

Heuristic Approach for Content
Based Recommendation System
Based on Feature Weighting and
LSH

Beleveslis Dimosthenis

SID: 3308170002

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

DECEMBER 2019

THESSALONIKI – GREECE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Hellenic University: IHU Open Access Repository

https://core.ac.uk/display/328007068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Heuristic Approach for Content
Based Recommendation System
Based on Feature Weighting and
LSH

Beleveslis Dimosthenis

SID: 3308170002

Supervisor: Prof. Christos Tjortjis

Supervising Committee Members:

Dr C. Berberidis

Dr M. Gatzianas

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

DECEMBER 2019

THESSALONIKI – GREECE

Abstract

This dissertation was written as a part of the MSc in Data Science at the International Hellenic

University. The aim of this research is to design an efficient content-based product

recommendation system in the field of e-commerce. A heuristic content-based approach that

incorporates feature weighting and locality-sensitive hashing (LSH) is proposed. The

recommender system uses the TF-IDF method and incorporates a functionality of tuning the

importance of product features in order to adjust its logic to the requirements and needs of different

e-commerce sites. The problem of efficiently producing recommendations, without compromising

similarity, is addressed by approximating product similarities via the LSH technique.

The system is implemented and evaluated based on two datasets that include real e-commerce data.

Specifically, product details and customer actions from two e-commerce sites are used in order to

conduct various scenarios and tests. The results and the evaluation of the proposed methodology

show that the recommendations can improve the user experience and increase the product sales.

Finally, it turns out that the system incorporates recommendation diversity which can be adjusted

by tuning the appropriate feature weights.

Beleveslis Dimosthenis

02/12/2019

Acknowledgements

I would first like to thank my supervisor Dr. Christos Tjortjis for his excellent guidance and his

important help during the implementation of this dissertation. I would also like to thank the

International Hellenic University for giving me the opportunity to undertake this dissertation.

Lastly, I am grateful to my family and friends who have supported me along the way.

Contents

Abstract 3

Acknowledgements 4

Contents 5

1 Introduction 7

1.1 Problem 7

1.2 Scope and contribution 9

1.3 Dissertation outline 9

2 Background 11

2.1 Types of Recommendation Systems 11

2.1.1 Content Based Filtering 11

2.1.2 Collaborative Filtering 13

2.1.3 Hybrid methods 14

2.2 Recommendation Systems in e-commerce 15

2.2.1 Benefits 15

2.2.2 Use cases 16

2.2.3 Product Page RS 18

2.2.4 Cart Page RS 19

2.3 Similarities & LSH 20

2.3.1 Jaccard Similarity 21

2.3.2 Random permutations 22

2.3.3 Minhash 23

2.3.4 Locality-sensitive hashing 24

2.4 Weighted methods 26

2.4.1 TF–IDF 26

2.4.2 Weighted Minhash 27

3 Previous work 29

4 Data 31

4.1 Bestprice dataset 31

4.1.1 Gathering procedure 31

4.1.2 Overview 32

4.1.3 Preprocessing 33

4.2 Retailrocket dataset 35

4.2.1 Overview 35

4.2.2 Preprocessing 35

5 Methodology 37

5.1 Weighted method 37

5.2 Weighted Minhash 38

5.3 LSH forest & Recommendations 39

6 Experiments & Results 41

6.1 Keeping the initial TF-IDF weights 41

6.2 Tuning the brand weight 42

6.3 Tuning the subcategory weight 43

6.4 Tuning the category weight 44

6.5 Tuning the brand and subcategory weights 45

6.6 Tuning the brand and category weights 46

6.7 All scenarios 47

7 Evaluation and future work 49

7.1 Evaluation 49

7.1.1 Session based 49

7.1.2 Recommendation diversity 53

7.2 Conclusions 55

7.3 Future work 56

References 58

Appendix 63

1 Introduction

A Recommendation or Recommender System (RS) mainly refers to an intelligent system that

produces suggestions about items to users. In particular, its role is to predict items that are likely

to be of interest to the user. They have turned out to be essential due to the big increase of options

that users have nowadays while using every aspect of the web. With the appearance of big data,

the problem of selecting the right information arose. Recommendation systems are used to solve

this problem and improve the online experience. They provide personalized information by

learning the user’s interests through his/her interaction with items.

Over the past years, Recommendation Systems have turned out to be very popular as we come

across them almost everywhere in the web (e-commerce, movie sites, music sites etc.). The

recommended items can potentially be anything (products, movies, songs, services etc.) that a user

is looking for. There are plenty of applications and domains that such systems are used in and

produce significant results. For example, it is important for an e-shop to recommend the right

products to each customer and for an insurance company to recommend the appropriate plan to

each client.

The way that these recommendations are produced is of great interest. It certainly depends on the

specific domain and the desired results. In general, they are based on item similarities, user

preferences, past purchases and other actions related to the items and the users. Over the past

decades, recommender systems have become an important research area and much work has been

done on developing new approaches. In order to predict good recommendations, the system needs

to know some important information about the items and the users. In other words, these refers to

the ‘item profile’ and ‘user profile’ respectively. The item profile corresponds to the characteristics

of the item. These characteristics may be a description, specific attributes, keywords etc. The user

profile mainly refers to the information that summarize the preferences of the user.

1.1 Problem

E-commerce is one of the areas that recommendation systems are being used extensively. The role

of a recommender system in an e-shop is similar to the role of a salesperson in a physical store.

Online stores need to offer to customers, a similar or even better shopping experience than that of

an offline store. A recommendation system helps in that direction by providing customers with

online product recommendations that help them find what they need easily. This will result in

customer satisfaction and engagement with the products and the e-shop. Consequently, upselling,

cross selling, less cart abandonments and overall improvement in other KPIs, such as daily sales,

are accomplished.

A customer can see product recommendations in various pages of an e-commerce site. One of

them is the ‘product page’ which is the page where users visit to see a specific product along with

its detailed description and features. The user can add the product to his/her cart or visit an

alternative product page that better matches his/her preferences. The main aim of the system on

such a page is to display relevant items and help customers to continue browsing the site by

providing them with the necessary “next step”. The recommended products have to be similar to

the one of the product pages, by taking into consideration the importance of their characteristics

and features. However, it is important to achieve diversity in the recommendations because the

customer doesn’t need to see a list of almost the same products. For example, assuming a user that

is seeing a laptop of a specific brand and all the recommendations correspond to similar laptops of

the same brand. In this case, the user will not be able to visit the product page of a laptop of an

alternative brand by navigating through the recommendations.

Furthermore, the logic of such a recommendation system relies on the idea of finding similar

products by calculating similarities among them. This is a computationally heavy and time-

consuming procedure when an e-commerce site has thousands of products. Calculating the

similarity of between a product and all the rest products of an e-shop, in order to find the most

similar products, is usually inefficient. So, it is important to apply more sophisticated methods that

will reduce the complexity and computational cost without compromising the accuracy of the

system.

1.2 Scope and contribution

The scope of this research is to implement a content-based recommendation system suitable to the

‘product page’ of an e-commerce site. Specifically, we address the problem of product

representation by incorporating a weighted method that offers the functionality to customize the

importance of product features. In that way, the logic of the system is adjusted to the needs of the

e-commerce site. In addition, diversity of the recommendations is accomplished without

compromising the similarity. Furthermore, this study is trying to address the problem of efficient

product similarity calculations for e-commerce sites that dispose thousands of products. This

problem is tackled by incorporating locality sensitive hashing method. Finally, our implemented

heuristic approach is being evaluated based on real data from two e-commerce sites.

1.3 Dissertation outline

In the first chapter, the concept of recommendation systems was introduced. We also defined the

problem that the current research addresses and we presented the scope of the dissertation. Finally,

we provide its structure by mentioning the key points of each chapter.

In the second chapter, we introduce the core concepts of recommendation systems and we provide

the background knowledge that is necessary in order to follow the dissertation. We present the

basic types of recommender systems and their appliance in e-commerce. Furthermore, we refer to

the concept of similarity calculations and locality-sensitive hashing. Finally, we discuss about

weighted methods that are applied in similar systems and are used in the proposed approach.

In the third chapter, we briefly review some previous research efforts related to recommender

systems and locality sensitive hashing. We also present previous works that incorporated weighted

methods in the field of RS.

In the fourth chapter, we describe in detail the two datasets that are used in the current research.

We provide information about their content and present the preprocessing steps that were followed.

We also describe the way that they were initially created.

In the fifth chapter, we provide details of the methodology that was followed in order to build the

proposed recommendation system. The weighted method that was applied is presented in detail.

We also present the process that was followed in order to incorporate the LSH method.

In the sixth chapter, we present the experiments that were conducted in order to test the proposed

approach based on real data. The results of the experiments are demonstrated and explained.

In the seventh chapter, we evaluate the proposed recommendation system by further analyzing the

results of the experiments that were conducted. We also examine the diversity of the generated

recommendations and we perform a session-based analysis. In addition, we present the conclusions

that have been drawn and we discuss about our plans to improve the system.

2 Background

In this chapter, we introduce the core concepts of recommendation systems and we provide the

background knowledge that is necessary in order to follow the dissertation. We present the basic

types of recommender systems and their appliance in e-commerce. Furthermore, we refer to the

concept of similarity calculations and locality-sensitive hashing. Finally, we discuss about

weighted methods that are applied in similar systems and are used in the proposed approach.

2.1 Types of Recommendation Systems

The rapid increase of the need to apply recommendation systems almost everywhere in the web is

combined with the deep research of the issue. The interest in this area still remains high due to the

growing demand on practical applications and different approaches have been developed.

However, all the new approaches are based on three major types of recommendation systems. The

recommendation techniques are usually classified into the following types, based on the logic that

the recommendations are generated [1], [2], [3], [31].

2.1.1 Content Based Filtering

This type of recommendations is mainly based on the content of the items. The system

recommends items that are similar to items that a user interacted with (viewed, liked, purchased)

in the past. In content-based filtering, the user is represented by his/her profile. This profile

represents the interests of the user based on previous interactions with items. The user may express

his/her interests through implicit or explicit actions. Each item is also represented by a profile that

consists of the important information that summarizes it and characterizes it [38]. So, the system

tries to find the item profiles that best match the user profile. These item profiles correspond to the

items that the user would like to see or buy. For example, assuming that the attributes of product

A and product B are very similar and a user liked product A. Then the system will recommend

product B to the user.

Advantages [1]

● User independence - Considering the difficulty in gathering ratings about items, content-

based filtering can be applied easier than collaborative filtering as it is independent from

other users. The profile of the user that the recommendations are made for, is enough.

● New item - Content-based approach can be easily adapted to new items. Even if a new item

with no ratings comes in, the system can recommend it to a user. This happens because the

system just relies on the content of the item, so based on its characteristics it will match it

with older items.

● Transparency - Content-based filtering offers transparency to the evaluation process of the

system. The reason that an item is recommended to a user can clearly be explained based

on the content of the item and the specific user profile. While in collaborative filtering, the

explanation of recommendations is hidden behind ratings of many unknown users.

● Text mining - Considering the fact that the content of an item can be represented as text,

this approach opens up the options to use various text mining methods.

Disadvantages [1]

● Over specialization – Content-based approach recommends items that are very similar to

items that the user has already interacted with (liked, purchased etc.) in the past. Hence, it

provides a limit degree of novelty and diversity, since it has to match up the user and the

item profiles.

● Limited content analysis – This type of recommendation systems requires representative

information about the items. The less information about the content of the product, the

harder it is for the system to discriminate the items precisely. As a result, it is difficult for

the system to discriminate items that the user likes from items that the user does not like.

Furthermore, for the best exploitation of the information, the domain knowledge is often

necessary.

● New user – A problem arises when a new user comes in. The system needs information

about the user preferences in order to create the corresponding user profile. So, the user

needs to start interacting with items in order to express his/her preferences and help the

system produce personalized recommendations.

2.1.2 Collaborative Filtering

This type of recommendations is mainly based on users’ opinions and ratings (implicit or explicit)

about items. The system recommends items that similar users like. So, in order to produce accurate

results, it is necessary to have ratings of items. The ratings can be presented as a user-item matrix

that shows the items that each user likes or dislikes. Based on this matrix, similarities between

users are calculated. The basic premise of CF is that if two users have the same opinion about a

bunch of products, then they are likely to have similar opinions about other products too [37]. For

example, two users that have highly rated the same movies will be considered as similar. This

method produces recommendations with higher diversity than content-based filtering.

Advantages [2]

● Diversity – Collaborative filtering relies on the idea that a user will be recommended items,

that people with similar tastes and preferences to him/her, liked in the past. Based on that,

the user might be recommended items that he never liked before, but other similar users

did. So, there is much more diversity in recommendations than in content-based

approaches. This gives to the user the opportunity to discover new preferences.

● Adaptability – This type of RS can be applied in any type of items and domain without

having to deal with the different content of the products. It can even produce very good

results in domains where there is not much content associated with items and where the

content is difficult for a computer system to be analyzed.

Disadvantages [2]

● Cold-start problem – This problem refers to the situation where the system does not have

adequate information about an item or a user. When a new item comes in, there are no past

raters for it. So, it cannot be recommended to new users. Also, similar problem occurs

when a new user comes in as the system doesn’t have information about his/her

preferences.

● Data sparsity problem – Almost always, each user rates only a small percentage of the

available items. This leads to difficulty in finding users that have rated the same items. In

addition, the data sparsity decreases the percentage of the available items that can be

recommended.

2.1.3 Hybrid methods

This type of recommendation systems combines the content based and collaborative filtering that

were described previously. The idea behind hybrid techniques is that a combination of both

approaches can solve the major problems that each technique has. A basic problem of collaborative

filtering approach is the cold start problem. This problem refers to the difficulty in recommending

an item that has not been rated in the past. Content-based filtering that doesn’t need ratings could

be a solution to the cold start problem. So, hybrid methods have been developed in order to

overcome certain limitations that the two main approaches have [3]. Specifically, there are three

main approaches of building hybrid methods, based on the way that the two main types are

combined:

a) implementing collaborative and content-based methods separately and combining their

predictions,

b) incorporating some content-based characteristics into a collaborative approach,

c) incorporating some collaborative characteristics into a content-based approach

2.2 Recommendation Systems in e-commerce

E-commerce is one of the areas that recommendation systems are being used extensively.

Marketers are trying to create a great customer experience by taking advantage of such intelligent

systems. The role of a recommender system in an e-shop is similar to the role of a salesperson in

a physical store. In a bricks and mortar store, a sales assistant is there to help customers find

products that match their needs and wishes. Respectively, an e-shop needs a RS to offer to

customers an online shopping experience similar to the one that they would have in a traditional

store. In particular, the system exploits data about the products and the way that customers

interacted with them. Based on that, more personalized product recommendations are presented to

the users. Furthermore, the appearance of big data in e-commerce made recommendation systems

essential, as they offer an efficient way to take advantage of all this data in order to improve the

customers shopping experience and increase revenues.

2.2.1 Benefits

Personalization is becoming increasingly important in online marketing and the benefits of a

recommender system are both for the customers and the e-shops. E-commerce sites use

recommender systems with the aim to produce personalized suggestions to the customers about

products and services [4], [31].

User Experience - An intelligent product recommender system produces the right suggestions to

the right customers. A customer prefers to see products that he/she likes or needs. In that way

his/her shopping journey becomes easier and more pleasant. So, instead of leaving the customer

in the chaos of thousands of products, a recommendation system helps him/her to find what he/she

is looking for fast and efficiently. Hence, the user feels more comfortable while purchasing

products online.

Loyalty – With the numerous options that are available in e-commerce, loyalty is very important

for sites. An e-shop needs to offer to the customers an online experience that will make them return

in the future. Loyalty is improved through recommendation systems by creating a value-added

relationship between the site and the customer. By making personalized recommendations that

match customer needs, the customer feels valued and finds the website user-friendly. A satisfied

customer will keep returning to the e-shop and the engagement will be enhanced.

Sales – Incorporating and using a recommender system can result in an increase in profits. Being

closer to customers by making personalized recommendations leads to higher revenue. Many

times, visitors leave the site before finding products that are appropriate to their needs. A RS solves

this problem as it can lead the visitor to specific products that are of his/her interest fast.

Furthermore, product suggestions can be additional to already selected products. In that way,

cross-selling is improved, and the average order size is increased.

2.2.2 Use cases

The main role of a recommender system in an e-commerce site relies on the idea that the visitors

should see relevant products that will help them find what they need fast and in a pleasant way.

These products can be relevant to their tastes or can help them discover new preferences. Some

sites use non personalized approaches to make product suggestions that do not change according

to each item or customer profile. Other sites use more sophisticated systems that produce

personalized recommendations that focus on the characteristics of the customers and products.

Basic use cases of such systems are described below. [32]

Non-personalized: Product recommendations are based on specific filters, without taking

advantage of the content of the products and the way that each customer interacts with them. This

kind of recommendations are inevitably in cases that there is no information about the customer

profiles or purchase history. In addition, this logic can be applied when products with specific

characteristics must be promoted.

● Popular products – The suggestions correspond to popular products, incorporating basic

filters such as product categories. In fact, purchase history is important here as it holds the

information about the best-selling products among each product category.

● New products – Another way to take advantage of a recommendation system is to promote

new items that are in stock. It is often difficult to start boosting new products and a RS can

offer a valuable solution.

● Slow moving inventory – A usual situation in e-shops is having products that are not selling

as much as others. A simple way to boost the sales of such products is to present them more

often to the customers via a recommender system.

● Special offers and seasonality – In the same logic, a recommender system can have the role

of a campaign for products that are in discount or should be high selling during specific

seasons. For example, presenting to customers sun care creams that are in discount during

summer can attract their attention.

Personalized: A more sophisticated and intelligent recommender system produces personalized

suggestions that focus on the needs and preferences of the customers. It takes into account both

the characteristics of the products and the customer profile that is created based on his/her online

habits. This kind of recommendations are clearly more effective and produce more accurate results.

In this case, it is essential to have product and customer data in order to present relevant

suggestions that will increase engagement and conversions.

● Recently viewed – This type of recommendations doesn’t require any in depth data about

the customer. The idea relies on the fact that a customer may express his/her interest about

an item while browsing the site but get distracted from other products. So, based on that

idea, it is reasonable to remind him of the products that he may be interested in.

● Customers who viewed this item also viewed – Associations between products are created

based on data that are generated while customers are browsing through the product pages.

These associations can be used in order to suggest to a customer the next available product

that he should see.

● Customers who bought this item also bought – Respectively, product association rules can

be generated based on purchase history. This kind of suggestions aim to improve the cross-

selling. It tries to increase the average order value by offering products that go along with

the customer current purchase.

● View this item next – Based on the product profiles that consists of their important

characteristics and features, the system suggests similar products with this that the

customer is currently seeing. The idea is to help customer find other similar products that

may match to their preferences and needs. The current research focuses on this kind of

logic.

The above kinds of recommendations can be displayed at plenty of places on an e-commerce site.

Two common places are the product and the cart page of the site [33]. The first corresponds to the

recommends that are produced while the customer is still searching for items. While the second

corresponds to the page where the customer is completing his/her purchase. These two kinds of

RS and their logic are described in the following chapters.

2.2.3 Product Page RS

The product page corresponds to the page where the customer is viewing a product and can find

all the available information of it. Detailed description, product pictures and price are some of the

products features that a customer expects to see in the product page. Assuming that the customer

doesn’t leave the site, he has two options there. The first is to add the product in his/her cart and

the second is to look for another product. Most of the times the second option is selected as the

customer is searching for that product that best matches his/her needs. So, it is important to provide

the customers with an efficient way to choose their ‘next step’ and keep them browsing the site.

This can be accomplished through a RS that is able to make searching a lot easier for the users.

Instead of clicking through many pages to find the right product, the aim of the product suggestions

is to exclude the irrelevant ones so that those displayed are the most appropriate for the user.

In particular, the main objective is to produce specialized product recommendations for each

specific product page, taking into consideration the user’s profile. The main target is to help users

find what they are looking for easily and make the navigation through the product pages efficient.

This helps customers stay more time in the e-shop and finally increases the probability to purchase

products.

Many e-shops make recommendations based on simple aspects. A commonly adopted approach is

to recommend popular products by applying basic filters about the product category, color, brand

etc. But this naïve approach leads to undesirable results as many times the user gets disturbed by

products that are irrelevant to the ones that he has already seen. However, great results can be

produced by combining such simple methods with more complexed exploitation of product

metadata. Taking into consideration the fact that the customer wishes to visit a product page that

better matches his/her preferences, the system must recommend several options of similar products

to the one that corresponds to the current product page. Therefore, the logic of the system should

be based on the content of the products and not on past purchases or ratings. Hence, content-based

filtering is more appropriate in product page recommendation system. This dissertation aims to

propose such an approach.

2.2.4 Cart Page RS

The cart page corresponds to the place where the customer has already selected the items that

he/she wants to buy and completes his/her purchase. That step is a brilliant opportunity for the

marketeers to increase cross-selling by recommending products that can be purchased along with

the already selected ones. So, the idea behind those recommendations is completely different to

that in a product page. By recommending just similar products with the cart products, the

possibility that the customer will replace the already chosen products with the recommended ones

arises. A RS in this specific place of the e-commerce site tries to lure the customer into increasing

the average order value by offering products that go along with his/her current purchase. A

recommender system works like a brilliant salesman who is well trained in cross selling and

upselling.

Since, the main objective is to recommend products that could potentially be purchased along with

the already chosen products, it is important to take into consideration the historic data about

purchases and user preferences. Such data can reveal associations between products and

customers. A common type of association is ‘Customers that buy products A and B, also buy

product C’. The more personalized the recommendations are the more sophisticated and accurate

the system is considered to be. Significant results are produced when RS combine collaborative

filtering approaches with other methods that take into consideration purchase history and past

sales.

2.3 Similarities & LSH

Information explosion has led to an increasing number of applications that need to deal with large

volumes of data. Although traditional algorithm analysis considers that the data fits in main

memory, this is not possible when dealing with massive data sets, such as multimedia data, web

page repositories, etc. The same issue appears in the domain of recommendation systems, that need

to handle large amounts of data [5]. Usually, the main objective of a recommendation system is to

calculate similarities among a set of items and/or users. Such items can be products, documents,

songs etc. A RS taking into consideration the representation of the items should be able to identify

which of them are similar in order to make appropriate recommendations. A similarity search

problem includes a big group of items (products, documents, etc.) that are represented by a set of

characteristics, as points in a high-dimensional attribute space. A particularly interesting and well-

studied instance is d-dimensional Euclidean space. This important issue appears in various

applications, including data mining, information retrieval and more specifically RS. Usually, the

items of interest (products, documents, etc.) are represented as points and a distance metric is used

to calculate the similarity among them. The number of product attributes corresponds to the

dimensionality of the problem and ranges widely. Many accurate solutions have been developed

for low-dimensional cases. However, for high-dimensional cases the issue still remains, as

improvement can be accomplished.

Approximation has been proposed in several researches as a solution to the problem of scalability.

An interesting approach in order to handle the issue of high dimensionality are approximate nearest

neighbor (ANN) (Definition 2) algorithms. Such algorithms improve dramatically the search speed

and are necessary in high-dimensional cases. They rely on the idea that calculating similarities by

applying the approximate nearest neighbor is almost as accurate as using the common procedure

of nearest neighbor (NN) (Definition 1). This is a reliable approach in cases where small errors,

caused by approximation, are not significant [6]. Locality sensitive hashing (LSH) and its

variations have been proposed as techniques for approximate similarity search in cases of high

dimensionality. This method uses a family of locality-sensitive hash functions to hash nearby

objects in the high-dimensional space into the same bucket. A large number of hash functions is

needed in order to achieve good search quality [7].

Definition 1 (Nearest Neighbor or NN) [8]. Given a query object q, the goal is to find an object

NN(q), called nearest neighbor, from a set of objects P = {p1, p2, · · · , pN } so that NN(q) = arg

minp∈P dist(q, p), where dist(q, p) is a distance between q and p.

Definition 2 (c-Approximate Near Neighbor or ANN) [8]. Given a query object q, the distance

threshold R > 0, 0 < δ < 1 and c ≥ 1, the goal is to report some cR-near neighbor of q with the

probability of 1−δ if there exists an R-near neighbor of q from a set of objects P = {p1, p2, · · · , pN

}.

There are various techniques in order to calculate the similarities between items such as cosine and

Jaccard similarity. Traditional RS have been designed to handle this issue by incorporating simple

similarity methods where each pair of items is a candidate. But the problem of scalability arises

due to big data. Nowadays, it is common to face the problem of dimensionality which is often

called “curse of dimensionality”. The exponential growth of data brought those traditional

approaches across the problem of scalability. For example, in a RS of an e-shop with hundreds of

thousands of products, calculating similarities between all of them is inefficient. Specifically, it is

time consuming and computationally heavy. Hence, LSH is a method that can be applied in RS,

aiming to tackle the scalability problem.

2.3.1 Jaccard Similarity

Many applications, including RS, adopt the bag-of-words model [9] as representation of textual

data. The Jaccard similarity has been widely applied in order to calculate similarities among items

that are represented in the bag-of-words model. The Jaccard similarity is statistically a measure of

comparing the similarity of two binary sets. Jaccard index is often used for comparing similarity,

dissimilarity, and distance of the data set. Calculating the Jaccard similarity between two data sets

is the result of division between the number of common elements and the number of all elements

in the sets.

 Definition 3 (Jaccard Similarity) [8]. Given two sets S and T, the Jaccard similarity is defined as

𝐽(𝑆, 𝑇) =
|𝑆 ∩ 𝑇|

|𝑆 ∪ 𝑇|

The above definition assumes that all elements are equally important. But in many cases, some of

the elements are more important than others and this is represented by assigning weights to them.

For the case of such weighted sets, we need to define the generalized Jaccard similarity as follows.

Definition 4 (Generalized Jaccard Similarity) [8]. Given two sets S = [S1, · · ·, Sn] and T = [T1, · ·

·, Tn] with all real weights Sk, Tk ≥ 0 for k ∈ {1, . . ., n}, the generalized Jaccard similarity is

defined as

𝐽𝑔𝑒𝑛(S, T) =
∑ min (𝑆𝐾, 𝑇𝑘)𝑘

∑ max (𝑆𝐾, 𝑇𝑘)𝑘

The weighted Jaccard similarity is a natural generalization of Jaccard similarity. It will become

Jaccard similarity if all token weights are set as 1.0.

Usually, such representations lead to large dimensionality and calculating similarities among items

turn to be computationally heavy. In the case of a RS, there may be thousands of items and each

of the item profile may consist of hundreds of keywords or features. Therefore, a large dictionary

and a sparse matrix is produced. So, a more efficient way to represent items and users’ profiles

should be used that will make the whole process faster. Such an approach is the representation of

items by their signatures that are created by hash functions. The Minhash algorithm, which is a

well-known LSH algorithm, is used to estimate the Jaccard similarity and is described in the

following paragraphs.

2.3.2 Random permutations

Assuming a universal set U and its subset S ⊆ U, we can define S as a binary or weighted set as

follows. The subset S is a binary one if each element of the set S (k ∈ S) has weight equal to 1 (Sk

= 1), while any other element (k ∈ U − S) has weight equal to 0 (Sk = 0). Respectively, the subset

S is a weighted one if each element of the set S (k ∈ S) has weight greater than 0 (Sk > 0), while

any other element (k ∈ U − S) has weight equal to 0 (Sk = 0). The set or every subset can be

represented as vectors with length equal to the number of the elements of the universal set. For

example, U = [U1, U2, · · ·, Un] and S = [S1, S2, · · ·, Sn] [8].

A random permutation can be performed on such a set, but this can be very complex. Therefore,

an approximation of the random permutation can be accomplished by uniformly and injectively

mapping each element of the set into the real axis. Specifically, each element is assigned with a

unique hash value v ∈ R. Uniform mapping on binary sets can also be extended into weighted sets.

A random permutation or uniform mapping can be applied on the universal set U or to a subset S

and the most significant element will be the first one in the leftmost. Taking the first element can

be considered as a hash function, i.e., h(S) = min(π(S)) where π represents the random permutation.

A fingerprint that consists of hash values is obtained if we repeat the above process. The number

of hash values is the same with the number of repetitions of the process [8].

In the case of a RS, the universal set may consist of all the words that appear in the titles of the

items. While a subset can be a specific item with a number of elements equal to the number of

unique words of its title. So, random permutations map each word from the dictionary to a different

number. Hash functions basically does the same as the permutation, by mapping a word to a

number. But in the case of hash functions, the whole dictionary is not needed in advance. So, when

a new item or user profile appears, its signature can be calculated fast. Random permutations with

hash functions as described above are a significant step in order to create the representation of each

item as a signature. Then the signatures can easier be compared with each other than comparing

the initial sets of each item. The signature representation can be accomplished through the Minhash

algorithm.

2.3.3 Minhash

Two sets are near duplicate if their similarity score is above a predefined threshold. Calculating

the similarity scores among sets through simple methods, such as Jaccard similarity, is usually

inefficient due to high dimensionality. Minhash is an efficient LSH algorithm that have been

successively proposed to approximate such similarity calculations. In particular, Minhash is used

to approximate the Jaccard similarity of two sets. It is proved that the Jaccard similarity of two sets

is equal to the probability that the two sets will generate the same Minhash value (hash collision).

The Minhash method has been applied in many domains such as news recommendation [10], near

duplicate web page detection [11] and image search [12].

In order to estimate how similar two sets are, a number of independent Minhash functions are

applied to the sets. These functions correspond to the random permutations of their elements. A

Minhash is a single number having the property that two sets have the same value of Minhash with

probability equal to their similarity [13].

Assuming a universal set U and a set of hash functions we need to estimate similarity between

different subsets S1, S2 ⊆ U. So, the hash functions (random permutations) are applied to U. As a

result, the Minhashes for a subset S1 are the elements in it which have the minimum hash value in

each hash function. In other words, the Minhashes for a subset S1 are the elements which are

placed in the first position of each permutation [8]. In order to make the retrieval efficient, the

values of the Minhash functions are grouped into n-tuples called sketches. Identical sketches are

then efficiently found using a hash table. Sets with high similarity tend to have common values of

the Minhash signature for many random permutations. Consequently, there is a high probability

of having the same sketches. In contrast, sets that are not similar have low probability of having

the same sketches.

2.3.4 Locality-sensitive hashing

This technique was originally introduced by Indyk and Motwani [14] for the purposes of devising

main memory algorithms for nearest neighbor search. Afterwards, Aristides Gionis in 1999 [15]

used LSH in an attempt to introduce a more effective indexing method for approximate nearest

neighbor. Locality-sensitive hashing (LSH) has since been proven to be an effective way for

approaching the approximate nearest neighbor (ANN) search.

The main idea that LSH relies on is to hash items several times, in such a way that similar items

are more likely to be hashed to the same bucket than dissimilar items are. Then, each pair of items

that hashed in the same bucket is considered to be a candidate pair. Finally, the similarity of only

the candidate pairs is calculated. In that way, the calculations are being reduced dramatically and

the process becomes more efficient. There are cases of similar pairs that don’t hash in the same

bucket (false negatives) and dissimilar pairs that hash to the same bucket (false positives). The less

such cases are the more accurate the method is [8].

Hence, LSH technique relies on the idea that the probability of collision of two points p and q is

closely related to the distance between them. In particular, the larger the distance, the smaller the

collision probability. Respectively, LSH function families have the ability to have higher

probability of collision between objects that are close to each other than objects that are far apart.

Specifically, let S be the domain of objects, and D be the distance measure between objects.

Definition 5 [16]. A function family H = {h : S → U} is defined as (r, cr, p1, p2)-sensitive for D if

for any q, p ∈ S

• If D(q, p) ≤ r then PrH[h(q) = h(p)] ≥ p1 (1)

• If D(q, p) > cr then PrH[h(q) = h(p)] ≤ p2 (2)

Therefore, the main idea that LSH follows is selecting a hashing function (or a hashing function

family) such that if (1) applies, there is a high probability that two neighboring objects will also

be neighbors after hashing. Contrariwise, if (2) applies, there is a high probability that two non-

neighboring objects will also be non-neighbors after hashing. If a hashing function satisfies the

above two conditions, then it is called LSH function [17].

2.4 Weighted methods

Content based RS are mainly based on the characteristics and features of items. Each item is

represented by a profile that holds its information. So, it is of great importance to represent this

information in a way that is suitable for the process of finding item similarities. The process of

extracting features highly depends on the specific domain. In a product RS, the title and the

description include some of the most important features that need to be considered. In addition,

depending on the type of products, the category and the brand of them can be very informative.

Such textual information needs to be preprocessed in order to take advantage out of it.

Furthermore, different features carry different amount of information. A word in a product title

may be more informative than the rest and this fact must be taken into consideration. Incorporating

token weights can have a major impact on the computed similarity and the quality of the

recommendations.

The “importance” (or “informativeness”) of word kj in document dj is determined with some

weighting measure wij that can be defined in several different ways. One of the best-known

measures for specifying keyword weights is the Term Frequency-Inverse Document Frequency

(TF-IDF) that is presented below. The idea behind TF-IDF is that terms with high occurrence in a

document but rare in the rest are more important for that document.

2.4.1 TF–IDF

Term frequency – Inverted Document Frequency (TF-IDF) is a simple and effective weighing

scheme that is used in order to calculate the importance of terms in a set of documents. In the field

of RS, TF-IDF can be used in order to represent the textual information of items so that more

informative terms will be more important in the similarity calculations. Considering each item as

a document, TF-IDF is based on the frequency of words in a specific document compared to the

inverse proportion of that word over the entire document corpus. Through this process, a weight

is assigned to each unique term for each document. This weight corresponds to the significance of

the term in the specific document. The more documents a term appears in, the less informative is,

thus it gets a smaller weight. Respectively, the significance of a term in a document increases with

the occurrences of it in that specific document [18].

In a mathematical perception, TF-IDF weight (wt,d) consists of two parts. The first is the Term

Frequency (TF) that refers to the frequency of the term in a specific document (ft,d). The second

part is the Inverted Term Frequency (IDF) that consists of the number of documents in the

collection (N) and the number (df,t) of documents that contain the term.

𝑤𝑡,𝑑 = 𝑓𝑡,𝑑 ∗ log (𝑁
𝑑𝑓,𝑡

⁄)

2.4.2 Weighted Minhash

Minhash algorithm is a way to estimate the Jaccard similarity (Definition 5) between two sets.

Jaccard similarity considers all items of a set to be of the same importance as all of them have

equal weights. Respectively, Minhash approach treats all elements in a set equally and each

element can be mapped to the minimum hash value with equal probability. This leads to

information loss in cases where different elements carry different amount of information. In reality,

we need to treat elements as having different weights. For example, in a product RS specific words

in a product title that correspond to specific characteristics (category, brand etc.) are more

important than other words. In such cases, sets are weighted, and weights correspond to the

significance of each element in the set. Incorporating weights can have a major impact on the

computed similarity. Hence, a way to approximate the Generalized Jaccard Similarity (Definition

6) is needed. Assuming a representation of sets in which elements have different weights, the

challenge is to incorporate these weights into min-hash algorithm so that similar sets have high

probabilities to be mapped into the same bucket. Over the last years, significant research has been

done in order to create Minhash schemes that can handle weighted sets. These researches of

weighted Minhash algorithms can be split into the following two categories: “quantization-based”

and “sampling-based” approaches [19], [8].

By applying quantization based weighted Minhash algorithms, a weighted set is converted into a

binary set. This is accomplished by quantizing each weighted element into a number of distinct

and equal-sized sub-elements. In particular, elements with large weights should be assigned more

sub-elements, while elements with small weights should be assigned less sub-elements. Weights

that are produced by weighting methods such as TF-IDF are usually small. So, these weights

should first be multiplied by a large constant. The size of the constant affects the accuracy and the

complexity of the method. The larger the constant, the more accurate the results are. Although,

increasing the constant leads to the increase of time complexity. Finally, all the sub-elements of

the binary set are considered to be independent elements and are treated equally. So, the

computation of the hash values for all the sub-elements is needed. This makes quantization-based

methods inefficient for large sets.

The above method leads to large sets that are difficult to be handled in terms of Minhash

computation. In order to avoid computing the hash value for every sub-element, researchers

proposed a sample-based approach. The main idea of the sampling-based algorithms is to compute

the Minhash value only for special sub-elements in order to decrease time complexity. Based on

this idea, much work has been done in order to address the problem of the quantization-based

approach. Specifically, important research was focused on the idea of “active index” [20] in order

to improve the algorithms by sampling several “active indices” and then computing the hash values

for them. Gollapudi and Panigraphy proposed an improved integer-value weighted Min-Hash

algorithm that decreases the number of sub-elements that need to be taken into consideration for

Minhash computation. This method requires the real weights to be multiplied by a big constant.

This makes the method inefficient for real value weights and leads to an expanded set of sub-

elements that cannot be handled easily.

Afterwards, the Consistent Weighted Sampling Scheme (CWS) [21] was introduced as an attempt

to address the issues of the previous approaches. The most important advantage of this approach

is that it can handle real weights without first converting them to integers. Later, Ioffe proposed

the Improved Consistent Weighted Sampling (ICWS) algorithm [22] which is the fastest known

exact weighted minwise sampling scheme. ICWS is considered to be an efficient and unbiased

estimator of the generalized Jaccard similarity and is used in the current research. Its performance

does not depend on the weights as long as the universe of all possible elements is known.

3 Previous work

During the last years, interesting research has been done in the field of Recommendation Systems.

Many researches were held and led to techniques that have practical use in various domains.

Researchers have also tried to address problems that have arisen due to the data explosion. In this

section, we briefly review some previous research efforts related to recommender systems and

locality sensitive hashing. We also present previous works that incorporated weighted methods in

the field of RS.

Interesting research was implemented in [23], where the problem of high dimensionality, that

traditional RS face, was addressed. E-commerce platforms with very big number of items and

users need to incorporate large volume of data in the recommendation process. This makes the

generation of real time recommendations inefficient. The paper incorporates LSH techniques in a

collaborative filtering (CF) approach in order to reduce the time complexity. Minhash hashing

method is used for binary data and simhash for real-valued data. Similar candidate pair

identification is performed through LSH in order to increase the efficiency of similarity computing,

which is the most time-consuming task for traditional collaborative filtering recommender

systems. By conducting experiments on synthetic and real-world datasets, it is shown that LSH

can approximately preserve similarities of data while significantly reducing data dimensions.

In [24], in attempt to introduce a RS that can scale with the increasing amount of data, the authors

use LSH approach. Specifically, they provide novel improvements to the already proposed LSH

based recommender algorithms and make a systematic evaluation of LSH in neighborhood-based

CF. By making extensive experiments on real-life datasets, they present algorithms that have better

running time performance than the standard LSH-based applications while preserving the

prediction accuracy in reasonable limits. These algorithms also produce recommendations with

diversity which is an important aspect of RS.

In [25], a hybridization of content based and collaborative filtering-based recommendation, which

incorporates product attribute weighting, is proposed. It is argued that human judgment of

similarity between two items often gives different weights to different attributes and that

recommendations systems need to consider this aspect. The weights refer to the importance of

each product attribute to customers and are estimated from a set of linear regression equations

obtained from a social network graph, which captures human judgment about similarity of items.

The proposed system is compared with content-based methods that consider the importance of

different products features as equal. The evaluation is based on IMDB recommendations which

are considered as benchmark. Finally, it turns out that the proposed method outperforms simple

methods. Hence, the effectiveness of feature weighting is demonstrated.

In [26], a feature weighting method is proposed with the aim to improve the content-based filtering

in cases of multi-valued item features. The authors argue that a user considers some specific

features as more important than other, when selecting an item. This consideration represents an

implicit feature weighting which is subjective and different for each user. Their feature weighting

method is based on entropy and coefficients of correlation and contingency. In particular, the

weight of each feature is computed according to (i) the entropy or amount of information provided

by itself (the more entropy the more weighting should have), and (ii) the correlation between items

chosen by the user in the past and the values of some features of the set of items.

4 Data

In this dissertation, two separate datasets have been used in order to build and evaluate the

recommendation system. The first dataset was created by scraping a real e-commerce site and

consists of information about thousands of products. The second dataset was created by

preprocessing an initial ready-made dataset that has already been used for similar purposes in the

past. These two datasets are described in detail in the following chapters.

4.1 Bestprice dataset

Bestprice dataset is a completely new dataset that was created for the purposes of this research.

The data was gathered from BestPrice.gr which is a commercial site where a customer can compare

the price of products across different e-shops. A huge variety of product categories and

subcategories is available. In this research, only a set of them has been used. Specifically, data

about technological products that belong to 6 main categories has been gathered. The gathering

procedure, an overview of the dataset and the preprocessing steps are described below.

4.1.1 Gathering procedure

The dataset was initially created by scraping the ‘Bestprice.gr’ e-commerce site. Web scraping

refers to the process of automatically collecting data and information from web pages by using a

programming language. In our case, a scraper based on python language was created. Information

of thousands of products was gathered by scraping 22 product categories. Each product category

consisted of thousands of pages. So, around 1.200 page requests were performed by the scraper.

The main issue that we faced were the sites anti-scraping measures. In particular, the site is

blocking scrapers and crawlers that perform too many requests. We overcame this issue by adding

a functionality to the scraper so that it can change IP every five requests. This was accomplished

by scraping two different sites that offer free proxies. In that way, the scraper was able to request

and scrape thousands of pages without getting blocked as a bot. The three scripts

(scrape_bestprice.py, bestprice.py and general.py) that were created for the scraping process are

available in the appendix of this dissertation.

4.1.2 Overview

Bestprice dataset was created by gathering data from Bestprice.gr as described in the previous

paragraph. Particularly, it consists of data regarding 29.541 products that belong to 6 main

categories in the domain of technology. Each of those main categories has smaller categories that

are called subcategories. Specifically, the products are split in 22 subcategories. Additionally, there

are 515 different product brands. A summarization of the category tree and the number of products

and brands in each subcategory is presented in table 4.1.

Besides the information regarding the categories and the brand of each product, additional

information is available. Particularly, there is a unique id, a title and a price for each product. The

available information about 5 random products are presented in table 4.2. Lastly, a set of 10

product recommendations is available for each product. These recommendations are those that

were provided to the users in each product page by the e-commerce site. This information is

available for a subset of 1.182 products and is used in the evaluation procedure that is presented

in paragraph 7.1.2.

Table 4.1: Overview of Bestprice dataset.

ID Category Subcategory Products Brands

0 Desktop_pc Desktop 709 7

1 Desktop_pc Desktop_monitors 2193 25

2 Desktop_pc Desktop_rams 2770 25

3 Laptop_pc Laptop 2718 19

4 Laptop_pc Laptop_bases 172 19

5 Laptop_pc Laptop_battery 6642 23

6 Laptop_pc Laptop_cases 1834 92

7 Mobiles Bluetooth 656 47

8 Mobiles Handsfree 943 77

9 Mobiles Mobile_phone 1529 60

10 Mobiles Portable_speaker 2394 135

11 Mobiles Power_bank 1731 74

12 Photograph Analog 34 4

13 Photograph Compact 158 9

14 Photograph DSLR 183 3

15 Photograph Photograph_battery 1666 23

16 Photograph Photograph_cases 2132 49

17 Tablets_other Tablet_bases 173 19

18 Tablets_other Tablet_cases 2495 93

19 Tablets_other Tablet_chargers 180 11

20 Wearables Smartwatch 433 21

21 Wearables Transmitter 45 3

Table 4.2: Details of 5 random products in Bestprice dataset.

Product ID Title Price (€) Category Subcategory Brand

2155531584 Samsung
Galaxy S10+
128GB Dual

595.00 € Mobiles Mobile_phone Samsung

2155112026 Sony SBH56 42.04 € Mobiles Bluetooth Sony

2154004522 Omega Ice
Box

8.22 € Laptop_pc Laptop_bases Omega

2155081727 Lenovo
Thinkvision

T24I

147.49 € Desktop_pc Desktop_monit
ors

Lenovo

2155432313 Huawei Watch
GT Graphite

Black

122.00 € Wearables Smartwatch Huawei

4.1.3 Preprocessing

The preprocessing of the initial dataset that is described above was a significant step. The target

was to transform the textual data so that it can be used appropriately in the next steps and

accomplish the best results. Specifically, each product should be assigned a text that holds the

information that characterizes it. This text is produced by concatenating the title, category,

subcategory and brand of each product. However, each of those features had to be preprocessed

accordingly before adding them to the final text. The most important steps are described below.

The script (preprocess_bestprice.py) that was created for this reason can be found in the appendix

of this dissertation.

Firstly, the textual data of each feature was transformed to lowercase. The second step was to

discriminate the categories, subcategories and brands from other words by adding the suffixes

‘_cat’, ‘_subcat’ and ‘_brand’ respectively. This will help us assign different weights to those

specific words. Furthermore, specific symbols that don’t add any value were removed from the

title. Finally, a text that consists of the above textual features was created for each product. This

set of texts will be used in order to calculate the TF-IDF matrix. The corresponding final text for

each product that was presented in table 4.2, is presented in table 4.3.

Table 4.3: The final textual representation of 5 products in Bestprice dataset.

Product ID Text

2155531584 samsung_brand galaxy s10+ 128gb dual mobiles_cat mobile_phone_subcat

2155112026 sony_brand sbh56 mobiles_cat bluetooth_subcat

2154004522 omega_brand ice box laptop_pc_cat laptop_bases_subcat

2155081727 lenovo_brand thinkvision t24i desktop_pc_cat desktop_monitors_subcat

2155432313 huawei_brand watch gt graphite black wearables_cat smartwatch_subcat

4.2 Retailrocket dataset

Retailrocket dataset is a ready-made dataset that has been used in various researches in the field of

RS. It was published by a company named Retail Rocket which offers e-commerce solutions to

personalize the online shopping experience. The data has been collected from a real-world e-

commerce website. It is raw data as there are no content transformations. However, most of the

values are hashed due to confidential issues. The purpose of publishing this dataset was to motivate

researches in the field of recommender systems with implicit feedback and has already been used

in other researches [35]. Although, in the current research, a subset of it has been used for the

evaluation of our content-based RS.

4.2.1 Overview

The dataset consists of three different files. The first file contains the customer behavioral data and

represents interactions that were collected over a period of 4.5 months. These interactions of

customers with products are called events and are of three types. The first is the ‘view’ event that

refers to the action of viewing a product page. The second is the ‘addtocart’ event that means that

the customer added a product to his/her cart. The third is the ‘transaction’ event that corresponds

to the action of purchasing a product. In total there are 2.756.101 events including 2.664 312 views,

69.332 add to carts and 22.457 transactions produced by 1.407.580 unique visitors.

The second file holds the product details. Each product has a number of properties but only three

of them have been used in the current research. Specifically, the title, category and subcategory

properties have been used. Lastly, there is a third file that contains the relationships between the

categories and subcategories. Every row in the file specifies a child categoryId and the

corresponding parent category. This file is used to find the main category that each subcategory

belongs to. Furthermore, it is important to mention that a subset of 28.241 products was selected.

These products belong to 6 main categories which are split in 37 subcategories.

4.2.2 Preprocessing

The first step of the preprocessing phase was to create a dataset with the sessions that were

produced over the period of 4.5 months. A session refers to a group of user interactions with an e-

shop that take place within a given time frame. For example, a session may contain the information

that a customer first viewed a number of different products, added some of them in his/her cart

and finally purchased them. Alternatively, a session may refer to a user that visited an e-shop,

viewed a number of products and then left the e-shop without buying anything. So, based on the

dataset that represents such events that 1.407.580 unique visitors made, a new dataset of 1.650.654

sessions was created.

Subsequently, this session-based dataset was used in order to determine the product pages that

users visit after viewing each single product. This helps us understand the relationships between

products. These relationships are produced based on real actions that users perform while

searching for products that meet their preferences. An important aspect that was taken into

consideration is the number of consecutively events that are related with each other. We call this

window size. Window size equal to 1 means that a product that a user viewed is linked only with

the product that he visited next. Respectively, window size equal to 2 means that a product that a

user viewed is linked with the next two products that he visited.

Furthermore, a representative text has been assigned to each product. Similar to the logic that was

described for the Bestprice dataset, this text consists of the title, category and subcategory of each

product. This set of texts will be used in order to calculate the TF-IDF matrix.

5 Methodology

The heuristic approach for content-based Recommendation Systems that is proposed in the current

research is based on feature weighting and Locality Sensitive Hashing (LSH). The design of the

system consists of three parts. The first refers to the method that is used in order to represent the

set of products as a weighted matrix. The second is the weighted Minhash method that is used to

approximate the Jaccard similarity of two sets. The last part is the efficient production of the

recommendations based on LSH. The implementation of the system based on the Bestprice dataset

is presented in the following three paragraphs and in figure 5.1.

Figure 5.1 Methodology parts diagram.

5.1 Weighted method

The first phase of our methodology is to create a TF-IDF matrix for the set of 29.541 products.

Usually, different features carry different amount of information. A word in a product title may be

more informative than the rest and this fact must be taken into consideration during the similarity

calculations. In our case, each product is represented by a text that is a concatenation of the product

title and three specific features as described in paragraph 4.1.3. The terms that correspond to the

three specific product features are initially considered to be simple terms. These features are the

category, subcategory and brand of each product. The total number of products is 29.541 and the

respective corpus consists of 35.405 unique terms. The target is to create a matrix that represents

how important each term is for each product. A weight is assigned to each unique term for each

product text. This weight corresponds to the significance of the term for each specific product. The

more texts a term appears in, the less informative is considered to be, thus it gets a smaller weight.

Respectively, the significance of a term in a product text increases with the occurrences of it in

that specific text. In particular, the TF-IDF matrix has been created by using the corresponding

functions of the ‘scikit-learn’ python library [34].

Furthermore, specific terms of the corpus have been given extra weight. These terms correspond

to the three product features that are parts of each product text. The target is to have a functionality

with which we can easily adjust the importance of each feature in the calculation of product

similarities. For example, by increasing the weights of the terms that correspond to the product

brands, we force the system to consider this specific feature as more important during the

calculation of product similarities. Alternatively, by decreasing the weights of the terms that refer

to the product categories, we force the system to consider this specific feature as less important. In

other words, this functionality offers the opportunity to adjust the logic of the recommendation

system to the requirements and the aims of an e-commerce site. It also offers diversity in the

recommendations without compromising similarity or efficiency. This was accomplished by

multiplying the TF-IDF weights with small constants. For example, in order to increase the

significance of the brand feature, the weight of the corresponding terms must be multiplied by a

constant larger than 1. Respectively, a positive smaller than 1 constant is necessary in order to

decrease the significance of a feature. Multiplying the TF-IDF weight of a term by 1 means that

its importance is not changed. The multiple scenarios that were implemented are presented in

paragraph 8. The script (weighted_scheme.py) that was created for this reason can be found in the

appendix of this dissertation.

5.2 Weighted Minhash

Two sets are near duplicates if their similarity score is above a predefined threshold. Calculating

the similarity scores among sets through simple methods, such as Jaccard similarity, is usually

inefficient due to high dimensionality. Minhash is an efficient LSH algorithm that has been

successively proposed to approximate such similarity calculations. In particular, Minhash is used

to approximate the Jaccard similarity of two sets. Minhash can also be used to compress

unweighted set and estimate the unweighted Jaccard similarity. This simple Minhash approach can

be applied in weighted sets by expanding each item based on its weight. However, this approach

does not support real number weights.

In our approach, the set of products is represented by a TF-IDF matrix. So, a method that

incorporates real number weights has been used. Specifically, the weighted Minhash algorithm

that is available in ‘datasketch’ python library is used [36]. Weighted Minhash was created by

Sergey Ioffe [22], and its performance does not depend on the weights as long as the universe of

all possible items is known. In practice, a Minhash signature has been created for each product

based on the corresponding TF-IDF array. Hence, each product is represented by a much smaller

array than before. Specifically, while the TF-IDF array consists of 35.405 elements, the Minhash

signature consists of only 128 elements. The length of the signature corresponds to the

‘sample_size’ parameter that can be adjusted accordingly as by increasing the number of samples,

a better accuracy is accomplished, at the expense of slower speed. These Minhash signatures are

used in order to approximate the Jaccard similarity between products by applying the LSH

approach that is presented below. The script (minhash_lsh.py) that was created for this reason can

be found in the appendix of this dissertation.

5.3 LSH forest & Recommendations

Having a large collection of sets and a query set, the aim is to find those sets that have Jaccard

similarities above a certain threshold. By creating a Minhash signature for every set as described

in 5.2, when a query comes, the Jaccard similarities between the query Minhash and all the

Minhash of the collection needs to be calculated. This makes the procedure more efficient since

the Minhash signature is a compressed representation of the initial set. However, this approach is

still an O(n) algorithm and the query cost increases linearly with respect to the number of sets. A

popular alternative is to use Locality Sensitive Hashing (LSH) which is an effective way for

approximating Jaccard similarity between sets. LSH incorporates the representation of items by

their Minhash signature. The details of the algorithm can be found in Chapter 3 of [27] and in

paragraph 2.3.4 of the current dissertation. LSH assures that sets with higher Jaccard similarities

always have higher probabilities to get returned than sets with lower similarities.

In the current research, the LSH approach is used in order to find the most similar products to each

product based on their Minhash signature. In particular, we search for the top 10 similar products

that correspond to 10 recommendations. For this reason, a variation of LSH that is known as LSH

Forest is used. LSH Forest was proposed by Bawa et al. [28] and is a general LSH data structure

that makes top-k query possible for many different types of LSH indexes, which include Minhash

LSH. Minhash LSH Forest, uses the Minhash representation of the query product and returns the

top-k matching products that have the approximately highest Jaccard similarities with the query

product. In that way, it is not necessary to pre-define a specific threshold for the Jaccard similarity

score. In this way, we produced 10 recommendations for each of the 29.541 products in the

Bestprice dataset. The script (minhash_lsh.py) that was created for this reason can be found in the

appendix of this dissertation.

6 Experiments & Results

Based on the aforementioned methodology, we have conducted experiments with the aim examine

the effect that different feature weights have in the final recommendations. Specifically, scenarios

with different combinations of weights regarding the 3 basic product features (brand, category &

subcategory) have been tested for the Bestprice dataset. Each scenario is presented below along

with the results. The results correspond to statistics about the number of brands, categories and

subcategories that are present in the set of ten recommendations of each product. The results of

each scenario are presented in two parts. The first corresponds to statistics about all the products

regardless the product category. The second examines each product category separately.

6.1 Keeping the initial TF-IDF weights

● Scenario 1: w_brand = 1, w_category=1, w_subcategory=1

This is the base scenario in which the three product features have the weights that were produced

by TF-IDF method. So, we don’t consider any of the features as more or less important during the

similarity calculations. In table 6.1, we see that there is an average of 2.54 different brands present

in each set of 10 recommendations. There are also cases with more than 4 different brands,

reaching a maximum of 10. The number of different categories and subcategories is much less,

having a mean of 1.16 and 1.30 respectively. The cases that more than two categories or

subcategories are present in the set of 10 recommendations are really few. In table 6.2, we see that

the statistics are different in each product category. The category with the biggest diversity

concerning product brands is ‘mobiles’. On the contrary, ‘wearables’ category has the lowest

number of brands at average.

Table 6.1: Statistics for the recommendations regardless the product category (scenario 1).

 Brands Categories Subcategories

mean 2.54 1.16 1.30

min 1.00 1.00 1.00

25% 1.00 1.00 1.00

50% 2.00 1.00 1.00

75% 4.00 1.00 1.00

max 10.00 6.00 7.00

Table 6.2: Average number of brands, categories and subcategories per category (scenario 1).

Category Brands Categories Subcategories

desktop_pc 2.34 1.12 1.14

laptop_pc 2.39 1.17 1.28

mobiles 3.08 1.16 1.46

photograph 2.26 1.16 1.33

tablets_other 2.78 1.21 1.33

wearables 2.14 1.22 1.27

6.2 Tuning the brand weight

● Scenario 2: w_brand = 0.5, w_category=1, w_subcategory=1

● Scenario 3: w_brand = 1.5, w_category=1, w_subcategory=1

In these two scenarios, we consider the product brand feature to be less important (Scenario 2) or

more important (Scenario 3) than the rest. This is accomplished by multiplying the TF-IDF weights

of the terms that correspond to this specific feature by small constants. These constants are 0.5 and

1.5 respectively. By observing table 6.3, it is obvious that the more important the brand is

considered to be, the less brands at average are present in each set of 10 recommendations. On the

contrary, the number of different categories and subcategories remains almost the same. The same

conclusions are extracted by observing table 6.4 where the average numbers are presented per

product category. As in the base scenario 1, ‘mobiles’ and ‘wearables’ have the largest and smallest

average number of brands in each set of 10 recommended products.

Table 6.3: Statistics for the recommendations regardless the product category (scenarios 2&3).

 Scenario 2 Scenario 3

Brands Categories Subcategories Brands Categories Subcategories

mean 3.07 1.16 1.30 2.16 1.16 1.31

min 1.00 1.00 1.00 1.00 1.00 1.00

25% 1.00 1.00 1.00 1.00 1.00 1.00

50% 3.00 1.00 1.00 1.00 1.00 1.00

75% 5.00 1.00 1.00 3.00 1.00 1.00

max 10.00 5.00 7.00 10.00 5.00 7.00

Table 6.4: Average number of brands, categories and subcategories per category (scenarios 2&3).

 Scenario 2 Scenario 3

Category Brands Categories Subcategories Brands Categories Subcategories

desktop_pc_cat 2.84 1.11 1.14 1.92 1.10 1.14

laptop_pc_cat 2.76 1.17 1.27 2.13 1.17 1.27

mobiles_cat 4.02 1.15 1.43 2.45 1.16 1.50

photograph_cat 2.64 1.18 1.36 1.96 1.16 1.34

tablets_other_cat 3.27 1.20 1.31 2.37 1.23 1.35

wearables_cat 2.40 1.26 1.31 1.91 1.22 1.27

6.3 Tuning the subcategory weight

● Scenario 4: w_brand = 1, w_subcategory=0.5, w_category=1

● Scenario 5: w_brand = 1, w_subcategory=1.5, w_category=1

In these scenarios, we consider the product subcategory feature to be less important (Scenario 4)

or more important (Scenario 5) than the rest. This is accomplished by multiplying the TF-IDF

weights of the terms that correspond to this specific feature, by small constants. These constants

are 0.5 and 1.5 respectively. We can see in table 6.5 that the more important the subcategory is,

the more reduced the average number of different subcategories (in each set of 10

recommendations) is. Reduction is also observed in the average number of different categories.

On the contrary, the average number of different brands is increased by increasing the importance

of subcategory feature. Similar conclusions are extracted by observing table 6.6 where the average

numbers are presented per product category.

Table 6.5 Statistics for the recommendations regardless the product category (scenarios 4 &5).

Scenario 4 Scenario 5

Brands Categories Subcategories Brands Categories Subcategories

mean 2.47 1.21 1.40 2.58 1.14 1.25

min 1.00 1.00 1.00 1.00 1.00 1.00

25% 1.00 1.00 1.00 1.00 1.00 1.00

50% 2.00 1.00 1.00 2.00 1.00 1.00

75% 4.00 1.00 2.00 4.00 1.00 1.00

max 10.00 6.00 7.00 10.00 6.00 7.00

Table 6.6: Average number of brands, categories and subcategories per category (scenarios 4 &5).

Scenario 4 Scenario 5

Brands Categories Subcategories Brands Categories Subcategories

desktop_pc_cat 2.07 1.19 1.28 2.35 1.09 1.10

laptop_pc_cat 2.38 1.19 1.31 2.45 1.15 1.23

mobiles_cat 2.98 1.22 1.65 3.10 1.13 1.37

photograph_cat 2.27 1.19 1.39 2.29 1.13 1.25

tablets_other_cat 2.74 1.28 1.45 2.81 1.18 1.28

wearables_cat 1.99 1.27 1.32 2.10 1.19 1.22

6.4 Tuning the category weight

● Scenario 6: w_brand = 1, w_subcategory=1, w_category=0.5

● Scenario 7: w_brand = 1, w_subcategory=1, w_category=1.5

In these scenarios, we consider the product category feature to be less important (Scenario 6) or

more important (Scenario 7) than the rest. This is accomplished by multiplying the TF-IDF weights

of the terms that correspond to this specific feature, by small constants. These constants are 0.5

and 1.5 respectively. We can see in table 6.7 that the more important the category is considered to

be, the less different categories are present in each set of 10 recommendations. Reduction is also

observed in the average number of different subcategories. On the contrary, the number of different

brands is increased by increasing the importance of category feature. Similar conclusions are

extracted by observing table 6.8 where the average numbers are presented per product category.

Table 6.7: Statistics for the recommendations regardless the product category (scenarios 6&7).

Scenario 6 Scenario 7

Brands Categories Subcategories Brands Categories Subcategories

mean 2.51 1.2 1.33 2.63 1.12 1.29

min 1.00 1.0 1.00 1.00 1.00 1.00

25% 1.00 1.0 1.00 1.00 1.00 1.00

50% 2.00 1.0 1.00 2.00 1.00 1.00

75% 4.00 1.0 1.00 4.00 1.00 1.00

max 10.00 6.0 7.00 10.00 6.00 8.00

Table 6.8: Average number of brands, categories and subcategories per category (scenarios 6&7).

Scenario 6 Scenario 7

Brands Categories Subcategories Brands Categories Subcategories

desktop_pc_cat 2.33 1.12 1.15 2.25 1.09 1.11

laptop_pc_cat 2.38 1.19 1.29 2.40 1.14 1.26

mobiles_cat 2.97 1.25 1.53 3.49 1.05 1.48

photograph_cat 2.23 1.21 1.36 2.37 1.11 1.31

tablets_other_cat 2.75 1.27 1.37 2.81 1.19 1.31

wearables_cat 2.22 1.27 1.30 2.05 1.17 1.22

6.5 Tuning the brand and subcategory weights

● Scenario 8: w_brand = 0.5, w_subcategory=0.5, w_category=1

● Scenario 9: w_brand = 1.5, w_subcategory=1.5, w_category=1

In these scenarios, we tune the weights of both the brand and the subcategory features. In

particular, we consider both features to be less important (Scenario 8) or more important (Scenario

9) by multiplying the TF-IDF weights of the corresponding terms by 0.5 and 1.5 respectively. By

observing table 6.9, we conclude that decrease in the average number of all three features is

accomplished by increasing the importance of brand and subcategory simultaneously. Similar

changes are observed in all the products categories (table 6.10).

Table 6.9: Statistics for the recommendations regardless the product category (scenarios 8&9).

Scenario 8 Scenario 9

Brands Categories Subcategories Brands Categories Subcategories

mean 2.94 1.20 1.40 2.19 1.14 1.26

min 1.00 1.00 1.00 1.00 1.00 1.00

25% 1.00 1.00 1.00 1.00 1.00 1.00

50% 2.00 1.00 1.00 1.00 1.00 1.00

75% 4.00 1.00 2.00 3.00 1.00 1.00

max 10.00 5.00 7.00 10.00 5.00 7.00

Table 6.10: Average number of brands, categories and subcategories per category (scenarios 8&9).

Scenario 8 Scenario 9

Brands Categories Subcategories Brands Categories Subcategories

desktop_pc_cat 2.27 1.20 1.27 1.90 1.09 1.10

laptop_pc_cat 2.76 1.18 1.30 2.19 1.15 1.24

mobiles_cat 3.90 1.21 1.64 2.48 1.14 1.41

photograph_cat 2.67 1.20 1.43 1.99 1.13 1.26

tablets_other_cat 3.23 1.26 1.43 2.39 1.20 1.30

wearables_cat 2.28 1.30 1.40 1.93 1.20 1.24

6.6 Tuning the brand and category weights

● Scenario 10: w_brand = 0.5, w_subcategory=1, w_category=0.5

● Scenario 11: w_brand = 1.5, w_subcategory=1, w_category=1.5

In these scenarios, we tune the weights of both the brand and the category features. In particular,

we consider both features to be less important (Scenario 10) or more important (Scenario 11) by

multiplying the TF-IDF weights of their terms by 0.5 and 1.5 respectively. By observing table

6.11, we conclude that decrease in the average number of all three features is accomplished by

increasing the importance of brand and category simultaneously. Similar changes are observed in

all the products categories (table 6.12).

Table 6.11: Statistics for the recommendations regardless the product category (scenarios 10&11).

Scenario 10 Scenario 11

Brands Categories Subcategories Brands Categories Subcategories

mean 3.01 1.2 1.32 2.23 1.13 1.29

min 1.00 1.0 1.00 1.00 1.00 1.00

25% 1.00 1.0 1.00 1.00 1.00 1.00

50% 2.00 1.0 1.00 1.00 1.00 1.00

75% 4.00 1.0 1.00 3.00 1.00 1.00

max 10.00 6.0 7.00 10.00 5.00 7.00

Table 6.12: Average number of brands, categories and subcategories per category (scenarios 10&11).

Scenario 10 Scenario 11

Brands Categories Subcategories Brands Categories Subcategories

desktop_pc_cat 2.72 1.12 1.14 1.94 1.09 1.13

laptop_pc_cat 2.73 1.18 1.27 2.14 1.15 1.26

mobiles_cat 3.89 1.24 1.49 2.73 1.08 1.46

photograph_cat 2.63 1.23 1.38 1.96 1.13 1.32

tablets_other_cat 3.27 1.25 1.35 2.38 1.21 1.34

wearables_cat 2.42 1.29 1.33 1.87 1.21 1.26

6.7 All scenarios

All the above scenarios (1-11) are presented in table 6.13. Specifically, the average numbers of

different brands, categories and subcategories (in each set of 10 recommendations) are presented

for each scenario. In general, we observe that the incorporation of the feature weighting

functionality affects the characteristics of the produced recommendations. In that way we can

control and adjust the recommendation systems logic according to the needs of each e-commerce

site. In particular, through this weighted scheme, we are able to increase or decrease the

recommendation diversity and novelty concerning specific product attributes. This can also be

applied to only specific product categories or subcategories. By observing table 6.13, we can see

that by increasing the weight of a product feature, the corresponding average number is reduced.

For example, by increasing the weight of the product brand, the average number of different brands

in each set of 10 recommendations is reduced. The increase of the weight corresponds to the

increase of the importance of this specific feature in the similarity calculations. Hence, the system

considers the brand similarity between two products as more important than the similarity of their

categories or subcategories.

Table 6.13 Average number of brands, categories and subcategories for scenarios 1-11

 W_brand W_category W_subcategory Brands Categories Subcategories

Scenario 1 1 1 1 2.54 1.16 1.30

Scenario 2 0.5 1 1 3.07 1.16 1.30

Scenario 3 1.5 1 1 2.16 1.16 1.31

Scenario 4 1 1 0.5 2.47 1.21 1.40

Scenario 5 1 1 1.5 2.58 1.14 1.25

Scenario 6 1 0.5 1 2.51 1.20 1.33

Scenario 7 1 1.5 1 2.63 1.12 1.29

Scenario 8 0.5 0.5 1 2.94 1.20 1.40

Scenario 9 1.5 1.5 1 2.19 1.14 1.26

Scenario 10 0.5 1 0.5 3.01 1.20 1.32

Scenario 11 1.5 1 1.5 2.23 1.13 1.29

7 Evaluation and future work

In this chapter, we evaluate the proposed content-based recommendation system. The evaluation

process is split in two different parts. The first one refers to a session-based analysis and examines

its effectiveness. In the second part the recommendation diversity is examined. We also present

the most important conclusions and insights that have been extracted from the conducted

experiments and the evaluation process. Finally, we discuss about the additions and improvements

that we believe could result in even better results.

7.1 Evaluation

The evaluation of the recommendation system consists of two parts. The first part is based on the

Retailrocket dataset that consists of real sessions as described in paragraph 4.2. The aim is to

examine whether the recommendations produced by our system would help a user navigate in the

e-shop and prevent them from leaving the site without finding products that meet their preferences.

The second part is based on the Bestprice dataset that was created by scraping a real e-commerce

site and is presented in paragraph 4.1. Having proven that our recommendations help customers

finding products that satisfy their preferences, the aim is to compare the recommendations of our

system with those that were available on the site, concerning certain aspects. Specifically, we

compare the diversity of the recommendations and we examine whether we can achieve different

results by tuning the weights of the product features.

7.1.1 Session based

In this part of the evaluation process, the recommendations that are produced for Retailrocket

dataset are compared with the real customer sessions. This dataset consists of real sessions that

were generated in a real e-commerce site as described in paragraph 4.2. A session is a group of

customer interactions with the e-commerce site that take place within a given time frame. In this

dataset, a single session can contain multiple product page views, adds to cart and transactions. A

product view refers to the action of visiting a product page in order to see its details. An ‘addtocart’

action corresponds to the action of adding a product in the cart, while a transaction refers to finally

buying at least one product.

The analysis of those sessions is summarized in the table 7.1 and figures (7.1-7.3). Analyzing

sessions that contain up to ten product views showed that the more products a customer views, the

more possible it is to add a product in his/her cart and finally complete a purchase. In particular,

83.9% of the customers view only one product and only 1.48% of them add it to their cart. In

addition, only 0.46% of the customers that see only one product, finally buy it. In other words,

around 99,54% of the users that view only one product, leave the e-shop without buying anything.

The percentage of sessions that ends up with at least one ‘addtocart’ and finally ‘transaction’ is

increased in the cases that the customer views two products. However, these cases are much less

(9.89% of the total sessions) than those in the first case (one product view). Furthermore, 23,61%

of the sessions with ten product views has at least one ‘addtocart’ action and 7.71% ends up

purchasing. However, only 0.09% of the sessions refers to cases that the customer views ten

products.

Table 7.1 Percentage of sessions, of sessions with 'AddtoCart' and of sessions with 'Transaction' per

number of viewed products.

Viewed
products

Sessions (%) AddtoCart (%) Transaction (%)

1 83.9 % 1.48 % 0.46 %

2 9.89 % 4.89 % 1.35 %

3 2.89 % 8.08 % 2.4 %

4 1.25 % 11.12 % 3.3 %

5 0.65 % 13.56 % 4.5 %

6 0.38 % 16.86 % 6.15 %

7 0.24 % 18.66 % 5.38 %

8 0.17 % 18.69 % 6.36 %

9 0.12 % 21.93 % 6.76 %

10 0.09 % 23.61 % 7.71 %

In figure 7.1, we can see that the number of sessions decreases as the number of product views

increases. Users usually leave the site after seeing one or only a few products. In addition, figure

7.2 shows that the more products a user views, the more possible it is to add a product to his/her

cart. Consequently, in figure 7.3, we can see that the more products a user views, the more likely

they are to purchase a product. Hence, we conclude that helping customers stay longer in the e-

shop and view more products, helps both the e-shop to increase its sales and customers to find

products that they need to buy. This can be accomplished by providing customers with

recommendations that help them navigate through the site and finally find the products that meet

their preferences before leaving.

Picture 7.1 Percentage of sessions per number of viewed products

Picture 7.2 Percentage of sessions with 'AddtoCart' per number of viewed products

Picture 7.3 Percentage of sessions with 'Transaction' per number of viewed products

Having applied the methodology that is presented in detail in chapter 5, we have produced a set of

ten recommendations for each product page in the Retailrocket dataset. The dataset consists of

28.241 products that belong to 6 main categories which are split in 37 subcategories. We have used

a subset of 4.000 products for the evaluation process. The aim is to determine whether the produced

recommendations would help customers navigate through the e-commerce site, by offering them

the required next step in order to move from a product page to another. For this purpose, we

compare the produced recommendations with the product pages that users visited after viewing

each single product. These product views are described in paragraph 4.2.2 and are based on real

actions that users performed while searching for products that meet their preferences.

Specifically, table 7.2 presents the percentage of cases that at least one recommended product

matches with one product view. The test was conducted for multiple scenarios in which the

importance of specific product features was tuned. These product features are the category and

subcategory of each product. In addition, each scenario was tested with a window size up to 3. The

window size refers to the number of consecutively events that are related with each other. Window

size equal to 1 means that a product that a user viewed is linked only to the product that he/she

visited next. Respectively, window size equal to 2 means that a product that a user viewed is linked

to the next two products that he/she visited. It is obvious that the percentage of cases that at least

one recommended product matches with the real product views is high, regardless the feature

importance. The percentage increases further with the increase of the window size. Hence, in most

of the cases, the recommendations that our system produces would indeed help users move to a

similar product page instead of leaving the e-commerce site.

Table 7.2: Percentage of cases that at least one recommended product matches with the product views.

 Subcategory Weight Category Weight

Window
Size

0.5 1 1.5 2.0 0.5 1 1.5 2.0

1 94.74 % 94.79 % 94.84 % 94.86 94.71 % 94.79 % 94.79 % 94.79 %

2 96.90 % 97.01 % 96.98 % 97.03 % 96.95 % 97.01 % 97.01 % 97.03 %

3 97.68 % 97.73 % 97.68 % 97.73 % 97.71 % 97.73 % 97.76 % 97.79 %

7.1.2 Recommendation diversity

In this part of the evaluation process, the recommendation diversity of our methodology is

examined. We evaluate the recommendations that our system produced for the Bestprice dataset.

Finally, we compare the recommendations that our system produced with those that were scraped

from the respective site. The dataset is presented in detail in paragraph 4.1. It consists of 29.541

products that belong to 22 subcategories of 6 main categories in the domain of technology.

Additionally, there are 515 different product brands. A subset of 1.182 products has been used in

the evaluation process. Having applied the methodology that is presented in detail in chapter 5, we

have produced a set of ten recommendations for each of those product pages. The experiment was

conducted for the 11 scenarios that are presented in chapter 6. In each scenario we consider the

importance of the product features to be different, by tuning the corresponding weights. The

average number of different brands, categories and subcategories for those sets of 10

recommendations is presented in table 7.3.

In the first 3 scenarios we see that the number of different brands decreases by increasing the

corresponding weight. This means that considering the product brand as more important in the

similarity calculations, results in recommendations that include more of the same brand for each

product page. Respectively, in scenarios 4 and 5, the number of different subcategories decreases

by the increase of the corresponding weight. The same happens for the product category feature in

scenarios 6 and 7. Furthermore, in the rest of the scenarios, the weights of different combinations

of the product features are tuned. The characteristics of the recommended products are affected by

the weights that are assigned to each product feature.

In general, by observing table 7.3, we see that the system incorporates diversity as it does not

recommend products that are almost the same with each other. Specifically, products from more

than one brand are present in each set of 10 recommendations. Also, by assigning the appropriate

weights, we have product recommendations from more than one subcategory. There are also cases

in which the recommended products belong to more than one category. The recommendation

diversity is very important for the quality of the system [29]. In content-based recommendation

systems, diversity can be as important as similarity [30]. Similarity assures that the recommended

products are similar to the target product. Diversity means that the recommended products are not

very similar to each other. The importance of the recommendation diversity can be explained

through the following example. Assume that the target product is a Dell laptop and the system

recommends 10 different Dell laptops. This might probably mean that the recommended products

are very similar to the target product. However, the user will not have the option to move to a

laptop of a different brand. Similar problem will occur in a case that all the recommended products

are of the same subcategory or category.

In the last row of table 7.3, we see the respective statistics in the product recommendations that

were scraped from the site (BestPrice.gr). It is obvious that there is diversity in the

recommendations concerning the brand feature. There is an average of more than 5 different brands

in each set of 10 product recommendations. However, there is no diversity in the cases of

subcategory and category. The system recommends products that belong only to the category and

subcategory of the target product. As a result, a user does not have the option to move to a product

of a similar subcategory through clicking one of the recommendations.

Table 7.3: Average number of different brands, categories, subcategories in the sets of 10

recommendations

 W_brand W_category W_subcategory Brands Categories Subcategories

Scenario 1 1 1 1 2.53 1.13 1.27

Scenario 2 0.5 1 1 3.25 1.12 1.24

Scenario 3 1.5 1 1 2.07 1.13 1.28

Scenario 4 1 1 0.5 2.40 1.20 1.41

Scenario 5 1 1 1.5 2.57 1.10 1.19

Scenario 6 1 0.5 1 2.57 1.17 1.31

Scenario 7 1 1.5 1 2.63 1.09 1.25

Scenario 8 0.5 0.5 1 2.98 1.18 1.37

Scenario 9 1.5 1.5 1 2.10 1.11 1.22

Scenario 10 0.5 1 0.5 3.17 1.14 1.26

Scenario 11 1.5 1 1.5 2.18 1.10 1.24

Bestprice - - - 5.16 1.0 1.0

7.2 Conclusions

Based on the evaluation of our proposed recommendation system and the results that were

produced after conducting several experiments, some interesting conclusions and insights have

been extracted. Our insights mainly refer to the way that customers behave while navigating in an

e-commerce site and the value of a recommendation system that can improve the user buying

experience. In addition, interesting conclusions have been drawn regarding our proposed approach

of content-based recommendation system and we believe that they can help in the development of

an even more efficient and customizable system.

Regarding the customer behavior, the session-based analysis that was performed showed that the

number of products that a customer views while navigating through an e-shop is linked with the

possibility of finally buying something. In particular, we saw that users usually leave the site after

seeing one or only few products and this leads to reduced sales. The more products a user views,

the more possible it is to add a product to his/her cart and finally purchase it. Hence, we conclude

that helping customers stay longer in the e-shop and view more products, helps both the e-shop to

increase its sales and the customers to find products that are appropriate to their preferences and

needs. A recommendation system can play a significant role in this direction. Specifically, our

proposed approach was proven to offer recommendations that indeed helped users move to a

similar product page instead of leaving the e-commerce site.

Furthermore, interesting conclusions have been drawn regarding the characteristics of our

proposed hybrid method. We saw that the characteristics of the recommendations can easily be

adjusted to the desired results by tuning the product features appropriately. The system

incorporates recommendation diversity without compromising similarity. This aspect turns out to

be very important because most of the content-based approaches lack diversity. Considering the

product brand as less important in the similarity calculations, results in recommendations that

include products of different brands. Similar results can be achieved by tuning other product

features. In that way, customers see recommendations that are similar to the target product but are

not all very similar to each other.

In addition, our approach incorporates a hashing method that makes the product similarity

calculations much faster and efficient than traditional systems. The representations of product

profiles as compressed signatures, by applying the Minhash method, turns out to be effective.

Finally, the approximation of product similarities by applying the LSH method results in a system

that can handle thousands of products efficiently without compromising similarity.

7.3 Future work

The evaluation part has shown that the proposed recommendation system approach is a very

promising content-based approach, based on feature weighting and LSH. However, additions and

improvements are necessary in order to achieve even better results. Our plans to improve the

system are presented in this chapter.

Firstly, we plan to incorporate more product meta data in the feature weighting method. In the

current research, three product features (brand, category and subcategory) are present in the two

datasets. The corresponding feature weights were tuned according to their importance in the

similarity calculations. However, there are various features that can be taken into consideration.

Some of them are the color, size and seasonality of products. The selection of the product features

highly depends on the kind of the products. So, we could also consider testing our approach in

another field besides technology.

Secondly, we plan to test the approach with alternative weighting schemes and product profile

representations. In the current approach, we adjust the importance of the product features by

multiplying the corresponding TF-IDF weights by small constants [39]. We believe that through

different product profile representations and alternative ways of assigning weights, even better

results may be achieved. For example, the textual representation of products by ngrams instead of

single terms, may improve the similarity calculation results.

Furthermore, we plan to make the system more personalized by adjusting the recommendations of

each product page to the actions that a user does while navigating through the e-commerce site. In

the current approach, the recommended products are completely independent to the user actions.

We believe that when a user visits a recommended product page, the system should take into

consideration his/her previous actions. In particular, the characteristics of the previously viewed

products should affect the recommendations of the product pages that the customer views next.

We have conducted an experiment in order to test the simplest case for a subset of 10.000 products

in the Bestprice dataset. In this case, a product view affects the recommendations of only the next

product page that the customer visits. Specifically, assuming there is a set of 30 candidate

recommendations, we choose to select the 10 most similar to the previous product page

recommendations. The results of the experiment seem to be promising. Indicatively we mention

that each set of 10 recommendations had an average of 2.4 brands and 1.22 subcategories.

References

[1] Lops P., de Gemmis M., Semeraro G. (2011) Content-based Recommender Systems: State

of the Art and Trends. In: Ricci F., Rokach L., Shapira B., Kantor P. (eds) Recommender

Systems Handbook. Springer, Boston, MA

[2] Adomavicius, Gediminas & Tuzhilin, Alexander. (2005). Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible extensions. Knowledge

and Data Engineering, IEEE Transactions on. 17. 734-749. 10.1109/TKDE.2005.99.

[3] Çano, Erion & Morisio, Maurizio. (2017). Hybrid Recommender Systems: A Systematic

Literature Review. Intelligent Data Analysis. 21. 1487-1524. 10.3233/IDA-163209.

[4] Schafer, Ben & Konstan, Joseph & Riedl, John. (1999). Recommender Systems in E-

Commerce. 1st ACM Conference on Electronic Commerce, Denver, Colorado, United States.

10.1145/336992.337035.

[5] Charikar, M.S. (2002). Similarity estimation techniques from rounding algorithms.

Conference Proceedings of the Annual ACM Symposium on Theory of Computing. 380-388.

[6] Datar, Mayur & Indyk, Piotr & Immorlica, Nicole & S. Mirrokni, Vahab. (2004). Locality-

sensitive hashing scheme based on p-stable distributions. Proceedings of the Annual

Symposium on Computational Geometry. 10.1145/997817.997857.

[7] Lv, Qin & Josephson, William & Wang, Zhe & Charikar, Moses & Li, Kai. (2007). Multi-

Probe LSH: Efficient Indexing for High-Dimensional Similarity Search .. VLDB. 950-961.

[8] Wu, Wei & Li, Bin & Chen, Ling & Gao, Junbin & Zhang, Chengqi. (2018). A Review for

Weighted Minhash Algorithms.

[9] Zhang, Yin & Jin, Rong & Zhou, Zhi-Hua. (2010). Understanding bag-of-words model: A

statistical framework. International Journal of Machine Learning and Cybernetics. 1. 43-52.

10.1007/s13042-010-0001-0.

[10] Das, Abhinandan & Datar, Mayur & Garg, Ashutosh & Rajaram, ShyamSundar. (2007).

Google news personalization: Scalable online collaborative filtering. 16th International World

Wide Web Conference, WWW2007. 271-280. 10.1145/1242572.1242610.

[11] Rajaraman, Anand & Leskovec, Jure & Ullman, Jeffrey. (2014). Mining of Massive

Datasets. 10.1017/CBO9781139058452.

[12] Chum, O. & Perdoch, Michal & Matas, Jiri. (2009). Geometric min-Hashing: Finding a

(thick) needle in a haystack. 2012 IEEE Conference on Computer Vision and Pattern

Recognition. 17-24. 10.1109/CVPRW.2009.5206531.

[13] Chum, Ondrej & Philbin, James & Zisserman, Andrew. (2008). Near Duplicate Image

Detection: min-Hash and tf-idf Weighting. BMVC 2008 - Proceedings of the British Machine

Vision Conference 2008. 10.5244/C.22.50.

[14] Indyk, Piotr & Motwani, Rajeev. (2000). Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. Conference Proceedings of the Annual ACM

Symposium on Theory of Computing. 604-613. 10.1145/276698.276876.

[15] Gionis, Aristides & Indyk, Piotr & Motwani, Rajeev. (2000). Similarity Search in High

Dimensions via Hashing. Proceeding VLDB '99 Proceedings of the 25th International

Conference on Very Large Data Bases. 99.

[16] Lv, Qin & Josephson, William & Wang, Zhe & Charikar, Moses & Li, Kai. (2007). Multi-

Probe LSH: Efficient Indexing for High-Dimensional Similarity Search .. VLDB. 950-961.

[17] Qi, Lianyong & Zhang, Xuyun & Dou, Wanchun & Ni, Qiang. (2017). A Distributed

Locality-Sensitive Hashing-Based Approach for Cloud Service Recommendation From Multi-

Source Data. IEEE Journal on Selected Areas in Communications. PP. 1-1.

10.1109/JSAC.2017.2760458.

[18] Ramos, Juan. (2003). Using TF-IDF to determine word relevance in document queries.

[19] Wu, Wei & Li, Bin & Chen, Ling & Zhang, Chengqi. (2017). Consistent Weighted

Sampling Made More Practical. 1035-1043. 10.1145/3038912.3052598.

[20] Gollapudi, Sreenivas & Panigrahy, Rina. (2006). Exploiting asymmetry in hierarchical

topic extraction. 475-482. 10.1145/1183614.1183683.

[21] Manasse, Mark & Mcsherry, Frank & Talwar, Kunal. (2007). Consistent weighted

sampling.

[22] Ioffe, Sergey. (2010). Improved Consistent Sampling, Weighted Minhash and L1

Sketching. Proceedings - IEEE International Conference on Data Mining, ICDM. 246-255.

10.1109/ICDM.2010.80.

[23] Zhang, Kunpeng & Fan, Shaokun & Wang, Harry. (2018). An Efficient Recommender

System Using Locality Sensitive Hashing. 10.24251/HICSS.2018.098.

[24] Aytekin, Ahmet & Aytekin, Tevfik. (2019). Real-time recommendation with locality

sensitive hashing. Journal of Intelligent Information Systems. 53. 1-26. 10.1007/s10844-019-

00552-1.

[25] Debnath, Souvik & Ganguly, Niloy & Mitra, Pabitra. (2008). Feature weighting in content

based recommendation system using social network analysis. Proceeding of the 17th

International Conference on World Wide Web 2008, WWW'08. 1041-1042.

10.1145/1367497.1367646.

[26] Barranco, Manuel & Martinez, Luis. (2010). A Method for Weighting Multi-valued

Features in Content-Based Filtering. 6098. 409-418. 10.1007/978-3-642-13033-5_42.

[27] Rajaraman, Anand & Leskovec, Jure & Ullman, Jeffrey. (2014). Mining of Massive

Datasets. 10.1017/CBO9781139058452.

[28] Bawa, Mayank & Condie, T. & Ganesan, Prasanna. (2005). LSH forest: Self-tuning

indexes for similarity search. Proceedings of the 14th International Conference on World Wide

Web. 651-660.

[29] Bradley, Keith. (2001). Improving Recommendation Diversity. Proc. AICS '01.

[30] Smyth, Barry & McClave, Paul. (2001). Similarity vs. Diversity. Lecture Notes in

Computer Science. 347-361. 10.1007/3-540-44593-5_25.

[31] Karimova, Farida. (2016). A Survey of e-Commerce Recommender Systems. European

Scientific Journal. 12. 10.19044/esj.2016.v12n34p75.

[32] Schafer, Ben & Konstan, Joseph & Riedl, John. (2000). E-Commerce Recommendation

Applications. 5. 10.1023/A:1009804230409.

[33] Han, Eui-Hong & Karypis, George. (2005). Feature-based recommendation system. 446-

452. 10.1145/1099554.1099683.

[34] scikit-learn, Machine Learning in Python, scikit-learn.org

[35] Ι. Schoinas, C. Tjortjis, “MuSIF: A Product Recommendation System Based on Multi-

source Im-plicit Feedback”, Proc. 15th Int’l Conf. on Artificial Intelligence Applications and

Innovations (AIAI 19), IFIP AICT 559, pp. 660–672, Springer, 2019.

[36] datasketch 1.5.0, http://ekzhu.com/datasketch/

http://ekzhu.com/datasketch/

[37] Nalmpantis O. and Tjortjis C., “The 50/50 Recommender: a Method Incorporating

Personality into Movie Recommender Systems”, Proc. 8th Int’l Conf. on Engineering

Applications of Neural Net-works (EANN 17), Communications in Computer and Information

Science (CCIS) Vol. 744, pp. 498–507, Springer-Verlag, 2017.

[38] Gerogiannis V.C., Karageorgos A., Liu L., and Tjortjis C., “Personalised Fuzzy

Recommendation for High Involvement Products”, IEEE Int’l Conf. Systems, Man, and

Cybernetics (SMC 2013), pp. 4884-4890, 2013.

[39] D. Beleveslis, C. Tjortjis, “Promoting Diversity in Content Based Recommendation using

Feature Weighting and LSH”, to appear at the 16th Int’l Conf. on Artificial Intelligence

Applications and Innovations (AIAI 20), 2020.

Appendix

preprocess_bestprice.py

"""

This script is used to preprocess the initial 'Bestprice' dataset

"""

import libraries

import pandas as pd

import re

from nltk.tokenize import RegexpTokenizer

read the initial 'bestprice' dataset

df = pd.read_pickle('data/df_init.pkl')

extract the id number from each product url

df['product_id'] = df['url'].apply(lambda x: re.search(r"item\/([^']*)\/", x).group(1))

convert category to lowercase

df['Category_lc'] = df['Category'].apply(lambda text: text.lower())

convert SubCategory to lowercase

df['SubCategory_lc'] = df['SubCategory'].apply(lambda text: text.lower())

convert brand_name to lowercase

df['brand_name_lc'] = df['brand_name'].apply(lambda text: text.lower())

convert title to lowercase

df['Title_lc'] = df['Title'].apply(lambda text: text.lower())

create a new column for 'Category' and add the string '_cat' after the category

df['Category2'] = df['Category_lc'].apply(lambda x: x+'_cat')

create a new column for 'SubCategory' and add the string '_subcat' after the SubCategory

df['SubCategory2'] = df['SubCategory_lc'].apply(lambda x: x+'_subcat')

create a new column for 'brand' and add the string '_brand' after the brand_name

df['brand_name2'] = df['brand_name_lc'].apply(lambda x: x+'_brand')

def replace_brand(row):

 """

 This function adds (or replaces) the brand_name2 to the product title

 :row: the available information of the product

 :return: the product title with the brand_name2

 """

 title = row['Title_lc']

 brand = row['brand_name_lc']

 brand2 = row['brand_name2']

 if brand in title:

 title2 = re.sub(brand, brand2, title)

 else:

 title2 = title +' '+ brand2

 return title2

add brand in the product title by calling 'replace_brand' function

df['Title_lc2'] = df[['Title_lc', 'brand_name_lc', 'brand_name2']].apply(lambda x:

replace_brand(x), axis=1)

add category in the end of the product title

df['Title_lc2'] = df[['Title_lc2', 'Category2']].apply(lambda x: x['Title_lc2']+' '+x['Category2'],

axis=1)

add sub-category in the end of the product title

df['Title_lc2'] = df[['Title_lc2', 'SubCategory2']].apply(lambda x: x['Title_lc2']+'

'+x['SubCategory2'], axis=1)

keep only useful columns

df = df[['product_id', 'url', 'Title', 'Category2', 'SubCategory2', 'brand_name2', 'Title_lc2']]

keep each product only once by deleting duplicates

df = df.drop_duplicates(subset='product_id', keep='first')

save the dataframe as pickle file

this file will be used in order to create the TF-IDF matrix

df.to_pickle('data/product_details/df_preproc.pkl')

weighted_scheme.py

"""

This script is used to create the TF-IDF matrix and assign feature weights

"""

import libraries

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer

read the dataset with the preprocessed product details of bestprice.gr

df = pd.read_pickle('data/product_details/df_preproc.pkl')

create a list (corpus) of all preprocessed product titles (product profiles)

corpus = df.Title_lc2.values.tolist()

convert the above corpus to a matrix of TF-IDF features

tf = TfidfVectorizer()

tfidf_matrix = tf.fit_transform(corpus)

get a list of the unique terms in the corpus

feature_names = tf.get_feature_names()

transform the sparce matrix to a list of dicts

each dict corresponds to each term of a product title

tfidf_list = []

for doc in range(0,len(corpus)):

 feature_index = tfidf_matrix[doc,:].nonzero()[1]

 tfidf_scores = zip(feature_index, [tfidf_matrix[doc, x] for x in feature_index])

 for i, w, s in [(i, feature_names[i], s) for (i, s) in tfidf_scores]:

 doc_dict = {'doc_id':doc, 'term_id':i, 'term':w, 'tfidf':s}

 tfidf_list.append(doc_dict)

transform the list of dicts to a pandas dataframe

df_tfidf = pd.DataFrame(tfidf_list)

set the weights for the 3 features (brand, category, subcategory)

here we increase the significance of only the brand feature

brand_weight = 1.5

category_weight = 1.0

subcategory_weight = 1.0

create a dataframe with the terms of each feature (brand, category, subcategory) along with the

weights

df_brand_weights = pd.DataFrame({'term':list(df.brand_name2.unique()),

 'weight':brand_weight})

df_category_weights = pd.DataFrame({'term':list(df.Category2.unique()),

 'weight':category_weight})

df_subcategory_weights = pd.DataFrame({'term':list(df.SubCategory2.unique()),

 'weight':subcategory_weight})

concatenate the above 3 dataframes

df_weights = pd.concat([df_brand_weights, df_category_weights, df_subcategory_weights],

axis=0)

merge the main 'df_tfidf' with the 'df_weights' dataframe

df_tfidf = df_tfidf.merge(df_weights, left_on='term', right_on='term', how='left')

set the weight of all the other terms to 1

df_tfidf = df_tfidf.fillna(1)

create a new column with the final weight of each term

df_tfidf['tfidf'] = df_tfidf['tfidf'] * df_tfidf['weight']

groupby each product(doc_id) to a row and convert the rest of the columns to lists

df_tfidf2 = df_tfidf.groupby(['doc_id'], as_index=False)['term','term_id','tfidf'].agg(lambda x:

list(x))

add a column with the product id

df_tfidf2['product_id'] = df['product_id'].values.tolist()

add a column with the product brand

df_tfidf2['brand_name2'] = df['brand_name2'].values.tolist()

add a column with the product category

df_tfidf2['Category2'] = df['Category2'].values.tolist()

add a column with the product subcategory

df_tfidf2['SubCategory2'] = df['SubCategory2'].values.tolist()

save the dataframe as pickle file

this file will be used in order to calculate the Minhash signature of each product

df_tfidf2.to_pickle('data/tfidfs/df_tfidf_brand_1-5.pkl')

minhash_lsh.py

"""

This script is used to create the weighted Minhash signatures and the recommendations for each

product

"""

import libraries

import pandas as pd

from datasketch import WeightedMinHashGenerator

from datasketch import MinHashLSHForest

read the pickle file that was created by 'tfidf.py' script

this file contains the weighted representation of all products in 'Bestprice' dataset

df_tfidf = pd.read_pickle('data/tfidfs/df_tfidf_brand_1-0.pkl')

create an extra column with the minhash id (m1, m2 etc)

df_tfidf['Minhash_id'] = df_tfidf['doc_id'].apply(lambda x: 'm'+str(x))

create a WeightedMinHashGenerator object with the appropriate arguments

dim: dimension - the number of unique terms

sample_size: number of samples (similar to number of permutation functions in MinHash)

mg = WeightedMinHashGenerator(dim=35405, sample_size=128)

def create_minhash(doc):

 """

 This function takes the weighted representation of a product and returns its Minhash signature.

 :param doc: The weighted representation of the product

 :return: The Minhash signature of the product as a Minhash object

 """

 term_ids = doc['term_id']

 tfidfs = doc['tfidf']

 tfidf_list = [0]*35405

 i = 0

 for term_id in term_ids:

 tfidf_list[term_id] = tfidfs[i]

 i += 1

 m1 = mg.minhash(tfidf_list)

 return m1

create a minhash for each row(product) by calling the 'create_minhash' function

df_tfidf['Minhash'] = df_tfidf[0:].apply(lambda x: create_minhash(x), axis=1)

create a list with all the Minhash signatures

minhash_list = df_tfidf['Minhash']

create a MinHashLSHForest object with num_perm parameter equal to sample_size(=128)

num_perm: the number of permutation functions

forest = MinHashLSHForest(num_perm=128)

add each Minhash signature into the index

i = 0

for minhash in minhash_list:

 # Add minhash into the index

 forest.add("m"+str(i), minhash)

 i += 1

call index() in order to make the keys searchable

forest.index()

create the recommendations by retrieving top 10 keys that have the higest Jaccard for each

product

def make_recs(doc_id, n_recs):

 """

 This function takes the id of the target product and returns the top n_recs(=10) keys that have

the higest Jaccard

 :param doc_id: the id of the target product

 :param n_recs: the number of similar products to be returned

 :return: top n_recs keys that have the higest Jaccard for each product

 """

 query = minhash_list[doc_id]

 # Using m1 as the query, retrieve top 10 keys that have the higest Jaccard

 results = forest.query(query, n_recs)

 return results

for each product find the top 10 most similar products by calling the 'make_recs' function

df_tfidf['recs'] = df_tfidf['doc_id'].apply(lambda x: make_recs(x, 10))

finalize the dataset

create a df with only the recs of each product

df_recs = df_tfidf[['product_id', 'recs']]

expand each row to as many rows as the length of the recs list

df_recs = df_recs.set_index('product_id').recs.apply(pd.Series).stack().reset_index(level=-1,

drop=True).astype(str).reset_index()

rename the columns

df_recs.columns = ['product_id', 'rec_m_id']

add the brand, category, subcategory of each recommended product

df_recs = df_recs.merge(df_tfidf[['Minhash_id', 'brand_name2', 'Category2', 'SubCategory2']],

left_on='rec_m_id', right_on='Minhash_id', how='left')

groupby each product and convert to lists

df_recs = df_recs.groupby(['product_id'], as_index=False)['brand_name2', 'Category2',

'SubCategory2'].agg(lambda x: list(x))

rename columns

df_recs.columns = ['product_id', 'Brands', 'Categories', 'Subcategories']

add the above information to the main dataset

df_recs2 = df_tfidf.merge(df_recs, left_on='product_id', right_on='product_id', how='left')

create 3 columns with the number of uniique brands, categories, subcategories for the

evaluation process

df_recs2['N_Brands'] = df_recs2['Brands'].apply(lambda x: len(set(x)))

df_recs2['N_Categories'] = df_recs2['Categories'].apply(lambda x: len(set(x)))

df_recs2['N_Subcategories'] = df_recs2['Subcategories'].apply(lambda x: len(set(x)))

save the dataframe as pickle file

df_recs2.to_pickle('data/recommendations/df_recos_brand_1-5.pkl')

scrape_bestprice.py

"""

This is the main script of the process that scrapes 'BestPrice' e-commerce site

"""

import other scripts and classes

from bestprice import *

from general import *

a list with a sample of the product subcategories that were scraped

'N' refers to the number of products that will be scraped from each subcategory

categories = [

{'Category':'Mobiles', 'SubCategory':'Mobile_phone',

'url':'https://www.bestprice.gr/cat/806/mobile-phones.html?pg={}', 'N':1600},

{'Category':'Mobiles', 'SubCategory':'Bluetooth',

'url':'https://www.bestprice.gr/cat/813/bluetooth.html?v=r&pg={}', 'N':1900},

{'Category':'Mobiles', 'SubCategory':'Handsfree', 'url':'https://www.bestprice.gr/cat/811/hands-

free.html?v=r&pg={}', 'N':2400},

]

create an object of the bestprice class

sk = bestprice()

for each category call the 'scrape_bestprice' function to scrape the corresponding pages

for category in categories[0:]:

 # define the path of the .csv file in which the scraped data will be saved

 csvFileName = '/home/desktop/dissertation/results/' + category['Category'] + '-' +

category['SubCategory']+'.csv'

 # initialize the .csv file

 initializeCsv(filename=csvFileName)

 print('- Going to scrape the Subcategory - ', category['SubCategory'], ' - ',

category['Category'])

 # call the function to start the scraping process

 sk.scrape_bestprice(category)

bestprice.py

"""

This is the script with the class and the functions that are used to scrape 'BestPrice' e-commerce

site

"""

import 'general' script

from general import *

import libraries

import requests

from bs4 import BeautifulSoup

import re

from collections import OrderedDict

from itertools import cycle

import traceback

from datetime import datetime

set counters

cnt_pages = 0

cnt_error = 0

call 'update_proxy_pool' function in order to get a list of proxies

proxy_pool = update_proxy_pool(1)

set the site that will be scraped in order to gather new proxies later

n_site = 0

class bestprice:

 # the class that is used to scrape the 'BestPrice' e-commerce site

 def __init__(self):

 # create the 'bestprice' object

 print('Object of class bestprice has been created.')

 def scrape_bestprice_page(self, category, brand_info, ith):

 # scrapes all the products of a page and saves the data in a .csv file

 # define global variables

 global cnt_pages

 global proxy_pool

 global n_site

 category_ = category['Category']

 subcategory = category['SubCategory']

 basic_url = category['url']

 brand_name = brand_info['brand_name']

 brand_url = brand_info['brand_url']

 next_page = brand_url.format(ith)

 # define the path of the csv file in which the scraped data will be saved

 csvFileName = '/home/desktop/dissertation/results/' + category['Category'] + '-' +

category['SubCategory']+'.csv'

 try:

 # increase the counter each time a page is scraped

 cnt_pages += 1

 # change the site from which we scrape proxies every 5 pages

 if cnt_pages%5==True:

 if n_site%2==0:

 site = 1

 else:

 site = 2

 # scrape proxies from the corresponding site

 proxy_pool = update_proxy_pool(site)

 print('proxy_pool is updated.')

 n_site += 1

 # try to request the page with one of the available proxies

 # try up to 20 times

 for i in range(20):

 try:

 # get a proxy from the pool and try to request the page

 proxy = next(proxy_pool)

 # perform the page request and wait up to 10 seconds

 page = requests.get(next_page, headers=headers, proxies={"http": proxy, "https":

proxy}, timeout=10)

 # convert the page to a BeautifulSoup object

 soup = BeautifulSoup(page.content, 'html.parser')

 # find the html tags with the product details

 products_grid = soup.find('div', class_='grid products products--row')

 product_divs1 = products_grid.find_all('div', class_="product__wrapper g-1 g-xsm-

2 g-lg-3 g-xl-4 g-xxl-4 product__wrapper--even")

 product_divs2 = products_grid.find_all('div', class_="product__wrapper g-1 g-xsm-

2 g-lg-3 g-xl-4 g-xxl-4 product__wrapper--odd")

 product_divs = product_divs1 + product_divs2

 break

 except Exception as e:

 # move to the next available proxy if an error occurs

 pass

 # iterate through products of this page in order to extract their details

 for product_div in product_divs[0:]:

 try:

 # find the html tags of the specific product

 product_info = product_div.find('div', class_="product__main")

 product_title_div = product_info.find('h2', class_='product__title')

 # extract the url of the product page

 try:

 product_url = product_title_div.find("a")['href']

 product_page = 'https://www.bestprice.gr' + product_url

 except:

 product_page = None

 # extract the product title

 try:

 product_title = product_title_div.find("a").text

 except:

 product_title = None

 # extract the product description

 try:

 description = product_info.find('div', class_='product__description').text

 except:

 description = None

 # exctract the product price

 try:

 price = product_info.find('div', class_='product__cost-price').text

 except:

 price = None

 # create a dictionary to store the scraped product details

 row = OrderedDict()

 row['Category']= category_

 row['SubCategory']= subcategory

 row['url']= product_page

 row['N']= category['N']

 row['Title']= product_title

 row['Price']= price

 row['Description']= description

 row['Page'] = ith

 row['brand_name'] = brand_name

 row['brand_url'] = brand_url

 # write the dictionary to the csv file

 appendDictToCsv(filename=csvFileName, data=row)

 except Exception as e3:

 # continue to the next product if an error occurs

 print('Error in a product: ', e3, ' - ', product_page)

 except Exception as e4:

 # continue to the next page if an error occurs

 print('Error #4: ', e4)

 def scrape_bestprice(self, category):

 # scrapes the product brands of the category and calls the function to scrape each product

page

 # define a global variable

 global proxy_pool

 # the url of the page that will be scraped

 url = category['url']

 # the number of products that will be scraped

 n = category['N']

 # first scrape the available brands from the main page

 # try to request the page with one of the available proxies

 # try up to 30 times

 for i in range(30):

 try:

 # get a proxy from the pool and try to request the page

 proxy = next(proxy_pool)

 # perform the page request and wait up to 10 seconds

 page = requests.get(url, headers=headers, proxies={"http": proxy, "https": proxy},

timeout=10)

 # convert the page to a BeautifulSoup object

 soup = BeautifulSoup(page.content, 'html.parser')

 # find the html tags with the product brands

 filters_div = soup.find('div', id='filters')

 brand_filter_div = filters_div.find('div', class_='filter-brand default-list')

 brand_lis = brand_filter_div.find_all('li')

 break

 except Exception as e:

 # move to the next available proxy if an error occurs

 pass

 # create a list to store the information about each brand

 brand_info_list = []

 # extarct the details of each brand from the corresponding html tag

 for brand_li in brand_lis:

 # extract the url of page that refers to the brand

 brand_a = brand_li.find('a')

 brand_url = brand_a['href']

 brand_url = 'https://www.bestprice.gr' + brand_url + '&pg={}'

 # extract the name of the brand

 brand_name = brand_a.text

 brand_cnt = brand_a['data-c']

 # create a dictionary with the details of the brand

 brand_info = {'brand_name':brand_name, 'brand_url':brand_url, 'brand_cnt':brand_cnt}

 # append the above dictionary to the list

 brand_info_list.append(brand_info)

 # convert the list of dictionaries to a pandas dataframe

 df_tmp = pd.DataFrame(brand_info_list)

 # convert the datatype of 'brand_cnt' column to integer

 df_tmp['brand_cnt'] = df_tmp.brand_cnt.astype(int)

 # set counters

 total_N = 0

 i_brand = 0

 # for each page of each brand call the 'scrape_bestprice_page' to scrape it

 for brand_info in brand_info_list[0:]:

 i_brand += 1

 print('- Scraping category:', category['Category'], ',subcategory:',

category['SubCategory'], ',brand:', brand_info['brand_name'], ' - ', i_brand, 'of',

len(brand_info_list))

 brand_cnt = int(brand_info['brand_cnt'])

 total_N += brand_cnt

 # fix the pagination according to the site

 pages = int(brand_cnt/25)+2

 # scrape each page

 for i in range(1,pages):

 next_page = brand_info['brand_url'].format(i)

 print('-- Scraping page: ', next_page)

 self.scrape_bestprice_page(category, brand_info, i)

 # stop the process if the defined number of products have already been scraped

 if total_N>n:

 break

general.py

"""

This is the script with the functions that are used from 'bestprice.py' file

"""

import libraries

import csv

import random

from collections import OrderedDict

from openpyxl.styles import PatternFill

from itertools import cycle

import traceback

import requests

from bs4 import BeautifulSoup

import pandas as pd

#gives different user agent randomly for each request.

agent_version = '%.2f' % (random.randint(20, 100) + random.randint(1, 100)/float(100))

headers = {

 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/56.0.2924.87 Safari/537.36',

 'User-Agent': 'Mozilla/5.0 (compatible; MSIE 8\.0; Windows NT 5\.1; SV1)

Chrome/%s.2924.87 Safari/537.36' % agent_version

}

def get_free_proxies(url, anonymity):

 # scrapes the site with the free proxies

 # perform the page request

 page = requests.get(url)

 # convert the page to a BeautifulSoup object

 soup = BeautifulSoup(page.content, 'html.parser')

 # find the html tags with the free proxies

 table = soup.find('table', id='proxylisttable')

 table_body = table.find("tbody")

 trs = table_body.find_all("tr")

 # create a list to store the proxies

 proxies = []

 # extract the details of each proxy from the corresponding html tags

 for tr in trs[0:]:

 tds = tr.find_all("td")

 if tds[4].text.strip() in anonymity:

 ip = tds[0].text.strip()

 port = tds[1].text.strip()

 proxy = ip+':'+port

 # append the proxy to the list

 proxies.append(proxy)

 # return the list of proxies

 return proxies

def update_proxy_pool(site):

 # select one of the two sites and scrape the available free proxies

 print('Updating proxy_pool...')

 if site==1:

 print('Site No. 1')

 url = 'https://free-proxy-list.net/'

 else:

 print('Site No. 2')

 url = 'https://www.sslproxies.org/'

 # call the function to scrape the selected site

 proxies = get_free_proxies(url, 'elite proxy')

 # convert the list to cycle

 proxy_pool = cycle(proxies)

 # return the proxies

 return proxy_pool

def initializeCsv(filename=''):

 # creates a .csv filename with the needed column names

 # create a dictionary with the needed .csv columns

 dataFormat = OrderedDict()

 dataFormat['Category']= ''

 dataFormat['SubCategory']= ''

 dataFormat['url']= ''

 dataFormat['N']= ''

 dataFormat['Title']= ''

 dataFormat['Price']= ''

 dataFormat['Description']= ''

 dataFormat['Page']= ''

 dataFormat['brand_name']= ''

 dataFormat['brand_url']= ''

 # create and save the .csv file

 keys = dataFormat.keys()

 with open(filename, 'w', newline='', encoding='utf-8') as output_file:

 dict_writer = csv.writer(output_file)

 dict_writer.writerow(keys)

def appendDictToCsv(filename='', data={}):

 # writes a python dictionary to a .csv file

 keys = data.keys()

 with open(filename, 'a', newline='', encoding='utf-8') as output_file:

 dict_writer = csv.DictWriter(output_file, keys)

 dict_writer.writerow(data)

