 – Screenshot of Products table ... 43

Figure 31 – Screenshot of Stations table .. 44

Figure 32 – Screenshot of Mapping table ... 44

Figure 33 – Screenshot of Postman after call to the API endpoint... 46

Figure 34 – Basic Authorization type to perform the call.. 47

Figure 35 – User - agent interaction flow diagram exported by Botsociety tool 48

Figure 36 – Agent’s main intent named GetFuel .. 49

Figure 37 – Intent’s parameters location and product ... 50

Figure 38 – Fulfillment configuration to perform the call to our API .. 51

Figure 39 – Final stage Usage of the whole implementation ... 52

file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116373
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116374
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116375
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116376
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116377
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116378
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116379
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116380
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116381
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116382
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116383
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116384
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116385
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116386
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116387
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116388
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116389
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116390
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116391
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116392
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116393
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116394
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116395
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116396
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116397
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116398
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116399
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116400
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116402
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116401
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116403
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116404
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116405
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116406
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116407
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116408
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116409
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116410
file:///C:/Users/Aristotelis/Downloads/Dissertation.docx%23_Toc26116411

 7

Chapter 1: Introduction

In this chapter, a description will be given on what a Chatbot is and its definition. Firstly,

there is going to be an overview of the current status on the evolvement of bots in general,

what the purpose that these serve is, what makes them useful, what further possible purposes

they could serve and where this sudden rapid growth of them is coming from.

Further on, there will be a description on what the problem is that the implementation

and composing of this dissertation is trying to solve, giving a detailed explanation on the

aforementioned problem and gaps in the users’ needs. Therefore, objectives will be defined

and described, which must be fulfilled successfully by completing this dissertation.

The final outcome of the current implementation will be divided in 4 parts. The first part

will be the gathering of all of the information needed, which will feed the Chatbot with

accurate data to respond to user calls. This information will be consisted by the gas prices

for all of the gas stations in Greece, per county. The second part will be the design and the

creation of a database, in which, all of the information will be stored and afterwards retrieved

to serve queries made by users using the Chatbot. The third part is going to be an

implementation of a RESTful API which will serve responses to queries coming from the

Chatbot. Finally, the last part will be the designing of the Chatbot and its core functionalities

and finally the implementation of an actual Chatbot prototype.

1.1 Overview

It could be easily agreed that speech is maybe the strongest and most efficient way of

communication among humans. This big privilege and advantage that comes with speech

interaction, has led industries and researchers towards the invention of technologies and

methods to apply this kind of communication between humans and computers. The main

goal of this purpose is to achieve a human-to-human like interaction between humans and

computers.

While the speech interaction is gaining momentum as a technique between the

communication of humans and computers, there has been an urgent need in speech oriented

search engines and assistants. Almost all of the major tech organizations have implemented

their own speech search engines, assistants and Question Answering mechanisms such as

Siri, Google Now, Skyvi, Robin, Jarvis and more.

A Chatbot could be defined as an artificial intelligence (AI) piece of software which acts

as a conversational agent that interacts with users in natural language. Also, it could be

described as one of the most advanced, intelligent and promising interaction agent between

 8

humans and machines. The purpose of these agents is to simulate conversations with users

for whatever topic or domain they should serve. Its core functionality is to simply answer

questions.

Normally, the main task of a chatbot is to provide help and assistance to users who are

trying to complete a task. This task could be anything, for example, navigating through a

website, finding something on the web, understanding the features and functionalities of a

modern car and anything else that one could imagine. In other words, the way a chatbot

works is usually by the user initiating the whole process by asking a question or making a

comment on a topic and then the chatbot answering the question or continuing the discussion

on the user’s comment.

Finally, from a practical point of view, we could say that a chatbot only represents a

question answering system based on the Natural Language Processing (NLP) technologies

and techniques.

1.2 Problem Statement and Objectives

To easier define and state the problem that we are trying to describe and solve in this paper,

we have to first think of the current era that we are living in, the era of “Big Data”. There is

a constant and violent bombardment of information, knowledge and data every day, coming

from all means and kinds of media, either from the television, or blogs, or social media, or

websites and many more.

It is terrifying the fact that there are 2.5 quintillion bytes of data created every single day

whilst it is estimated that by 2020, 1.7MB of data will be generated every second for every

person on earth. Additionally, it is amazing that 90% of the world’s data has been created

over the last two years.

Having realized the true meaning of the term “Big Data”, we can now begin to

understand some of the biggest problems that will occur by this humongous amounts of data.

To state some, we can begin by thinking, how a user can find the best results to a query or

the managing and maintaining of these data. Further on, software and applications built to

successfully retrieve and serve information from this huge pool, must comply with modern

technologies and techniques which will make the retrieval process fast and reliable. One of

these technologies is the Natural Language Processing, on which, Chatbots rely and are built

on.

Having described the general problem, we can now focus individually on the problem

that has to be solved in this dissertation and that is nothing else than how to find the easiest

way to retrieve the best information needed on specific queries.

 9

Before continuing, it should be considered how the everyday human lifestyle is

nowadays. People tend to live in big cities where businesses and work opportunities thrive.

But, a disadvantage of living in such cities is the fact that everything takes more time to

happen and to be done. Big cities are characterized by traffic jams, crowded places with

noise and smaller amounts of free time since everything takes more time to be done.

In such a lifestyle, it is a natural behavior by humans to tend to make their life easier

even by the smallest things. They will try to find the easiest ways to travel, to buy groceries,

to pay bills, to book their tickets and most importantly, to search for things they need when

they are in a rush or in a busy situation.

More specifically, this Thesis will concentrate on how one can find the best match for

gas stations with the lowest prices and for the desired fuel products.

1.3 Solving the problem

The continuous growth of artificial intelligence, gives opportunities and advantages to

software engineers and developers to create and build fast, intelligent, reliable and practical

software. The biggest competitor against applications which must be downloaded first from

an app store, installed, opened and finally use the user interface (UI) to find what is needed

by doing taps on the screen, is the Chatbots, where it is only needed to speak to the device

to launch the Assistant Agent and dictate queries, having as a result to get the desired

responses. This is actually the true power of the chatbots, their instantaneous and extreme

ease of use.

To better describe a busy situation, we can consider the moment of being in a car and in

a rush and at the same time, running out of gas. At this point, there is an urgent need to

immediately find a gas station before running out of fuel which would make the problem

even bigger. Being in such a situation, it wouldn’t be safe to simply get a device on hands

and start searching for nearby gas stations on the web. This is where the Chatbots kick in.

The easiest and fastest solution to find the information needed is to simply speak to the

device and activate the Chatbot agent. Then, a speech dialog is initiated by the user, between

the user and the software, having as a result some desired answers which the Chatbot will

respond to the user’s questions. Therefore, in this dissertation, a Chatbot for finding the

lowest price gas stations near its users, is going to be implemented. To be more specific, the

implementation will be structured by a process for extracting the data of gas stations and gas

prices in whole Greece, the creation of a database to efficiently store the data organized and

categorized, an API which will be responsible for the communication between the database

and external authorized applications such as Chatbots and finally the design and

implementation of a Chatbot prototype which will be getting fed by data from the database,

through the API, aiming to return accurate information back to its users.

 10

It should be mentioned here that these data will be extracted from the

https://www.fuelprices.gr website, which is an asset of the Greece’s Ministry of

Development and Competitiveness.

Chapter 2: Literature Review

In this chapter a report will be given on the existing chatbot assistant agents that are currently

being used. Also, the theoretical background on which these are based on will be described,

and finally there will be a comparison of the available tools and frameworks for

implementing assistant agents. It should be noted here that Chatbots and Assistant Agents

are referred to as the same thing.

2.1 What are the chatbots

As previously mentioned on the first chapter, a chatbot is an artificially intelligent answering

agent, which serves the purpose of assisting users on different tasks in natural language.

Their biggest advantage which distinguish them among other services for information

retrieval procedures, is their ease of use in terms of, how fast they can be asked for

information having the least amount of clicks or taps made and as well as how fast and

efficiently they respond back.

A Chatbot’s aim is to make the communication between humans and computers happen

in natural language just like humans communicate with each other. The first implementation

on Chatbots roots back in the 1960’s. The reason of their creation back then was to see if

they will be able to fool users that they were real humans, nevertheless, the main reason that

the implementation of chatbots began was not for entertainment.

Chatbots are usually built on specific domains, to provide assistance on specific topics

but this is not always the case since the knowledge base that is running on the background

may be rich with lots of data, rather than poor. It is also dependent on the way that the

engineer will design, develop and train the Chatbot and its engine.

There are currently many chatbots created and deployed on the Internet for the purpose

of FAQ answering, information seeking, website guidance and more. Most of these are

structured by dialogue management modules via which they control the conversation process

and by chatbot knowledge bases to respond to user queries. These bases contain a set of

templates that match user inputs and further on, generate responses. The implementation of

chatbot knowledge bases is a time demanding and time consuming procedure because the

templates that are currently used in chatbots are hand coded.

https://www.fuelprices.gr/

 11

Depending on the way that the implementation has been done, chatbots could respond to

users’ queries in a conversation-like style or in a direct-answers style. For example, there is

a chatbot on the web named Cleverbot which has been implemented for entertainment

purposes and its responses are directed towards a conversational behavior. On the other hand,

a chatbot could be looking like more a Question Answering (QA) system, where the user

asks for information and the chatbot returns direct answers. For this Thesis, a chatbot that

will mainly behave like a QA system will be developed instead of a conversational agent.

In other words, the goal is the creation of a chatbot where users will ask for things like

“Find me a gas station” or “I am out of fuel” and the chatbot will return a list of gas stations,

returning the most relevant results first. The relevancy of the results will be depending on

the gas prices and the distance from users’ current location.

Before describing and analyzing the chatbot frameworks, first it should be mentioned in

detail, why chatbots are useful and what are the benefits for businesses of having their own.

To mention the most important benefits, these are the availability and reusability.

Availability refers to the fact that a chatbot is always available, at all hours of the day and

all days of the week. The frustration of waiting and queuing until queries get answered or

service is provided, is well known. Not only that, but this also results to work being delayed

which further on, leads to loss of interest in a customer.

Chatbots are an ultimate solution for this issue as they are always connected to the back-

end services that makes them able to accurately answer to questions in a human-like way,

through live chats (i.e. Facebook Messenger, Whatsapp etc.) which are available at any time.

Continuing, reusability states the fact that chatbots can handle and serve multiple users

simultaneously. Also, they can personalize the user experience, having as a result a better

service in general for the business.

Further on, it’s a cost effective solution. Having personnel to serve real time customer

service via chat, is a demanding and expensive task. In addition, not all personnel will

provide the same quality of information. On the other hand, a chatbot is an one time

investment. Contrasting Chatbots to personnel, the expenses of maintaining a chatbot are

less, comparing to the recurring expenses for personnel and also the service provided is more

effective.

Finally, via the use of chatbots, analytics can be gathered to generate have final reports

on the usefulness and usage of them, helping to the business’ growth.

 12

2.2 Chatbot Frameworks

As we previously mentioned, a chatbot can save time and money for businesses and as well

help employees work efficiently by dedicating time on other tasks rather than customer

service.

Chatbots are supported by a range of different platforms and so, they can be built on pre-

existing models like Skype, Slack, Facebook Messenger, Whatsapp, Cortana, Kik and more,

to interact with the users.

For example, Facebook Messenger chatbots are appearing everywhere as companies try

to improve the quality of customer service for low level functions mostly. A bot built on

Facebook Messenger, is an interactive intelligent agent which gets initiated when users click

on the Messenger icon on a Facebook Page or Website and then a Messenger session is

launched automatically, allowing the users to type a question and begin chatting with the

bot.

There are several ways to create a chatbot. In this part of the dissertation, the most known

available frameworks for implementing a chatbot are going to be described, compared and

contrasted.

Some of the most popular frameworks are the:

 Microsoft Bot Framework

 Dialogflow

Figure 1 – Integration between bots and channels

 13

 IBM Watson

 Botkit

 Pandorabots

 ChatterBot

 Wit.ai

 Botpress

 RASA Stack

Further on, the benefits, pros and cons of each framework are going to be analyzed and

described.

Microsoft Bot Framework

Starting with the Microsoft Bot Framework, it is a platform which allows to build, connect,

publish and manage smart and interactive chatbots, providing the best user experience.

An advantage of building a bot on Microsoft’s framework is that it can be integrated with

a Microsoft’s API called Microsoft Cognitive Services. These services are a set of machine

learning algorithms that Microsoft has developed to solve problems in the field of Artificial

Intelligence (AI). Developers and programmers can use these algorithms through REST calls

Figure 2 – Microsoft Bot Framework Flow Diagram

 14

over the Internet to the Cognitive Services. As Microsoft states, “Microsoft Bot Framework

will let you turn your ideas into a reality”.

Dialogflow

Continuing with Dialogflow, this framework better supports built text or voice-based

conversational interfaces for bots and applications. Dialogflow is powered by Google’s

machine learning, making it able to connect to users on Google Assistant, Amazon Alexa,

Mobile apps, Messenger, websites, Slack, Twitter and many more.

Dialogflow is able to serve millions of users as it runs on the Google Cloud Platform,

making it scalable. Also, it is user and developer friendly, it supports many languages giving

it the ability to become personalized and it is the best solution for NLP based applications

development. Node.js, PHP, Java (Maven), Ruby (Gem), Python, C# and Go are some of

the programming languages that can be used to develop bots in Dialogflow.

Figure 3 – Dialogflow Flow Diagram

 15

IBM Watson

Next comes IBM Watson, which is built on a neural network of one billion Wikipedia words.

Users can use bots built on this framework through platforms like Mobile Devices, Websites,

Robots and Messaging Applications. It uses machine learning to respond to natural language

input from the aforementioned platforms.

Watson assistant is a helpful tool which guides engineers through the development of a

chatbot for businesses, easily and quickly. It comes with a free 10.000 calls per month and

has available some sample bot codes for retail and banking.

Botkit

Botkit is one of the leading developer tools for building bots as there are more than 10.000

bots developed on Botkit and are already in use. It makes the development process easier as

it assists the developers to build their bots with the help of a visual conversational builder

and not only that, it also allows them to add plugins regarding their needs. It works on the

natural language processing engine LUIS.ai and also includes open source libraries like

Node.js. Finally, it integrates with platforms like Slack, Microsoft, IBM Watson, Facebook,

Twilio, Api.ai, Glitch, Heroku and Cisco Spark.

Pandorabots

Pandorabots is widely recognized as an Artificial Intelligence as a Service (AIaaS) platform

as it uses the Artificial Intelligence Markup Language (AIML) and as well includes the

Artificial Linguistic Internet Computer Entity (A.L.I.C.E.) which is a natural language

processing bot. In addition, the framework has recently been updated to include a new

feature wherein, AIML can be visualized.

The integration of Pandorabots is possible on Websites and various applications such as

Cortana, Messaging platforms and more. Finally, it comes with SDKs like Java, Node.js,

Ruby, Python, PHP and Go.

 16

ChatterBot

This framework is driven by Node.js and the bot automates the whole flow through machine

learning. It is also language independent and functions by creating a Python Library, having

as a result for the bot to be trained in any desired language.

The working mechanism of the bot is direct and clear. The more it gets fed by data and

input, the more it will be able to process the output efficiently by providing accurate results.

Figure 4 – ChatterBot Flow Diagram

 17

Wit.ai

Apart from only building bots, this framework also supports the development of automation

for wearable devices, voice interface for a mobile and home electronics hardware. It is free

and available with the Node.js, Python and Ruby SDKs. It can also be used as HTTP API.

Botpress

Botpress is an open-source platform which is based on a modular architecture having as main

features the following: Editor (flexible flow management system), Natural Language

understanding, Actionable Analytics and finally it can be used on all significant platforms

like Skype, SMS, Wechat and more. By using this platform, bots can be implemented locally

and then deployed on a cloud.

RASA Stack

RASA is as well an open-source platform for building bots which is based on machine

learning and it functions on two main integrands, the Rasa NLU which is a natural language

processor of the bot and Rasa Core which works on the inputs based on intent and entities.

Some of its main features are: Manage Contextual Dialogues, Recognize Intents, Exact

Entities, Full Data Control, Connect your APIs and Custom Models.

 18

Chapter 3: Implementation

In this part of the dissertation, the whole implementation process is going to be described

thoroughly. First of all, all of the tools that have been used throughout the implementation

will be mentioned and analyzed. Afterwards, an emphasize will be given on the

programming languages that were used to develop the backend, which will feed the chatbot

with accurate data. Continuing, there will be a detailed description on the tools and

frameworks that have been used to build the Chatbot and finally, the technologies and best

practices behind the whole aforementioned infrastructure are going to be explained.

3.1 Tools, programming languages & technologies

3.1.1 Tools

The tools that were used throughout the implementation of the Chatbot will be listed below

and then will be analyzed one by one.

1. Sublime

Text editor for the code development.

2. XAMPP

Cross platform web server application.

3. Google Chrome

Web browser for loading, rendering and browsing websites.

4. Postman

Platform for API development.

5. Datagrip

Strong and advanced database management software tool.

6. Botsociety

Design tool for mockups creation for chatbots or voice assistants.

7. Firebase Dialogflow - Google Assistant

Google’s advanced platform to design, develop, test and deploy Chatbots or

Assistant Agents.

 19

Sublime

All of the back-end has been coded from scratch. All of the code has been written by hand

using the Sublime text editor. Sublime is a free powerful text editor widely used by software

engineers and developers all over the world. It supports many programming and markup

languages. Its strongest attribute which make it famous and worth using it, is that it supports

the installation of community-built add-ons or plugins, which can extend its functionalities

and features. One great add-on is the “Code Prettify” which can extend and prettify minified

CSS and JS files and of course any other kind of code. It also has a good default dark skin

with a selection of good contrasting colors, making coding an easy task for developers

without getting their eyes tired.

Figure 5 – Screenshot of Sublime

 20

XAMPP

XAMPP is a free and open source cross platform web server tool, developed by Apache

Friends. It is consisted by the Apache HTTP Server and the MariaDB database. It can make

any computer function as a server, making it able to serve websites. It is widely used by

millions of developers and is easy to set it up fast.

First of all, XAMPP has been used to create a local server. This server was then used for

the testing and hosting of the software that was written for the implementation of the back-

end.

Figure 6 – Screenshot of XAMPP

 21

Google Chrome

Google Chrome is a cross-platform web browser created by Google and is probably the most

used browser worldwide. This has been selected for the implementation due to its great

developer tools.

Figure 7 – Screenshot of Chrome Developer Tools

 22

Postman

Postman is a collaboration platform for API development. It contains strong features that

simplify each step of building an API and streamline collaboration to create strong reliable

APIs.

It can be easily used by simply setting the URL of the API that needs to be called and by

setting the headers and body of the call that will be performed via HTTP. It also supports all

kind of requests like Post, Get, Put, Delete, Patch and more.

Figure 8 – Screenshot of Postman

 23

Datagrip

Datagrip is a strong database IDE that is tailored to suit the specific needs of professional

SQL developers. It gives an extended insight into how the queries work and into the database

engine behavior, making the queries more efficient. Jumping and switching fast to any table,

view, or procedure gets totally easy and efficient due to the great user interface it has. Also,

it is possible to execute queries in different modes and provides a local history that keeps

track of all the activity and protects developers from losing their work.

Figure 9 – Screenshot of Datagrip

 24

Botsociety

Botsociety is a design tool for designing, creating, previewing and prototyping Chatbots and

voice assistant agents. It has a friendly user interface where developers can design the flows

and paths that the users are going to follow during the conversation with the agent. A great

advantage of using this tool is that it can export the prototype design to Google’s Dialogflow

or Rasa directly, where developers can then further develop the actual agent and all of the

functionalities that it will serve.

Figure 10 – Screenshot of Botsociety UI

 25

Dialogflow - Google Assistant

Google’s Dialogflow is a strong platform for developing, testing and deploying chatbot

agents. There is a lot of documentation supporting the whole platform and with its advanced

and friendly user interface, developers can almost do anything regarding the requirements

of the chatbot’s implementation.

Figure 11 – Screenshot of Dialogflow UI

 26

3.1.2 Programming Languages

PHP

The main programming language that has been used for the implementation of the back-end

infrastructure is the PHP. The PHP acronym originally derived from “Personal Home

Page” Tools but now stands for Hypertext Preprocessor. It is a powerful backend language

used in more than 80% of the global web applications. Also, it is very simple and easy to

learn, making it one of the top programming languages. Also, there is a lot of documentation

behind PHP on the web and it comes with lots of developer friendly ready-made functions

and libraries for many purposes and functionalities such as CURL and PDO.

On the other hand, coding in PHP can be a tedious and time consuming job, as in many

cases, writing in PHP requires to be done from scratch even for single functions. Therefore,

built in PHP libraries got introduced in the market to make coding more efficient and less

time consuming at the same time.

Figure 12 – PHP Sample Code

 27

SQL

The Structured Query Language (SQL) is a standard language for storing, manipulating and

retrieving data in databases. Also described as a domain-specific language used in

programming and designed for managing data held in a relational database management

system (RDBMS) or for stream processing in a relational data stream management system

(RDSMS), it is particularly useful in handling structured data.

Its bigger advantages over the older read–write methods to store and access data such

as ISAM or VSAM are, firstly, it introduced the concept of accessing many records with one

single command and secondly, it eliminates the need to specify how to reach a record, with

or without an index.

SQL is based upon relational algebra and tuple relational calculus and provides many

types of statements, which may be informally classed as sublanguages. These are: a data

query language (DQL), a data definition language (DDL), a data control language (DCL),

and a data manipulation language (DML). The scope of SQL includes data query, data

manipulation (insert, update and delete), data definition (schema creation and modification)

and data access control. Although SQL is essentially a declarative language, it includes

also procedural elements.

Figure 13 – SQL Sample Code

https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/ISAM
https://en.wikipedia.org/wiki/VSAM
https://en.wikipedia.org/wiki/Database_index

 28

Javascript via Node.js

JavaScript, often abbreviated as JS, is a high-level, instantaneously compiled, object-

oriented programming language. JavaScript has curly-bracket syntax, dynamic typing,

prototype-based object-orientation, and first-class functions. Also, it is the programming

language of HTML and the Web and is easy to learn.

Node.js is an open-source, cross-platform, JavaScript runtime environment that executes

JavaScript code outside of a browser.

Figure 14 – Javascript written inside a JS Node running in Google’s servers

 29

3.2.3 Technologies

For the implementation of this dissertation, apart from the use of tools and the programming

languages, there has also been a selection of specific technologies which serve certain

purposes. The technologies used are:

 cURL Requests

 PHP’s PDO

 Apache Server

 MariaDB Storage Engine

 Axios JS

cURL is a PHP library that executes HTTP requests and also transfer files or download

data over HTTP and FTP protocols. It supports proxies, transfer of data over SSL

connections, can set cookies and even get files that are behind a login.

In order to use PHP’s cURL functions, libcurl package must be installed first. The

XAMPP web server that has been used, had already the cURL package installed and many

other PHP libraries as well.

In order to perform a cURL HTTP request, a cURL session must be initialized first by

calling the function curl_init(). This function instantiates a new session and returns a cURL

handle to be used with the functions curl_setopt(), curl_exec() and curl_close().

The curl_setopt() function has to be used next to set the options for the cURL transfer.

There is a very big number of available options to be used and the selection of these is being

made by the needs and the circumstances associated with the call that has to be performed.

Continuing, the curl_exec() function, executes the given cURL session. This function is

normally being called after initializing a cURL session and setting all the options for the

session.

And finally, the curl_close() closes the cURL session and frees all the resources that had

been reserved for the session.

cURL has been used for this Thesis, in order to get the contents of the

“http://www.fuelprices.gr/test/xml/get_prices.view” URL end point, which contain the full

dataset of all the gas prices information for all the gas stations in whole Greece. The data

returned by the cURL is a raw string and therefore, it is not easily manageable. For this

reason, PHP’s simplexml_load_string() function has been used to transform the string into

data objects, which can be easily read, processed and manipulated.

 30

As already said, the response of the cURL call, is a huge raw text string. As shown in

the figure below, a browser renders the data in an unstructured and compressed huge string.

The part of the text that has been marked, is the information for a gas station for one single

product which in this case is the fuel Unleaded 95.

Figure 16 – Datasets in XML form and browser’s output in raw text

Figure 15 – cURL initialization, setting of options, execution and closing of session

 31

It is worth mentioning here that inspecting the results shown in the figure above using

the Google Chrome’s developer tools, revealed the actual structured XML format of the

response, something that is being shown in the figure below.

PDO stands for PHP data objects and is currently the most secure way to read and write

data to a database with PHP and SQL. PDO is a PHP library included in PHP 5.1 and later,

and is a lightweight and consistent interface for accessing databases in PHP.

Apache is a free and open-source cross-platform web server software. The vast majority

of Apache HTTP Server instances run on Linux but newer versions can also run on Microsoft

Windows and other Unix-like systems. Apache played a key role in the initial growth of the

World Wide Web. Apache web server was used for the development and thorough testing

of the back end written in PHP.

MariaDB is a community developed and commercially supported fork of the MySQL

relational database management system, intended to remain a free and open-source software

under the GNU General Public License. Both Apache and MariaDB come ready in the

Figure 17 – XML structure of response shown in developer tools

 32

XAMPP package and therefore this is the reason of choosing to use MariaDB for the SQL

engine to serve queries to the database.

To use XAMPP, the only thing that has to be done is to download the package from the

official website and install it. After that, by launching the program, a list of services can be

started to be used. As shown in the figure below, for the implementation of the chatbot,

Apache and MySQL have been used to fetch and store the data in the database.

XAMPP can be thoroughly configured and create Apache servers to cover the needs of

developers. With some deep knowledge on networks, XAMPP can also be configured in

such a way to serve websites not only locally but on the World Wide Web as well.

Axios is a promise-based HTTP client that works both in the browser and in a

Node.js environment. It basically provides a single API for dealing with XMLHttpRequests

and node's http interface. Besides that, it wraps the requests using a polyfill for ES6 new's

promise syntax.

Figure 18 – XAMPP interface and services

 33

3.2 Implementation Process

In this part of the dissertation, the whole implementation is going to be described in detail.

As said before, the development of the back-end was divided in three parts. The first one

was the writing of the Scraper. The second was the design and creation of the database and

finally, the third part was the development of the RESTful API.

3.2.1 Scraper

The first part of the implementation was the designing and coding of the web scraper. A

scraper’s job is to get the contents from a website, then structure those, analyze them and

finally take actions on them like to store them in a database or manipulate them in any way.

The scraper that has been implemented for this dissertation does exactly this.

First of all, PHP’s cURL library is used to perform a call programmatically to the URL

“http://www.fuelprices.gr/test/xml/get_prices.view” which is an end point from the Greece’s

Ministry of Development and Competitiveness. This URL contains full information for each

gas station all over Greece and it is served in an XML structure. More specifically, a call to

the above URL will return the following information:

1. Station ID

2. Station Name

3. Station Address

4. Station Zipcode

5. Municipal District ID

6. Municipal District Name

7. Municipal District Description

8. County Name

9. Product ID

10. Product Name

11. Product Price (for that station)

12. Timestamp (the date and time that the price was updated)

13. Company ID (the company that owns the product)

14. Company Name

Therefore, the scraper that has been implemented, dynamically gets all this information

for all the gas stations in whole Greece, which are approximately a bit less than 5000 in total.

The response of the call is an unstructured huge raw string which afterwards gets converted

to data objects which can be analyzed, stored and manipulated.

 34

The options that were chosen to perform the cURL session are the CURLOPT_URL,

CURLOPT_RETURNTRANSFER and CURLOPT_ENCODING, as shown in figure 15.

The first one is to set the URL to fetch the data from. In other words, the URL from which

the gas stations and fuel prices data are going to be pulled. The second option is being used

when the response of the call needs to be returned as a string instead of outputting it directly.

In this case, this option has been used to fetch all of the data and then another PHP’s built in

function has been selected to transform the raw string to data objects. Finally, the third option

has been used to enable the decoding of the response. The data that the cURL call fetches,

contain Greek letters and characters which need to be decoded. Otherwise, the system would

translate them to weird unreadable characters.

The image below represents the XML structure for one product only of one gas station.

In detail, what it represents is an object with seven keys from which, the keys address,

product and company contain nested objects as well.

To further explain how the scraper has been written, let’s start by saying that it is

consisted of two files and these are the index.php and the update.php. These two files serve

more or less the same purpose but the main difference is that the handling of data differs

between them. In more detail, the index file is used only for the initialization of the database.

What this means is, this file is being ran only once, in cases where the whole infrastructure

gets set up in a new server for the first time and therefore the database is empty and needs

to be filled with all the current information that the Ministry’s end point serve or when for

example something went wrong and the data in the database got corrupted and needs to be

refreshed by dropping all the tables, recreating them and finally refilling them with the

aforementioned data.

Figure 19 – Datasets in Object form. Structured, readable and manageable

 35

The update file now is being used to maintain and update the prices for all of the existing

information. This file also handles the cases where new stations or new products or new

regions appear for the first time and stores them appropriately. The first file is being ran

manually for the initialization whilst the second file gets run automatically by the server’s

cron job scheduler. The cron job tool is available only in linux environments. Throughout

the implementation though, the environment used was Windows 7 and therefore, the

Window’s task scheduler was used to implement the cron jobber’s functionality.

The time interval chosen for the updating of the database was 30 minutes in the

development phse and will be 5 minutes for the production application. By updating the

database every 5 minutes, accuracy of the data is ensured with the current up to date prices.

Figure 20 – Task scheduler interface

 36

The figure above shows the task scheduler’s interface. To schedule the execution of a

PHP file every 30 minutes, a task must be created. The next step is to create a trigger which

will perform the execution depending on the time interval.

Figure 21 – Edit trigger interface

 37

The equivalent schedule in a cron job scheduler is shown at the figure below.

Now let’s analyze the code that composes those two files. To begin with the index file,

as mentioned before, the first thing that happens is the cURL call to get the data with the

corresponding options and then the response’s transformation from raw text to data objects

which is shown in figure 15.

The next step is to iterate through every single object and store its data to the database.

Figure 22 – Cron job scheduler

 38

In each iteration, the script stores the information for the Regions, the Stations, the

Companies, the Products and finally the mapping of Products to Stations with the prices and

the latest timestamp of when these got updated by the Ministry. Figure 23 shows a small part

of the script, displaying the process of storing the information for the Companies and the

mapping Station - Product - Price.

Firstly, the SQL Insert queries are written and stored to PHP variables and then these

queries get prepared to PDO objects. The execution happens in TRY – CATCH statements

to avoid the interruption of the code’s execution for data that are already stored to the

database, like inserting the same station or product twice. Storing the same element twice

would have caused an SQL error and as well, it would interrupt the execution and that is

because the tables in the database have primary and unique keys which prevent duplicates,

but this is going to be further explained later.

Also, the data returned from the cURL call can contain prices with values equal with 0

and therefore, those have been excluded from getting stored to the database by using an IF

statement as shown in the figure above. The reason for those getting excluded is obvious. It

is irrelevant and pointless to show these results to the users.

Figure 23 – Iteration through objects

 39

Throughout the whole process of iterating and storing the data, counters are kept for each

element that got successfully inserted in the database and when the whole iteration process

is done, the total numbers of the items stored are displayed to the browser’s screen.

Continuing with the update file, the steps to fetch the data via a cURL call and transform

them into data objects are the same. The difference here is that the prices of the gas stations’

products need to be updated and also store new elements if there are any. These new elements

can be anything, from a Greece’s Region that hadn’t been stored at the database initialization

phase or new Stations or Companies or Products. For this reason, there are several checking

functions and if statements to check whether the current object that is being processed at the

current iteration is already stored or not. These checks happen consecutively for each object.

Also, every event that is happening during the whole process, is being logged at a logger

file.

Figure 24 – Total results of elements stored to the database

Figure 25 – Code sample of update file

 40

Some critical cases that are worth mentioning here are the following:

1. The object that is being processed is not stored as probably it was not existing

during the process of initializing the database and therefore has to be stored but

its price is 0. In this case the insertion is skipped and the process goes on to the

next object.

2. The object that is being processed is already stored with a normal non 0 price and

the new updated price is as well non 0. In that case the price’s value and

timestamp get updated for the existing entry in the database.

3. The object that is being processed is already stored with a normal non 0 price and

the new updated price is 0. In that case, the existing outdated entry gets removed

from the mapping of Station – Product table. The database’s structure and the

tables that consist it will be further explained on the next chapter.

4. The object that is being processed is already stored with a normal non 0 price and

the new updated price is exactly the same as the one stored. In this case the script

skips that object and continues to the next one.

During the whole update process, the script logs every event in the logger file and also

outputs everything on the browser in case the update file is ran manually through a browser.

Otherwise, if the update file is being ran from the cron job, then the logging happens to the

file only.

Figure 26 – Update.php file output on browser

 41

3.2.2 Database Schema

In this part, the designing and structure of the database is going to be described in detail.

First of all, by observing the elements that the cURL call returns, it was clear from the

beginning that the database will be consisted of 4 tables. These tables are the Regions table

which is named “dd” in the database to keep consistency and keep the same name as the one

returned in the cURL response. The other 3 tables are the Companies, the Products and the

Stations. In these tables, all the relevant information for the Regions, Companies, Products

and Stations are being stored.

Apart from those 4 tables, there was a need to also include one more which was named

“station_product_map”. In this table, a mapping of products to stations is being kept and for

every entry there is the price and timestamp details. Therefore, this table is the biggest

comparing to the rest having approximately 23.000 rows. To give some insights for the rest

of the tables as well, the Stations table has about 4800 rows, where each row represents an

actual station, the Products table has about 210 rows, the Companies table has 21 rows and

the Regions table has about 1600 rows.

Apart from thinking of how and where the data will be stored, rules had also to be

included and applied on these tables to prevent errors and duplicate values that would serve

false information to the users. To achieve this, primary and unique keys to the tables were

created. The primary key of the Stations table is the Station ID, for Products is the product

ID, for Companies is the company ID and so on. The mapping table on the other hand, has

a combined unique key consisted of 2 primary keys. These keys are the Station ID and

Product ID primary keys.

The figure below shows a visual representation of the database and how each table

connects to the other.

 42

Figure 27 – Visual representation of the database schema

Figure 28 – Screenshot of Regions (dd) table

 43

Figure 30 – Screenshot of Companies table

Figure 29 – Screenshot of Products table

 44

Figure 31 – Screenshot of Stations table

Figure 32 – Screenshot of Mapping table

 45

3.2.3 PHP Rest API

The acronym API stands for Application Programming Interface which is an interface or a

communication protocol or sometimes also described as a “contract” between a client and a

server. The reason for the API implementation was for the Chatbot to be able to get data

from the database. In other words, an API is a URL end point, from which a client can request

data, similar to what has been done at the cURL call process where the gas stations and

prices information is requested from the Ministry’s URL end point.

The API has been implemented in PHP. More or less, the API is PHP classes for reading

and accessing the database and finally returning the requested information. Since an API is

an end point, this means that anyone knowing of its existence, can access it and use it.

Therefore, Basic Auth using username and password has been included to secure the API

and allow access to authorized clients only. Otherwise, the back end would be at risk of

attacks or misuse.

The API is consisted of two PHP classes. The first one is the Prices class which is

responsible for reading the database based on the queries coming from the client and

returning the responses back to the clients. The second class is the Database which is

responsible for managing the connection to the database, by either opening or closing a

connection. Finally there is an end point file which is called “read” and this is the one through

which the clients pass their queries to the API.

The figure below shows a call to the API. In this call, there is a request to the end point’s

URL “http://local/fuelprices/rest_api/api/prices/read.php” for the fuel prices of gas stations

in Greece’s region named “Νομός Σερρών” for the product “Αμόλυβδη 95”. The response

returned contains 15 gas stations and those are listed by the lowest price first to the highest

at the end.

 46

Notice that the API call is a POST type and therefore the parameters are being passed in

the body of the message and not through the URL, as it would be the case for GET type

requests.

Figure 33 – Screenshot of Postman after call to the API endpoint

 47

The figure above shows the credentials username and password that have been set to

perform the call.

To create this authorization mechanism, two files have been included in the API’s root

folder. These files are an .htaccess and an .htpasswd file respectively.

3.2.4 The Chatbot prototype

Finally, in this last part of the implementation, all the things that have been done to

implement the Chatbot prototype will be described.

After having created the whole aforementioned infrastructure, the thinking and designing

of how the actual product will look like, takes place. In this case, the product is a Chatbot or

better an Assistant Agent. The goal from the beginning was to create a service to feed

accurate data to that assistant agent and give precise answers to users about fuel prices on

selected locations and specific fuel products. Therefore, after having implemented the back-

end service, Botsociety platform was then used to design the interaction flow between the

user and the agent.

There may be several things that a user could say to request fuel prices information like

for example “I need fuel” or “I’m out of fuel” or “Find me the closest gas stations” and

further on, the agent could respond several things back to the user instead of simply giving

direct answers. For example, the agent may ask first the location of the user and after the

user responds back to the agent about their location, the agent may then ask about which fuel

Figure 34 – Basic Authorization type to perform the call

 48

product the user would like to find information for and so the user could again respond back

to the agent by saying “Unleaded 95”.

So, simply like that, there may actually be lots of conversational paths which the users

may follow by interacting with the assistant agent until they get the information they need.

Therefore, some of those paths where designed in Botsociety to have a better view of how

the interaction may happen and which paths connect to each other and where.

The figure above shows some path examples that the users could follow to get the fuel

prices they need. Start, represents the initiation of the session by the users between them and

the agent. The initiation may happen by saying “Ok Google” on an android device. Then,

the flow diagram shows 2 paths that the users could follow which afterwards connect to the

same node again, since at that point, it is important for the agent to know the user’s location.

At that point, a different implementation was considered, where the agent gets the users’

location by their device’s GPS services but for that to happen, the users have to grant to the

agent access to their device’s location permissions. The granting of access happens only

once but there may be users who don’t want to grant access to the agent and therefore there

must be an alternative path for that case, the one that have already been implemented and in

which the agent asks from the users to share their location. Then, the users respond back to

Figure 35 – User - agent interaction flow diagram exported by Botsociety tool

 49

the agent of their location and the agent asks back which type of fuel they would like to find

prices information about. Finally, the users answer back the fuel product that they desire and

they get the information they need.

To note here, there could be countless paths in the flow diagram but for the purposes of

this dissertation and to also have a clean and direct flow diagram, it has been kept simple to

what the figure shows.

After finally having created a complete flow that suit the needs of the implementation,

the option to export this design to Dialogflow or Rasa is provided by Botsociety, which are

both platforms for advanced development of chatbots. The Dialogflow platform was chosen

which is a Google product and feels more familiar. The export is useful in general terms but

there was a lot of work needed to be done to correct things that didn’t happen as expected.

First of all, regarding the Dialogflow platform, for an assistance agent to function there

are several things that need to be done. The most important thing is the configuration of the

Intents. The intents are the intentions or in other words, the logical functions that the agent

does. For example, the getting of the fuel prices is one intent. Getting the user’s location

could be a different intent and so on. The retrieval of fuel prices has been implemented in

one intent only since it only serves one purpose and that is the retrieval of fuel prices by

doing only one request. This of course could have been done in different ways as well by

including more than one intents.

The correct configuration of an intent requires training phrases which will train the agent

to understand the way that it should work and function.

Figure 36 shows the training phrases that were included in the agent’s main intent which

is named GetFuel. These training phrases have a form of “I’m in «location» and I need

«product»”. After adding only two phrases, the agent understood that at the positions of the

yellow and orange words it will expect a keyword for each one of the colors respectively.

Figure 36 – Agent’s main intent named GetFuel

 50

The keywords had to be marked and given specific types, to make the agent understand what

kind of keywords these will be, which in this case, both are @sys.any. This converted these

keywords from normal words to parameters, through which data will be passed to the API

call that will happen after the user’s question to the agent. The @sys.any type means that

this parameter is of any type and should be correctly configured by the developer. In this

case, the yellow keyword was marked to be the location and the orange keyword to be the

product.

To give a brief example, let’s say the user initiates a session with the Assistant agent by

calling it with the phrase “Ok Google! I’m in Thessaloniki and I need fuel” or more precisely

“Ok Google! I’m in Thessaloniki and I need diesel” or “… and I need unleaded 95” or “…

and I need gas”. The agent then would immediately make a call to the RESTful API, that

was implemented on the third part, by passing the parameters $locat and $prod which in this

case may be Thessaloniki and Unleaded 95 respectively. The API is programmed to be able

to receive requests at any time, find for answers in the database that has also been

implemented in the second part, retrieve these answers and return them back to the Assistant

Agent and then the agent will finally either display these answers to the user’s screen or will

pronounce them.

Continuing, after having created some training phrases and also having specified

parameters to pass data to the API, the configuration of the connection between the agent

and the API must be done by specifying the API’s URL end point and handling the data

coming from the parameters correctly. To do this, Dialogflow has a different section called

Fulfillment in which there are two options which are to either enable a Webhook where a

URL end point has to be set, or to enable the Inline Editor which is a more advanced way to

configure the connection to an external URL end point by writing custom code in Node.js.

Figure 37 – Intent’s parameters location and product

 51

For the purpose of this dissertation, the Inline editor was chosen to configure the connection

and make the whole setup cover the needs.

The figure above shows the Javascript code written in a Node.JS platform. Axios JS

HTTP client was used to perform the call to the RESTful API. As shown on lines 32 and 33,

the parameters $locat and $prod are being passed as data in order to get the correct answers

back and on line 31 the API’s URL is being specified.

Now that everything has been set up correctly, it’s time out to test the whole

implementation. The scraper is deployed on a server and the database has been created as

well, the initialization of the database has been made and the updating is happening every 5

minutes via cron jobs. The API is also ready to respond to any request and the Assistant

Agent is ready to be used.

Figure 38 – Fulfillment configuration to perform the call to our API

 52

Figure 39 – Final stage Usage of the whole implementation

 53

The figure above shows the successful functioning of the whole implementation.

Google’s Actions Console, provides a test section where tests can be performed on the agent

that has been implemented in Dialogflow. As shown above, a request for the cheapest gas

stations in Thessaloniki for Unleaded 95 is done in the first call and the cheapest stations in

Serres for Gas in the second call.

 54

Chapter 4: Discussion and

results

In this chapter of the dissertation, it is going to be discussed what the final feeling is, after

successfully completing the whole implementation, what goals that had been set in the

beginning have been achieved and if there were any tackles or problems that came up in the

meanwhile.

4.1 Goals and implementation targets

The goals that had been set, where very specific from the beginning and it was already known

beforehand what had to be implemented. These goals generally speaking were, to create an

assistant agent that will be spoken to and will return results for the cheapest and closest gas

stations according to the user’s location. Specifically speaking, these goals where the

creation of a Scraper that will scrape the data from the Ministry’s of Development and

Competitiveness end point, the creation of a Database that will be the storage, where the

scraper will save and update the scraped data, the creation of an API service to retrieve data

from the database externally from the Assistant Agent and finally the Assistant Agent or in

other words, the Chatbot that will respond to users’ queries.

After setting these four major goals, there were tasks that needed to be done to start

achieving all of them one by one, step by step. To achieve the first goal, first, there was a

need to communicate with the Ministry and let them know that for the implementation of

this dissertation, access to their data was required. After providing the access that was

needed, the implementation process of scraper began, which after some good and focused

thinking, scoping and designing, has been implemented successfully and was running stable

even from the first tests.

For the second goal to be achieved, the most critical requirement was concentrated

thinking and precise designing of the database, the tables, the rules and the restrictions

between the tables, to successfully store the data avoiding cases of duplicate inputs or false

and corrupted data. As a result, by following this tactic, the database was created successfully

and was functioning perfectly even from the first initialization.

The third goal was the API creation which was an easy task as it simply required some

PHP coding to retrieve data from the database and a correct structure of files and folders to

an compose the RESTful API. This goal was achieved successfully as well by doing some

online research to find out what the best practices of building an API in PHP are.

 55

The last and final goal was the creation of the Chatbot. Thankfully, Google supports

Dialogflow with a lot of documentation that assisted the whole implementation process of

the Chatbot prototype and also to configure it and perform the connection between it and the

API successfully without any issues.

Finally, all of the goals were successfully achieved and the final outcome is a great

software that could also serve other kind of requests as well and not only price retrieval of

gas stations.

4.2 Challenges and problems tackled

The first and critical problem that had to be tackled was even before getting into the

implementation phase of writing the actual code. This problem occurred by the Ministry’s

website from which data had to be scraped and collected. The problem was a change that

had been done in its security structure and was not open to scraping by third parties. This

was very critical since the whole implementation was based on the data that would be

gathered by their website through our scraper.

What had to be done then was to communicate with their support and let them know

about the needs to successfully complete this dissertation. This issue held the

implementation process back for 2 to 3 weeks but thankfully, they granted the access that

was needed, bypassing passwords and authentication measures. Therefore, it was possible

to start testing and building the scraper and finally continue with the implementation.

Another challenge that came up was the need of a live server. For the API to be available

at any time, there was a requirement of a live webserver on which, the scraper’s files, the

database and the API’s files were going to be hosted and serve answers to users’ calls.

Thankfully, the accompanying supervisor, Dr. Stergios Tegos and their company named

Enchatted, provided the server that was needed to continue with the implementation.

Rather than these two critical problems that were directly affecting the implementation

process, there weren’t any other issues to slow things down.

4.3 Limitations of current work

The only limitation was time. The short period of 6 months available to complete this

dissertation was enough to just create a Chatbot prototype with only the basic functions

rather than an intelligent agent being able to handle all types of requests and users’

uniquities. For that reason, the Chatbot is limited simply to understand phrases like “I’m in

–location– and I need –product–“. Anything else rather than that would just not work and no

 56

results would be responded back to the users. Having said that, the chatbot is not clever

enough to use the user’s device location from the GPS sensor and therefore the user must

also specify their location to the agent.

4.4 Future research

Since this Chatbot is limited to basic functions only, there is a lot of future research and

implementation that could be done. To begin with the most basic stuff, it can be further

trained to understand many more phrases, like for example “I’m out of fuel” or “Get me to

a fuel pump” and other similar. It can also be smarter and locate the user by the GPS sensor

as has been already mentioned. It can also store the users’ product preference by the first

query that the users would make, having as a result a really clever agent that would already

know the location and product type and it would only need the initial phrase to trigger and

activate it.

Not only that but, this whole implementation could also support other kind of

information retrieval as well and not only fuel prices. For example, the exact same

implementation, could serve information about nearby pharmacies that are open even at

midnight hours. There may be many more scenarios as well.

 57

Chapter 5: Conclusions

Concluding, having fully went through the whole implementation of building a Chatbot,

from the literature review to the final deliverable, what has been realized is that there’s a

tremendous momentum with which Chatbots are growing. Chatbots start to exist

everywhere, from simple websites, to mobile and wearable devices, to cars, to telephone

centers and the list goes on. Chatbots will probably replace most of the apps that people use

and have been using since the first smartphones appeared. An app always require taps and

more time consuming tasks to get what you need where Chatbots not, you simply have to

speak to them.

These are all natural beneficial outcomes due to the artificial intelligence’s growth. The

number of new features and applications that surfaced with the AI’s growth is countless.

Assistance agents may become a vital service in the future and may also replace lots of actual

job positions that are currently occupied by humans.

 58

Bibliography

[1] Irfan Ahmad, How Much Data Is Generated Every Minute?,

https://www.socialmediatoday.com/news/how-much-data-is-generated-every-minute-

infographic-1/525692/, 2018.

[2] Jizhou Huang, Ming Zhou, Dan Yang, Extracting Chatbot Knowledge from Online

Discussion Forums, IJCAI, 2007.

[3] Abdul-Kader, Sameera A., John Woods, Survey on Chatbot Design Techniques in

Speech Conversation Systems, International Journal of Advanced Computer Science and

Applications, 2015.

[4] Ron Artstein, Laure Vieu, Decalog 2007: Proceedings of the 11th Workshop on the

Semantics and Pragmatics of Dialogue, pages 83–90. Trento, Italy, 2007.

[5] Bayan Abu Shawar, Eric Atwell, Different measurements metrics to evaluate a chatbot

system, pages 89-96, NAACL-HLT, Rochester, NY, 2007.

[6] Bayan Abu Shawar, Eric Atwell, Chatbots: Are they Really Useful?, LDV-Forum, 2007.

[7] S. Quarteroni, S. Manandhar, Designing an interactive open-domain question answering

system, Natural Language Engineering, Cambridge University Press, 2009.

[8] Marie-Claire Jenkins, Richard Churchill, Stephen Cox, Dan Smith, Analysis of User

Interaction with Service Oriented Chatbot Systems, HCI, 2007.

[9] Menal Dahiya, A Tool of Conversation: Chatbot, International Journal of Computer

Sciences and Engineering, 2017.

[10] Adnan Rehan, 9 Best Chatbot Development Frameworks to Build Powerful Bots,

https://geekflare.com/chatbot-development-frameworks/, 2019.

[11] Dan Jurafsky, Conversational Agents,

https://web.stanford.edu/class/cs124/lec/chatbot.pdf?fbclid=IwAR2Wbadl1KwiJNBRs

Jo1-RivdXAt6hAq44nw375HrUqmuOHsv3QL-wyrRjk, 2019.

[12] Discoverbot, Your Guide to Bot-Building Frameworks, https://discover.bot/bot-

talk/guide-to-bot-frameworks/, 2019

[13] KPMG, The rise of Chatbots and Virtual Assistants,

https://smarttech.kpmg.nl/hubfs/Downloads/Digital%20Advisor/digital-advisor-

whitepaper-rise-of-chatbots-virtual-assistants.pdf, 2019.

 59

[14] Anush Fernandes, The Best Open Source Chatbot Platforms in 2019,

https://blog.verloop.io/the-best-open-source-chatbot-platforms-in-2019/, 2019.

[15] Wikipedia, cURL, https://en.wikipedia.org/wiki/CURL, 2019.

[16] NPM, axios, https://www.npmjs.com/package/axios, 2019.

[17] Wikipedia, Dialogflow, https://en.wikipedia.org/wiki/Dialogflow, 2019.

