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Abstract 

This dissertation was written as a part of the MSc in Data Science at the International Hellenic 

University. The aim of this research is to design an efficient content-based product 

recommendation system in the field of e-commerce. A heuristic content-based approach that 

incorporates feature weighting and locality-sensitive hashing (LSH) is proposed. The 

recommender system uses the TF-IDF method and incorporates a functionality of tuning the 

importance of product features in order to adjust its logic to the requirements and needs of different 

e-commerce sites. The problem of efficiently producing recommendations, without compromising 

similarity, is addressed by approximating product similarities via the LSH technique. 

The system is implemented and evaluated based on two datasets that include real e-commerce data. 

Specifically, product details and customer actions from two e-commerce sites are used in order to 

conduct various scenarios and tests. The results and the evaluation of the proposed methodology 

show that the recommendations can improve the user experience and increase the product sales. 

Finally, it turns out that the system incorporates recommendation diversity which can be adjusted 

by tuning the appropriate feature weights. 
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1 Introduction 

A Recommendation or Recommender System (RS) mainly refers to an intelligent system that 

produces suggestions about items to users. In particular, its role is to predict items that are likely 

to be of interest to the user. They have turned out to be essential due to the big increase of options 

that users have nowadays while using every aspect of the web. With the appearance of big data, 

the problem of selecting the right information arose. Recommendation systems are used to solve 

this problem and improve the online experience. They provide personalized information by 

learning the user’s interests through his/her interaction with items.  

Over the past years, Recommendation Systems have turned out to be very popular as we come 

across them almost everywhere in the web (e-commerce, movie sites, music sites etc.). The 

recommended items can potentially be anything (products, movies, songs, services etc.) that a user 

is looking for. There are plenty of applications and domains that such systems are used in and 

produce significant results. For example, it is important for an e-shop to recommend the right 

products to each customer and for an insurance company to recommend the appropriate plan to 

each client. 

The way that these recommendations are produced is of great interest. It certainly depends on the 

specific domain and the desired results. In general, they are based on item similarities, user 

preferences, past purchases and other actions related to the items and the users. Over the past 

decades, recommender systems have become an important research area and much work has been 

done on developing new approaches. In order to predict good recommendations, the system needs 

to know some important information about the items and the users. In other words, these refers to 

the ‘item profile’ and ‘user profile’ respectively. The item profile corresponds to the characteristics 

of the item. These characteristics may be a description, specific attributes, keywords etc. The user 

profile mainly refers to the information that summarize the preferences of the user.  

1.1 Problem 

E-commerce is one of the areas that recommendation systems are being used extensively. The role 

of a recommender system in an e-shop is similar to the role of a salesperson in a physical store. 

Online stores need to offer to customers, a similar or even better shopping experience than that of 



an offline store. A recommendation system helps in that direction by providing customers with 

online product recommendations that help them find what they need easily. This will result in 

customer satisfaction and engagement with the products and the e-shop. Consequently, upselling, 

cross selling, less cart abandonments and overall improvement in other KPIs, such as daily sales, 

are accomplished. 

A customer can see product recommendations in various pages of an e-commerce site. One of 

them is the ‘product page’ which is the page where users visit to see a specific product along with 

its detailed description and features. The user can add the product to his/her cart or visit an 

alternative product page that better matches his/her preferences. The main aim of the system on 

such a page is to display relevant items and help customers to continue browsing the site by 

providing them with the necessary “next step”. The recommended products have to be similar to 

the one of the product pages, by taking into consideration the importance of their characteristics 

and features. However, it is important to achieve diversity in the recommendations because the 

customer doesn’t need to see a list of almost the same products. For example, assuming a user that 

is seeing a laptop of a specific brand and all the recommendations correspond to similar laptops of 

the same brand. In this case, the user will not be able to visit the product page of a laptop of an 

alternative brand by navigating through the recommendations. 

Furthermore, the logic of such a recommendation system relies on the idea of finding similar 

products by calculating similarities among them. This is a computationally heavy and time-

consuming procedure when an e-commerce site has thousands of products. Calculating the 

similarity of between a product and all the rest products of an e-shop, in order to find the most 

similar products, is usually inefficient. So, it is important to apply more sophisticated methods that 

will reduce the complexity and computational cost without compromising the accuracy of the 

system. 

  



1.2 Scope and contribution 

The scope of this research is to implement a content-based recommendation system suitable to the 

‘product page’ of an e-commerce site. Specifically, we address the problem of product 

representation by incorporating a weighted method that offers the functionality to customize the 

importance of product features. In that way, the logic of the system is adjusted to the needs of the 

e-commerce site. In addition, diversity of the recommendations is accomplished without 

compromising the similarity. Furthermore, this study is trying to address the problem of efficient 

product similarity calculations for e-commerce sites that dispose thousands of products. This 

problem is tackled by incorporating locality sensitive hashing method. Finally, our implemented 

heuristic approach is being evaluated based on real data from two e-commerce sites. 

1.3 Dissertation outline 

In the first chapter, the concept of recommendation systems was introduced. We also defined the 

problem that the current research addresses and we presented the scope of the dissertation. Finally, 

we provide its structure by mentioning the key points of each chapter. 

In the second chapter, we introduce the core concepts of recommendation systems and we provide 

the background knowledge that is necessary in order to follow the dissertation. We present the 

basic types of recommender systems and their appliance in e-commerce. Furthermore, we refer to 

the concept of similarity calculations and locality-sensitive hashing. Finally, we discuss about 

weighted methods that are applied in similar systems and are used in the proposed approach. 

In the third chapter, we briefly review some previous research efforts related to recommender 

systems and locality sensitive hashing. We also present previous works that incorporated weighted 

methods in the field of RS.  

In the fourth chapter, we describe in detail the two datasets that are used in the current research. 

We provide information about their content and present the preprocessing steps that were followed. 

We also describe the way that they were initially created. 

In the fifth chapter, we provide details of the methodology that was followed in order to build the 

proposed recommendation system. The weighted method that was applied is presented in detail. 

We also present the process that was followed in order to incorporate the LSH method. 



In the sixth chapter, we present the experiments that were conducted in order to test the proposed 

approach based on real data. The results of the experiments are demonstrated and explained. 

In the seventh chapter, we evaluate the proposed recommendation system by further analyzing the 

results of the experiments that were conducted. We also examine the diversity of the generated 

recommendations and we perform a session-based analysis. In addition, we present the conclusions 

that have been drawn and we discuss about our plans to improve the system. 

  



2 Background 

In this chapter, we introduce the core concepts of recommendation systems and we provide the 

background knowledge that is necessary in order to follow the dissertation. We present the basic 

types of recommender systems and their appliance in e-commerce. Furthermore, we refer to the 

concept of similarity calculations and locality-sensitive hashing. Finally, we discuss about 

weighted methods that are applied in similar systems and are used in the proposed approach. 

2.1 Types of Recommendation Systems 

The rapid increase of the need to apply recommendation systems almost everywhere in the web is 

combined with the deep research of the issue. The interest in this area still remains high due to the 

growing demand on practical applications and different approaches have been developed. 

However, all the new approaches are based on three major types of recommendation systems. The 

recommendation techniques are usually classified into the following types, based on the logic that 

the recommendations are generated [1], [2], [3], [31]. 

2.1.1 Content Based Filtering 

This type of recommendations is mainly based on the content of the items. The system 

recommends items that are similar to items that a user interacted with (viewed, liked, purchased) 

in the past. In content-based filtering, the user is represented by his/her profile. This profile 

represents the interests of the user based on previous interactions with items. The user may express 

his/her interests through implicit or explicit actions. Each item is also represented by a profile that 

consists of the important information that summarizes it and characterizes it [38]. So, the system 

tries to find the item profiles that best match the user profile. These item profiles correspond to the 

items that the user would like to see or buy. For example, assuming that the attributes of product 

A and product B are very similar and a user liked product A. Then the system will recommend 

product B to the user. 

  



Advantages [1] 

● User independence - Considering the difficulty in gathering ratings about items, content-

based filtering can be applied easier than collaborative filtering as it is independent from 

other users. The profile of the user that the recommendations are made for, is enough. 

● New item - Content-based approach can be easily adapted to new items. Even if a new item 

with no ratings comes in, the system can recommend it to a user. This happens because the 

system just relies on the content of the item, so based on its characteristics it will match it 

with older items. 

● Transparency - Content-based filtering offers transparency to the evaluation process of the 

system. The reason that an item is recommended to a user can clearly be explained based 

on the content of the item and the specific user profile. While in collaborative filtering, the 

explanation of recommendations is hidden behind ratings of many unknown users. 

● Text mining - Considering the fact that the content of an item can be represented as text, 

this approach opens up the options to use various text mining methods. 

 

Disadvantages [1] 

● Over specialization – Content-based approach recommends items that are very similar to 

items that the user has already interacted with (liked, purchased etc.) in the past. Hence, it 

provides a limit degree of novelty and diversity, since it has to match up the user and the 

item profiles. 

● Limited content analysis – This type of recommendation systems requires representative 

information about the items. The less information about the content of the product, the 

harder it is for the system to discriminate the items precisely. As a result, it is difficult for 

the system to discriminate items that the user likes from items that the user does not like. 

Furthermore, for the best exploitation of the information, the domain knowledge is often 

necessary. 

● New user – A problem arises when a new user comes in. The system needs information 

about the user preferences in order to create the corresponding user profile. So, the user 

needs to start interacting with items in order to express his/her preferences and help the 

system produce personalized recommendations. 

 



2.1.2 Collaborative Filtering 

This type of recommendations is mainly based on users’ opinions and ratings (implicit or explicit) 

about items. The system recommends items that similar users like. So, in order to produce accurate 

results, it is necessary to have ratings of items. The ratings can be presented as a user-item matrix 

that shows the items that each user likes or dislikes. Based on this matrix, similarities between 

users are calculated. The basic premise of CF is that if two users have the same opinion about a 

bunch of products, then they are likely to have similar opinions about other products too [37]. For 

example, two users that have highly rated the same movies will be considered as similar. This 

method produces recommendations with higher diversity than content-based filtering. 

Advantages [2] 

● Diversity – Collaborative filtering relies on the idea that a user will be recommended items, 

that people with similar tastes and preferences to him/her, liked in the past. Based on that, 

the user might be recommended items that he never liked before, but other similar users 

did. So, there is much more diversity in recommendations than in content-based 

approaches. This gives to the user the opportunity to discover new preferences. 

● Adaptability – This type of RS can be applied in any type of items and domain without 

having to deal with the different content of the products. It can even produce very good 

results in domains where there is not much content associated with items and where the 

content is difficult for a computer system to be analyzed. 

Disadvantages [2] 

● Cold-start problem – This problem refers to the situation where the system does not have 

adequate information about an item or a user. When a new item comes in, there are no past 

raters for it. So, it cannot be recommended to new users. Also, similar problem occurs 

when a new user comes in as the system doesn’t have information about his/her 

preferences.   

● Data sparsity problem – Almost always, each user rates only a small percentage of the 

available items. This leads to difficulty in finding users that have rated the same items. In 

addition, the data sparsity decreases the percentage of the available items that can be 

recommended. 



2.1.3 Hybrid methods 

This type of recommendation systems combines the content based and collaborative filtering that 

were described previously. The idea behind hybrid techniques is that a combination of both 

approaches can solve the major problems that each technique has. A basic problem of collaborative 

filtering approach is the cold start problem. This problem refers to the difficulty in recommending 

an item that has not been rated in the past. Content-based filtering that doesn’t need ratings could 

be a solution to the cold start problem. So, hybrid methods have been developed in order to 

overcome certain limitations that the two main approaches have [3]. Specifically, there are three 

main approaches of building hybrid methods, based on the way that the two main types are 

combined:  

a) implementing collaborative and content-based methods separately and combining their 

predictions,  

b) incorporating some content-based characteristics into a collaborative approach, 

c) incorporating some collaborative characteristics into a content-based approach 

  



2.2 Recommendation Systems in e-commerce 

E-commerce is one of the areas that recommendation systems are being used extensively. 

Marketers are trying to create a great customer experience by taking advantage of such intelligent 

systems. The role of a recommender system in an e-shop is similar to the role of a salesperson in 

a physical store.  In a bricks and mortar store, a sales assistant is there to help customers find 

products that match their needs and wishes. Respectively, an e-shop needs a RS to offer to 

customers an online shopping experience similar to the one that they would have in a traditional 

store. In particular, the system exploits data about the products and the way that customers 

interacted with them. Based on that, more personalized product recommendations are presented to 

the users. Furthermore, the appearance of big data in e-commerce made recommendation systems 

essential, as they offer an efficient way to take advantage of all this data in order to improve the 

customers shopping experience and increase revenues. 

2.2.1 Benefits 

Personalization is becoming increasingly important in online marketing and the benefits of a 

recommender system are both for the customers and the e-shops. E-commerce sites use 

recommender systems with the aim to produce personalized suggestions to the customers about 

products and services [4], [31]. 

 

User Experience - An intelligent product recommender system produces the right suggestions to 

the right customers. A customer prefers to see products that he/she likes or needs. In that way 

his/her shopping journey becomes easier and more pleasant. So, instead of leaving the customer 

in the chaos of thousands of products, a recommendation system helps him/her to find what he/she 

is looking for fast and efficiently. Hence, the user feels more comfortable while purchasing 

products online.  

Loyalty – With the numerous options that are available in e-commerce, loyalty is very important 

for sites. An e-shop needs to offer to the customers an online experience that will make them return 

in the future. Loyalty is improved through recommendation systems by creating a value-added 

relationship between the site and the customer. By making personalized recommendations that 

match customer needs, the customer feels valued and finds the website user-friendly. A satisfied 

customer will keep returning to the e-shop and the engagement will be enhanced.  



Sales – Incorporating and using a recommender system can result in an increase in profits. Being 

closer to customers by making personalized recommendations leads to higher revenue. Many 

times, visitors leave the site before finding products that are appropriate to their needs. A RS solves 

this problem as it can lead the visitor to specific products that are of his/her interest fast. 

Furthermore, product suggestions can be additional to already selected products. In that way, 

cross-selling is improved, and the average order size is increased. 

2.2.2 Use cases 

The main role of a recommender system in an e-commerce site relies on the idea that the visitors 

should see relevant products that will help them find what they need fast and in a pleasant way. 

These products can be relevant to their tastes or can help them discover new preferences. Some 

sites use non personalized approaches to make product suggestions that do not change according 

to each item or customer profile. Other sites use more sophisticated systems that produce 

personalized recommendations that focus on the characteristics of the customers and products. 

Basic use cases of such systems are described below. [32] 

Non-personalized: Product recommendations are based on specific filters, without taking 

advantage of the content of the products and the way that each customer interacts with them. This 

kind of recommendations are inevitably in cases that there is no information about the customer 

profiles or purchase history. In addition, this logic can be applied when products with specific 

characteristics must be promoted. 

● Popular products – The suggestions correspond to popular products, incorporating basic 

filters such as product categories. In fact, purchase history is important here as it holds the 

information about the best-selling products among each product category. 

● New products – Another way to take advantage of a recommendation system is to promote 

new items that are in stock. It is often difficult to start boosting new products and a RS can 

offer a valuable solution. 

● Slow moving inventory – A usual situation in e-shops is having products that are not selling 

as much as others. A simple way to boost the sales of such products is to present them more 

often to the customers via a recommender system. 



● Special offers and seasonality – In the same logic, a recommender system can have the role 

of a campaign for products that are in discount or should be high selling during specific 

seasons. For example, presenting to customers sun care creams that are in discount during 

summer can attract their attention.  

Personalized: A more sophisticated and intelligent recommender system produces personalized 

suggestions that focus on the needs and preferences of the customers. It takes into account both 

the characteristics of the products and the customer profile that is created based on his/her online 

habits. This kind of recommendations are clearly more effective and produce more accurate results. 

In this case, it is essential to have product and customer data in order to present relevant 

suggestions that will increase engagement and conversions.  

● Recently viewed – This type of recommendations doesn’t require any in depth data about 

the customer. The idea relies on the fact that a customer may express his/her interest about 

an item while browsing the site but get distracted from other products. So, based on that 

idea, it is reasonable to remind him of the products that he may be interested in.  

● Customers who viewed this item also viewed – Associations between products are created 

based on data that are generated while customers are browsing through the product pages. 

These associations can be used in order to suggest to a customer the next available product 

that he should see. 

● Customers who bought this item also bought – Respectively, product association rules can 

be generated based on purchase history. This kind of suggestions aim to improve the cross-

selling. It tries to increase the average order value by offering products that go along with 

the customer current purchase. 

● View this item next – Based on the product profiles that consists of their important 

characteristics and features, the system suggests similar products with this that the 

customer is currently seeing. The idea is to help customer find other similar products that 

may match to their preferences and needs. The current research focuses on this kind of 

logic. 

The above kinds of recommendations can be displayed at plenty of places on an e-commerce site. 

Two common places are the product and the cart page of the site [33]. The first corresponds to the 

recommends that are produced while the customer is still searching for items. While the second 



corresponds to the page where the customer is completing his/her purchase. These two kinds of 

RS and their logic are described in the following chapters. 

2.2.3 Product Page RS 

The product page corresponds to the page where the customer is viewing a product and can find 

all the available information of it. Detailed description, product pictures and price are some of the 

products features that a customer expects to see in the product page. Assuming that the customer 

doesn’t leave the site, he has two options there. The first is to add the product in his/her cart and 

the second is to look for another product. Most of the times the second option is selected as the 

customer is searching for that product that best matches his/her needs. So, it is important to provide 

the customers with an efficient way to choose their ‘next step’ and keep them browsing the site. 

This can be accomplished through a RS that is able to make searching a lot easier for the users. 

Instead of clicking through many pages to find the right product, the aim of the product suggestions 

is to exclude the irrelevant ones so that those displayed are the most appropriate for the user. 

In particular, the main objective is to produce specialized product recommendations for each 

specific product page, taking into consideration the user’s profile. The main target is to help users 

find what they are looking for easily and make the navigation through the product pages efficient. 

This helps customers stay more time in the e-shop and finally increases the probability to purchase 

products.  

Many e-shops make recommendations based on simple aspects. A commonly adopted approach is 

to recommend popular products by applying basic filters about the product category, color, brand 

etc. But this naïve approach leads to undesirable results as many times the user gets disturbed by 

products that are irrelevant to the ones that he has already seen. However, great results can be 

produced by combining such simple methods with more complexed exploitation of product 

metadata. Taking into consideration the fact that the customer wishes to visit a product page that 

better matches his/her preferences, the system must recommend several options of similar products 

to the one that corresponds to the current product page. Therefore, the logic of the system should 

be based on the content of the products and not on past purchases or ratings. Hence, content-based 

filtering is more appropriate in product page recommendation system. This dissertation aims to 

propose such an approach. 



2.2.4 Cart Page RS 

The cart page corresponds to the place where the customer has already selected the items that 

he/she wants to buy and completes his/her purchase. That step is a brilliant opportunity for the 

marketeers to increase cross-selling by recommending products that can be purchased along with 

the already selected ones. So, the idea behind those recommendations is completely different to 

that in a product page. By recommending just similar products with the cart products, the 

possibility that the customer will replace the already chosen products with the recommended ones 

arises. A RS in this specific place of the e-commerce site tries to lure the customer into increasing 

the average order value by offering products that go along with his/her current purchase. A 

recommender system works like a brilliant salesman who is well trained in cross selling and 

upselling. 

Since, the main objective is to recommend products that could potentially be purchased along with 

the already chosen products, it is important to take into consideration the historic data about 

purchases and user preferences. Such data can reveal associations between products and 

customers.  A common type of association is ‘Customers that buy products A and B, also buy 

product C’. The more personalized the recommendations are the more sophisticated and accurate 

the system is considered to be. Significant results are produced when RS combine collaborative 

filtering approaches with other methods that take into consideration purchase history and past 

sales.  



2.3 Similarities & LSH 

Information explosion has led to an increasing number of applications that need to deal with large 

volumes of data. Although traditional algorithm analysis considers that the data fits in main 

memory, this is not possible when dealing with massive data sets, such as multimedia data, web 

page repositories, etc. The same issue appears in the domain of recommendation systems, that need 

to handle large amounts of data [5]. Usually, the main objective of a recommendation system is to 

calculate similarities among a set of items and/or users. Such items can be products, documents, 

songs etc. A RS taking into consideration the representation of the items should be able to identify 

which of them are similar in order to make appropriate recommendations. A similarity search 

problem includes a big group of items (products, documents, etc.) that are represented by a set of 

characteristics, as points in a high-dimensional attribute space. A particularly interesting and well-

studied instance is d-dimensional Euclidean space. This important issue appears in various 

applications, including data mining, information retrieval and more specifically RS. Usually, the 

items of interest (products, documents, etc.) are represented as points and a distance metric is used 

to calculate the similarity among them. The number of product attributes corresponds to the 

dimensionality of the problem and ranges widely. Many accurate solutions have been developed 

for low-dimensional cases. However, for high-dimensional cases the issue still remains, as 

improvement can be accomplished. 

Approximation has been proposed in several researches as a solution to the problem of scalability. 

An interesting approach in order to handle the issue of high dimensionality are approximate nearest 

neighbor (ANN) (Definition 2) algorithms. Such algorithms improve dramatically the search speed 

and are necessary in high-dimensional cases. They rely on the idea that calculating similarities by 

applying the approximate nearest neighbor is almost as accurate as using the common procedure 

of nearest neighbor (NN) (Definition 1). This is a reliable approach in cases where small errors, 

caused by approximation, are not significant [6]. Locality sensitive hashing (LSH) and its 

variations have been proposed as techniques for approximate similarity search in cases of high 

dimensionality. This method uses a family of locality-sensitive hash functions to hash nearby 

objects in the high-dimensional space into the same bucket. A large number of hash functions is 

needed in order to achieve good search quality [7]. 



Definition 1 (Nearest Neighbor or NN) [8]. Given a query object q, the goal is to find an object 

NN(q), called nearest neighbor, from a set of objects P = {p1, p2, · · · , pN } so that NN(q) = arg 

minp∈P dist(q, p), where dist(q, p) is a distance between q and p. 

Definition 2 (c-Approximate Near Neighbor or ANN) [8]. Given a query object q, the distance 

threshold R > 0, 0 < δ < 1 and c ≥ 1, the goal is to report some cR-near neighbor of q with the 

probability of 1−δ if there exists an R-near neighbor of q from a set of objects P = {p1, p2, · · · , pN 

}. 

There are various techniques in order to calculate the similarities between items such as cosine and 

Jaccard similarity. Traditional RS have been designed to handle this issue by incorporating simple 

similarity methods where each pair of items is a candidate. But the problem of scalability arises 

due to big data. Nowadays, it is common to face the problem of dimensionality which is often 

called “curse of dimensionality”. The exponential growth of data brought those traditional 

approaches across the problem of scalability. For example, in a RS of an e-shop with hundreds of 

thousands of products, calculating similarities between all of them is inefficient. Specifically, it is 

time consuming and computationally heavy. Hence, LSH is a method that can be applied in RS, 

aiming to tackle the scalability problem. 

2.3.1 Jaccard Similarity 

Many applications, including RS, adopt the bag-of-words model [9] as representation of textual 

data. The Jaccard similarity has been widely applied in order to calculate similarities among items 

that are represented in the bag-of-words model. The Jaccard similarity is statistically a measure of 

comparing the similarity of two binary sets. Jaccard index is often used for comparing similarity, 

dissimilarity, and distance of the data set. Calculating the Jaccard similarity between two data sets 

is the result of division between the number of common elements and the number of all elements 

in the sets. 

 Definition 3 (Jaccard Similarity) [8]. Given two sets S and T, the Jaccard similarity is defined as 

𝐽(𝑆, 𝑇) =
|𝑆 ∩ 𝑇|

|𝑆 ∪ 𝑇|
  



The above definition assumes that all elements are equally important. But in many cases, some of 

the elements are more important than others and this is represented by assigning weights to them. 

For the case of such weighted sets, we need to define the generalized Jaccard similarity as follows. 

Definition 4 (Generalized Jaccard Similarity) [8]. Given two sets S = [S1, · · ·, Sn] and T = [T1, · · 

·, Tn] with all real weights Sk, Tk ≥ 0 for k ∈ {1, . . ., n}, the generalized Jaccard similarity is 

defined as 

𝐽𝑔𝑒𝑛(S, T )  =  
∑ min (𝑆𝐾, 𝑇𝑘)𝑘

∑ max (𝑆𝐾, 𝑇𝑘)𝑘
 

The weighted Jaccard similarity is a natural generalization of Jaccard similarity. It will become 

Jaccard similarity if all token weights are set as 1.0. 

Usually, such representations lead to large dimensionality and calculating similarities among items 

turn to be computationally heavy. In the case of a RS, there may be thousands of items and each 

of the item profile may consist of hundreds of keywords or features. Therefore, a large dictionary 

and a sparse matrix is produced. So, a more efficient way to represent items and users’ profiles 

should be used that will make the whole process faster. Such an approach is the representation of 

items by their signatures that are created by hash functions. The Minhash algorithm, which is a 

well-known LSH algorithm, is used to estimate the Jaccard similarity and is described in the 

following paragraphs. 

2.3.2 Random permutations 

Assuming a universal set U and its subset S ⊆ U, we can define S as a binary or weighted set as 

follows. The subset S is a binary one if each element of the set S (k ∈ S) has weight equal to 1 (Sk 

= 1), while any other element (k ∈ U − S) has weight equal to 0 (Sk = 0). Respectively, the subset 

S is a weighted one if each element of the set S (k ∈ S) has weight greater than 0 (Sk > 0), while 

any other element (k ∈ U − S) has weight equal to 0 (Sk = 0). The set or every subset can be 

represented as vectors with length equal to the number of the elements of the universal set. For 

example, U = [U1, U2, · · ·, Un] and S = [S1, S2, · · ·, Sn] [8]. 



A random permutation can be performed on such a set, but this can be very complex. Therefore, 

an approximation of the random permutation can be accomplished by uniformly and injectively 

mapping each element of the set into the real axis. Specifically, each element is assigned with a 

unique hash value v ∈ R. Uniform mapping on binary sets can also be extended into weighted sets. 

A random permutation or uniform mapping can be applied on the universal set U or to a subset S 

and the most significant element will be the first one in the leftmost. Taking the first element can 

be considered as a hash function, i.e., h(S) = min(π(S)) where π represents the random permutation. 

A fingerprint that consists of hash values is obtained if we repeat the above process. The number 

of hash values is the same with the number of repetitions of the process [8]. 

In the case of a RS, the universal set may consist of all the words that appear in the titles of the 

items. While a subset can be a specific item with a number of elements equal to the number of 

unique words of its title. So, random permutations map each word from the dictionary to a different 

number. Hash functions basically does the same as the permutation, by mapping a word to a 

number. But in the case of hash functions, the whole dictionary is not needed in advance. So, when 

a new item or user profile appears, its signature can be calculated fast. Random permutations with 

hash functions as described above are a significant step in order to create the representation of each 

item as a signature. Then the signatures can easier be compared with each other than comparing 

the initial sets of each item. The signature representation can be accomplished through the Minhash 

algorithm. 

2.3.3 Minhash 

Two sets are near duplicate if their similarity score is above a predefined threshold. Calculating 

the similarity scores among sets through simple methods, such as Jaccard similarity, is usually 

inefficient due to high dimensionality. Minhash is an efficient LSH algorithm that have been 

successively proposed to approximate such similarity calculations. In particular, Minhash is used 

to approximate the Jaccard similarity of two sets. It is proved that the Jaccard similarity of two sets 

is equal to the probability that the two sets will generate the same Minhash value (hash collision).  

The Minhash method has been applied in many domains such as news recommendation [10], near 

duplicate web page detection [11] and image search [12]. 



In order to estimate how similar two sets are, a number of independent Minhash functions are 

applied to the sets. These functions correspond to the random permutations of their elements. A 

Minhash is a single number having the property that two sets have the same value of Minhash with 

probability equal to their similarity [13]. 

Assuming a universal set U and a set of hash functions we need to estimate similarity between 

different subsets S1, S2 ⊆ U. So, the hash functions (random permutations) are applied to U. As a 

result, the Minhashes for a subset S1 are the elements in it which have the minimum hash value in 

each hash function. In other words, the Minhashes for a subset S1 are the elements which are 

placed in the first position of each permutation [8]. In order to make the retrieval efficient, the 

values of the Minhash functions are grouped into n-tuples called sketches. Identical sketches are 

then efficiently found using a hash table. Sets with high similarity tend to have common values of 

the Minhash signature for many random permutations. Consequently, there is a high probability 

of having the same sketches. In contrast, sets that are not similar have low probability of having 

the same sketches. 

2.3.4 Locality-sensitive hashing 

This technique was originally introduced by Indyk and Motwani [14] for the purposes of devising 

main memory algorithms for nearest neighbor search. Afterwards, Aristides Gionis in 1999 [15] 

used LSH in an attempt to introduce a more effective indexing method for approximate nearest 

neighbor. Locality-sensitive hashing (LSH) has since been proven to be an effective way for 

approaching the approximate nearest neighbor (ANN) search.  

The main idea that LSH relies on is to hash items several times, in such a way that similar items 

are more likely to be hashed to the same bucket than dissimilar items are. Then, each pair of items 

that hashed in the same bucket is considered to be a candidate pair. Finally, the similarity of only 

the candidate pairs is calculated. In that way, the calculations are being reduced dramatically and 

the process becomes more efficient. There are cases of similar pairs that don’t hash in the same 

bucket (false negatives) and dissimilar pairs that hash to the same bucket (false positives). The less 

such cases are the more accurate the method is [8]. 



Hence, LSH technique relies on the idea that the probability of collision of two points p and q is 

closely related to the distance between them. In particular, the larger the distance, the smaller the 

collision probability. Respectively, LSH function families have the ability to have higher 

probability of collision between objects that are close to each other than objects that are far apart. 

Specifically, let S be the domain of objects, and D be the distance measure between objects. 

Definition 5 [16]. A function family H = {h : S → U} is defined as (r, cr, p1, p2)-sensitive for D if 

for any q, p ∈ S 

• If D(q, p) ≤ r then PrH[h(q) = h(p)] ≥ p1     (1) 

• If D(q, p) > cr then PrH[h(q) = h(p)] ≤ p2     (2) 

Therefore, the main idea that LSH follows is selecting a hashing function (or a hashing function 

family) such that if (1) applies, there is a high probability that two neighboring objects will also 

be neighbors after hashing. Contrariwise, if (2) applies, there is a high probability that two non-

neighboring objects will also be non-neighbors after hashing. If a hashing function satisfies the 

above two conditions, then it is called LSH function [17].  



2.4 Weighted methods 

Content based RS are mainly based on the characteristics and features of items. Each item is 

represented by a profile that holds its information. So, it is of great importance to represent this 

information in a way that is suitable for the process of finding item similarities. The process of 

extracting features highly depends on the specific domain. In a product RS, the title and the 

description include some of the most important features that need to be considered. In addition, 

depending on the type of products, the category and the brand of them can be very informative. 

Such textual information needs to be preprocessed in order to take advantage out of it. 

Furthermore, different features carry different amount of information. A word in a product title 

may be more informative than the rest and this fact must be taken into consideration. Incorporating 

token weights can have a major impact on the computed similarity and the quality of the 

recommendations. 

The “importance” (or “informativeness”) of word kj in document dj is determined with some 

weighting measure wij that can be defined in several different ways. One of the best-known 

measures for specifying keyword weights is the Term Frequency-Inverse Document Frequency 

(TF-IDF) that is presented below. The idea behind TF-IDF is that terms with high occurrence in a 

document but rare in the rest are more important for that document. 

2.4.1 TF–IDF 

Term frequency – Inverted Document Frequency (TF-IDF) is a simple and effective weighing 

scheme that is used in order to calculate the importance of terms in a set of documents. In the field 

of RS, TF-IDF can be used in order to represent the textual information of items so that more 

informative terms will be more important in the similarity calculations. Considering each item as 

a document, TF-IDF is based on the frequency of words in a specific document compared to the 

inverse proportion of that word over the entire document corpus. Through this process, a weight 

is assigned to each unique term for each document. This weight corresponds to the significance of 

the term in the specific document. The more documents a term appears in, the less informative is, 

thus it gets a smaller weight. Respectively, the significance of a term in a document increases with 

the occurrences of it in that specific document [18]. 



In a mathematical perception, TF-IDF weight (wt,d) consists of two parts. The first is the Term 

Frequency (TF) that refers to the frequency of the term in a specific document (ft,d). The second 

part is the Inverted Term Frequency (IDF) that consists of the number of documents in the 

collection (N) and the number (df,t) of documents that contain the term. 

𝑤𝑡,𝑑 = 𝑓𝑡,𝑑 ∗ log (𝑁
𝑑𝑓,𝑡

⁄ ) 

2.4.2 Weighted Minhash 

Minhash algorithm is a way to estimate the Jaccard similarity (Definition 5) between two sets. 

Jaccard similarity considers all items of a set to be of the same importance as all of them have 

equal weights. Respectively, Minhash approach treats all elements in a set equally and each 

element can be mapped to the minimum hash value with equal probability. This leads to 

information loss in cases where different elements carry different amount of information. In reality, 

we need to treat elements as having different weights. For example, in a product RS specific words 

in a product title that correspond to specific characteristics (category, brand etc.) are more 

important than other words. In such cases, sets are weighted, and weights correspond to the 

significance of each element in the set. Incorporating weights can have a major impact on the 

computed similarity. Hence, a way to approximate the Generalized Jaccard Similarity (Definition 

6) is needed. Assuming a representation of sets in which elements have different weights, the 

challenge is to incorporate these weights into min-hash algorithm so that similar sets have high 

probabilities to be mapped into the same bucket.  Over the last years, significant research has been 

done in order to create Minhash schemes that can handle weighted sets. These researches of 

weighted Minhash algorithms can be split into the following two categories: “quantization-based” 

and “sampling-based” approaches [19], [8]. 

By applying quantization based weighted Minhash algorithms, a weighted set is converted into a 

binary set. This is accomplished by quantizing each weighted element into a number of distinct 

and equal-sized sub-elements. In particular, elements with large weights should be assigned more 

sub-elements, while elements with small weights should be assigned less sub-elements. Weights 

that are produced by weighting methods such as TF-IDF are usually small. So, these weights 

should first be multiplied by a large constant. The size of the constant affects the accuracy and the 



complexity of the method. The larger the constant, the more accurate the results are. Although, 

increasing the constant leads to the increase of time complexity. Finally, all the sub-elements of 

the binary set are considered to be independent elements and are treated equally. So, the 

computation of the hash values for all the sub-elements is needed. This makes quantization-based 

methods inefficient for large sets. 

The above method leads to large sets that are difficult to be handled in terms of Minhash 

computation.  In order to avoid computing the hash value for every sub-element, researchers 

proposed a sample-based approach. The main idea of the sampling-based algorithms is to compute 

the Minhash value only for special sub-elements in order to decrease time complexity. Based on 

this idea, much work has been done in order to address the problem of the quantization-based 

approach. Specifically, important research was focused on the idea of “active index” [20] in order 

to improve the algorithms by sampling several “active indices” and then computing the hash values 

for them. Gollapudi and Panigraphy proposed an improved integer-value weighted Min-Hash 

algorithm that decreases the number of sub-elements that need to be taken into consideration for 

Minhash computation. This method requires the real weights to be multiplied by a big constant. 

This makes the method inefficient for real value weights and leads to an expanded set of sub-

elements that cannot be handled easily. 

Afterwards, the Consistent Weighted Sampling Scheme (CWS) [21] was introduced as an attempt 

to address the issues of the previous approaches. The most important advantage of this approach 

is that it can handle real weights without first converting them to integers. Later, Ioffe proposed 

the Improved Consistent Weighted Sampling (ICWS) algorithm [22] which is the fastest known 

exact weighted minwise sampling scheme. ICWS is considered to be an efficient and unbiased 

estimator of the generalized Jaccard similarity and is used in the current research. Its performance 

does not depend on the weights as long as the universe of all possible elements is known.  



3 Previous work 

During the last years, interesting research has been done in the field of Recommendation Systems. 

Many researches were held and led to techniques that have practical use in various domains. 

Researchers have also tried to address problems that have arisen due to the data explosion. In this 

section, we briefly review some previous research efforts related to recommender systems and 

locality sensitive hashing. We also present previous works that incorporated weighted methods in 

the field of RS. 

Interesting research was implemented in [23], where the problem of high dimensionality, that 

traditional RS face, was addressed. E-commerce platforms with very big number of items and 

users need to incorporate large volume of data in the recommendation process. This makes the 

generation of real time recommendations inefficient. The paper incorporates LSH techniques in a 

collaborative filtering (CF) approach in order to reduce the time complexity. Minhash hashing 

method is used for binary data and simhash for real-valued data. Similar candidate pair 

identification is performed through LSH in order to increase the efficiency of similarity computing, 

which is the most time-consuming task for traditional collaborative filtering recommender 

systems. By conducting experiments on synthetic and real-world datasets, it is shown that LSH 

can approximately preserve similarities of data while significantly reducing data dimensions.   

In [24], in attempt to introduce a RS that can scale with the increasing amount of data, the authors 

use LSH approach. Specifically, they provide novel improvements to the already proposed LSH 

based recommender algorithms and make a systematic evaluation of LSH in neighborhood-based 

CF. By making extensive experiments on real-life datasets, they present algorithms that have better 

running time performance than the standard LSH-based applications while preserving the 

prediction accuracy in reasonable limits. These algorithms also produce recommendations with 

diversity which is an important aspect of RS. 

In [25], a hybridization of content based and collaborative filtering-based recommendation, which 

incorporates product attribute weighting, is proposed. It is argued that human judgment of 

similarity between two items often gives different weights to different attributes and that 



recommendations systems need to consider this aspect. The weights refer to the importance of 

each product attribute to customers and are estimated from a set of linear regression equations 

obtained from a social network graph, which captures human judgment about similarity of items. 

The proposed system is compared with content-based methods that consider the importance of 

different products features as equal. The evaluation is based on IMDB recommendations which 

are considered as benchmark. Finally, it turns out that the proposed method outperforms simple 

methods. Hence, the effectiveness of feature weighting is demonstrated. 

In [26], a feature weighting method is proposed with the aim to improve the content-based filtering 

in cases of multi-valued item features. The authors argue that a user considers some specific 

features as more important than other, when selecting an item. This consideration represents an 

implicit feature weighting which is subjective and different for each user. Their feature weighting 

method is based on entropy and coefficients of correlation and contingency. In particular, the 

weight of each feature is computed according to (i) the entropy or amount of information provided 

by itself (the more entropy the more weighting should have), and (ii) the correlation between items 

chosen by the user in the past and the values of some features of the set of items.  



4 Data 

In this dissertation, two separate datasets have been used in order to build and evaluate the 

recommendation system. The first dataset was created by scraping a real e-commerce site and 

consists of information about thousands of products. The second dataset was created by 

preprocessing an initial ready-made dataset that has already been used for similar purposes in the 

past. These two datasets are described in detail in the following chapters.  

4.1 Bestprice dataset 

Bestprice dataset is a completely new dataset that was created for the purposes of this research. 

The data was gathered from BestPrice.gr which is a commercial site where a customer can compare 

the price of products across different e-shops. A huge variety of product categories and 

subcategories is available. In this research, only a set of them has been used. Specifically, data 

about technological products that belong to 6 main categories has been gathered. The gathering 

procedure, an overview of the dataset and the preprocessing steps are described below.  

4.1.1 Gathering procedure 

The dataset was initially created by scraping the ‘Bestprice.gr’ e-commerce site. Web scraping 

refers to the process of automatically collecting data and information from web pages by using a 

programming language. In our case, a scraper based on python language was created. Information 

of thousands of products was gathered by scraping 22 product categories. Each product category 

consisted of thousands of pages. So, around 1.200 page requests were performed by the scraper. 

The main issue that we faced were the sites anti-scraping measures. In particular, the site is 

blocking scrapers and crawlers that perform too many requests. We overcame this issue by adding 

a functionality to the scraper so that it can change IP every five requests. This was accomplished 

by scraping two different sites that offer free proxies. In that way, the scraper was able to request 

and scrape thousands of pages without getting blocked as a bot. The three scripts 

(scrape_bestprice.py, bestprice.py and general.py) that were created for the scraping process are 

available in the appendix of this dissertation. 



4.1.2 Overview 

Bestprice dataset was created by gathering data from Bestprice.gr as described in the previous 

paragraph. Particularly, it consists of data regarding 29.541 products that belong to 6 main 

categories in the domain of technology. Each of those main categories has smaller categories that 

are called subcategories. Specifically, the products are split in 22 subcategories. Additionally, there 

are 515 different product brands. A summarization of the category tree and the number of products 

and brands in each subcategory is presented in table 4.1. 

Besides the information regarding the categories and the brand of each product, additional 

information is available. Particularly, there is a unique id, a title and a price for each product. The 

available information about 5 random products are presented in table 4.2. Lastly, a set of 10 

product recommendations is available for each product. These recommendations are those that 

were provided to the users in each product page by the e-commerce site. This information is 

available for a subset of 1.182 products and is used in the evaluation procedure that is presented 

in paragraph 7.1.2. 

Table 4.1: Overview of Bestprice dataset. 

ID Category Subcategory Products Brands 

0 Desktop_pc Desktop 709 7 

1 Desktop_pc Desktop_monitors 2193 25 

2 Desktop_pc Desktop_rams 2770 25 

3 Laptop_pc Laptop 2718 19 

4 Laptop_pc Laptop_bases 172 19 

5 Laptop_pc Laptop_battery 6642 23 

6 Laptop_pc Laptop_cases 1834 92 

7 Mobiles Bluetooth 656 47 

8 Mobiles Handsfree 943 77 

9 Mobiles Mobile_phone 1529 60 

10 Mobiles Portable_speaker 2394 135 

11 Mobiles Power_bank 1731 74 

12 Photograph Analog 34 4 

13 Photograph Compact 158 9 

14 Photograph DSLR 183 3 

15 Photograph Photograph_battery 1666 23 

16 Photograph Photograph_cases 2132 49 

17 Tablets_other Tablet_bases 173 19 



18 Tablets_other Tablet_cases 2495 93 

19 Tablets_other Tablet_chargers 180 11 

20 Wearables Smartwatch 433 21 

21 Wearables Transmitter 45 3 

 

Table 4.2: Details of 5 random products in Bestprice dataset. 

Product ID Title Price (€) Category Subcategory Brand 

2155531584 Samsung 
Galaxy S10+ 
128GB Dual 

595.00 € Mobiles Mobile_phone Samsung 

2155112026 Sony SBH56 42.04 € Mobiles Bluetooth Sony 

2154004522 Omega Ice 
Box 

8.22 € Laptop_pc Laptop_bases Omega 

2155081727 Lenovo 
Thinkvision 

T24I 

147.49 € Desktop_pc Desktop_monit
ors 

Lenovo 

2155432313 Huawei Watch 
GT Graphite 

Black 

122.00 € Wearables Smartwatch Huawei 

 

4.1.3 Preprocessing 

The preprocessing of the initial dataset that is described above was a significant step. The target 

was to transform the textual data so that it can be used appropriately in the next steps and 

accomplish the best results. Specifically, each product should be assigned a text that holds the 

information that characterizes it. This text is produced by concatenating the title, category, 

subcategory and brand of each product. However, each of those features had to be preprocessed 

accordingly before adding them to the final text. The most important steps are described below. 

The script (preprocess_bestprice.py) that was created for this reason can be found in the appendix 

of this dissertation. 

Firstly, the textual data of each feature was transformed to lowercase. The second step was to 

discriminate the categories, subcategories and brands from other words by adding the suffixes 

‘_cat’, ‘_subcat’ and ‘_brand’ respectively. This will help us assign different weights to those 

specific words. Furthermore, specific symbols that don’t add any value were removed from the 

title. Finally, a text that consists of the above textual features was created for each product. This 



set of texts will be used in order to calculate the TF-IDF matrix. The corresponding final text for 

each product that was presented in table 4.2, is presented in table 4.3. 

Table 4.3: The final textual representation of 5 products in Bestprice dataset. 

Product ID Text 

2155531584 samsung_brand galaxy s10+ 128gb dual mobiles_cat mobile_phone_subcat 

2155112026 sony_brand sbh56 mobiles_cat bluetooth_subcat 

2154004522 omega_brand ice box laptop_pc_cat laptop_bases_subcat 

2155081727 lenovo_brand thinkvision t24i desktop_pc_cat desktop_monitors_subcat 

2155432313 huawei_brand watch gt graphite black wearables_cat smartwatch_subcat 

  



4.2 Retailrocket dataset 

Retailrocket dataset is a ready-made dataset that has been used in various researches in the field of 

RS. It was published by a company named Retail Rocket which offers e-commerce solutions to 

personalize the online shopping experience. The data has been collected from a real-world e-

commerce website. It is raw data as there are no content transformations. However, most of the 

values are hashed due to confidential issues. The purpose of publishing this dataset was to motivate 

researches in the field of recommender systems with implicit feedback and has already been used 

in other researches [35]. Although, in the current research, a subset of it has been used for the 

evaluation of our content-based RS.  

4.2.1 Overview 

The dataset consists of three different files. The first file contains the customer behavioral data and 

represents interactions that were collected over a period of 4.5 months. These interactions of 

customers with products are called events and are of three types. The first is the ‘view’ event that 

refers to the action of viewing a product page. The second is the ‘addtocart’ event that means that 

the customer added a product to his/her cart. The third is the ‘transaction’ event that corresponds 

to the action of purchasing a product. In total there are 2.756.101 events including 2.664 312 views, 

69.332 add to carts and 22.457 transactions produced by 1.407.580 unique visitors. 

The second file holds the product details. Each product has a number of properties but only three 

of them have been used in the current research. Specifically, the title, category and subcategory 

properties have been used. Lastly, there is a third file that contains the relationships between the 

categories and subcategories. Every row in the file specifies a child categoryId and the 

corresponding parent category. This file is used to find the main category that each subcategory 

belongs to. Furthermore, it is important to mention that a subset of 28.241 products was selected. 

These products belong to 6 main categories which are split in 37 subcategories. 

4.2.2 Preprocessing 

The first step of the preprocessing phase was to create a dataset with the sessions that were 

produced over the period of 4.5 months. A session refers to a group of user interactions with an e-

shop that take place within a given time frame. For example, a session may contain the information 

that a customer first viewed a number of different products, added some of them in his/her cart 



and finally purchased them. Alternatively, a session may refer to a user that visited an e-shop, 

viewed a number of products and then left the e-shop without buying anything. So, based on the 

dataset that represents such events that 1.407.580 unique visitors made, a new dataset of 1.650.654 

sessions was created.  

Subsequently, this session-based dataset was used in order to determine the product pages that 

users visit after viewing each single product. This helps us understand the relationships between 

products. These relationships are produced based on real actions that users perform while 

searching for products that meet their preferences. An important aspect that was taken into 

consideration is the number of consecutively events that are related with each other. We call this 

window size. Window size equal to 1 means that a product that a user viewed is linked only with 

the product that he visited next. Respectively, window size equal to 2 means that a product that a 

user viewed is linked with the next two products that he visited. 

Furthermore, a representative text has been assigned to each product. Similar to the logic that was 

described for the Bestprice dataset, this text consists of the title, category and subcategory of each 

product. This set of texts will be used in order to calculate the TF-IDF matrix.  



5 Methodology 

The heuristic approach for content-based Recommendation Systems that is proposed in the current 

research is based on feature weighting and Locality Sensitive Hashing (LSH). The design of the 

system consists of three parts. The first refers to the method that is used in order to represent the 

set of products as a weighted matrix. The second is the weighted Minhash method that is used to 

approximate the Jaccard similarity of two sets. The last part is the efficient production of the 

recommendations based on LSH. The implementation of the system based on the Bestprice dataset 

is presented in the following three paragraphs and in figure 5.1. 

Figure 5.1 Methodology parts diagram. 

 

5.1 Weighted method 

The first phase of our methodology is to create a TF-IDF matrix for the set of 29.541 products. 

Usually, different features carry different amount of information. A word in a product title may be 

more informative than the rest and this fact must be taken into consideration during the similarity 

calculations. In our case, each product is represented by a text that is a concatenation of the product 

title and three specific features as described in paragraph 4.1.3. The terms that correspond to the 

three specific product features are initially considered to be simple terms. These features are the 

category, subcategory and brand of each product. The total number of products is 29.541 and the 

respective corpus consists of 35.405 unique terms. The target is to create a matrix that represents 

how important each term is for each product. A weight is assigned to each unique term for each 

product text. This weight corresponds to the significance of the term for each specific product. The 

more texts a term appears in, the less informative is considered to be, thus it gets a smaller weight. 

Respectively, the significance of a term in a product text increases with the occurrences of it in 

that specific text. In particular, the TF-IDF matrix has been created by using the corresponding 

functions of the ‘scikit-learn’ python library [34]. 



Furthermore, specific terms of the corpus have been given extra weight. These terms correspond 

to the three product features that are parts of each product text. The target is to have a functionality 

with which we can easily adjust the importance of each feature in the calculation of product 

similarities. For example, by increasing the weights of the terms that correspond to the product 

brands, we force the system to consider this specific feature as more important during the 

calculation of product similarities. Alternatively, by decreasing the weights of the terms that refer 

to the product categories, we force the system to consider this specific feature as less important. In 

other words, this functionality offers the opportunity to adjust the logic of the recommendation 

system to the requirements and the aims of an e-commerce site. It also offers diversity in the 

recommendations without compromising similarity or efficiency. This was accomplished by 

multiplying the TF-IDF weights with small constants. For example, in order to increase the 

significance of the brand feature, the weight of the corresponding terms must be multiplied by a 

constant larger than 1. Respectively, a positive smaller than 1 constant is necessary in order to 

decrease the significance of a feature. Multiplying the TF-IDF weight of a term by 1 means that 

its importance is not changed. The multiple scenarios that were implemented are presented in 

paragraph 8. The script (weighted_scheme.py) that was created for this reason can be found in the 

appendix of this dissertation. 

5.2 Weighted Minhash 

Two sets are near duplicates if their similarity score is above a predefined threshold. Calculating 

the similarity scores among sets through simple methods, such as Jaccard similarity, is usually 

inefficient due to high dimensionality. Minhash is an efficient LSH algorithm that has been 

successively proposed to approximate such similarity calculations. In particular, Minhash is used 

to approximate the Jaccard similarity of two sets. Minhash can also be used to compress 

unweighted set and estimate the unweighted Jaccard similarity. This simple Minhash approach can 

be applied in weighted sets by expanding each item based on its weight. However, this approach 

does not support real number weights.  

In our approach, the set of products is represented by a TF-IDF matrix. So, a method that 

incorporates real number weights has been used. Specifically, the weighted Minhash algorithm 

that is available in ‘datasketch’ python library is used [36]. Weighted Minhash was created by 



Sergey Ioffe [22], and its performance does not depend on the weights as long as the universe of 

all possible items is known. In practice, a Minhash signature has been created for each product 

based on the corresponding TF-IDF array. Hence, each product is represented by a much smaller 

array than before. Specifically, while the TF-IDF array consists of 35.405 elements, the Minhash 

signature consists of only 128 elements. The length of the signature corresponds to the 

‘sample_size’ parameter that can be adjusted accordingly as by increasing the number of samples, 

a better accuracy is accomplished, at the expense of slower speed. These Minhash signatures are 

used in order to approximate the Jaccard similarity between products by applying the LSH 

approach that is presented below. The script (minhash_lsh.py) that was created for this reason can 

be found in the appendix of this dissertation. 

5.3 LSH forest & Recommendations 

Having a large collection of sets and a query set, the aim is to find those sets that have Jaccard 

similarities above a certain threshold. By creating a Minhash signature for every set as described 

in 5.2, when a query comes, the Jaccard similarities between the query Minhash and all the 

Minhash of the collection needs to be calculated. This makes the procedure more efficient since 

the Minhash signature is a compressed representation of the initial set. However, this approach is 

still an O(n) algorithm and the query cost increases linearly with respect to the number of sets. A 

popular alternative is to use Locality Sensitive Hashing (LSH) which is an effective way for 

approximating Jaccard similarity between sets. LSH incorporates the representation of items by 

their Minhash signature. The details of the algorithm can be found in Chapter 3 of [27] and in 

paragraph 2.3.4 of the current dissertation. LSH assures that sets with higher Jaccard similarities 

always have higher probabilities to get returned than sets with lower similarities. 

In the current research, the LSH approach is used in order to find the most similar products to each 

product based on their Minhash signature. In particular, we search for the top 10 similar products 

that correspond to 10 recommendations. For this reason, a variation of LSH that is known as LSH 

Forest is used. LSH Forest was proposed by Bawa et al. [28] and is a general LSH data structure 

that makes top-k query possible for many different types of LSH indexes, which include Minhash 

LSH. Minhash LSH Forest, uses the Minhash representation of the query product and returns the 

top-k matching products that have the approximately highest Jaccard similarities with the query 



product. In that way, it is not necessary to pre-define a specific threshold for the Jaccard similarity 

score. In this way, we produced 10 recommendations for each of the 29.541 products in the 

Bestprice dataset. The script (minhash_lsh.py) that was created for this reason can be found in the 

appendix of this dissertation. 

  



6 Experiments & Results 

Based on the aforementioned methodology, we have conducted experiments with the aim examine 

the effect that different feature weights have in the final recommendations. Specifically, scenarios 

with different combinations of weights regarding the 3 basic product features (brand, category & 

subcategory) have been tested for the Bestprice dataset. Each scenario is presented below along 

with the results. The results correspond to statistics about the number of brands, categories and 

subcategories that are present in the set of ten recommendations of each product. The results of 

each scenario are presented in two parts. The first corresponds to statistics about all the products 

regardless the product category. The second examines each product category separately.  

6.1 Keeping the initial TF-IDF weights 

● Scenario 1: w_brand = 1, w_category=1, w_subcategory=1 

This is the base scenario in which the three product features have the weights that were produced 

by TF-IDF method. So, we don’t consider any of the features as more or less important during the 

similarity calculations. In table 6.1, we see that there is an average of 2.54 different brands present 

in each set of 10 recommendations. There are also cases with more than 4 different brands, 

reaching a maximum of 10. The number of different categories and subcategories is much less, 

having a mean of 1.16 and 1.30 respectively. The cases that more than two categories or 

subcategories are present in the set of 10 recommendations are really few. In table 6.2, we see that 

the statistics are different in each product category. The category with the biggest diversity 

concerning product brands is ‘mobiles’. On the contrary, ‘wearables’ category has the lowest 

number of brands at average. 

Table 6.1: Statistics for the recommendations regardless the product category (scenario 1). 

 Brands Categories Subcategories 

mean 2.54 1.16 1.30 

min 1.00 1.00 1.00 

25% 1.00 1.00 1.00 

50% 2.00 1.00 1.00 

75% 4.00 1.00 1.00 

max 10.00 6.00 7.00 



 

Table 6.2: Average number of brands, categories and subcategories per category (scenario 1). 

Category Brands Categories Subcategories 

desktop_pc 2.34 1.12 1.14 

laptop_pc 2.39 1.17 1.28 

mobiles 3.08 1.16 1.46 

photograph 2.26 1.16 1.33 

tablets_other 2.78 1.21 1.33 

wearables 2.14 1.22 1.27 

6.2 Tuning the brand weight 

● Scenario 2: w_brand = 0.5, w_category=1, w_subcategory=1 

● Scenario 3: w_brand = 1.5, w_category=1, w_subcategory=1 

In these two scenarios, we consider the product brand feature to be less important (Scenario 2) or 

more important (Scenario 3) than the rest. This is accomplished by multiplying the TF-IDF weights 

of the terms that correspond to this specific feature by small constants. These constants are 0.5 and 

1.5 respectively. By observing table 6.3, it is obvious that the more important the brand is 

considered to be, the less brands at average are present in each set of 10 recommendations.  On the 

contrary, the number of different categories and subcategories remains almost the same. The same 

conclusions are extracted by observing table 6.4 where the average numbers are presented per 

product category. As in the base scenario 1, ‘mobiles’ and ‘wearables’ have the largest and smallest 

average number of brands in each set of 10 recommended products. 

Table 6.3: Statistics for the recommendations regardless the product category (scenarios 2&3). 

  Scenario 2 Scenario 3 

Brands Categories Subcategories Brands Categories Subcategories 

mean 3.07 1.16 1.30 2.16 1.16 1.31 

min 1.00 1.00 1.00 1.00 1.00 1.00 

25% 1.00 1.00 1.00 1.00 1.00 1.00 

50% 3.00 1.00 1.00 1.00 1.00 1.00 

75% 5.00 1.00 1.00 3.00 1.00 1.00 

max 10.00 5.00 7.00 10.00 5.00 7.00 

 

 

  



Table 6.4: Average number of brands, categories and subcategories per category (scenarios 2&3). 

  Scenario 2 Scenario 3 

Category Brands Categories Subcategories Brands Categories Subcategories 

desktop_pc_cat 2.84 1.11 1.14 1.92 1.10 1.14 

laptop_pc_cat 2.76 1.17 1.27 2.13 1.17 1.27 

mobiles_cat 4.02 1.15 1.43 2.45 1.16 1.50 

photograph_cat 2.64 1.18 1.36 1.96 1.16 1.34 

tablets_other_cat 3.27 1.20 1.31 2.37 1.23 1.35 

wearables_cat 2.40 1.26 1.31 1.91 1.22 1.27 

6.3 Tuning the subcategory weight 

● Scenario 4: w_brand = 1, w_subcategory=0.5, w_category=1 

● Scenario 5: w_brand = 1, w_subcategory=1.5, w_category=1 

In these scenarios, we consider the product subcategory feature to be less important (Scenario 4) 

or more important (Scenario 5) than the rest. This is accomplished by multiplying the TF-IDF 

weights of the terms that correspond to this specific feature, by small constants. These constants 

are 0.5 and 1.5 respectively. We can see in table 6.5 that the more important the subcategory is, 

the more reduced the average number of different subcategories (in each set of 10 

recommendations) is.  Reduction is also observed in the average number of different categories. 

On the contrary, the average number of different brands is increased by increasing the importance 

of subcategory feature. Similar conclusions are extracted by observing table 6.6 where the average 

numbers are presented per product category. 

Table 6.5 Statistics for the recommendations regardless the product category (scenarios 4 &5). 

  

  

Scenario 4 Scenario 5 

Brands Categories Subcategories Brands Categories Subcategories 

mean 2.47 1.21 1.40 2.58 1.14 1.25 

min 1.00 1.00 1.00 1.00 1.00 1.00 

25% 1.00 1.00 1.00 1.00 1.00 1.00 

50% 2.00 1.00 1.00 2.00 1.00 1.00 

75% 4.00 1.00 2.00 4.00 1.00 1.00 

max 10.00 6.00 7.00 10.00 6.00 7.00 

 

  



Table 6.6: Average number of brands, categories and subcategories per category (scenarios 4 &5). 

  

  

Scenario 4 Scenario 5 

Brands Categories Subcategories Brands Categories Subcategories 

desktop_pc_cat 2.07 1.19 1.28 2.35 1.09 1.10 

laptop_pc_cat 2.38 1.19 1.31 2.45 1.15 1.23 

mobiles_cat 2.98 1.22 1.65 3.10 1.13 1.37 

photograph_cat 2.27 1.19 1.39 2.29 1.13 1.25 

tablets_other_cat 2.74 1.28 1.45 2.81 1.18 1.28 

wearables_cat 1.99 1.27 1.32 2.10 1.19 1.22 

 

6.4 Tuning the category weight 

● Scenario 6: w_brand = 1, w_subcategory=1, w_category=0.5 

● Scenario 7: w_brand = 1, w_subcategory=1, w_category=1.5 

In these scenarios, we consider the product category feature to be less important (Scenario 6) or 

more important (Scenario 7) than the rest. This is accomplished by multiplying the TF-IDF weights 

of the terms that correspond to this specific feature, by small constants. These constants are 0.5 

and 1.5 respectively. We can see in table 6.7 that the more important the category is considered to 

be, the less different categories are present in each set of 10 recommendations. Reduction is also 

observed in the average number of different subcategories. On the contrary, the number of different 

brands is increased by increasing the importance of category feature. Similar conclusions are 

extracted by observing table 6.8 where the average numbers are presented per product category. 

Table 6.7: Statistics for the recommendations regardless the product category (scenarios 6&7). 

  

  

Scenario 6 Scenario 7 

Brands Categories Subcategories Brands Categories Subcategories 

mean 2.51 1.2 1.33 2.63 1.12 1.29 

min 1.00 1.0 1.00 1.00 1.00 1.00 

25% 1.00 1.0 1.00 1.00 1.00 1.00 

50% 2.00 1.0 1.00 2.00 1.00 1.00 

75% 4.00 1.0 1.00 4.00 1.00 1.00 

max 10.00 6.0 7.00 10.00 6.00 8.00 

 

  



Table 6.8: Average number of brands, categories and subcategories per category (scenarios 6&7). 

  

  

Scenario 6 Scenario 7 

Brands Categories Subcategories Brands Categories Subcategories 

desktop_pc_cat 2.33 1.12 1.15 2.25 1.09 1.11 

laptop_pc_cat 2.38 1.19 1.29 2.40 1.14 1.26 

mobiles_cat 2.97 1.25 1.53 3.49 1.05 1.48 

photograph_cat 2.23 1.21 1.36 2.37 1.11 1.31 

tablets_other_cat 2.75 1.27 1.37 2.81 1.19 1.31 

wearables_cat 2.22 1.27 1.30 2.05 1.17 1.22 

 

6.5 Tuning the brand and subcategory weights 

● Scenario 8: w_brand = 0.5, w_subcategory=0.5, w_category=1 

● Scenario 9: w_brand = 1.5, w_subcategory=1.5, w_category=1 

In these scenarios, we tune the weights of both the brand and the subcategory features. In 

particular, we consider both features to be less important (Scenario 8) or more important (Scenario 

9) by multiplying the TF-IDF weights of the corresponding terms by 0.5 and 1.5 respectively. By 

observing table 6.9, we conclude that decrease in the average number of all three features is 

accomplished by increasing the importance of brand and subcategory simultaneously. Similar 

changes are observed in all the products categories (table 6.10). 

Table 6.9: Statistics for the recommendations regardless the product category (scenarios 8&9). 

  

  

Scenario 8 Scenario 9 

Brands Categories Subcategories Brands Categories Subcategories 

mean 2.94 1.20 1.40 2.19 1.14 1.26 

min 1.00 1.00 1.00 1.00 1.00 1.00 

25% 1.00 1.00 1.00 1.00 1.00 1.00 

50% 2.00 1.00 1.00 1.00 1.00 1.00 

75% 4.00 1.00 2.00 3.00 1.00 1.00 

max 10.00 5.00 7.00 10.00 5.00 7.00 

 

  



Table 6.10: Average number of brands, categories and subcategories per category (scenarios 8&9). 

  

  

Scenario 8 Scenario 9 

Brands Categories Subcategories Brands Categories Subcategories 

desktop_pc_cat 2.27 1.20 1.27 1.90 1.09 1.10 

laptop_pc_cat 2.76 1.18 1.30 2.19 1.15 1.24 

mobiles_cat 3.90 1.21 1.64 2.48 1.14 1.41 

photograph_cat 2.67 1.20 1.43 1.99 1.13 1.26 

tablets_other_cat 3.23 1.26 1.43 2.39 1.20 1.30 

wearables_cat 2.28 1.30 1.40 1.93 1.20 1.24 

 

6.6 Tuning the brand and category weights 

● Scenario 10: w_brand = 0.5, w_subcategory=1, w_category=0.5 

● Scenario 11: w_brand = 1.5, w_subcategory=1, w_category=1.5 

In these scenarios, we tune the weights of both the brand and the category features. In particular, 

we consider both features to be less important (Scenario 10) or more important (Scenario 11) by 

multiplying the TF-IDF weights of their terms by 0.5 and 1.5 respectively. By observing table 

6.11, we conclude that decrease in the average number of all three features is accomplished by 

increasing the importance of brand and category simultaneously. Similar changes are observed in 

all the products categories (table 6.12). 

Table 6.11: Statistics for the recommendations regardless the product category (scenarios 10&11). 

  

  

Scenario 10 Scenario 11 

Brands Categories Subcategories Brands Categories Subcategories 

mean 3.01 1.2 1.32 2.23 1.13 1.29 

min 1.00 1.0 1.00 1.00 1.00 1.00 

25% 1.00 1.0 1.00 1.00 1.00 1.00 

50% 2.00 1.0 1.00 1.00 1.00 1.00 

75% 4.00 1.0 1.00 3.00 1.00 1.00 

max 10.00 6.0 7.00 10.00 5.00 7.00 

 

  



Table 6.12: Average number of brands, categories and subcategories per category (scenarios 10&11). 

  

  

Scenario 10 Scenario 11 

Brands Categories Subcategories Brands Categories Subcategories 

desktop_pc_cat 2.72 1.12 1.14 1.94 1.09 1.13 

laptop_pc_cat 2.73 1.18 1.27 2.14 1.15 1.26 

mobiles_cat 3.89 1.24 1.49 2.73 1.08 1.46 

photograph_cat 2.63 1.23 1.38 1.96 1.13 1.32 

tablets_other_cat 3.27 1.25 1.35 2.38 1.21 1.34 

wearables_cat 2.42 1.29 1.33 1.87 1.21 1.26 

 

6.7 All scenarios 

All the above scenarios (1-11) are presented in table 6.13. Specifically, the average numbers of 

different brands, categories and subcategories (in each set of 10 recommendations) are presented 

for each scenario. In general, we observe that the incorporation of the feature weighting 

functionality affects the characteristics of the produced recommendations. In that way we can 

control and adjust the recommendation systems logic according to the needs of each e-commerce 

site. In particular, through this weighted scheme, we are able to increase or decrease the 

recommendation diversity and novelty concerning specific product attributes. This can also be 

applied to only specific product categories or subcategories. By observing table 6.13, we can see 

that by increasing the weight of a product feature, the corresponding average number is reduced. 

For example, by increasing the weight of the product brand, the average number of different brands 

in each set of 10 recommendations is reduced. The increase of the weight corresponds to the 

increase of the importance of this specific feature in the similarity calculations. Hence, the system 

considers the brand similarity between two products as more important than the similarity of their 

categories or subcategories.  

  



Table 6.13 Average number of brands, categories and subcategories for scenarios 1-11 

  W_brand W_category W_subcategory Brands Categories Subcategories 

Scenario 1 1 1 1 2.54 1.16 1.30 

Scenario 2 0.5 1 1 3.07 1.16 1.30 

Scenario 3 1.5 1 1 2.16 1.16 1.31 

Scenario 4 1 1 0.5 2.47 1.21 1.40 

Scenario 5 1 1 1.5 2.58 1.14 1.25 

Scenario 6 1 0.5 1 2.51 1.20 1.33 

Scenario 7 1 1.5 1 2.63 1.12 1.29 

Scenario 8 0.5 0.5 1 2.94 1.20 1.40 

Scenario 9 1.5 1.5 1 2.19 1.14 1.26 

Scenario 10 0.5 1 0.5 3.01 1.20 1.32 

Scenario 11 1.5 1 1.5 2.23 1.13 1.29 

  



7 Evaluation and future work 

In this chapter, we evaluate the proposed content-based recommendation system. The evaluation 

process is split in two different parts. The first one refers to a session-based analysis and examines 

its effectiveness. In the second part the recommendation diversity is examined. We also present 

the most important conclusions and insights that have been extracted from the conducted 

experiments and the evaluation process. Finally, we discuss about the additions and improvements 

that we believe could result in even better results. 

7.1 Evaluation 

The evaluation of the recommendation system consists of two parts. The first part is based on the 

Retailrocket dataset that consists of real sessions as described in paragraph 4.2. The aim is to 

examine whether the recommendations produced by our system would help a user navigate in the 

e-shop and prevent them from leaving the site without finding products that meet their preferences. 

The second part is based on the Bestprice dataset that was created by scraping a real e-commerce 

site and is presented in paragraph 4.1. Having proven that our recommendations help customers 

finding products that satisfy their preferences, the aim is to compare the recommendations of our 

system with those that were available on the site, concerning certain aspects. Specifically, we 

compare the diversity of the recommendations and we examine whether we can achieve different 

results by tuning the weights of the product features.  

7.1.1 Session based 

In this part of the evaluation process, the recommendations that are produced for Retailrocket 

dataset are compared with the real customer sessions. This dataset consists of real sessions that 

were generated in a real e-commerce site as described in paragraph 4.2. A session is a group of 

customer interactions with the e-commerce site that take place within a given time frame. In this 

dataset, a single session can contain multiple product page views, adds to cart and transactions. A 

product view refers to the action of visiting a product page in order to see its details. An ‘addtocart’ 

action corresponds to the action of adding a product in the cart, while a transaction refers to finally 

buying at least one product.  



The analysis of those sessions is summarized in the table 7.1 and figures (7.1-7.3). Analyzing 

sessions that contain up to ten product views showed that the more products a customer views, the 

more possible it is to add a product in his/her cart and finally complete a purchase. In particular, 

83.9% of the customers view only one product and only 1.48% of them add it to their cart. In 

addition, only 0.46% of the customers that see only one product, finally buy it. In other words, 

around 99,54% of the users that view only one product, leave the e-shop without buying anything. 

The percentage of sessions that ends up with at least one ‘addtocart’ and finally ‘transaction’ is 

increased in the cases that the customer views two products. However, these cases are much less 

(9.89% of the total sessions) than those in the first case (one product view). Furthermore, 23,61% 

of the sessions with ten product views has at least one ‘addtocart’ action and 7.71% ends up 

purchasing. However, only 0.09% of the sessions refers to cases that the customer views ten 

products. 

Table 7.1 Percentage of sessions, of sessions with 'AddtoCart' and of sessions with 'Transaction' per 

number of viewed products. 

Viewed 
products 

Sessions (%) AddtoCart (%) Transaction (%) 

1 83.9 % 1.48 % 0.46 % 

2 9.89 % 4.89 % 1.35 % 

3 2.89 % 8.08 % 2.4 % 

4 1.25 % 11.12 % 3.3 % 

5 0.65 % 13.56 % 4.5 % 

6 0.38 % 16.86 % 6.15 % 

7 0.24 % 18.66 % 5.38 % 

8 0.17 % 18.69 % 6.36 % 

9 0.12 % 21.93 % 6.76 % 

10 0.09 % 23.61 % 7.71 % 

 

In figure 7.1, we can see that the number of sessions decreases as the number of product views 

increases. Users usually leave the site after seeing one or only a few products. In addition, figure 

7.2 shows that the more products a user views, the more possible it is to add a product to his/her 

cart. Consequently, in figure 7.3, we can see that the more products a user views, the more likely 

they are to purchase a product. Hence, we conclude that helping customers stay longer in the e-

shop and view more products, helps both the e-shop to increase its sales and customers to find 

products that they need to buy. This can be accomplished by providing customers with 



recommendations that help them navigate through the site and finally find the products that meet 

their preferences before leaving. 

 

Picture 7.1 Percentage of sessions per number of viewed products 

 

Picture 7.2 Percentage of sessions with 'AddtoCart' per number of viewed products 



 

Picture 7.3 Percentage of sessions with 'Transaction' per number of viewed products 

 

Having applied the methodology that is presented in detail in chapter 5, we have produced a set of 

ten recommendations for each product page in the Retailrocket dataset. The dataset consists of 

28.241 products that belong to 6 main categories which are split in 37 subcategories. We have used 

a subset of 4.000 products for the evaluation process. The aim is to determine whether the produced 

recommendations would help customers navigate through the e-commerce site, by offering them 

the required next step in order to move from a product page to another. For this purpose, we 

compare the produced recommendations with the product pages that users visited after viewing 

each single product. These product views are described in paragraph 4.2.2 and are based on real 

actions that users performed while searching for products that meet their preferences.  

Specifically, table 7.2 presents the percentage of cases that at least one recommended product 

matches with one product view. The test was conducted for multiple scenarios in which the 

importance of specific product features was tuned. These product features are the category and 

subcategory of each product. In addition, each scenario was tested with a window size up to 3. The 

window size refers to the number of consecutively events that are related with each other. Window 

size equal to 1 means that a product that a user viewed is linked only to the product that he/she 

visited next. Respectively, window size equal to 2 means that a product that a user viewed is linked 

to the next two products that he/she visited. It is obvious that the percentage of cases that at least 

one recommended product matches with the real product views is high, regardless the feature 



importance. The percentage increases further with the increase of the window size. Hence, in most 

of the cases, the recommendations that our system produces would indeed help users move to a 

similar product page instead of leaving the e-commerce site. 

Table 7.2: Percentage of cases that at least one recommended product matches with the product views. 

 Subcategory Weight Category Weight 

Window 
Size 

0.5 1 1.5 2.0 0.5 1 1.5 2.0 

1 94.74 % 94.79 % 94.84 % 94.86 94.71 % 94.79 % 94.79 % 94.79 % 

2 96.90 % 97.01 % 96.98 % 97.03 % 96.95 % 97.01 % 97.01 % 97.03 % 

3 97.68 % 97.73 % 97.68 % 97.73 % 97.71 % 97.73 % 97.76 % 97.79 % 

 

7.1.2 Recommendation diversity 

In this part of the evaluation process, the recommendation diversity of our methodology is 

examined. We evaluate the recommendations that our system produced for the Bestprice dataset. 

Finally, we compare the recommendations that our system produced with those that were scraped 

from the respective site. The dataset is presented in detail in paragraph 4.1. It consists of 29.541 

products that belong to 22 subcategories of 6 main categories in the domain of technology. 

Additionally, there are 515 different product brands. A subset of 1.182 products has been used in 

the evaluation process. Having applied the methodology that is presented in detail in chapter 5, we 

have produced a set of ten recommendations for each of those product pages. The experiment was 

conducted for the 11 scenarios that are presented in chapter 6. In each scenario we consider the 

importance of the product features to be different, by tuning the corresponding weights. The 

average number of different brands, categories and subcategories for those sets of 10 

recommendations is presented in table 7.3. 

In the first 3 scenarios we see that the number of different brands decreases by increasing the 

corresponding weight. This means that considering the product brand as more important in the 

similarity calculations, results in recommendations that include more of the same brand for each 

product page. Respectively, in scenarios 4 and 5, the number of different subcategories decreases 

by the increase of the corresponding weight. The same happens for the product category feature in 

scenarios 6 and 7. Furthermore, in the rest of the scenarios, the weights of different combinations 

of the product features are tuned. The characteristics of the recommended products are affected by 

the weights that are assigned to each product feature.  



In general, by observing table 7.3, we see that the system incorporates diversity as it does not 

recommend products that are almost the same with each other. Specifically, products from more 

than one brand are present in each set of 10 recommendations. Also, by assigning the appropriate 

weights, we have product recommendations from more than one subcategory. There are also cases 

in which the recommended products belong to more than one category. The recommendation 

diversity is very important for the quality of the system [29]. In content-based recommendation 

systems, diversity can be as important as similarity [30]. Similarity assures that the recommended 

products are similar to the target product. Diversity means that the recommended products are not 

very similar to each other. The importance of the recommendation diversity can be explained 

through the following example. Assume that the target product is a Dell laptop and the system 

recommends 10 different Dell laptops. This might probably mean that the recommended products 

are very similar to the target product. However, the user will not have the option to move to a 

laptop of a different brand. Similar problem will occur in a case that all the recommended products 

are of the same subcategory or category. 

In the last row of table 7.3, we see the respective statistics in the product recommendations that 

were scraped from the site (BestPrice.gr). It is obvious that there is diversity in the 

recommendations concerning the brand feature. There is an average of more than 5 different brands 

in each set of 10 product recommendations. However, there is no diversity in the cases of 

subcategory and category. The system recommends products that belong only to the category and 

subcategory of the target product. As a result, a user does not have the option to move to a product 

of a similar subcategory through clicking one of the recommendations. 

Table 7.3: Average number of different brands, categories, subcategories in the sets of 10 

recommendations 

  W_brand W_category W_subcategory Brands Categories Subcategories 

Scenario 1 1 1 1 2.53 1.13 1.27 

Scenario 2 0.5 1 1 3.25 1.12 1.24 

Scenario 3 1.5 1 1 2.07 1.13 1.28 

Scenario 4 1 1 0.5 2.40 1.20 1.41 

Scenario 5 1 1 1.5 2.57 1.10 1.19 

Scenario 6 1 0.5 1 2.57 1.17 1.31 

Scenario 7 1 1.5 1 2.63 1.09 1.25 

Scenario 8 0.5 0.5 1 2.98 1.18 1.37 

Scenario 9 1.5 1.5 1 2.10 1.11 1.22 

Scenario 10 0.5 1 0.5 3.17 1.14 1.26 



Scenario 11 1.5 1 1.5 2.18 1.10 1.24 

Bestprice - - - 5.16 1.0 1.0 

 

7.2 Conclusions 

Based on the evaluation of our proposed recommendation system and the results that were 

produced after conducting several experiments, some interesting conclusions and insights have 

been extracted. Our insights mainly refer to the way that customers behave while navigating in an 

e-commerce site and the value of a recommendation system that can improve the user buying 

experience. In addition, interesting conclusions have been drawn regarding our proposed approach 

of content-based recommendation system and we believe that they can help in the development of 

an even more efficient and customizable system. 

Regarding the customer behavior, the session-based analysis that was performed showed that the 

number of products that a customer views while navigating through an e-shop is linked with the 

possibility of finally buying something. In particular, we saw that users usually leave the site after 

seeing one or only few products and this leads to reduced sales. The more products a user views, 

the more possible it is to add a product to his/her cart and finally purchase it. Hence, we conclude 

that helping customers stay longer in the e-shop and view more products, helps both the e-shop to 

increase its sales and the customers to find products that are appropriate to their preferences and 

needs. A recommendation system can play a significant role in this direction. Specifically, our 

proposed approach was proven to offer recommendations that indeed helped users move to a 

similar product page instead of leaving the e-commerce site. 

Furthermore, interesting conclusions have been drawn regarding the characteristics of our 

proposed hybrid method. We saw that the characteristics of the recommendations can easily be 

adjusted to the desired results by tuning the product features appropriately. The system 

incorporates recommendation diversity without compromising similarity. This aspect turns out to 

be very important because most of the content-based approaches lack diversity. Considering the 

product brand as less important in the similarity calculations, results in recommendations that 

include products of different brands. Similar results can be achieved by tuning other product 

features. In that way, customers see recommendations that are similar to the target product but are 

not all very similar to each other. 



In addition, our approach incorporates a hashing method that makes the product similarity 

calculations much faster and efficient than traditional systems. The representations of product 

profiles as compressed signatures, by applying the Minhash method, turns out to be effective. 

Finally, the approximation of product similarities by applying the LSH method results in a system 

that can handle thousands of products efficiently without compromising similarity. 

7.3 Future work 

The evaluation part has shown that the proposed recommendation system approach is a very 

promising content-based approach, based on feature weighting and LSH. However, additions and 

improvements are necessary in order to achieve even better results. Our plans to improve the 

system are presented in this chapter. 

Firstly, we plan to incorporate more product meta data in the feature weighting method. In the 

current research, three product features (brand, category and subcategory) are present in the two 

datasets. The corresponding feature weights were tuned according to their importance in the 

similarity calculations. However, there are various features that can be taken into consideration. 

Some of them are the color, size and seasonality of products. The selection of the product features 

highly depends on the kind of the products. So, we could also consider testing our approach in 

another field besides technology. 

Secondly, we plan to test the approach with alternative weighting schemes and product profile 

representations. In the current approach, we adjust the importance of the product features by 

multiplying the corresponding TF-IDF weights by small constants [39]. We believe that through 

different product profile representations and alternative ways of assigning weights, even better 

results may be achieved. For example, the textual representation of products by ngrams instead of 

single terms, may improve the similarity calculation results. 

Furthermore, we plan to make the system more personalized by adjusting the recommendations of 

each product page to the actions that a user does while navigating through the e-commerce site. In 

the current approach, the recommended products are completely independent to the user actions. 

We believe that when a user visits a recommended product page, the system should take into 

consideration his/her previous actions. In particular, the characteristics of the previously viewed 

products should affect the recommendations of the product pages that the customer views next. 



We have conducted an experiment in order to test the simplest case for a subset of 10.000 products 

in the Bestprice dataset. In this case, a product view affects the recommendations of only the next 

product page that the customer visits. Specifically, assuming there is a set of 30 candidate 

recommendations, we choose to select the 10 most similar to the previous product page 

recommendations. The results of the experiment seem to be promising. Indicatively we mention 

that each set of 10 recommendations had an average of 2.4 brands and 1.22 subcategories. 
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Appendix 

preprocess_bestprice.py 

""" 

This script is used to preprocess the initial 'Bestprice' dataset 

""" 

 

# import libraries 

import pandas as pd 

import re 

from nltk.tokenize import RegexpTokenizer 

 

# read the initial 'bestprice' dataset 

df = pd.read_pickle('data/df_init.pkl') 

 

# extract the id number from each product url 

df['product_id'] = df['url'].apply(lambda x: re.search(r"item\/([^']*)\/", x).group(1)) 

 

# convert category to lowercase 

df['Category_lc'] = df['Category'].apply(lambda text: text.lower()) 

# convert SubCategory to lowercase 

df['SubCategory_lc'] = df['SubCategory'].apply(lambda text: text.lower()) 

# convert brand_name to lowercase 

df['brand_name_lc'] = df['brand_name'].apply(lambda text: text.lower()) 

# convert title to lowercase 

df['Title_lc'] = df['Title'].apply(lambda text: text.lower()) 

 

# create a new column for 'Category' and add the string '_cat' after the category 

df['Category2'] = df['Category_lc'].apply(lambda x: x+'_cat') 

# create a new column for 'SubCategory' and add the string '_subcat' after the SubCategory 

df['SubCategory2'] = df['SubCategory_lc'].apply(lambda x: x+'_subcat') 

# create a new column for 'brand' and add the string '_brand' after the brand_name 

df['brand_name2'] = df['brand_name_lc'].apply(lambda x: x+'_brand') 

 

  



def replace_brand(row): 

    """ 

    This function adds (or replaces) the brand_name2 to the product title 

    :row: the available information of the product 

    :return: the product title with the brand_name2 

    """ 

    title = row['Title_lc'] 

    brand = row['brand_name_lc'] 

    brand2 = row['brand_name2'] 

     

    if brand in title: 

        title2 = re.sub(brand, brand2, title) 

    else: 

        title2 = title +' '+ brand2 

         

    return title2 

 

# add brand in the product title by calling 'replace_brand' function 

df['Title_lc2'] = df[['Title_lc', 'brand_name_lc', 'brand_name2']].apply(lambda x: 

replace_brand(x), axis=1) 

 

# add category in the end of the product title 

df['Title_lc2'] = df[['Title_lc2', 'Category2']].apply(lambda x: x['Title_lc2']+' '+x['Category2'], 

axis=1) 

 

# add sub-category in the end of the product title 

df['Title_lc2'] = df[['Title_lc2', 'SubCategory2']].apply(lambda x: x['Title_lc2']+' 

'+x['SubCategory2'], axis=1) 

 

# keep only useful columns 

df = df[['product_id', 'url', 'Title', 'Category2', 'SubCategory2', 'brand_name2', 'Title_lc2']] 

 

# keep each product only once by deleting duplicates 

df = df.drop_duplicates(subset='product_id', keep='first') 

 

# save the dataframe as pickle file 

# this file will be used in order to create the TF-IDF matrix 

df.to_pickle('data/product_details/df_preproc.pkl') 

  



weighted_scheme.py 

""" 

This script is used to create the TF-IDF matrix and assign feature weights 

""" 

 

# import libraries 

import pandas as pd 

from sklearn.feature_extraction.text import TfidfVectorizer 

 

# read the dataset with the preprocessed product details of bestprice.gr 

df = pd.read_pickle('data/product_details/df_preproc.pkl') 

 

# create a list (corpus) of all preprocessed product titles (product profiles) 

corpus = df.Title_lc2.values.tolist() 

 

# convert the above corpus to a matrix of TF-IDF features 

tf = TfidfVectorizer()  

tfidf_matrix = tf.fit_transform(corpus) 

 

 

# get a list of the unique terms in the corpus 

feature_names = tf.get_feature_names() 

 

# transform the sparce matrix to a list of dicts 

# each dict corresponds to each term of a product title 

tfidf_list = [] 

for doc in range(0,len(corpus)): 

    feature_index = tfidf_matrix[doc,:].nonzero()[1] 

    tfidf_scores = zip(feature_index, [tfidf_matrix[doc, x] for x in feature_index]) 

 

    for i, w, s in [(i, feature_names[i], s) for (i, s) in tfidf_scores]: 

        doc_dict = {'doc_id':doc, 'term_id':i, 'term':w, 'tfidf':s} 

        tfidf_list.append(doc_dict) 

 

# transform the list of dicts to a pandas dataframe 

df_tfidf = pd.DataFrame(tfidf_list) 

 

# set the weights for the 3 features (brand, category, subcategory) 

# here we increase the significance of only the brand feature  

brand_weight = 1.5 

category_weight = 1.0 

subcategory_weight = 1.0 

 

# create a dataframe with the terms of each feature (brand, category, subcategory) along with the 

weights 



df_brand_weights = pd.DataFrame({'term':list(df.brand_name2.unique()),  

                                 'weight':brand_weight}) 

 

df_category_weights = pd.DataFrame({'term':list(df.Category2.unique()),  

                                 'weight':category_weight}) 

 

df_subcategory_weights = pd.DataFrame({'term':list(df.SubCategory2.unique()),  

                                 'weight':subcategory_weight}) 

 

# concatenate the above 3 dataframes 

df_weights = pd.concat([df_brand_weights, df_category_weights, df_subcategory_weights], 

axis=0) 

 

# merge the main 'df_tfidf' with the 'df_weights' dataframe 

df_tfidf = df_tfidf.merge(df_weights, left_on='term', right_on='term', how='left') 

# set the weight of all the other terms to 1 

df_tfidf = df_tfidf.fillna(1) 

 

# create a new column with the final weight of each term 

df_tfidf['tfidf'] = df_tfidf['tfidf'] * df_tfidf['weight'] 

 

# groupby each product(doc_id) to a row and convert the rest of the columns to lists 

df_tfidf2 = df_tfidf.groupby(['doc_id'], as_index=False)['term','term_id','tfidf'].agg(lambda x: 

list(x)) 

 

# add a column with the product id 

df_tfidf2['product_id'] = df['product_id'].values.tolist() 

# add a column with the product brand 

df_tfidf2['brand_name2'] = df['brand_name2'].values.tolist() 

# add a column with the product category 

df_tfidf2['Category2'] = df['Category2'].values.tolist() 

# add a column with the product subcategory 

df_tfidf2['SubCategory2'] = df['SubCategory2'].values.tolist() 

 

# save the dataframe as pickle file 

# this file will be used in order to calculate the Minhash signature of each product 

df_tfidf2.to_pickle('data/tfidfs/df_tfidf_brand_1-5.pkl') 

  



minhash_lsh.py 

""" 

This script is used to create the weighted Minhash signatures and the recommendations for each 

product 

""" 

 

# import libraries 

import pandas as pd 

from datasketch import WeightedMinHashGenerator 

from datasketch import MinHashLSHForest 

 

# read the pickle file that was created by 'tfidf.py' script 

# this file contains the weighted representation of all products in 'Bestprice' dataset 

df_tfidf = pd.read_pickle('data/tfidfs/df_tfidf_brand_1-0.pkl') 

 

# create an extra column with the minhash id (m1, m2 etc) 

df_tfidf['Minhash_id'] = df_tfidf['doc_id'].apply(lambda x: 'm'+str(x)) 

 

# create a WeightedMinHashGenerator object with the appropriate arguments 

# dim: dimension - the number of unique terms 

# sample_size: number of samples (similar to number of permutation functions in MinHash) 

mg = WeightedMinHashGenerator(dim=35405, sample_size=128) 

 

def create_minhash(doc): 

    """ 

    This function takes the weighted representation of a product and returns its Minhash signature. 

    :param doc: The weighted representation of the product 

    :return: The Minhash signature of the product as a Minhash object 

    """ 

    term_ids = doc['term_id'] 

    tfidfs = doc['tfidf'] 

    tfidf_list = [0]*35405 

     

    i = 0 

    for term_id in term_ids: 

        tfidf_list[term_id] = tfidfs[i] 

        i += 1 

         

    m1 = mg.minhash(tfidf_list) 

     

    return m1 

 

# create a minhash for each row(product) by calling the 'create_minhash' function 

df_tfidf['Minhash'] = df_tfidf[0:].apply(lambda x: create_minhash(x), axis=1) 

 



# create a list with all the Minhash signatures 

minhash_list = df_tfidf['Minhash'] 

 

# create a MinHashLSHForest object with num_perm parameter equal to sample_size(=128) 

# num_perm: the number of permutation functions 

forest = MinHashLSHForest(num_perm=128) 

 

# add each Minhash signature into the index 

i = 0 

for minhash in minhash_list: 

    # Add minhash into the index 

    forest.add("m"+str(i), minhash) 

    i += 1 

 

# call index() in order to make the keys searchable 

forest.index() 

 

# create the recommendations by retrieving top 10 keys that have the higest Jaccard for each 

product 

 

def make_recs(doc_id, n_recs): 

    """ 

    This function takes the id of the target product and returns the top n_recs(=10) keys that have 

the higest Jaccard 

    :param doc_id: the id of the target product 

    :param n_recs: the number of similar products to be returned 

    :return: top n_recs keys that have the higest Jaccard for each product 

    """ 

    query = minhash_list[doc_id] 

     

    # Using m1 as the query, retrieve top 10 keys that have the higest Jaccard 

    results = forest.query(query, n_recs) 

     

    return results 

 

# for each product find the top 10 most similar products by calling the 'make_recs' function 

df_tfidf['recs'] = df_tfidf['doc_id'].apply(lambda x: make_recs(x, 10)) 

 

# finalize the dataset 

 

# create a df with only the recs of each product 

df_recs = df_tfidf[['product_id', 'recs']] 

# expand each row to as many rows as the length of the recs list 

df_recs = df_recs.set_index('product_id').recs.apply(pd.Series).stack().reset_index(level=-1, 

drop=True).astype(str).reset_index() 

# rename the columns 



df_recs.columns = ['product_id', 'rec_m_id'] 

 

# add the brand, category, subcategory of each recommended product 

df_recs = df_recs.merge(df_tfidf[['Minhash_id', 'brand_name2', 'Category2', 'SubCategory2']], 

left_on='rec_m_id', right_on='Minhash_id', how='left') 

 

# groupby each product and convert to lists 

df_recs = df_recs.groupby(['product_id'], as_index=False)['brand_name2', 'Category2', 

'SubCategory2'].agg(lambda x: list(x)) 

# rename columns 

df_recs.columns = ['product_id', 'Brands', 'Categories', 'Subcategories'] 

 

# add the above information to the main dataset 

df_recs2 = df_tfidf.merge(df_recs, left_on='product_id', right_on='product_id', how='left') 

 

# create 3 columns with the number of uniique brands, categories, subcategories for the 

evaluation process 

df_recs2['N_Brands'] = df_recs2['Brands'].apply(lambda x: len(set(x))) 

df_recs2['N_Categories'] = df_recs2['Categories'].apply(lambda x: len(set(x))) 

df_recs2['N_Subcategories'] = df_recs2['Subcategories'].apply(lambda x: len(set(x))) 

 

# save the dataframe as pickle file 

df_recs2.to_pickle('data/recommendations/df_recos_brand_1-5.pkl') 

  



scrape_bestprice.py 

 

""" 

This is the main script of the process that scrapes 'BestPrice' e-commerce site 

""" 

 

# import other scripts and classes 

from bestprice import * 

from general import * 

 

# a list with a sample of the product subcategories that were scraped 

# 'N' refers to the number of products that will be scraped from each subcategory 

categories = [ 

{'Category':'Mobiles', 'SubCategory':'Mobile_phone', 

'url':'https://www.bestprice.gr/cat/806/mobile-phones.html?pg={}', 'N':1600}, 

{'Category':'Mobiles', 'SubCategory':'Bluetooth', 

'url':'https://www.bestprice.gr/cat/813/bluetooth.html?v=r&pg={}', 'N':1900}, 

{'Category':'Mobiles', 'SubCategory':'Handsfree', 'url':'https://www.bestprice.gr/cat/811/hands-

free.html?v=r&pg={}', 'N':2400}, 

] 

 

# create an object of the bestprice class 

sk = bestprice() 

 

# for each category call the 'scrape_bestprice' function to scrape the corresponding pages    

for category in categories[0:]: 

     

    # define the path of the .csv file in which the scraped data will be saved 

    csvFileName = '/home/desktop/dissertation/results/' + category['Category'] + '-' + 

category['SubCategory']+'.csv' 

    # initialize the .csv file 

    initializeCsv(filename=csvFileName) 

  

    print('- Going to scrape the Subcategory - ', category['SubCategory'], ' - ', 

category['Category']) 

    # call the function to start the scraping process 

    sk.scrape_bestprice(category) 
  



bestprice.py 

""" 

This is the script with the class and the functions that are used to scrape 'BestPrice' e-commerce 

site 

""" 

 

# import 'general' script 

from general import * 

 

# import libraries 

import requests 

from bs4 import BeautifulSoup 

import re 

from collections import OrderedDict 

from itertools import cycle 

import traceback 

from datetime import datetime 

 

# set counters  

cnt_pages = 0 

cnt_error = 0 

# call 'update_proxy_pool' function in order to get a list of proxies 

proxy_pool = update_proxy_pool(1) 

# set the site that will be scraped in order to gather new proxies later 

n_site = 0 

 

class bestprice: 

    # the class that is used to scrape the 'BestPrice' e-commerce site 

     

    def __init__(self): 

        # create the 'bestprice' object 

         

        print('Object of class bestprice has been created.') 

 

         

    def scrape_bestprice_page(self, category, brand_info, ith): 

        # scrapes all the products of a page and saves the data in a .csv file 

         

        # define global variables 

        global cnt_pages 

        global proxy_pool 

        global n_site 

         

        category_ = category['Category'] 

        subcategory = category['SubCategory'] 



        basic_url = category['url'] 

        brand_name = brand_info['brand_name'] 

        brand_url = brand_info['brand_url'] 

        next_page = brand_url.format(ith) 

         

        # define the path of the csv file in which the scraped data will be saved 

        csvFileName = '/home/desktop/dissertation/results/' + category['Category'] + '-' + 

category['SubCategory']+'.csv' 

         

        try: 

            # increase the counter each time a page is scraped 

            cnt_pages += 1 

 

            # change the site from which we scrape proxies every 5 pages 

            if cnt_pages%5==True: 

                if n_site%2==0: 

                    site = 1 

                else: 

                    site = 2 

                     

                # scrape proxies from the corresponding site 

                proxy_pool = update_proxy_pool(site) 

                print('proxy_pool is updated.') 

                n_site += 1 

 

            # try to request the page with one of the available proxies 

            # try up to 20 times 

            for i in range(20): 

                try: 

                    # get a proxy from the pool and try to request the page 

                    proxy = next(proxy_pool) 

                     

                    # perform the page request and wait up to 10 seconds 

                    page = requests.get(next_page, headers=headers, proxies={"http": proxy, "https": 

proxy}, timeout=10) 

                     

                    # convert the page to a BeautifulSoup object 

                    soup = BeautifulSoup(page.content, 'html.parser') 

                     

                    # find the html tags with the product details 

                    products_grid = soup.find('div', class_='grid products products--row') 

                    product_divs1 = products_grid.find_all('div', class_="product__wrapper g-1 g-xsm-

2 g-lg-3 g-xl-4 g-xxl-4 product__wrapper--even") 

                    product_divs2 = products_grid.find_all('div', class_="product__wrapper g-1 g-xsm-

2 g-lg-3 g-xl-4 g-xxl-4 product__wrapper--odd") 

                    product_divs = product_divs1 + product_divs2 



                     

                    break 

                except Exception as e: 

                    # move to the next available proxy if an error occurs 

                    pass 

 

 

            # iterate through products of this page in order to extract their details 

            for product_div in product_divs[0:]:                 

                try: 

                    # find the html tags of the specific product 

                    product_info = product_div.find('div', class_="product__main") 

                    product_title_div = product_info.find('h2', class_='product__title') 

 

                    # extract the url of the product page 

                    try: 

                        product_url = product_title_div.find("a")['href'] 

                        product_page = 'https://www.bestprice.gr' + product_url 

                    except: 

                        product_page = None 

                    # extract the product title 

                    try: 

                        product_title = product_title_div.find("a").text 

                    except: 

                        product_title = None 

                    # extract the product description 

                    try: 

                        description = product_info.find('div', class_='product__description').text 

                    except: 

                        description = None 

                    # exctract the product price 

                    try: 

                        price = product_info.find('div', class_='product__cost-price').text 

                    except: 

                        price = None 

 

                    # create a dictionary to store the scraped product details 

                    row = OrderedDict() 

                    row['Category']= category_ 

                    row['SubCategory']= subcategory 

                    row['url']= product_page 

                    row['N']= category['N'] 

                    row['Title']= product_title 

                    row['Price']= price 

                    row['Description']= description 

                    row['Page'] = ith 



                    row['brand_name'] = brand_name 

                    row['brand_url'] = brand_url 

 

                    # write the dictionary to the csv file 

                    appendDictToCsv(filename=csvFileName, data=row) 

 

                except Exception as e3: 

                    # continue to the next product if an error occurs 

                    print('Error in a product: ', e3, ' - ', product_page) 

                 

        except Exception as e4: 

            # continue to the next page if an error occurs 

            print('Error #4: ', e4) 

              

         

    def scrape_bestprice(self, category): 

        # scrapes the product brands of the category and calls the function to scrape each product 

page 

     

        # define a global variable 

        global proxy_pool 

         

        # the url of the page that will be scraped 

        url = category['url'] 

        # the number of products that will be scraped 

        n = category['N'] 

         

        # first scrape the available brands from the main page 

        # try to request the page with one of the available proxies 

        # try up to 30 times 

        for i in range(30): 

            try: 

                # get a proxy from the pool and try to request the page 

                proxy = next(proxy_pool) 

                # perform the page request and wait up to 10 seconds 

                page = requests.get(url, headers=headers, proxies={"http": proxy, "https": proxy}, 

timeout=10) 

                # convert the page to a BeautifulSoup object 

                soup = BeautifulSoup(page.content, 'html.parser') 

                # find the html tags with the product brands 

                filters_div = soup.find('div', id='filters') 

                brand_filter_div = filters_div.find('div', class_='filter-brand default-list') 

                brand_lis = brand_filter_div.find_all('li') 

                break 

            except Exception as e: 

                # move to the next available proxy if an error occurs 



                pass 

 

        # create a list to store the information about each brand 

        brand_info_list = [] 

        # extarct the details of each brand from the corresponding html tag 

        for brand_li in brand_lis: 

            # extract the url of page that refers to the brand 

            brand_a = brand_li.find('a') 

            brand_url = brand_a['href'] 

            brand_url = 'https://www.bestprice.gr' + brand_url + '&pg={}' 

            # extract the name of the brand 

            brand_name = brand_a.text 

            brand_cnt = brand_a['data-c'] 

             

            # create a dictionary with the details of the brand 

            brand_info = {'brand_name':brand_name, 'brand_url':brand_url, 'brand_cnt':brand_cnt} 

            # append the above dictionary to the list 

            brand_info_list.append(brand_info) 

         

        # convert the list of dictionaries to a pandas dataframe 

        df_tmp = pd.DataFrame(brand_info_list) 

        # convert the datatype of  'brand_cnt' column to integer 

        df_tmp['brand_cnt'] = df_tmp.brand_cnt.astype(int) 

 

        # set counters 

        total_N = 0 

        i_brand = 0 

         

        # for each page of each brand call the 'scrape_bestprice_page' to scrape it 

        for brand_info in brand_info_list[0:]: 

            i_brand += 1 

            print('- Scraping category:', category['Category'], ',subcategory:', 

category['SubCategory'], ',brand:', brand_info['brand_name'], ' - ', i_brand, 'of', 

len(brand_info_list)) 

             

            brand_cnt = int(brand_info['brand_cnt']) 

            total_N += brand_cnt 

             

            # fix the pagination according to the site 

            pages = int(brand_cnt/25)+2 

            # scrape each page 

            for i in range(1,pages): 

                next_page = brand_info['brand_url'].format(i) 

                print('-- Scraping page: ', next_page) 

                self.scrape_bestprice_page(category, brand_info, i) 

                 



            # stop the process if the defined number of products have already been scraped      

            if total_N>n: 

                break 

  



general.py 

 

""" 

This is the script with the functions that are used from 'bestprice.py' file 

""" 

# import libraries 

import csv 

import random 

from collections import OrderedDict 

from openpyxl.styles import PatternFill 

from itertools import cycle 

import traceback 

import requests 

from bs4 import BeautifulSoup 

import pandas as pd 

 

 

#gives different user agent randomly for each request. 

agent_version = '%.2f' % (random.randint(20, 100) + random.randint(1, 100)/float(100)) 

headers = { 

    'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) 

Chrome/56.0.2924.87 Safari/537.36', 

    'User-Agent': 'Mozilla/5.0 (compatible; MSIE 8\.0; Windows NT 5\.1; SV1)  

Chrome/%s.2924.87 Safari/537.36' % agent_version 

} 

 

 

def get_free_proxies(url, anonymity): 

    # scrapes the site with the free proxies 

     

    # perform the page request 

    page = requests.get(url) 

    # convert the page to a BeautifulSoup object 

    soup = BeautifulSoup(page.content, 'html.parser') 

     

    # find the html tags with the free proxies 

    table = soup.find('table', id='proxylisttable') 

    table_body = table.find("tbody") 

    trs = table_body.find_all("tr") 

     

    # create a list to store the proxies 

    proxies = [] 

    # extract the details of each proxy from the corresponding html tags 

    for tr in trs[0:]: 

        tds = tr.find_all("td") 



        if tds[4].text.strip() in anonymity:     

            ip = tds[0].text.strip() 

            port = tds[1].text.strip() 

            proxy = ip+':'+port 

            # append the proxy to the list 

            proxies.append(proxy) 

             

    # return the list of proxies 

    return proxies 

 

def update_proxy_pool(site): 

    # select one of the two sites and scrape the available free proxies 

    print('Updating proxy_pool...') 

    if site==1: 

        print('Site No. 1') 

        url = 'https://free-proxy-list.net/' 

    else: 

        print('Site No. 2') 

        url = 'https://www.sslproxies.org/' 

     

    # call the function to scrape the selected site 

    proxies = get_free_proxies(url, 'elite proxy') 

     

    # convert the list to cycle 

    proxy_pool = cycle(proxies) 

     

    # return the proxies 

    return proxy_pool 

 

 

def initializeCsv(filename=''): 

    # creates a .csv filename with the needed column names 

     

    # create a dictionary with the needed .csv columns 

    dataFormat = OrderedDict() 

    dataFormat['Category']= '' 

    dataFormat['SubCategory']= '' 

    dataFormat['url']= '' 

    dataFormat['N']= '' 

    dataFormat['Title']= '' 

    dataFormat['Price']= '' 

    dataFormat['Description']= '' 

    dataFormat['Page']= '' 

    dataFormat['brand_name']= '' 

    dataFormat['brand_url']= '' 

 



    # create and save the .csv file 

    keys = dataFormat.keys() 

    with open(filename, 'w', newline='', encoding='utf-8') as output_file: 

        dict_writer = csv.writer(output_file) 

        dict_writer.writerow(keys) 

 

def appendDictToCsv(filename='', data={}): 

    # writes a python dictionary to a .csv file 

     

    keys = data.keys() 

    with open(filename, 'a', newline='', encoding='utf-8') as output_file: 

        dict_writer = csv.DictWriter(output_file, keys) 

        dict_writer.writerow(data) 
 


