
DECEMBER 2019

THESSALONIKI – GREECE

Implementation of a web-
based platform for Data
Analysis, Visualization and
Machine Learning

Konstantinos Mouratidis

SID: 8180012

Supervisor: Prof. Ioannis Magnisalis

Supervising Committee

Members:

Assoc. Prof. Name Surname

Assist. Prof. Name Surname

SCHOOL OF SCIENCE & TECHNOLOGY

Prof. Berberidis Christos
Prof. Stavrinides Stavros

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

DECEMBER 2019

THESSALONIKI – GREECE

Abstract

This dissertation attempt to explain the process of building an open-source platform for

data science that allows users to easily upload their data or connect to data sources,

visualize said data, and create machine learning models to solve common problems in the

field. Everything is implemented with a simple-to-use web-based graphical interface, and

is designed for usage/deployment in a cloud environment.

This project came about with the help of my supervisor and mentor, Prof. Ioannis

Magnisalis, and fellow students – the team that helped in the implementation of the first

version - Vaso Tsichli, George Katrilakas, and Chris Timamopoulos. And a shout-out to

the thousands of contributors of the open-source tools that this project used, mainly of

plotly/dash and the SciPy stack.

Konstantinos Mouratidis

December 1
st
, 2019

Contents
1. Introduction ... 5

1.1 Background .. 5

1.2 This project .. 6

1.3 Licensing & private/public version .. 7

1.4 Structure .. 8

1.5 Absence of definitions and terminology, and final remarks .. 9

2. Literature (i.e. competitors’) Review ... 11

2.1 Overview of papers on various topics relating to implementations 11

2.1.1 Data type inference .. 11

2.1.2 Other guiding sources... 12

2.2 Overviews of competitors and other products ... 13

2.2.1 Visualization Software .. 13

2.2.2 Machine Learning / Statistical Modeling Software .. 27

2.2.3 Cloud providers and services .. 34

3. Designing an open-source solution for data visualization and analysis 39

3.1 Python libraries .. 40

3.1.1 Tech and computing stack .. 40

3.1.2 Interface / web stack .. 44

3.2 Database technologies .. 48

3.2.1 Redis ... 48

3.2.2 SQLite .. 49

3.3 Other libraries and tools .. 50

4. Implementing the EDA Miner tool .. 52

4.1 Project Structure: Dash & Flask ... 54

4.2 Per-app implementation notes ... 61

4.2.1 Data app ... 61

4.2.2 Visualization app .. 65

4.2.3 Modeling app .. 68

4.3 Database Technologies & Models ... 74

4.4 Directory structure for project & apps, and extensions ... 81

4.4.1 Directory structure: project .. 81

4.4.2 Directory structure: Demo app .. 82

4.4.3 A demonstration: Google Analytics REST API ... 83

5. Conclusions & future work .. 86

Bibliography ... 90

Appendix 1, Gartner reports ... 94

Appendix 2, table comparison of tools ... 98

Appendix 3, sklearn performance ... 99

Appendix 4, Redis benchmarks ... 100

Appendix 5, Flask + hey Benchmarks .. 102

Appendix 6, Contributor guidelines .. 105

Table of contents ... 105

Learning resources .. 105

Style guide recommendations ... 106

General info on project structure .. 106

General info on contributions ... 108

Contributions for code quality .. 108

Contributions for visualization .. 109

Contributions for data ... 109

Contributions for modeling ... 110

Contributions for deployment and scaling .. 111

List of contributors .. 112

Appendix 7, Directory Tree.. 113

1. Introduction

1.1 Background

 With the recent hype on Data Science, Machine Learning, and Artificial

Intelligence a lot of new tools have been created to aid the practitioners of these three

domains with their daily work, and a large array of older tools is still relevant and have

resurfaced. The popular debates (e.g. “R vs Python”, “PyTorch vs Tensorflow”, and the

list goes on) have become commonplace across social media platforms and due to self-

posting on platforms like Medium
1
 you can find literally thousands of articles on these

topics.

 Furthermore, each year seems to be having its own “hype word(s)”, usually

spanning multiple subdomains of computer science and statistics. Some of them are

“Deep Neural Networks” (and their derivatives), “DevOps” and “Micro-Services”, “Big

Data”. These guide investments from various funds to startups, as well as hordes of

young talent to corporate positions with cool titles. Usually, the hype is an overstatement

and when the balloon pops, so do expectations.

 Taking a broader perspective, most of what is done today is not much different

from what used to be done in earlier “eras”. What has really changed is how almost all of

these practices are now freely and openly available to the public, wrapped in nice

programmatic interfaces (APIs) that significantly aid the development process. However,

even that has its caveats.

 Despite our infinite wisdom, we still fall victim to the most recent trend. Big Data

however is not a trend, it is simply a niche. This is not to say that big data technologies

are useless, just not necessary to a large part of those dealing with data. In fact, as lots of

large scale companies have discovered, they need to collect their data, in so-called data

lakes and warehouses, and then they find out that they have to mine them for insights,

1
 https://medium.com

https://medium.com/

and their computers are simply not strong enough. They need to resort to other measures,

using clusters and distributed computing.

 But not every company can support, or even needs, that sort of infrastructure

scale. In my experience, so far, most datasets can easily be handled with an average

gaming computer: the GPU would have to work for ~1 week to train on OpenPose or

similar academic datasets, recommender systems algorithms trained on 80M ratings

would fit nicely into a machine with 8 GB (perhaps using out-of-core algorithms) to 32

GB of RAM, and most datasets from companies that I worked with as a freelancer could

be very easily handled by a moderately fast quad-core CPU (heck, I could even handle

some of it with 2010‟s Intel Core 2 Duo E5500). Of course, even such a computer is not

always accessible, and other problems exist too. In fact, data are never enough (Wu,

2019), and good and helpful datasets are always hard to find. Considering thus that there

is still a market for small- and medium-sized datasets, it is no wonder that a lot of tools

have spawned in order to aid those companies who have data but no analysts.

 The employees tasked with the analysis face the same problem new practitioners

in the field face: a lifted knowledge bar in the sense that they have to span multiple

domains, but the various tools aim at easing the learning curve. However, if you are not

experienced with analysis techniques, the tools don‟t really help you. The learning curve

is not the only obstacle. But even analysts may lack expertise in specific data domains,

and equipment. Even more often, the super-abundance of available tools has a negative

effect: when shown a new tool a commonly occurring first though is along the lines of

“why do we need another tool?”, or when first starting “what tool should I choose?”.

1.2 This project

 This project is indeed yet another tool. Even worse, EDA Miner started as a joke,

something evident from the name: after the course on Exploratory Data Analysis (EDA),

and the popular tool RapidMiner. A particular pain point that got us into this was the

mentality that certain closed-source, expensive, and over-hyped tools “are better”. In this

regard, a few stand out in particular; ordered by our increasing annoyance: SPSS, SAS,

Matlab, and finally SAP. RapidMiner‟s core is open-source so it barely didn‟t make the

list.

 In all arrogance, the design philosophy was “to make a better version of the

combined RapidMiner, SAP Hana, Weka, PowerBI, and Orange3” stack. We didn‟t,

obviously, and we mention this again in the conclusions.

 What EDA Miner aspires to be is a free and open-source tool that can not only

handle basic tasks encountered in all of the aforementioned tools but will also learn from

its users and actually incorporate machine learning in its design, so as to completely level

the learning curve of data science tools. Also, the target audience is not only data experts

but also (and mainly) anyone with at least a dataset and a question. In this era of

buzzwords, what is probably truly unique is the “Cloud” and its benefits, so EDA Miner

is a web-based application for anyone with internet access but without access to a strong

enough computer (Park, 2019).

 The development of EDA Miner, at start, followed a “monkey see, monkey do”

mentality, simply copying functionality from other tools and tasks, and just doing what

“felt right”. Midway, it turned into a serious project that is influenced by previous work

on “yet another tool”, MIT‟s Data Integration and Visualization Engine (DIVE)
2
, among

others. Proper scheduling of features and a timetable have been introduced. The project

adopted a Code of Conduct
3
, created Contributing guidelines

4
, and hosts documentation

5
,

everything online.

1.3 Licensing & private/public version

 As mentioned previously, EDA Miner is a free and open-source tools, and the

code is publicly available on GitHub. As for the license of the project, the initial team

decision was to go with GNU General Public License v3.0
6
, mainly for the condition of

2
 http://dive.media.mit.edu/

3
 https://github.com/KMouratidis/EDA_miner/blob/master/CODE_OF_CONDUCT.md

4
 See appendix 6, or https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md

5
 http://edaminer.com/docs

6
 https://github.com/KMouratidis/EDA_miner_public/blob/master/LICENSE

http://dive.media.mit.edu/
https://github.com/KMouratidis/EDA_miner/blob/master/CODE_OF_CONDUCT.md
https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md
http://edaminer.com/docs
https://github.com/KMouratidis/EDA_miner_public/blob/master/LICENSE

“source disclosure”. This decision is not set in stone and, should the need or demand

arise, it might be revised or changed but only in favor of a more permissive license.

 The private version was dropped from v0.3 onwards, but why did we need a

private version in the first place? The public version was mostly a mirror of the private

one, the main differences being a PDF-printing functionality and a login menu. There

were various reasons why we decided on this, and (nearly) doubling the commit count

(contributions) on our GitHub profiles was definitely not one of them. First, at that point

in time, these functionalities were neither well-developed nor well-tested and thus

security was a serious consideration. Secondly, some of these, like the login, were

originally meant to be used by the university (if and) when it is deployed on its servers,

but we decided that other users might like this functionality too. Finally, it served as a

great discussion and experimentation ground for the core team to work on still

unsupported features, however since I‟m the only contributor now this isn‟t an issue

either.

1.4 Structure

 This report on the project is divided in five sections. This introductory chapter

simply served as a place for me to complain and troll, but also explain some of the

motivations behind the whole project.

 The second chapter focuses on going over similar tools that are currently in the

market and their features. We will review visualization and machine learning tools, both

commercial and academic.

 The third chapter goes over the tools this project uses. It discusses shortly what

each library/framework/tool does, the community behind it, and more.

 The fourth chapter is the essence of this report. We will go over all the major

design decisions and considerations, how we used each tool, the overall architecture

including discussions about its future, the project & directory structure, and more.

 The fifth and final chapter contains the closing remarks: missed opportunities,

future directions, suggestions for future contributors, and a few final words and

comments.

1.5 Absence of definitions and terminology, and final remarks

 I expect that people reading this dissertation are at least somewhat familiar with

the field, probably due to a degree, online courses, or work experience, and thus I won‟t

get into details about those concepts that I consider basic, e.g.: “regression”,

“classification”, “visualizations”, “databases”, “object-relational mappers”. It is a

common adage that you “google it” when working on/with computers all day, so take

responsibility for your knowledge gaps. Furthermore, academics and marketing may

actually give a [thought] to distinctions between concepts like “data mining vs

statistical/machine learning”, but I will probably be using them interchangeably -often

subconsciously- a lot.

 This essay is not meant as a literary discourse, but rather a report / overview /

manual / documentation / whatever. The literature review won‟t be the most

comprehensive research (time and money limitations) on the matter, and due to the nature

of the task there isn‟t much literature to begin with. A lot of the material referenced will

be non-academic (websites, blog posts and articles, dreaded print-screens), and I loathe

that just as much as the next person but it can‟t be helped.

 As a final reminder, the main deliverable is the software, which I largely

developed alone, often using new technologies I had no idea about, creating my own

tools for a lot of tasks since available ones didn‟t work (e.g. python doc tools either fail

or don‟t work well enough), doing all that within less than 6 months (including the 2

months spent on it before taking it as a dissertation project), and having to handle some

important limitations of the framework used. To put things into perspective, this kind of

software takes whole teams (of often extremely experienced people, as will become

evident later) years to develop. I believe that most, if not all, of the code follows high

coding standards and best practices, and the project as a whole has been structured

equally well.

2. Literature (i.e. competitors’) Review

 As mentioned in the introduction, this is not the first software of its kind. A lot of

others have made similar efforts at assisting the various data workflows, and this is not

substantially innovative in terms of provided functionality. What EDA Miner offers is a

simple (and yet unpolished) web-based interface for getting your data in, doing the

standard visualizations, and offers some machine learning capabilities. One thing that is

different, or so we would assume since we cannot possibly have knowledge of closed-

source solutions and their code, is that our system is almost entirely able to learn from

usage (we discuss this in the final chapter as it is yet unimplemented). Before going into

what‟s unique and why, we need to go over existing solutions.

2.1 Overview of papers on various topics relating to

implementations

2.1.1 Data type inference
 Before any sort of action on data, any tool that aims at doing any sort of

recommendation to the user for visualizations must first be made aware of the data types

it has to handle. Different data types mean that different transformations (e.g.

standardization for numeric data) and different visualizations (e.g. a pie graph on a float

column becomes illegible) can be applied.

 The DIVE paper correctly points to this, in the first part of their literature review

(Hu, Orghian, & Hidalgo, 2018, p. 2). They mention that popular tools like Power BI and

Google Data Studio implement this feature (and so does BigQuery
7
). An implementation

they don‟t mention but we do use as inspiration is the one from Amazon
8
. In DIVE they

define their model as an aggregation of these systems: they take them as features and try

to detect both semantic and scale types, as well as relationships. This process is aided by

7
 https://cloud.google.com/bigquery/docs/loading-data#loading_json_files

8
 https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sch-dis-ref.html,

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sch-dis.html,

https://docs.aws.amazon.com/machine-learning/latest/dg/creating-a-data-schema-for-amazon-ml.html

https://cloud.google.com/bigquery/docs/loading-data#loading_json_files
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sch-dis-ref.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sch-dis.html
https://docs.aws.amazon.com/machine-learning/latest/dg/creating-a-data-schema-for-amazon-ml.html

computing statistics. Finally, they mention a few programming libraries they use. One

stands out in particular: Messytables, by Open Knowledge Labs
9
.

 Frictionless data, a listed project by Open Knowledge Labs
10

 provides their own

library for data type inference, conveniently named tableschema-py
11

, which was initially

used by us as well. However, this library fails to detect types when they appear in slightly

non-ordinary formats, which do however appear in the specification (i.e. “1985-03” is

parsed as string instead of yearmonth). This is probably because, just as the other libraries

mentioned in DIVE, it uses a heuristic-based approach. We will discuss more on this in

the third chapter about design decisions and how we deal with this particular issue, but

here we would like to go over the underlying specification on Table Schemas (Walsh &

Pollock).

 We adopt a lot of the definitions about concepts present in the Table Schema

specification, such as those about tabular data, physical and logical representation of data.

For brevity, and to avoid confusion, we take data type to mean the logical representation,

which we choose to categorize as one of: integer, float (number, in the specification),

category, date (covering date, time¸ and datetime), text (string). The descriptor is

something you might see us referring to as (data) schema, which we take to contain all

the information about data types, sub-types, meta-information – optionally more – as per

the specification.

2.1.2 Other guiding sources
 Due to working in Python adherence to other, external, specifications may be

loosened in favor to adhering to language-specific best practices and norms, such as:

 PEP 8 – Style Guide for Python (van Rossum, Warsaw, & Coghlan, 2001)

 PEP 20 – The Zen of Python (Peters, 2004)

 PEP 257 – Docstring Conventions (Goodger & van Rossum, 2001)

9
 https://github.com/okfn/messytables

10
 https://okfn.org/projects/

11
 https://github.com/frictionlessdata/tableschema-py

https://github.com/okfn/messytables
https://okfn.org/projects/
https://github.com/frictionlessdata/tableschema-py

2.2 Overviews of competitors and other products

2.2.1 Visualization Software
 There are probably a hundred different platforms and products for data

visualization and business intelligence (the buzzword for data analyst of the previous

decade) but three stand out in particular. These have been selected based on Gartner‟s

continued faith in their companies‟ potential. For the past three years (see the diagrams

from (Microsoft, 2017), (Microsoft, 2018), (Qlik, 2019) or the appendices) these are the

only companies to have made it consistently in the “Leaders” quadrant, which is defined

as a function of “completeness of vision” and “ability to execute”. We will quickly go

over them here, and also review visualization capabilities and libraries of the two most

dominant programming languages, Python and R. You will also find a more complete

comparison of these tools in Appendix 2.

Microsoft’s Power BI
12

 One of the most famous software in the field, with 7.93% according to Datanyze‟s

report (Datanyze), and certainly a great solution. It is an application running both locally

and on the cloud with a very simple and polished graphical user interface (GUI). Since it

is developed by Microsoft it provides seamless integration with their Office stack.

Additionally, they allow imports
13

 from various formats (see Figure 1) including but not

limited to files (e.g. CSV, XML, JSON), databases (from various vendors and types, e.g.

SQL Server, Oracle, IBM, postgreSQL, SAP HANA, Amazon RedShift, Google

BigQuery, MySQL, and of course Azure), and about 40 services (e.g. Facebook, GitHub,

MailChimp, Google Analytics, Zendesk). It should be noted that their team has done an

excellent job in integrating R and Python as well as big data tools such as Spark and the

Hadoop Distributed File System (HDFS), and getting data from a URL. After connecting

to a data source (or multiple), optionally transforming and cleaning them, you can create

stunning visualizations with minimal efforts, often not more than a couple dozen clicks

12

 https://powerbi.microsoft.com/en-us/
13

 https://docs.microsoft.com/en-us/power-bi/service-get-data

https://powerbi.microsoft.com/en-us/
https://docs.microsoft.com/en-us/power-bi/service-get-data

(see Figure 2). What makes Power BI differ, from say MS Excel, in terms of

visualizations is the ability to create dashboards that you can also publish.

Figure 1 https://docs.microsoft.com/en-us/power-bi/desktop-data-sources

 Power BI is also able to detect / infer your table schema (Hu, Orghian, & Hidalgo,

2018, p. 2), and offers a Mixed-Initiative Visualization System which is called Power BI

Q&A (see Figure 3).

 In all its greatness, it does not offer any Machine Learning, nor is it built for use

with other systems such as Linux. This has another serious drawback, that it (seemingly)

cannot be integrated with Docker (nish2288, 2018). Furthermore, while the Power BI

Desktop version is free, the Power BI Pro ($9.99 per month per user) and Power BI

Premium ($4,995 per “dedicated cloud compute and storage resource”) are not
14

. A

comparison between all three does not exist on their website, but some limitations of the

free version include: 1) storage limit of 10 GB per user (which is pretty reasonable), 2) no

API embedding (e.g. embedding visuals to PowerApps, SharePoint, etc), 3) no Peer-to-

14

 https://powerbi.microsoft.com/en-us/pricing/

https://docs.microsoft.com/en-us/power-bi/desktop-data-sources
https://powerbi.microsoft.com/en-us/pricing/

Peer (P2P) sharing. You can however use Python, export reports to PDF, infer data

schemata, and save/upload/publish your reports online (xello).

Figure 2 https://docs.microsoft.com/en-us/power-bi/desktop-what-is-desktop

Figure 3 https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-introduction-to-q-and-a

https://docs.microsoft.com/en-us/power-bi/desktop-what-is-desktop
https://docs.microsoft.com/en-us/power-bi/power-bi-visualization-introduction-to-q-and-a

Tableau
15

 With a market share of 14.51% (Datanyze), the self-proclaimed “analytics

platform that disrupted the world of business intelligence”, released in 2003 (Levy,

2013), or about 8 years before Power BI, Tableau is a highly interactive data visualization

software.

 It features preprocessing functionalities for combining data sources, reshaping,

cleaning, and inspecting the data. Similarly to Power BI it can connect to various data

sources and providers including Amazon, Azure, IBM, Google, Cloudera, SAP, and

various SQL and NoSQL servers
16

.

Figure 4 Tableau Prep Builder https://www.tableau.com/products/prep

 It features a free trial, but after that the price is high with plans starting from $70

per user per month for the Tableau Creator. There are various other offerings as well for

teams and organizations or embedded analytics
17

.

 It also offers all the basic visualization types in an easy-to-use menu (see Figure

5), and has Desktop, Online, and Server versions. It is also able to support more complex

15

 https://www.tableau.com/
16

 https://www.tableau.com/products/prep#data-sources
17

 https://www.tableau.com/pricing/

https://www.tableau.com/products/prep
https://www.tableau.com/
https://www.tableau.com/products/prep#data-sources
https://www.tableau.com/pricing/

visualizations and a gallery (see Figure 6) that been building up for more than a decade

showcases Tableau‟s power. They offer training, consulting, and support as tiered

services
18

.

18

 https://www.tableau.com/services

Figure 5 Visualizations https://www.tableau.com/products/what-is-tableau

Figure 6 Tableau Viz Gallery https://www.tableau.com/solutions/gallery

https://www.tableau.com/services

 Finally, Tableau gives developers tools to create their own extensions and make

truly interactive dashboards with custom user interfaces. Not only that, but the extensions

are pretty flexible allowing for connecting to non-yet-supported data sources, or to even

run their own data science models using languages like R, Python, or Matlab. Embedded

analytics enable integrations with Salesforce and Microsoft Sharepoint
19

.

Qlik
20

 Qlik is, in their words, a “data analytics for modern business intelligence” tool,

with a reported market share of 2.22% (Datanyze). QlikTech is probably the older of the

bunch having been founded in 1993 with their first product being focused on data

analysis (Industrifonden).

Figure 7 Qlik Analytics Platform, https://www.qlik.com/us/products/qlik-sense?ga-link=HP_Mid1_US

 They have a free tier, Qlik Sense Cloud Basic, a Business tier for $15 per user per

month (including a free trial), and an Enterprise tier with flexible pricing options. They

offer similar services to Tableau, like embedded analytics
21

, with their main product

being their analytics platform. Furthermore, they offer other products like data

indexing
22

, reporting
23

, conversational analytics
24

, and consulting among others. Using

19

 https://www.tableau.com/developer/tools
20

 https://www.tableau.com/
21

 https://www.qlik.com/us/bi/embedded-analytics?ga-link=HP_Mid2_US
22

 https://www.qlik.com/us/products/associative-big-data-index

https://www.tableau.com/developer/tools
https://www.tableau.com/
https://www.qlik.com/us/bi/embedded-analytics?ga-link=HP_Mid2_US
https://www.qlik.com/us/bi/embedded-analytics?ga-link=HP_Mid2_US
https://www.qlik.com/us/products/associative-big-data-index

Qlik Connectors
25

, you can integrate your data from various sources such as files,

databases, SAP, salesforce, Azure, Amazon, Google, and more, for a total of over 100

sources.

 They provide the basic visualizations
26

 but you can opt in extra tools such as Qlik

GeoAnalytics
27

 with advanced functionality. In fact, this is a common pattern all around

Qlik (buying “products” with extra functionality).

Open-source programming languages, libraries, and frameworks

R project
28

 and Python
29

 R is primarily a statistical programming language with more than 15,000 currently

(R-Project, 2019). Most of these are probably relevant to data analytics tools and trying to

map all of them would a nearly impossible feat for a time-limited work such as this one.

Python, on the other hand, is more of a general-purpose programming language which

has been used in lots of fields and for lots of purposes (scientific computing & data

science, web development, game development, gluing other languages). Python boast

nearly 190K projects and over 350K users
30

, being the second most popular (general-

purpose) programming language (after JavaScript), second most loved (after Rust), the

most wanted (Stack Overflow, 2019, p. Technology), and the one with highest rating

change according to TIOBE Index (TIOBE, 2019), with an overall growth shadowing

many others (Robinson, 2017).

 First on the list is ggplot2
31

, a project with more than 200 contributors on GitHub,

nearly 1.5K forks and 4K stars, with a GPL-2.0 open-source license, and is part of the

tidyverse collection of packages
32

. The original publication (book) by Springer

(Wickham, 2016) has received 3.6K citations and over 200K downloads. It uses a

23

 https://www.qlik.com/us/products/nprinting
24

 https://www.qlik.com/us/products/qlik-insight-bot
25

 https://www.qlik.com/us/products/qlik-connectors
26

 https://help.qlik.com/en-

US/sense/February2019/Subsystems/Hub/Content/Sense_Hub/Visualizations/visualizations.htm
27

 https://www.qlik.com/us/products/qlik-geoanalytics
28

 https://www.r-project.org/
29

 https://www.python.org/
30

 https://pypi.org/
31

 https://github.com/tidyverse/ggplot2
32

 https://www.tidyverse.org/packages/

https://www.qlik.com/us/products/nprinting
https://www.qlik.com/us/products/qlik-insight-bot
https://www.qlik.com/us/products/qlik-connectors
https://help.qlik.com/en-US/sense/February2019/Subsystems/Hub/Content/Sense_Hub/Visualizations/visualizations.htm
https://help.qlik.com/en-US/sense/February2019/Subsystems/Hub/Content/Sense_Hub/Visualizations/visualizations.htm
https://www.qlik.com/us/products/qlik-geoanalytics
https://www.r-project.org/
https://www.python.org/
https://pypi.org/
https://github.com/tidyverse/ggplot2
https://www.tidyverse.org/packages/

declarative style of programming, which is often cited as a “mini-language” (Wickham,

2016, p. About). ggplot2 also has a few python clones, the two most popular being ggpy
33

(not maintained) and plotnine
34

 which is the suggested alternative (ChKwK, 2018).

Figure 8 Programming Language Growth,

https://insights.stackoverflow.com/trends?tags=python%2Cjavascript%2Cjava%2Cc%23%2Cphp%2Cc%2B%2B

 However, the Python equivalent to ggplot is matplotlib
35

, by John Hunter (Hunter,

2007), with 165 paper citations
36

. This open-source project uses a Python Software

Foundation-based license
37

, is used by nearly 120K projects, with more than 800

contributors 9.7K stars and 4.3K forks on GitHub. matplotlib supports a wide range of

highly customizable visualizations, which aided by an array of third-party libraries

(including the ones we mentioned previously
38

), covers most visualization needs.

33

 https://github.com/yhat/ggpy
34

 https://github.com/has2k1/plotnine
35

 https://github.com/matplotlib/matplotlib
36

 https://ieeexplore.ieee.org/document/4160265
37

 https://matplotlib.org/users/license.html
38

 https://matplotlib.org/thirdpartypackages/index.html

https://insights.stackoverflow.com/trends?tags=python%2Cjavascript%2Cjava%2Cc%23%2Cphp%2Cc%2B%2B
https://github.com/yhat/ggpy
https://github.com/has2k1/plotnine
https://github.com/matplotlib/matplotlib
https://ieeexplore.ieee.org/document/4160265
https://matplotlib.org/users/license.html
https://matplotlib.org/thirdpartypackages/index.html

 Leaflet
39

 is a free and open-source JavaScript mapping library that has binding for

both R and Python. It has a very short and permissive license
40

, over 600 contributors, 4K

forks, and 25K stars. Furthermore, it is immensely popular and was even used by popular

sites such as The New York Times
41

, GitHub
42

 and The Washington Post
43

, among the –at

least– 24K other projects.

Figure 9 SuperZip Example - Shiny Gallery, https://shiny.rstudio.com/gallery/superzip-example.html

 Finally, two more projects stand out, both focused on creating dashboards: Shiny
44

for R, and Bokeh
45

 for Python. Shiny has 44 contributors, about 3.5K stars and 1.5K forks

and a mixed license mainly distributed under GPL-3
46

. Bokeh is more popular, used by

12.8K people, with 11K starts and about 2.8K forks, with 371 contributors and a BSD-3-

39

 https://leafletjs.com/, https://github.com/Leaflet/Leaflet
40

 https://github.com/Leaflet/Leaflet/blob/master/LICENSE
41

 http://www.nytimes.com/projects/elections/2013/nyc-primary/mayor/map.html
42

 https://github.blog/2013-06-13-there-s-a-map-for-that/
43

 http://www.washingtonpost.com/sf/local/2013/11/09/washington-a-world-apart/
44

 https://shiny.rstudio.com/
45

 https://bokeh.pydata.org/en/latest/
46

 https://github.com/rstudio/shiny/blob/master/LICENSE

https://shiny.rstudio.com/gallery/superzip-example.html
https://leafletjs.com/
https://github.com/Leaflet/Leaflet
https://github.com/Leaflet/Leaflet/blob/master/LICENSE
http://www.nytimes.com/projects/elections/2013/nyc-primary/mayor/map.html
https://github.blog/2013-06-13-there-s-a-map-for-that/
http://www.washingtonpost.com/sf/local/2013/11/09/washington-a-world-apart/
https://shiny.rstudio.com/
https://bokeh.pydata.org/en/latest/
https://github.com/rstudio/shiny/blob/master/LICENSE

Clause license
47

. They both build interactive applications focused on web browser, but

Bokeh has one additional merit: it integrates very well with Jupyter Notebooks, one of the

most favorite development environments for Python (Stack Overflow, 2019, p. Most

Popular Development Environments).

Figure 10: Stocks Example, Bokeh Gallery, https://demo.bokeh.org/stocks

 We conveniently left out Plotly and its dashboard tool, Dash, because these are

the ones we use for most of our software
48

. We will go into them in a bit more detail in

the next chapters where we will see a high-level overview of the tools used and discuss

the design decisions. Before that, let‟s review some similar tools for building Machine

Learning models and pipelines.

47

 https://github.com/bokeh/bokeh/blob/master/LICENSE.txt
48

 You can view the docs on the R version here: https://plot.ly/r/

https://github.com/bokeh/bokeh/blob/master/LICENSE.txt
https://github.com/bokeh/bokeh/blob/master/LICENSE.txt
https://plot.ly/r/

Kibana
49

 Kibana is part of the Elastic stack
50

 (with Elasticsearch, Logstash, and now

Beats), and it helps you visualize your data. It handles the basics, and provides additional

features like time series analysis, machine learning, graphs /networks and maps

visualization and analysis, and PDF exports. It also offers integration with Vega for

creating custom visualizations
51

.

Figure 11 Geospatial Analysis, https://www.elastic.co/products/kibana/features

 The complete list of features
52

 (many with their own list of modules) gives much

more details, but we will mention a few here. Connections to databases include MySQL,

MongoDB, PostgreSQL, Microsoft SQL, connections to external tools include Slack and

Jira. Perhaps one of the most interesting is the ability to create dashboards, which is

advertised as its main feature, with a nicely polished UI.

49

 https://www.elastic.co/products/kibana
50

 https://www.elastic.co/products/
51

 https://www.elastic.co/products/kibana/features#vega--custom-
52

 https://www.elastic.co/products/kibana/features

https://www.elastic.co/products/kibana/features
https://www.elastic.co/products/kibana
https://www.elastic.co/products/
https://www.elastic.co/products/kibana/features#vega--custom-
https://www.elastic.co/products/kibana/features

Figure 12 Kibana Dashboard, https://www.elastic.co/guide/en/kibana/current/dashboard.html

 Kibana has an open-source version with about 4.9K forks and 12.5K stars, and

400 contributors
53

. The main license follows Apache License Version 2.0
54

. The open

source project has received a lot of traffic (despite the “used by | 5” section, it has about

12.5K closed and 4.6K open issues). It also has a paid (cloud) version starting from $17

per month
55

. A more detailed comparison, with a huge table of features can be found in

Elastic‟s page
56

, according to which data management, graph exploration and analytics,

all of the machine learning features, and the PDF exports are all in the various premium

versions.

53

 https://github.com/elastic/kibana
54

 https://github.com/elastic/kibana/blob/master/LICENSE.txt
55

 https://www.elastic.co/products/elasticsearch/service/pricing
56

 https://www.elastic.co/subscriptions

https://github.com/elastic/kibana
https://github.com/elastic/kibana/blob/master/LICENSE.txt
https://www.elastic.co/products/elasticsearch/service/pricing
https://www.elastic.co/subscriptions

2.2.2 Machine Learning / Statistical Modeling Software
 There are probably as many tools in this category as there are in the previous, and

most cloud providers (see Azure, Google, Amazon) also have their own offerings of

machine learning and analysis tools. We will only go over three tools here: KNIME,

Weka, and RapidMiner. The selection is based on the relevant paper by Al-Khoder and

Harmouch (Al-Khoder & Harmouch, 2015), who base their decision on which tools are

better fitted to be complete platforms (Al-Khoder & Harmouch, 2015, p. 3). We will add

to the list Orange3, because it another completely open-source and popular tool, and

Kibana, because even though it is partly open-source (with ML being the non-open-

source part), it is already incredibly popular due to being part of the Elastic (“ELK”)

stack. Additionally, they are all (completely or mostly) open-source. R is being excluded

primarily because the whole language is designed for this specific purpose and going

over it is redundant (and we briefly went over it in the previous section). Furthermore,

this section will focus mainly on presenting the tools, not on any detailed comparisons; a

discussion on this can be found in the literature review later in this chapter.

KNIME
57

 KNIME is the recommended tool for novices (Al-Khoder & Harmouch, 2015, p.

2), reported as a “data analytics, reporting, and integration platform” under a GPLv3
58

(Al-Khoder & Harmouch, 2015, pp. 3-4). It has been placed as a “Leader” in Gartner‟s

Magic Quadrant for Data Science and Machine Learning Platforms
59

. The latest

publication is from the announcement of version 2 in 2009 (Berthold, et al., 2009).

 Just like a lot of the tools already mentioned, it supports integrations with various

SQL servers and file formats, with HIVE connectors also available
60

, as well as

connections to APIs
61

.

57

 https://www.knime.com/
58

 https://www.knime.com/blog/new-version-210-has-been-released
59

 see Appendix 1, illustration 15, also: https://www.knime.com/about/news/knime-recognized-by-gartner-

as-a-leader-in-data-science-and-machine-learning-platforms-2019
60

 https://www.knime.com/blog/new-version-210-has-been-released
61

 https://www.knime.com/whats-new-in-knime-210

https://www.knime.com/
https://www.knime.com/blog/new-version-210-has-been-released
https://www.knime.com/about/news/knime-recognized-by-gartner-as-a-leader-in-data-science-and-machine-learning-platforms-2019
https://www.knime.com/about/news/knime-recognized-by-gartner-as-a-leader-in-data-science-and-machine-learning-platforms-2019
https://www.knime.com/blog/new-version-210-has-been-released
https://www.knime.com/whats-new-in-knime-210

Figure 13 Machine Learning pipelines in KNIME, https://www.knime.com/analytics-expert

 One feature that particularly stands out for KNIME is the ability to deploy your

models as REST APIs and integrate it easily with R and/or Python, neural networks

included
62

. Apparently KNIME can use Plotly (in essence, via JavaScript or Python
63

) or

RapidMiner
64

. It also showcases some solutions to common problems like building

recommendation systems, inventory optimization, sentiment analysis, churn, and

anomaly detection
65

. While it is a local application it can also deploy interactive browser

applications with KNIME WebPortal
66

 and they also offer a cloud-based version for more

than 2 years now
67

. As per Wikipedia (but couldn‟t find a reference in KNIME‟s website),

KNIME works with out-of-core algorithms
68

.

62

 https://www.knime.com/analytics-expert
63

 E.g. https://gist.github.com/webbres/3c052788ac55df90ea5b22fe65a68b4e
64

 E.g. https://hub.knime.com/aborg/extensions/com.mind_era.knime_rapidminer.knime.feature/latest
65

 https://www.knime.com/solutions
66

 https://www.knime.com/knime-software/knime-webportal
67

 https://www.knime.com/knime-software-in-the-cloud-old
68

 https://en.wikipedia.org/wiki/KNIME#Internals

https://www.knime.com/analytics-expert
https://gist.github.com/webbres/3c052788ac55df90ea5b22fe65a68b4e
https://hub.knime.com/aborg/extensions/com.mind_era.knime_rapidminer.knime.feature/latest
https://www.knime.com/solutions
https://www.knime.com/knime-software/knime-webportal
https://www.knime.com/knime-software-in-the-cloud-old
https://en.wikipedia.org/wiki/KNIME#Internals

WEKA
69

 WEKA is definitely one of the most seasoned software in this list, with its first

release dating back to 1994 (Holmes, Donkin, & Witten, 1994) by the university of

Waikato, New Zealand, with 33 contributors from the university
70

. It was originally

written in C, C++ and LISP (Holmes, Donkin, & Witten, 1994, p. 2) but was later re-

written in Java (Witten, et al., 1999, p. 1). WEKA‟s website and source control
71

 are the

least user-friendly of what we viewed here, which mirrors the user interface of the actual

application, while also lacking own forums like the other software. Similar comments can

be made about their documentation
72

.

Figure 14 Weka Explorer, https://www.cs.waikato.ac.nz/~ml/weka/gui_explorer.html

 That said, WEKA does not lack much with respect to its competitors in terms of

available machine learning models. It can easily handle time series, decision trees, rule-

based models, neural networks, bagging, boosting, Bayesian, and more (Frank, Hall, &

Witten, 2016). It also includes preprocessing utilities (Holmes, Donkin, & Witten, 1994,

p. 4). It has the least visualizations of every software examined so far, with only 5 out of

27 listed in (Al-Khoder & Harmouch, 2015, pp. 5-6), as well as data sources support.

69

 https://www.cs.waikato.ac.nz/ml/index.html
70

 https://www.cs.waikato.ac.nz/ml/people.html
71

 https://svn.cms.waikato.ac.nz/svn/weka/
72

 http://weka.sourceforge.net/doc.dev/

https://www.cs.waikato.ac.nz/ml/index.html
https://www.cs.waikato.ac.nz/ml/people.html
https://svn.cms.waikato.ac.nz/svn/weka/
http://weka.sourceforge.net/doc.dev/

Even though it lacks more advanced models and does not have equally powerful

pipelines (in fact, they probably cannot be called pipelines at all (ben26941, 2017)), it

allows integration with languages that data scientists are familiar with (Python
73

, and

R
74

), and of course Java. Third-party applications have worked to extend WEKA, with

some of the first GitHub results being:

 autoweka
75

 (autoML in weka)

 wekaDeeplearning4j
76

 weka python wrapper
77

 tmweka
78

 (text mining in weka)

Figure 15 Weka Explorer (2), https://www.cs.waikato.ac.nz/~ml/weka/gui_explorer.html

RapidMiner
79

73

 E.g. https://pypi.org/project/python-weka-wrapper/, https://www.youtube.com/watch?v=cwbPzumwgNo
74

 E.g. https://forums.pentaho.com/threads/154305-Integrating-R-with-Weka/,

http://weka.sourceforge.net/packageMetaData/Rplugin/index.html
75

 https://github.com/automl/autoweka
76

 https://github.com/Waikato/wekaDeeplearning4j
77

 https://github.com/chrisspen/weka
78

 https://github.com/jmgomezh/tmweka

https://pypi.org/project/python-weka-wrapper/
https://www.youtube.com/watch?v=cwbPzumwgNo
https://forums.pentaho.com/threads/154305-Integrating-R-with-Weka/
http://weka.sourceforge.net/packageMetaData/Rplugin/index.html
http://weka.sourceforge.net/packageMetaData/Rplugin/index.html
https://github.com/automl/autoweka
https://github.com/Waikato/wekaDeeplearning4j
https://github.com/chrisspen/weka
https://github.com/jmgomezh/tmweka

 Despite the jokes about RapidMiner in the introduction, it is probably the most

complete, easy to use, and intuitive tool in this list. As said previously, the core of

RapidMiner Studio
80

 which provides data visualization and visual creation of pipelines, is

free and open-source
81

, written in Java, and the company‟s business model is based on

offering additional services and extensions on top of it. According to their website, more

than half a million of users spread across over 30K organizations and 1K universities use

their products
82

.

Figure 16 RapidMiner Pipelines, https://rapidminer.com/products/auto-model/

 One such extension, handling data management is Turbo Prep

(https://rapidminer.com/products/turbo-prep/) which also allows for exploratory data

analysis, data transformations and cleaning, merging datasets. Another one is Auto Model

(https://rapidminer.com/products/auto-model/) which handles even more of the modeling

process like calculating statistics and judging the quality of datasets, perform automated

model selection & tuning as well as automatic feature engineering, and provides

dashboards and integrations (e.g. with MS Excel).

79

 https://rapidminer.com
80

 https://rapidminer.com/products/studio/
81

 https://github.com/rapidminer/rapidminer-studio
82

 https://rapidminer.com/products/

https://rapidminer.com/products/turbo-prep/
https://rapidminer.com/products/auto-model/
https://rapidminer.com/
https://rapidminer.com/products/studio/
https://github.com/rapidminer/rapidminer-studio
https://rapidminer.com/products/

 Furthermore, nearly 4K extensions are available in the RapidMiner

Marketplace
83

. Since RapidMiner allows for Python and R extensions, you can find a lot

of those in the Marketplace. The other three extensions are the RapidMiner Server
84

which handles deployment of models and collaboration, RapidMiner Real-Time Scoring
85

which has also targets deployment but focuses on fast inference times with a REST API

wrapper, and RapidMiner Radoop
86

 which is the RapidMiner Studio big-data version for

Hadoop and Spark, providing cluster computing and integration with the Hadoop

ecosystem: SparkR, PySpark, Pig, HiveQL, and more.

Figure 17 RapidMiner Auto Model, Simulator, https://rapidminer.com/products/auto-model

Orange3
87

 Orange is an incredibly modular data mining software which steps largely on

scikit-learn and the scipy stack
88

, with matplotlib and Qt handling most of the graphical

interface
89

. It has 1.8K stars, 542 forks, is used by 163 others, and is developed by 71

83

 https://marketplace.rapidminer.com/UpdateServer/faces/index.xhtml
84

 https://rapidminer.com/products/server/
85

 https://rapidminer.com/products/real-time-scoring/
86

 https://rapidminer.com/products/radoop/
87

 https://orange.biolab.si/
88

 https://github.com/biolab/orange3/blob/master/requirements-core.txt
89

 https://github.com/biolab/orange3/blob/master/requirements-gui.txt

https://marketplace.rapidminer.com/UpdateServer/faces/index.xhtml
https://rapidminer.com/products/server/
https://rapidminer.com/products/real-time-scoring/
https://rapidminer.com/products/radoop/
https://orange.biolab.si/
https://github.com/biolab/orange3/blob/master/requirements-core.txt
https://github.com/biolab/orange3/blob/master/requirements-gui.txt

contributors
90

, with 16 people being mentioned in the original publication (Demsar, et

al., 2013) and having contributed the majority of the codebase. The license is based on

GPLv3 with the University of Ljubljana being the designated copyright holder
91

.

 A very simple interface with every sub-menu being a popup comprises the whole

GUI. It looks a lot like the other tools we discussed so far (see

https://orange.biolab.si/screenshots/ for more), and Qt works seamlessly on most

operating systems.

Figure 18 Orange3 screenshot, PCA, https://orange.biolab.si/screenshots/

 The Workflows tool also allows the user to define complex pipelines including

data ingestation, processing, visualization, and machine learning. As Orange uses sklearn

behind the scenes for most of its machine learning, everything from there is available, or

90

 https://github.com/biolab/orange3/
91

 https://github.com/biolab/orange3/blob/master/LICENSE

https://orange.biolab.si/screenshots/
https://github.com/biolab/orange3/
https://github.com/biolab/orange3/blob/master/LICENSE

can be ported. It even includes many well-defined tasks such as correspondence analysis,

manifold learning, regression. Preprocessing tasks like merging data, finding / removing

outliers, imputation, normalization are there too. In terms of visualizations, Orange offers

the basics (trees, boxplots, histograms, scatterplots) and a few less commonplace ones

(pythagorean tree, radviz). Everything is a widget, and a catalog can be found on their

website
92

. SQL connections are limited to MSSQL and PostegreSQL, but files can be

acquired from the web, from the typical formats (Excel, txt, CSV), or from other

platforms (e.g. Google Sheets). Some basic data type inference is done, which the user

can, of course, modify
93

.

 Although this tool is rather limited when compared to the previous (which is to be

expected as this is used mainly as an educational platform), developing new add-ons is

easy since Orange is directly written in Python and they provide a reference template
94

,

and thus you can leverage the whole python community and its packages.

2.2.3 Cloud providers and services
 In this final part of the competitors‟ review we will quickly go over the cloud

offerings of Amazon (AWS), Microsoft (Azure) and Google. There many more, some of

which we already visited (e.g. Kibana is mainly a cloud platform, and Tableau Server can

also be deployed in cloud providers like AWS) but due to size constraints we cannot go

over them here.

Amazon QuickSight and other ML services
95

 Amazon‟s main offering is an array of specialized services revolving around

Infrastructure as a Service, but over the years they have developed tools that can be

thought of as Service as a Service, or similar. One such offering is Amazon‟s QuickSight

which is a Business Intelligence / Machine Learning service.

92

 https://orange.biolab.si/widget-catalog/
93

 https://orange.biolab.si/widget-catalog/data/file/, https://orange-visual-

programming.readthedocs.io/loading-your-data/index.html
94

 https://github.com/biolab/orange3-example-addon
95

 https://aws.amazon.com/quicksight/, https://aws.amazon.com/machine-learning/

https://orange.biolab.si/widget-catalog/
https://orange.biolab.si/widget-catalog/data/file/
https://orange-visual-programming.readthedocs.io/loading-your-data/index.html
https://orange-visual-programming.readthedocs.io/loading-your-data/index.html
https://github.com/biolab/orange3-example-addon
https://aws.amazon.com/quicksight/
https://aws.amazon.com/machine-learning/

Figure 19 Amazon QuickSight workflow, https://aws.amazon.com/blogs/big-data/10-visualizations-to-try-in-amazon-

quicksight-with-sample-data/

 As one would expect, this works with a usage-based pricing model, as most AWS

offerings. When it comes to integrations with data sources, it obviously supports other

AWS service like RedShift, S3, Athena, GLUE, and even third-party applications like

MySQL, PostgreSQL, Teradata, Salesforce, or common file formats for user uploads
96

. Is

supports dashboard creation and allows for embedding them in your applications. With

AutoGraph the system chooses the most appropriate visualization type according to the

dataset schema. It supports most of the basic visualization/graph types.

 When it comes to ML services, there are perhaps more offerings with Amazon

SageMaker, Comprehend, Personalize, Translate, Transcribe, Ground Truth, being a few

of them providing solutions to tasks like computer vision, natural language processing,

recommendation systems, forecasting, and more. It also supports TensorFlow, PyTorch,

Apache MXNet, Gluon, and more out of the box, and often with performance

improvements
97

. Finally, it comes with various helpers for hyperparameter tuning and

model selection.

96

 https://aws.amazon.com/blogs/big-data/10-visualizations-to-try-in-amazon-quicksight-with-sample-data/
97

 https://aws.amazon.com/sagemaker/

https://aws.amazon.com/blogs/big-data/10-visualizations-to-try-in-amazon-quicksight-with-sample-data/
https://aws.amazon.com/sagemaker/

Google Data Studio and ML Engine
98

 Similarly to Amazon, Google has its own array of offerings. Diving straight into

the available connections that Data Studio can handle, it also integrates with other

Google services
99

 (BigQuery, Campain Manager, Google Ads, Google Analytics, Cloud

SQL, Google Cloud Storage, Google Sheets), popular databases (MySQL, PostegreSQL),

and allows file uploads. Through the “partner connectors” you can also integrate with

Amazon, Salesforce, Facebook, Instagram, Mailchimp, LinkedIn, Quora, Reddit,

Pinterest, Twitter, and over 100 more. It also allows you to create your own dashboards

and an extensive gallery
100

 showcases some amazing works. With the exception of 3D

scatterplots (for which I have found no reference), Data Studio provides all of the basic

visualizations.

Figure 20 World Cup Finalists,

https://datastudio.google.com/reporting/1Rg5y6r0640X8uo2xo2XY48sG9IyMiYEN/page/wcCU

 Again similarly to Amazon, Google provides its own Machine Learning services

like the Cloud Machine Learning Engine which also allows for scalable training and

comes preconfigured with scikit-learn, XGBoost, Tensorflow and Keras. If you want to

add another there is the option of uploading your own Docker containers. It also provides

access to CPU, GPU and TPU hardware. Furthermore, using HyperTune can help with

98

 https://datastudio.google.com/overview, https://cloud.google.com/ml-engine/
99

 https://datastudio.google.com/data
100

 https://datastudio.google.com/gallery

https://datastudio.google.com/overview
https://cloud.google.com/ml-engine/
https://datastudio.google.com/data
https://datastudio.google.com/gallery

hyperparameter tuning. Finally, it too handles common usecases with more specific

offerings in computer vision and natural language processing
101

.

Azure
102

 The last on the list is Azure, which also provides a dashboard functionality, which

is somewhat limited and we won‟t go into detail about that (after all, Microsoft‟s main

visualization product is Power BI, and we already covered it).

Figure 21 Azure Machine Learning Service, https://azure.microsoft.com/en-us/services/machine-learning-service/

 Azure‟s AI/ML offering comprises of services targeting the same fields as its

competitors, with integrations with Databricks, ONNX, PyTorch, Tensorflow, scikit-

learn. Azure Machine Learning Service promises to handle all stages from training up to

deployment with “automated machine learning capabilities and open-source support”.

With Jupyter Notebook integration and the ability to run Python code, it is certainly very

extensible and can handle custom data input. Furthermore, it provides both a flowchart

for helping you choose a ML model
103

, and automated ML
104

.

101

 https://cloud.google.com/vision/, https://cloud.google.com/translate/
102

 https://azure.microsoft.com/en-us/overview/ai-platform/, https://docs.microsoft.com/en-us/azure/azure-

portal/azure-portal-dashboards
103

 https://azuremlsimpleds.azurewebsites.net/simpleds/,

https://cloud.google.com/vision/
https://cloud.google.com/translate/
https://azure.microsoft.com/en-us/overview/ai-platform/
https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-dashboards
https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-dashboards
https://azuremlsimpleds.azurewebsites.net/simpleds/

Figure 22 Azure Machine Learning Service, https://azure.microsoft.com/en-us/services/machine-learning-service/

104

 https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-automated-ml

https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-automated-ml

3. Designing an open-source solution for

data visualization and analysis

 This projects stands on the shoulders of (mostly open-source) giants, without the

work of whom this endeavor would not have been possible given the time window. These

giants roughly sum up to around 40-50 independent projects. Although we will explain

the whys and hows for each tool that was used in the next chapter, this small chapter will

focus on very briefly introducing them and their capabilities. Seeing that Python was

introduced in the previous chapter we will skip over it (same for JavaScript, it being the

most popular language).

Figure 23 EDA Miner's main tech stack, v0.2+

3.1 Python libraries

3.1.1 Tech and computing stack
scikit-learn

105

 We mentioned scikit-learn (or sklearn) before multiple times, but briefly. It is a

12-year-old project that started as part of Google Summer of Code project by David

Cournapeau
106

 with the first publication dating back to 2011 (Pedregosa, et al., 2011)

which has received a tremendous community following donations from individuals,

organizations, universities. The GitHub repository numbers over 17.9K forks, 36K stars

and 64K projects in which it is used, with a total of 1380 contributors and a New BSD

license
107

.

 In its core, sklearn is a machine learning library with a very concise and well-

designed “bare-bones” programmatic API (Pedregosa, et al., 2011, p. 3), that is build

using NumPy, SciPy, and matplotlib, and boasts great performance with highly optimized

and parallelizable models. Since the underlying libraries use C or C++ code (which is

precompiled) they can be made extremely efficient (Pedregosa, et al., 2011, p. 2), and

sklearn added to that by adding multi-threading to the mix, a lot of it written in Cython

(Pedregosa, et al., 2011, p. 3). It also uses Fortran libraries such as LAPACK (Pedregosa,

et al., 2011, p. 3). A comparison with other libraries can be found in Appendix 3, as in

their original paper (Pedregosa, et al., 2011, p. 4), which attributes sklearn’s performance

improvements to the reduced overhead due to less copying, among others (Pedregosa, et

al., 2011, pp. 4-5).

 The project provides a lot of documentation, which paired with all previous points

makes evident how it came to dominate the ML world in Python. The sklearn docs

provide a very detailed User Guide which goes into great depths explaining the models,

their theory, and the typical use cases
108

. The complete user guide at the initial

publication was estimated at over 300 pages (Pedregosa, et al., 2011, p. 3), and it

probably has grown much more since then. A very popular aid is the Flow Chart which

105

 https://scikit-learn.org/stable/index.html
106

 https://scikit-learn.org/stable/about.html
107

 https://github.com/scikit-learn/scikit-learn
108

 https://scikit-learn.org/stable/user_guide.html

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/about.html
https://github.com/scikit-learn/scikit-learn
https://scikit-learn.org/stable/user_guide.html

really helps beginners select the appropriate models for their tasks quickly. Not only that,

but sklearn provides tutorials and examples (along with the hundreds other external

sources like YouTube videos, Medium articles, etc).

Figure 24 : SciKit-learn Flow Chart, https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

 Probably the best feature of sklearn is the ability to choose to use the models in

standalone mode or stack them in Pipelines
109

 which are a great way to define more

complex models ready for production environments. With simple inheritance from base

classes and mix-ins, creating your own estimator and adding it to a pipeline is very

easy
110

: just subclass the base and mix-ins you want, define the appropriate methods (e.g.

fit, predict, transform) and you‟re good to go. It is this ease of use and clean API that

made us choose it as a base for our project, and the same probably applies to Orange3

and others.

SciPy
111

109

 https://scikit-learn.org/stable/modules/compose.html
110

 https://scikit-learn.org/stable/developers/contributing.html#rolling-your-own-estimator
111

 https://www.scipy.org/

https://scikit-learn.org/stable/modules/compose.html
https://scikit-learn.org/stable/developers/contributing.html#rolling-your-own-estimator
https://www.scipy.org/

 SciPy, or Scientific Python, is not only a Python library originally published in

2001 (Jones, Oliphant, Peterson, & et al, 2001), but a whole stack of libraries

(“ecosystem”) geared towards scientific computing sprung forth later. Both sklearn and

the next few packages are also part of this ecosystem. It has its own conferences, a very

large community, and a lot of other libraries that greatly enhance Python‟s performance

(e.g. Cython, Dask, PyTables). It is a project used by nearly 120K others, with over 6.1K

stars, 2.9K forks, and 750 contributors, with a BSD-3-Clause license
112

. It has lots of

applications, from signal processing to image processing, sparse data, Fourier transforms,

clustering, and more (e.g. peak finding, convolutions, decompositions, equation

optimizers/solvers).

Numpy
113

 NumPy, or Numerical Python, is primarily used for operations with and on arrays.

NumPy allows vectorization of operations, which essentially takes optimized and

parallelized code written in C / C++ / Fortran and provides a simple API. The NumPy

project is used by nearly 234K others, with 11.4K stars, 3.8K forks and 800 contributors,

with the same license as SciPy. Just like SciPy, NumPy is pretty old, with the initial

publication dating back to 2006 (Oliphant, 2006).

pandas
114

 pandas, or Python Data Analysis Library, is the part of the SciPy ecosystem that

focuses on data analysis tasks like data cleaning, missing values management, computing

statistics, providing functionalities for time series, aggregations, I/O, merging / joining

datasets, basic visualization, most of what a Data Analyst / Scientist needs for data

handling (McKinney, 2010). It‟s main feature is the DataFrame which should be familiar

to R programmers. This project is also immensely popular, being used by over 125.8K

others, with over 20.7K stars, 8.2K forks, and 1550 contributors, with the same license as

the previous
115

.

112

 https://github.com/scipy/scipy
113

 https://www.numpy.org/
114

 https://pandas.pydata.org/
115

 https://github.com/pandas-dev/pandas

https://github.com/scipy/scipy
https://www.numpy.org/
https://pandas.pydata.org/
https://github.com/pandas-dev/pandas

SymPy
116

 SymPy, or Symbolic Python, is the last library of the SciPy stack that we will go

over. It is a library for symbolic mathematics but is evolving towards becoming a

comprehensive “computer algebra system” (Meurer, et al., 2017). It handles

differentiation and integrals, logic, concrete and discrete mathematics, geometry, working

with polynomials (e.g. expansion / factoring) and many more (see example below).

Perhaps the most interesting feature is the ability to convert symbolic expressions to

Python / NumPy functions. The SymPy project is used by more than 11.3K projects, and

has about 6.1K stars, 2.7K forks, 770 contributors and, again, a BSD-type license
117

.

>>> from sympy import Symbol, cos

>>> x = Symbol('x')

>>> e = 1/cos(x)

>>> print e.series(x, 0, 10)

1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + 277*x**8/8064 + O(x**10)

Other libraries

 We cannot introduce every library used (and their dependencies which usually are

in the tens) so here is a list of other notable scientific libraries we used in our code:

 networkx
118

 (Hagberg, Schult, & Swart, 2008)

 peakutils
119

 (Hermann Negri & Vestri, 2017)

 pygraphviz
120

 python-Levenshtein
121

 textblob
122

 xgboost
123

116

 https://www.sympy.org/en/index.html
117

 https://github.com/sympy/sympy
118

 https://github.com/networkx/networkx
119

 https://bitbucket.org/lucashnegri/peakutils/src/master/
120

 https://github.com/pygraphviz/pygraphviz
121

 https://github.com/ztane/python-Levenshtein
122

 https://github.com/sloria/TextBlob
123

 https://github.com/dmlc/xgboost

https://www.sympy.org/en/index.html
https://github.com/sympy/sympy
https://github.com/networkx/networkx
https://bitbucket.org/lucashnegri/peakutils/src/master/
https://github.com/pygraphviz/pygraphviz
https://github.com/ztane/python-Levenshtein
https://github.com/sloria/TextBlob
https://github.com/dmlc/xgboost

 fuzzywuzzy
124

3.1.2 Interface / web stack
Dash

125

 Dash is a Python library, developed by Plotly Technologies Inc. that, behind the

scenes, uses Flask as the back-end server and React as the front-end JavaScript

framework. It is also a rather popular project, used by over 4K other projects, with about

9.6K stars, 1K forks, and released under an MIT license
126

. The Dash App Gallery is

another great place to take a first look at the project
127

.

 With Dash you can create web applications with HTML and CSS all within

Python, and with the use of callback functions (a Python function decorated by

dash.Dash.callback) that specify Output (what Dash/HTML element to change, e.g. a

graph or a div), Input (what Dash/HTML element triggers -on change- the functions, e.g.

“button X was clicked”), and optionally State (something that is read when a function is

triggered by the Inputs, e.g. “what is the value of dropdown X when button Y is

clicked?”) you can manage the whole interactivity without writing a line of JavaScript.

This comes at a small price, and we will discuss that in the next chapter, as well as other

limitations and work-arounds.

 Dash is extendable by creating your own (or from the community) components in

React.js, and using a project boilerplate
128

 you can easily make them available in Dash.

You can also integrate D3.js with Dash
129

. The documentation is pretty extensive and

covers various usage patterns in depth, allowing you to create complex applications,

while there is also a repository with examples of advanced functionalities available on

GitHub
130

.

 Dash is broken down in several libraries according to their domains. Some were

incorporated from community contributions, others were paid by Plotly clients but were

124

 https://github.com/seatgeek/fuzzywuzzy
125

 https://dash.plot.ly
126

 https://github.com/plotly/dash
127

 https://dash-gallery.plotly.host/Portal/
128

 https://github.com/plotly/dash-component-boilerplate
129

 https://dash.plot.ly/d3-react-components
130

 https://github.com/plotly/dash-recipes

https://github.com/seatgeek/fuzzywuzzy
https://dash.plot.ly/
https://github.com/plotly/dash
https://dash-gallery.plotly.host/Portal/
https://github.com/plotly/dash-component-boilerplate
https://dash.plot.ly/d3-react-components
https://github.com/plotly/dash-recipes

open-sourced. Here we will view a few of them, and some that are community-

maintained (i.e. outside of Plotly), all of which we used in EDA Miner.

 Dash Core Components
131

 is responsible for high-level components like

graphs, dropdowns, sliders, check-boxes, and more.

 Dash HTML Components
132

 contains (almost) every HTML tag like div,

button, p, span, h1-h6, and even script.

 Dash DAQ
133

, which was recently open-sourced, contains high-level

components that are more geared towards controls like switches, gauges,

joysticks, knobs, thermometers, and more.

 Dash DataTable
134

 is a library for creating tables that are highly interactive,

and much like spreadsheets you can edit values, add or remove lines or

columns, sort, filter, have paging, and more.

 Dash Cytoscape
135

 was also recently released (merely 1.5 months prior to this

project‟s start, or 6 month at the time of writing), and is an extension of the

popular Cytoscape.js library for network / graph visualizations.

 Dash Bootstrap Components
136

 is an independent community project that

ports the Bootstrap project into Dash, giving access to components like

modals, navbars, tabs, jumbotrons, cards, and more.

 Dash Core Components for Visualization
137

 is another external project that

provides a few extra components: a component to run JavaScript, a network

component, and a data-table.

Flask
138

 Flask is a Python web micro-framework, which means it doesn‟t make too many

assumptions for you, nor does it wrap everything around a rigid and opinionated API
139

.

131

 https://dash.plot.ly/dash-core-components
132

 https://dash.plot.ly/dash-html-components
133

 https://dash.plot.ly/dash-daq
134

 https://dash.plot.ly/datatable
135

 https://dash.plot.ly/cytoscape
136

 https://dash-bootstrap-components.opensource.faculty.ai/
137

 https://github.com/jimmybow/visdcc
138

 https://flask.palletsprojects.com/en/1.1.x/
139

 https://flask.palletsprojects.com/en/1.1.x/foreword/

https://dash.plot.ly/dash-core-components
https://dash.plot.ly/dash-html-components
https://dash.plot.ly/dash-daq
https://dash.plot.ly/datatable
https://dash.plot.ly/cytoscape
https://dash-bootstrap-components.opensource.faculty.ai/
https://github.com/jimmybow/visdcc
https://flask.palletsprojects.com/en/1.1.x/foreword/
https://flask.palletsprojects.com/en/1.1.x/foreword/

That said, due to their design decisions their API is very simple and polished
140

, and the

scaling of Flask applications is not an issue
141

. It works by using Werkzeug and Jinja as

the underlying mechanisms for a web server gateway interface (WSGI) and template

engine respectively. Since sub-classing the Flask object is supported, a lot of applications

are based off that, and most notably, the one we used: Dash (to access the Flask server

object from the Dash object you call Dash.server).

 Flask is, of course, open source as well. The GitHub page shows that is is an

immensely popular project with more than 45.8K stars, 12.8K forks, and 550 contributors

with a BSD-3-Clause license. It is used by more than 303.7K projects
142

, with large

companies like Pinterest (Steven Cohen cites that it handles “over 12 billion requests”

daily (Cohen, 2015)) and LinkedIn (0:45 – 1:15 LinkedIn talk (Sanders, 2014)) being

some of them.

 As we said, Flask can be sub-classed to create wrappers, but the primary focus of

the development community is designing extensions (Sanders, 2014) and we will see a

few of them here:

 Flask-Login
143

 is an extension that helps with user authentication, session

management, “remember me”, and anonymous users, among others. What is lacks

is handling of permissions (an interesting Flask extension is Flask-Security),

registration, and account recovery. As a GitHub project, it has nearly 2.2K stars

and 500 forks, with 78 contributors and an MIT license
144

.

 Flask-WTF
145

 is an extension that helps with Forms, the validation of input, CSRF

protection, reCAPTCHA and more. The GitHub project uses a BSD License, is

used by about 45.3K other projects with nearly 1K stars and 240 forks, with 69

contributors
146

.

140

 https://flask.palletsprojects.com/en/1.1.x/design/
141

 https://flask.palletsprojects.com/en/1.1.x/becomingbig/
142

 https://github.com/pallets/flask
143

 https://flask-login.readthedocs.io/en/latest/
144

 https://github.com/maxcountryman/flask-login
145

 https://flask-wtf.readthedocs.io/en/stable/
146

 https://github.com/lepture/flask-wtf

https://flask.palletsprojects.com/en/1.1.x/design/
https://flask.palletsprojects.com/en/1.1.x/becomingbig/
https://github.com/pallets/flask
https://flask-login.readthedocs.io/en/latest/
https://github.com/maxcountryman/flask-login
https://flask-wtf.readthedocs.io/en/stable/
https://github.com/lepture/flask-wtf

 Flask-Mail
147

 is an extension for that provides a simple API to handle mails via

SMTP, using a simple dictionary for passing configurations. It is also popular,

with 22 contributors, more than 100 forks, 400 stars, and 12.8K projects using it,

with a BSD license
148

.

 Flask-SQLAlchemy
149

 is the Flask extension developed by the core Flask team

that supports the Python library SQLAlchemy. It is, essentially, an Object-

Relational Mapping (ORM). Used by more than 79.6K projects, with about 2.7K

stars, 700 forks, and 82 contributors, it is also shared on GitHub under a BSD-3-

Clause license
150

.

 Flask-Caching
151

 is the last Flask extension on our list, which provides caching

support using any of Werkzeug‟s caching back-ends (we use it with the

preconfigured Redis) plus custom ones via sub-classing. The GitHub projects sits

on the less used side, with about 2.2K projects using it, 400 stars, 70 forks, 60

contributors, and a mixed BSD license
152

.

Others

 We used other frameworks and libraries too, but the limited usage (and the limited

space here) won‟t allow us to go into too much detail, especially since the Dash code-

base is bigger by far. We will only focus on JavaScript (JS) which, in itself, needs no

introduction. We used a bit of “vanilla” JavaScript but the two frameworks we mostly

used were React and jQuery:

 React
153

 is an open-source library / framework for creating component-based

interactive elements. Writing JSX (essentially JS with a few extras) to extend the

React base Component class, compiling with Babel, and optionally using any

library (e.g. installed via the Node Package Manager), you can easily create

complex components and single-page apps. React is developed by Facebook,

147

 https://pythonhosted.org/Flask-Mail/
148

 https://github.com/mattupstate/flask-mail
149

 https://flask-sqlalchemy.palletsprojects.com/en/2.x/
150

 https://github.com/pallets/flask-sqlalchemy
151

 https://flask-caching.readthedocs.io/en/latest/
152

 https://github.com/sh4nks/flask-caching
153

 https://reactjs.org/

https://pythonhosted.org/Flask-Mail/
https://github.com/mattupstate/flask-mail
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://github.com/pallets/flask-sqlalchemy
https://flask-caching.readthedocs.io/en/latest/
https://github.com/sh4nks/flask-caching
https://reactjs.org/

initially released in 2013 (Occhino & Walke, 2013), and the GitHub code is

distributed with an MIT license. It is the most popular library of what we saw

with 1.3K contributors, 134K stars, 25K forks, and a whooping 2.33M projects

using it
154

.

 jQuery
155

 also a JS library but also comes packages with User Interface elements,

and even though it is a bit older, being first published in 2006 (York, 2009), and

despite its GitHub page being much less popular (52K stars, 18.4K forks, 347K

usages, 275 contributors, MIT license
156

, it has been steadily increasing in usage

across the most popular websites: among the top million websites it was

reportedly used in 63% of them in 2015

(https://www.maxcdn.com/blog/maxscale-jquery/), 69% in 2017

(http://web.archive.org/web/20170219042532/https://libscore.com/) and 73% in

2018 (https://trends.builtwith.com/javascript/jQuery).

3.2 Database technologies

 The use of databases throughout the application serves multiple purposes and we

will go over them in the next chapter. Before that, we will briefly take a look at the ones

we currently use and a few details about them. For SQL databases we are using

SQLAlchemy as an intermediary (see previous section on Flask-SQLalchemy).

3.2.1 Redis
 Redis

157
 is an open-source (with a BSD-3-Clause license) NoSQL database,

whose purpose is to be an “in-memory data structure store”. The most popular use case is

a key-value store, where according to G2
158

 and DB-engines
159

 it is considered the top

contender. The GitHub repository has over 38.1K stars, 14.7K forks, and 300

154

 https://github.com/facebook/react/
155

 https://jquery.com/
156

 https://github.com/jquery/jquery
157

 https://redis.io/
158

 https://www.g2.com/categories/key-value-stores
159

 https://db-engines.com/en/ranking/key-value+store

https://www.maxcdn.com/blog/maxscale-jquery/
http://web.archive.org/web/20170219042532/https:/libscore.com/
http://web.archive.org/web/20170219042532/https:/libscore.com/
https://trends.builtwith.com/javascript/jQuery
https://github.com/facebook/react/
https://jquery.com/
https://github.com/jquery/jquery
https://redis.io/
https://www.g2.com/categories/key-value-stores
https://db-engines.com/en/ranking/key-value+store

contributors, with very active development having more than 700 open pull requests
160

. It

has front-ends to around 50 programming languages
161

 and a very simple API with clear

documentation
162

. Related to key-value storage, use cases include caching, and shared-

memory-type access of resources. It is also capable of working as a message broker,

handle streams and PUB/SUB, and even on-disk persistence. Finally, it is able to scale

really well with extensions like Redis Sentinel and Redis Cluster. And it is fast; you will

find some benchmarks in the next chapter.

3.2.2 SQLite
 SQLite

163
 is probably the most popular database. If you used Chrome or Mozilla

to navigate the internet, or have an Android phone or an iPhone, or have a Windows 10 or

Mac OS-X computer, then chances are it is backed by an SQLite database, or a few. Of

course, measuring popularity can be done differently, and according to DB-engines it

ranks 11
th

164

. According to the SQLite website, there are more than a trillion databases in

use
165

.

 As the name implies it is a “lite” version, which means it doesn‟t support all the

commands you would typically expect of the larger SQL databases. It, too, is an open-

source database which is in the Public Domain and boasts to be “uncontaminated”, which

means that they don‟t take lightly to new contributors
166

. Furthermore, SQLite is by

default supported in Python, and is ported as part of the standard library
167

. According to

the same docs, a common usage pattern is to use it for prototyping / development, and

then move on to another provider like PostgreSQL or Oracle. That said, SQLite is not a

“dummy database”, it is in fact used in production by some of the biggest companies like

Facebook, Dropbox, Apple, Google (Chrome Web Browser, Android) for various of their

products
168

.

160

 https://github.com/antirez/redis
161

 https://redis.io/clients
162

 https://redis.io/documentation and https://redis.io/commands
163

 https://www.sqlite.org/index.html
164

 https://db-engines.com/en/ranking/
165

 https://www.sqlite.org/mostdeployed.html
166

 https://sqlite.org/copyright.html
167

 https://docs.python.org/3/library/sqlite3.html
168

 https://www.sqlite.org/famous.html

https://github.com/antirez/redis
https://redis.io/clients
https://redis.io/documentation
https://redis.io/commands
https://www.sqlite.org/index.html
https://db-engines.com/en/ranking/
https://www.sqlite.org/mostdeployed.html
https://sqlite.org/copyright.html
https://docs.python.org/3/library/sqlite3.html
https://www.sqlite.org/famous.html

3.3 Other libraries and tools

 This project also uses a variety of other tools, methods, and techniques. We will

see them in the next chapter in more detail so here we will only list them here for

completeness‟ sake.

 REpresentational State Transfer (REST) APIs are software architecture techniques

and self-imposed rules on the behavior of applications to make interfacing

multiple of them easier (W3C Working Group, et al., 2004). These rules, or

constraints, instruct that the REST service follows a client-server architecture, it

does not track state, it is cacheable, and has a uniform interface (usually using

URIs, HTTP, and JSON) (Erl, Carlyle, Pautasso, & Balasubramanian, 2012). The

“Micro-Services” architecture is very often using REST-type APIs for

communication among services. It is also a great way to lessen the load of your

servers (e.g. both Wikipedia and Twitter share their data via APIs). REST APIs are

expected to also return appropriate status codes, some examples can be found in

restfulapi.net
169

.

 Oauth2 is used to handle authorization, mainly for accessing Google and other

web API resources (e.g. Google Drive). It is a widely accepted protocol that

allows authorization of only specific resources (Barbettini, 2018). We are using

the google-auth
170

, google-auth-oauthlib
171

, and google-api-python-client
172

Python packages.

 Other APIs and the Python libraries used for interfacing with them include Quandl

/ quandl-python
173

, Reddit / praw
174

, and Spotify / spotipy
175

.

 redis-py
176

 is used for interfacing with Redis.

169

 https://restfulapi.net/http-status-codes/
170

 https://github.com/googleapis/google-auth-library-python
171

 https://github.com/googleapis/google-auth-library-python-oauthlib
172

 https://github.com/googleapis/google-api-python-client
173

 https://github.com/quandl/quandl-python
174

 https://github.com/praw-dev/praw
175

 https://github.com/plamere/spotipy

https://restfulapi.net/http-status-codes/
https://github.com/googleapis/google-auth-library-python
https://github.com/googleapis/google-auth-library-python-oauthlib
https://github.com/googleapis/google-api-python-client
https://github.com/quandl/quandl-python
https://github.com/praw-dev/praw
https://github.com/plamere/spotipy

 matplotlib is also used for creating pairplots, and it is converted into plotly‟s

format by the latter‟s tools.

 word_cloud
177

 to generate word-cloud images.

 Selenium (via Python) for controlling the browser and handling testing.

 py.test
178

 for testing Python applications, together with pytest-cov
179

 for parsing

coverage reports.

 dill
180

 as a more capable alternative of Python‟s pickle module.

 requests
181

 is a library that simplifies HTTP requests in Python.

 Docker
182

 is a layer between your application and the host operating system

allowing for virtualization and delivery of software in small packages called

containers. It is also used often in Micro-Services architectures. It started in

2013
183

 and its widespread adoption along with tools that interface with it (cloud

providers‟ specialized services, Kubernetes, Docker-Swarm) have brought a small

revolution in the “DevOps” world.

176

 https://github.com/andymccurdy/redis-py
177

 https://github.com/amueller/word_cloud
178

 https://github.com/pytest-dev/pytest
179

 https://github.com/pytest-dev/pytest-cov
180

 https://github.com/uqfoundation/dill
181

 https://github.com/psf/requests
182

 https://www.docker.com/get-started
183

 See “Milestones” section at https://www.docker.com/company

https://github.com/andymccurdy/redis-py
https://github.com/amueller/word_cloud
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest-cov
https://github.com/uqfoundation/dill
https://github.com/psf/requests
https://www.docker.com/get-started
https://www.docker.com/company

4. Implementing the EDA Miner tool

 In this chapter we will go over the considerations and design decisions, the

implementation, and everything else related to the codebase. We will explain our

motivations and thinking process, explore benchmarks, and speak of concrete future

plans that don‟t fit in the “future work” chapter. We will also go over the specific issues

we identified (e.g. project code organization, inter-app authentication) that iteratively

changed the agile design of our project. It should also be noted that, unless otherwise

specified, all benchmarks in this chapter are not rigorous
184

, that is they are might vary

across computers or other supporting software versions, and are run under no external

load, only on a local computer with the following specs:

 CPU: Intel i7-8700K

 RAM: 32GB RAM

 GPU: GTX 1080, driver 418.56, CUDA 10.1

 OS: Ubuntu 18.04.3 LTS 64-bit, Linux: 4.15.0-58-generic

 It should be made clear upfront that not much optimization has been made during

development. We consider the application to still be in (pre-) alpha stage. Furthermore,

although we did try to improve styling, it has not been our main focus. The main focus of

the development so far was to roll out as many features as fast as possible (up to July),

clean the code and use object-oriented design patterns to improve code quality even

further including documentation writing and unit testing (it is a continuous process but

August was “refactoring month”), and then once again add new features primarily geared

towards actual use-cases (e.g. recommender systems, SQL integration, PDF / report

generation) and more UI/UX.

 Furthermore, the main target group of the application has been data scientists and

non-technical people that are working with datasets smaller than 25 GB, that is datasets

that could potentially fit the RAM of a (strong yet) local machine or a contained cloud

184

 No effort was expended in isolating benchmark processes from the OS and/or other processes, or
trying to negate the effects of (unplanned) hardware/OS caching.

instance. This means that no Big Data tools were used, and although scaling of each

individual component was and is a major consideration, discussions about scaling beyond

one instance of the main server have mostly been theoretical. This decision was made

after conducting a draft poll, on July 23, in a popular Facebook group (due to budget and

time constraints) called “Artificial Intelligence & Deep Learning” with about 280K

members. The results of the poll (multiple answers can be selected, and the

denominations were arbitrarily decided) can be viewed in the histogram below. Although

the results of this poll should not be taken too seriously as being representative, about

45.1% of the votes use datasets less than 2 GB, and 56.7% less than 25 GB. Additionally,

we should consider that of those working on the higher end of the spectrum, a lot are

working with images, videos, and other multi-media content, applications for which this

Figure 25 Dataset size poll in Facebook group Artificial Intelligence & Deep Learning
(https://www.facebook.com/groups/DeepNetGroup/permalink/911122442613972/)

project does not account for.

4.1 Project Structure: Dash & Flask

 Dash is the backbone of the project, and the early versions (up to v0.3) were

Dash-only. Applications with Dash work by defining a layout, which is a hierarchically

structured container of components that map to HTML or React elements, and then

defining callbacks, which are decorated Python functions that take their arguments in the

form of Input (Dash element that triggers the callback) and State (Dash element that is

read when the callback is triggered), and output a JSON-serializable Python object (e.g.

dict, Dash elements, str, list). These callbacks are registered in the main dash.Dash

instance.

 The first direct consequence of the above is that only one callback function can

mutate a certain Dash element. For example, two different buttons cannot be tied to two

different functions to mutate a certain div. There are only two known workarounds for

this. The official way is to combine the callbacks in one function, which very often leads

to increased complexity, function size, and lots of if/else branching within functions;

increasing more than linearly in complexity as the number of Input/State elements

increases. A second way, which is mostly a hack, is to use custom JavaScript, from

Python (e.g. using extra package visdcc.Run_js) or otherwise. We use both methods (e.g.

see utils.py > interactive_menu, and in v0.2 see apps > analyze > Model_Builder.py >

modify_graph). Although not exactly different ways, one could break individual

operations into separate functions that return data to separate hidden divs and combine

those, and/or offload the logic completely to Python (both of which usually decrease

complexity, e.g. in v0.4 see modeling > model_builder.py > update_nodes).

 The second consequence is that callbacks that are triggered by some input will

throw errors if not all of the Input/Output/State elements are present. This can mostly be

fixed either by tweaking Dash parameters (swapping Input/State elements), or, in more

advanced cases, adding the elements in the layout beforehand but keeping them hidden.

 The third, and worst of all, is that “all callbacks must be defined before the server

starts”. This has a lot of practical implications and directly bars some very common uses

such as the “add another item” pattern. The suggested workaround from the

documentation and forums is to define all possible elements beforehand and keep them

hidden (see this extreme example: callback for dynamically created graph
185

).

 If you noticed that the previous two paragraphs ended with “define and keep

hidden”, then you are in a good spot. This is probably the most common pattern of Dash

(hereafter referred as “hidden div” pattern/solution) and is the suggested way for moving

data across callbacks, having callbacks share the same data, caching, and reducing

network traffic.

 Which brings us to our next topic. Novice Dash developers that want to pass data

across functions will be tempted to use global variables, which usually works fine if only

one user uses the app, but that is often not the case. Variables in the global scope are not

scoped on a per-session basis, which will lead to one user overwriting another‟s data
186

.

We dealt with this both with the hidden div solution (e.g. reporting metrics for trained

models) and with Redis.

 As was mentioned briefly before, using custom JavaScript is not well-integrated

into Dash, but is possible. However, the best way to extend Dash is to use React to

develop custom components. This tends to increase complexity quite a lot, and usually

this results to a lot of bloat (node packages), but great resources exist to help with both of

these issues. Adding scripts is similar to adding CSS
187

, but even then there are

limitations (e.g. due to the way Dash elements are rendered, scripts might be unable to

find some of them, thus causing errors). Technically, using other JS frameworks is not

possible
188

 but it can be made to work (both in Dash, and within React when designing

custom components).

 Furthermore, it needs to be expressed again that the price paid for dealing with the

issues mentioned above is more than compensated by how Dash rewards you with

interactivity. Despite all the problems that cause us to find workarounds and hacks, Dash

is still incredibly expressive, and this is what makes this whole project interesting. In

terms of judging the size of the codebase in source lines of code, although it is still a

185

 https://community.plot.ly/t/callback-for-dynamically-created-graph/5511/4
186

 https://dash.plot.ly/sharing-data-between-callbacks
187

 https://dash.plot.ly/external-resources
188

 https://dash.plot.ly/faqs

https://community.plot.ly/t/callback-for-dynamically-created-graph/5511/4
https://dash.plot.ly/sharing-data-between-callbacks
https://dash.plot.ly/external-resources
https://dash.plot.ly/faqs

work in progress and lacks in various aspects, this project ranks pretty well when

compared to peers: it consists of only ~6.2K lines of Python code. Here is a small list of

other similar software:

 DIVE: 32K (back-end: 9.2K, front-end: 22.8K)

 Orange3: 74.7K

 RapidMiner Studio: 383.2K

 Kibana: 704.4K

 Before moving further we would like to stress the last point a bit more. One side-

benefit of the brevity of the code is that the latter is easy to go through for newcomers,

and debug for maintainers and contributors. We are actively using the Looks Good To Me

(LGTM
189

) tool (which also provided the line count above) to monitor code quality and

fix spurious parts in our code (see illustrations below).

189

 https://lgtm.com/

https://lgtm.com/

Figure 26: LGTM: EDA Miner comparison to other Python projects,
https://lgtm.com/projects/g/KMouratidis/EDA_miner/context:python

Figure 27: LGTM: EDA Miner alerts & code quality, p.1

 One good example of the code‟s expressiveness is how we have implemented

navigation throughout the app. Especially in earlier versions (prior to v0.2), using three

HTML/Dash tabs (the choice doesn‟t matter, buttons, URL, or anything else would work

too) the user navigated through sub-apps, each of which was a layout (list of Python &

Dash components) returned by a central callback. Each of the apps had an identical

callback managing its own sub-pages. As a result, the whole project was a big one-page

app that was quite fast (see illustrations below for before/after).

 However, since v0.3 the need for compartmentalization and scaling led to

breaking up each app into its own Dash app (we did keep the navigation inside apps the

same), and all of them are connected as the WSGI level with the main Flask app. It is

very easy now for completely independent Dash or Flask (and potentially Django) apps

to be integrated. It is also quite easy to share Flask extensions across apps (e.g. the login,

the main database). The performance was hit considerably though, and ironic as it may

seem that performance took a hit when one of our goals was scaling it might not be

entirely true. One of the main drivers of the performance hit is mostly due not having

optimized distribution of static files (which are now smaller on a per-app basis), and,

Figure 28: LGTM: EDA Miner alerts & code quality, p.2

secondly, because each app is essentially its own server. This leads to a need for more

restructuring.

Illustration 30: EDA Miner, as of v0.4.1

Figure 30: EDA Miner, app navigation code, pre-v0.2 vs. v0.3+

Figure 29: EDA Miner, app navigation, pre-v0.2 vs. v0.3+

At start, we did not intend for the apps to be connected as they are today at the

WSGI level, but rather for each to be a completely independent entity connected via an

HTTP Proxy server. This would allow for much easier load balancing across the whole

app, but also within apps, especially as a containerized application with Docker-Swarm

(or similar) integration. The problem with this approach is that we would need to

implement an inter-app authentication and authorization system (which could of course

be implemented in a less-correct but much simpler way), as well as the actual HTTP

proxy configuration. As a result this was left for later than v0.4.

Figure 31: EDA Miner architecture, high-level overview of v0.3 - v0.4, and future plans.

4.2 Per-app implementation notes

4.2.1 Data app
 The Data app is responsible for handling all ingestation and modifications

operations of data. Currently there are four processes that are supported, each under its

own tab. We will quickly review each one of them, going into detail only when necessary.

We will also discuss future plans and extensions.

 First is the “Upload Data” tab where the users can upload data with a simple

button or drag-n-drop process. We used dcc.Upload
190

 with the parser that is given in the

docs. We also added support for a few more file types using Python‟s and pandas‟

functionalities. Additionally, we used Weston John‟s fork
191

 of dash_resumable_upload to

handle larger files (we tried with file-sizes up to 1GB).

 Second is the “Connect to API”, which takes user credentials from a form, or gets

authorization with some other method (e.g. uploading credentials, or via oauth2), and

presents a user interface so that the user can select the data they want. For example, for

Twitter it presents an input field where the user can input an account name and the app

will fetch their tweets. Initially, when developing this you had to write code in a few

different places, and include Dash elements and callbacks to the layout for every new API

connection. Instead of that, everything is now abstracted away as follows: programmers

are now expected to implement an abstract base class called APIConnection, and then the

rest of the code will use its data and functions to construct the UI. This is easily achieved

in Python by using the inpect module which has methods that provide access function

signatures. It provides the following functions: save_data_and_schema (given a

dataframe and a name, it infers the schema and saves the data) and render_layout

(depending on whether the user has previously connected to this API or not, return a form

for getting authorization or a UI for fetching data). The user is expected to implement 2

methods, 1 static method, and 2 properties. The two properties are simply Dash layouts

(the authorization form & the UI). The two methods, which map to the two

aforementioned properties, respectively: connect which handles all the authorization

190

 https://dash.plot.ly/dash-core-components/upload
191

 https://github.com/westonkjones

https://dash.plot.ly/dash-core-components/upload
https://github.com/westonkjones

login including changing the state of the object, and fetch_data which handles the

requests for data from the connected API. Finally, there is a static method called

pretty_print which given a dataframe (after fetch_data success) it displays the first few

results in a user friendly manner. Each of the implementation classes is used to create

objects for each user attempting a connection, and hold all of the relevant data for that

connection. The existing implementations use memoization to lessen the load on the

server, and future contributors are advised to follow this example but adjust the cache

expiration timer according to each API‟s needs (e.g. Quandl‟s data don‟t change as often

as Twitter‟s).

 Next on the list is the “View Data” tab, which aspires to be a spreadsheet.

Currently, you can only inspect, use filters, and sort your data. Behind the scenes it uses

Dash‟s DataTable library. Immediate plans include allowing for editing cells and adding

rows and columns. In the long-term, we want to implement creation of new columns

using custom formulas.

Figure 32: EDA Miner / Data / Connect to API

 Finally, there is the “Edit data schema” tab, where you can inspect the inferred

schema for upload datasets and correct any mistakes. It is simply an HTML table with a

few dropdowns. Let‟s quickly go over how this was implemented.

Figure 33: EDA Miner / Data / View Data

Figure 34: EDA Miner / Data / Edit schema

 Having knowledge of the data types can help guide visualization and modeling

recommendation, as well as preemptively inform the user of potential actions for data

preparation. The DIVE paper mentions this very important aspect and how all the major

tools do it (take a peek at how DIVE does it here
192

).

 We do so too but we take a slightly different approach. We chose not to focus too

much in getting the data schema as accurately as possible, we simply defined a few

simple rules to handle basic types and some “subtypes” (e.g. binary, latitude, email), and

leave it to the user to correct any mistakes. We decided on the types based on types of

possible visualizations (for example a latitude column can be drawn in a scatterplot but

wouldn‟t make sense in a pie chart). In code, it mainly works by trying to explicitly

convert to certain data type and match against a list of predefined keywords (e.g. “year”,

“age”, “gender”). The general idea is that user corrections will be used as explicit

feedback to train a machine learning model that, given the first few rows and the column

names, can make accurate predictions. Here‟s an overview of the types and subtypes that

are currently handled:

 Types

o interger

o float

o date

o categorical

o string

 Subtypes

o binary (categorical)

o longitude (float)

o latitude (float)

o email (string)

o ipv4 (string)

o ipv6 (string)

192

 https://github.com/MacroConnections/DIVE-
backend/blob/29bc55ff82718238164425232bdcc24ce6e3e113/dive/worker/ingestion/type_detection.py

https://github.com/MacroConnections/DIVE-backend/blob/29bc55ff82718238164425232bdcc24ce6e3e113/dive/worker/ingestion/type_detection.py
https://github.com/MacroConnections/DIVE-backend/blob/29bc55ff82718238164425232bdcc24ce6e3e113/dive/worker/ingestion/type_detection.py

o mac address (string)

 Part of this is achieved by keeping track these information in the data schema.

Our data schema is a dictionary comprising of three elements: a dictionary mapping each

column name to a type, another mapping to subtype, and a pandas.DataFrame with the

first five rows. We decided on this format because it is lightweight and covers what we

need these data for. That said, we didn‟t come up with this; instead, it is a mutation of

format proposed by Frictionless Data and we even defined a quick helper to convert to a

format compatible to the their Table Schema specification
193

.

4.2.2 Visualization app
 The visualization app is implemented in a similar way in terms of layout and

design patterns. It currently contains six tabs, each responsible for a different type of

visualization.

 First on the list is the “ChartMaker”. Inspired by Plotly‟s Online Graph Maker
194

,

this tab allows the users to create a custom graph from their datasets by adding new

elements, or traces, that use the selected dataset‟s variables. The user can then export the

create figures and they are accessible elsewhere within the app, e.g. for presentation

purposes.

 Second, the “Key performance indicators” is a sub-page designed to help users

create and track metrics they themselves create, or use prebuilt ones. Currently the only

KPI implemented is a baseline (see illustration below). Our implementation of the

baseline uses a moving average, an exponential moving average, an alternating least

squares baseline
195

, and the baseline calculated with the python package peakutils. We are

using this formula to combine them, which we found through trial and error, and didn‟t

test thoroughly.

193

 https://frictionlessdata.io/specs/table-schema/
194

 https://plot.ly/create/#/
195

 https://stackoverflow.com/a/50160920/

Figure 35: Baseline formula

https://frictionlessdata.io/specs/table-schema/
https://plot.ly/create/#/
https://stackoverflow.com/a/50160920/

 The third sub-page is “Maps & Geoplotting”. Currently it supports three map

types: simple geoscatter (points on the map), choropleth (points, and aggregation with

coloring per country), and lines on map (draws lines given from-to points). Also, three

Figure 36: EDA Miner / Visualization / ChartMaker

Figure 37: EDA Miner / Visualization / Key performance indicators

map projection styles are supported: equirectangular, azimuthal equal area, and

orthographic. This, just like most other visualizations, use Plotly‟s library, but future

plans include integration with other mapping libraries and providers (e.g. mapbox, leaflet,

folium).

 The next two tabs are there providing only basic functionality, and improvements

on them are not on the intermediate development plans. They are “Network graphs”

(visualizing graph/network data) and “Text Visualizations” (currently only creates word-

clouds but will include word vector and other visualizations).

Figure 38: EDA Miner / Visualization / Maps & Geoplotting

 The final tab, “DashboardMaker”, is still incomplete. Its purpose is to serve as a

drawing board where the users can place their graphs, add text, and maybe some controls

so as to create interactive interfaces for presentations and stories. This is mostly inspired

by Microsoft‟s Power BI as well as DIVE‟s visual narratives. Currently it uses react-

rnd
196

 to create a Dash-compatible component that we use to wrap elements that are

supposed to be resizable.

4.2.3 Modeling app
 Finally we come to the last of the three main apps, and the one responsible for all

the machine learning and statistical modeling. Similarly to the previous two, it contains

tabs to navigate across the sub-pages. We will review them in reverse order since the first

two are more complex.

196

 https://github.com/bokuweb/react-rnd

Figure 39: EDA Miner / Visualization / Network graphs

https://github.com/bokuweb/react-rnd

 The last tab, “Single model”, gives a simple menu consisting of dropdowns for

the user to pick a dataset, a problem type (e.g. regression, classification), a model (e.g.

“KNN classifier”), and then two more for picking the regressor (X, multiple allowed) and

target (Y) variables. It then fits the model and returns metrics according to the problem

type (e.g. for classification it returns a classification report and accuracy, for regression

the MSE) and provides an interactive visualization.

 The second tab, “Pipelines trainer” has the exact same interface for the results of

model fitting but differs in how selecting models works. The models in this case are

pipelines that are exported from the ModelBuilder (see below), which also means that the

datasets need to be defined there (although this might change later). As soon as you select

a pipeline and X/Y variables, the model will be trained and the results displayed. This

model will then be saved on Redis as a pickled object for one hour. If the user chooses to

“export” the model, then it saved (using PERSIST from Redis). Exported models become

available in the Model Devops app (not analyzed here due to being in the early stages of

development).

Figure 40: EDA Miner / Modeling / Single Model, Visualization

 In the first tab is the “ModelBuilder”. Let‟s first inspect the front-end

implementation. It provides a small menu that lets you define a complex model / pipeline.

The pipeline is implemented as a directed graph (for now it is expected to be acyclic)

using dash-cytoscape. The nodes are the various model classes (estimators in sklearn

terms) that map 1:1 to sklearn-like model classes, while the edges are simply defining

links among them. The nodes belong in exactly one of the following categories, or

“parents”: Inputs (choosing an input source), Cleaning (not implemented), Preprocessing

(e.g. StandardScaler, MinMaxScaler, PolynomialFeatures), Dimensionality Reduction

(PCA, NMF, TruncatedSVD), and Estimators (e.g. regressors, classifiers). Each of these

categories has an order parameter symbolizing its place in the pipeline (higher order

means closer to the output). Adding and removing nodes are handled with dropdowns,

connecting two nodes needs to click two or more of them (both click order and the order

parameter matter) and then click the “Connect selected nodes” button, and there is also

another dropdown where the user can select a prebuilt model tailored for a specific task.

When the user finishes with the model definition, there is a “Save graph and export

Figure 41: EDA Miner / Modeling / Single Model, Text metrics

pipelines” button that both saves the current graph and creates one separate pipeline for

every output (Estimators) node.

 Let‟s peek into the implementation with more detail, and the class hierarchy. We

have a total of 6 classes: Node, NodeCollection, Edge, EdgeCollection, _Graph, and

Graph. The nodes are implemented as data classes with Python‟s __slots__ for faster

attribute access and less memory consumption, and node-only attributes. Nodes‟ model

classes are expected to provide a typical sklearn interface (that is to implement train, fit,

and predict methods). Each node stores its position (xpos, ypos), its parent and the

parent‟s order, a label, a node_id (e.g. “linr_001”), and a node_type (a string that maps to

a sklearn-like class, e.g. “linr”). A NodeCollection contains Node objects, points to the

Graph it is part of, holds information about how many nodes of each node_type it

contains, and defines a few helper methods for creating, removing, and adding nodes. In a

similar fashion, the Edge class holds a source and destination nodes, and whether the

edge is bidirectional or not (all edges are directed), and the EdgeCollection holds Edge

objects, a pointer to the parent Graph, and utility methods to create and add new edges.

The _Graph class is the old implementation of the Graph class which will probably be

removed in the future when the current code refactoring is finished; it contains a

NodeCollection and an EdgeCollection. Finally, the Graph class contains the _Graph

object, and keeps track of the input and output nodes. It defines a dispatch method that

uniformly handles all the other methods and allows us to create Dash callbacks and UI

Figure 42: EDA Miner / Modeling / ModelBuilder / Class hierarchy

with ease like in the Data app for APIs (see above). Every object contains a render

method which returns the representation of the object for plotting in dash-cytoscape.

 A few important points must be stressed out. When it comes to connecting nodes,

for now, we allow connections only among nodes belonging to the same category, or

among nodes where the source node‟s order is smaller than the target node‟s (e.g. starting

from a Preprocessing node only to Preprocessing, Dimensionality Reduction, and

Estimators nodes). Also, graphs must be Directed and Acyclic (or “DAG”), so support for

Markovian models is not there yet. Also, the way these Graphs are turned into actual

pipelines is not fully implemented in the sense that some core features are still missing:

multiple input nodes are not handled well (e.g. no table union nodes, just dataframe

concatenation across one axis), and both multiple input and multiple output nodes are still

not well-tested. The reason for this is that we have not yet implemented a correct parser;

instead we rely on a recursive _traverse_graph function that uses sklearn‟s FeatureUnion

(when one or more nodes are the input of another) and Pipeline (to actually connect the

output of FeatureUnion with the next node) to create a model. While this approach has

simplified coding, it is not without error (at least until a more careful implementation of

the Graph class is done). We also didn‟t implement graph traversal (and won‟t until it is

absolutely necessary); for that we convert the Graph into a networkx.DiGraph object and

Figure 43: EDA Miner / Modeling / ModelBuilder

use its methods. Finally, all model classes, aside from the interface requirements

mentioned above, also need to define a modifiable_params dictionary where the keys are

the model parameters and the value is a list of available choices (the first is the default).

This was done so as to avoid future circumstances where users would input incorrect

values, or not desirable (e.g. an n_jobs=1000 that can crash the server).

4.3 Database Technologies & Models

 In our app we use both SQL and NoSQL. Detailed usage of each is described

below, but first let‟s explore an overview of how they fit into the overall architecture.

SQL databases interact with the authentication system and the individual Dash apps,

providing both long-term storage and data for the main functionalities. NoSQL, and

Redis in particular, serves as temporary storage, handles data shared or moved across

apps, and also handles temporary links/tokens. Here‟s an overview:

Figure 44: Databases in the overall architecture

 The choice for SQLite was made for two reasons: 1) because of its easy

integration with Python and being a “lite” database, and 2) since we use SQLAlchemy as

an Object-Relational Mapping engine the choice of database doesn‟t matter a lot since we

can easily change it without introducing the need for code rewriting across the

applications. In fact, for a production environment, and when more advanced uses are

needed, we do recommend a more robust SQL server; in particular, we are looking into

PostgreSQL.

 So how are SQL databases used in our application? First, it is important to note

that there will be multiple databases: a main database, and one database per user (it is not

implemented yet, but is a top priority). The main database schema consists of four tables,

all of which can be seen in more detail in the illustration below. The first table, User,

holds data for user management, and along the columns listed below, it inherits

everything from SQLAlchemy.Model and flask_login.UserMixin base classes. The second

table, DataSchemas, contains a pickle with the schema (2 dictionaries and a

pandas.DataFrame) for each user dataset and an indicator (whether the schema was auto-

inferred or user-provided). The third table, UserApps, contains for every user a row for

every app they have access to. Finally, the fourth table, UserDatabases, keeps track of

where the database of each user is stored.

 For each of the users, we are also creating a database to store their uploaded data.

Since we are treating everything as a pandas.DataFrame it is easy to translate everything

into SQL, even more so since we are already inferring data types. Furthermore, it is

possible to get a schema from the user that can connect two or more tables, e.g. a table

containing company‟s list of clients and user data, with a table containing tweets or

emails from the accounts of the former (see example illustration below, and a zoomed

overview).

Figure 45: Main database schema

 SQLite3 was an easy choice to make. Redis on the other hand was a more difficult

choice and one we need to elaborate on. During early development, Redis was chosen

primarily because in the Dash docs it is the go-to example of a “shared memory space”

needed to pass data across threads and processes in a safe manner
197

. Their examples only

use Redis as a back-end for Flask-Caching. They also use a hidden div that holds a

random string (a session id) for making sure each user only accesses their own data. We

used the same technique in early development but for reasons including authorization,

permanent storage, and security (a hidden div can easily be modified), we moved to a

complete authentication system with the typical email/username plus password login.

This is primarily performed with SQL, and Redis is used only for temporarily storing

(using the expiration feature) activation links or similar. Furthermore, our main use of

197

 https://dash.plot.ly/sharing-data-between-callbacks

Figure 46: Database for user 1, with a custom schema connecting two tables

https://dash.plot.ly/sharing-data-between-callbacks

Redis (and its main use) is as a “global dict”, that is, a key-value storage that can be

accessed by multiple threads/processes. At the point we started considering other choices

it didn‟t make sense to transition to a similar database like Memcached
198

 because even if

it added any performance gains it wouldn‟t add any extra features (in fact, it provides

less
199

), and we definitely didn‟t need them at the time. What was worth trying out was

database management systems like Kyoto Cabinet
200

 or the Python built-in DBM

module
201

, and on-disk key-value storage systems like Python‟s shelve
202

 whose main

difference with a DBM is its ability to store Python objects that can be pickled, and

finally DiskCache which a pure-Python alternative to shelve/dbm and advertises itself as

an “on-disk cache”
203

. As a result, we only chose to benchmark shelve and DiskCache,

but first let‟s first see how Redis fares on its own.

 Setting aside its popularity, especially among Python programmers, it is an

incredibly performant database server and here are two lists of benchmarks of 7 Redis

198

 https://memcached.org/
199

 https://stackoverflow.com/a/11257333
200

 https://fallabs.com/kyotocabinet/
201

 https://docs.python.org/3/library/dbm.html
202

 https://docs.python.org/3/library/shelve.html
203

 https://github.com/grantjenks/python-diskcache

Figure 47: Architecture, zoom into databases

https://memcached.org/
https://stackoverflow.com/a/11257333
https://fallabs.com/kyotocabinet/
https://docs.python.org/3/library/dbm.html
https://docs.python.org/3/library/shelve.html
https://github.com/grantjenks/python-diskcache

commands measured on localhost, using 1 million requests, with random keys spanning a

range of 1 million (so to stress cache misses). The first sends and receives requests one at

a time in a blocking manner, while the other shows how Redis‟ pipelines can speed up

response speeds (by not waiting for individual replies and reading them all at once
204

).

Currently we are not using the pipeline feature in our implementation so raw requests per

second more closely matches our case.

Raw requests per second (all requests completed within 1 ms):

 GET: 152,718.39

 SET: 156,201.19

 LPUSH: 157,282.17

 LPOP: 156,494.53

Pipelined requests per second (-P 100, see appendix for cumulative response graphs):

 GET: 1,240,694.75

 SET: 914,076.81

 LPUSH: 1,216,545.00

 LPOP: 1,225,490.25

 Seeing only raw GET and SET requests, the ~152-156K requests per second

translates to one every ~6.5 μs, however timing the requests for a single key-value pair

from within Python
205

 seems to introduce additional delay making them as slow as ~37-

38 and 40-41 μs for SET and GET respectively (or 24-27K requests per second). In

comparison, shelve seems to take about 1.6 - 9μs for GET and about 1.3 - 5 μs for SET

(we provide ranges due to high fluctuation), while DiskCache is at about 7-8 μs and 120-

130 μs respectively. So why not use shelve?

 When comparing Redis to shelve five major considerations stirred the decision: 1)

shelve does not support concurrent read or write access, which can be done by extending

it, but would introduce the need for manual process and thread synchronization and

working with low-level locks and/or queues, 2) shelve suffers the same limitations of

204

 https://redis.io/topics/pipelining
205For details see the attached Jupyter Notebook with the performance tests. These were done with

the

%%timeit magic command for 50 runs of 1000 loops.

https://redis.io/topics/pipelining

DBMs
206

, 3) As we are working with larger objects the gap between Redis and shelve

closes, e.g. for a 1000x1000 pandas DataFrame of random numbers shelve takes about

2.4 ms (GET) and 2.8 ms (SET) while Redis takes about 5.3 ms and 4.8 ms

respectively
207

, 4) Redis is already working as a server which means that it can be

accesses from many clients in a network without additional effort, and 5) Redis already

has an image and a lot of online support for Docker.

 One could argue that we could have used MongoDB or other solution that is

friendlier to JSON data. While it is true that most of the data we store are Python

dictionaries or can be converted to JSON (e.g. pandas DataFrames), we also want to store

complex data types (i.e. Python objects). We could do that, too, by extending the objects

with constructors and serializers but that would introduce unnecessary complexity. Also,

even for the case where JSON supposedly would be better, our benchmarks show that

serializing datasets to JSON is definitely not faster than pickle (we use dill, an extension

to pickle that can handle more objects). The 1000x1000 dataset takes 28-29 ms to save

with pickle (~38 ms for dill) and ~85 ms - 1s for JSON. Changing to MongoDB and still

use BLOBs for pickles kind of defeats the purpose. These differences are mainly because

the data need to change format first, but that is a significant overweight; and we didn‟t

even account for reading times and extra data copying
208

.

206

 https://docs.python.org/3/library/shelve.html#restrictions
207 Interestingly enough, DiskCache becomes faster than both with 738 μs for GET and 3.65 ms

for SET.
208 pandas do tend up to perform a lot of copying when initialized, something that doesn‟t apply

for when data are loaded via pickle, which skews benchmarks but doesn‟t affect the result.

https://docs.python.org/3/library/shelve.html#restrictions

4.4 Directory structure for project & apps, and extensions

 We mentioned how v0.3 changed the overall structure of the project and how it is

now comprised on individual “mini-apps”. We presented how we use Dash and the

various designs we employed at the top level. We also went over the major apps in

chapter 4.2, and we also reviewed, in chapter 4.3, how these apps use and interact with

the various database technologies that we use. What we did not view, however, was how

individual applications are structured. In this chapter, we will view the “demo” template

app, the directory structure, and the various forms that extensions can take as of v0.4 (if a

later version implements the HTTP proxy, then extensions can become arbitrary servers

in arbitrary programming languages).

4.4.1 Directory structure: project
 The project‟s top-level directory is structured as a typical Python project. It

contains a requirements.txt file with all the package dependencies, a project_info.txt file

with some automatically calculated statistics about the project (e.g. test and

documentation coverage), YAML configuration files for CI/CD tools (.codeclimate.yml

and .travis.yml), git and GitHub files (.gitignore, .github folder) and some markdown/text

files like the license, the code of conduct, a readme, and contribution guidelines (which

provides about 9 pages of important additional information and is given as appendix 6).

The top-level directory also contains a few more directories: example_data (contains a

few datasets in various file formats), images (screenshots, an older version of the dash

callback chain, and a screenshot of the directory structure), tests (a folder containing

scripts for unit-testing and testing docker builds), and the main folder containing all of

the source code, EDA_miner.

 The source folder contains a folder for static files and another for templates

(HTML files rendered with Flask), one folder for each “mini-app”, one folder for the

docs (which are an app of their own found at /docs), and a folder with a custom Dash

component, dash_rnd. It also contains the main database (users.db), a file with database

management utilities (users_mgt.py), two files with utilities for all the apps (utils.py and

exceptions.py), two for defining forms (forms.py) and models (models.py), one for Flask

extensions (app_extensions.py), various configuration files (env.py, config.py, layouts.py),

and the WSGI file to pull together all apps and initialize for each of them the main

database, the user login, and more (wsgi.py). The output of the tree command in Linux is

given in Appendix 7.

4.4.2 Directory structure: Demo app
 Small Dash applications and dashboards are usually in a file (by convention

app.py), but Dash provides examples on how to structure larger applications, including

how it supports URLs
209

. We also provide demo app to server as a template for adding

new functionality
210

. As said previously, each new app should have its own folder in

/EDA_miner/, preferably with a short lowercase name and optionally underscores. New

apps can of course be their own files, but the folder is preferable even for smaller apps.

 When it comes to structuring these extension apps, we would expect that there are

two files in the top-level directory and a folder containing the app. The files are: an

x_requirements.txt file (x stands for the app name) and an x_server.py which is there

mostly as dummy for the case an app would run in standalone mode (also, since apps use

relative imports, Python needs the executed script to be in a parent folder). Regarding the

app folder, this is largely left to the developer. You could either have one x/app.py file

(most Dash apps), or a more refined structure. In the demo app we have the following: a

demo/server.py file for handling the app-only configurations (e.g. its own database, if it

209

 https://dash.plot.ly/urls
210

 https://github.com/Kmouratidis/EDA_miner-template-app

Figure 47: Demo app directory structure, tree

https://dash.plot.ly/urls
https://github.com/Kmouratidis/EDA_miner-template-app

has one) and initializing the Dash app, a demo/app.py file for handling the main page (the

dash.Dash instance will be imported from here), a demo/__init__.py (so the folder can be

interpreted as a Python package), a demo/README.md with information about the app,

an demo/assets folder containing any app-only CSS and JavaScript (the equivalent to a

static folder), and two files for this particular app, each representing one sub-page or tab,

demo/upload.py and demo/view.py that provide a simple interface to drag-n-drop a file

and view it in a table. You can see it graphically using the tree command in Linux (as

seen above).

4.4.3 A demonstration: Google Analytics REST API
 Extensions to the project can have their back-end written with any technology or

versions the developer wants. This will become even better when we transition to an

HTTP Proxy solution. For now, all you have to do is write your server logic in whatever

framework, and write a mini-application that integrates with Flask. Essentially, apply the

Adapter software design pattern. Here will view one such example, and we will also

review how Redis can be used with it.

 In our initial implementation we were connecting to Google Sheets via a library

called gspread. This library‟s requirements were compatible with the recent versions of

Google‟s libraries for oauth2 (specifically oauth2client v4.1.3), but the one we wanted to

use for Google Analytics wasn‟t (it needed oauth2client v1.5.2). Needless to say that

these two versions are completely incompatible. It seems that the primary way of dealing

with this is messing with paths and/or package naming
211

, both of which seemed too

tedious and would probably make deployment harder. Instead, we came up with the idea

of packaging the connection to Google Analytics as a REST API deployed in its own

docker container. When we transitioned to a custom implementation of connecting to

Google Sheets this micro-service wasn‟t any longer needed (no package dependency

conflicts) but we kept it as an example of yet-another-way to integrate services and APIs,

potentially with back-end languages other than Python. REST principles were mentioned

in the previous chapter so we won‟t go over them here. Instead, we will go over a few

benchmarks and intended usage.

211

 https://stackoverflow.com/a/6572017/

https://stackoverflow.com/a/6572017/

 We tested our Google Analytics REST API using an HTTP load generator

(hey
212

). It is built with Flask, and uses memoization as a caching policy (per user and

metric) with Flask-Cache and Redis. We tested it with 10,000 requests, with 50

concurrent clients, requesting the same (one) metric from the same (one) user, each of

which transferred a total of 67 bytes. The results show that the slowest at 3.2022s (base

value) and the fastest request was at 0.0331s (~96x difference), with the average being at

0.0522 (61x), equating ~955 requests per second. In essence, only the first batch took

significant time to fetch, and the rest were retrieved from the cache. Running the same

query again (which is now cached) returns a slowest of 0.0425s (75x), a fastest of

0.0041s (781x), and an average time of 0.0361s (88x), equating ~1,381 requests per

second. You can find both reports in Appendix 5.

 We mentioned previously that we kept this as an example, so let‟s delve into this a

bit more. Since this micro-service is receiving and dispatching data via HTTP methods it

can be implemented in any programming language with whatever framework (which is

one of the benefits of micro-services), and using universal formats like JSON is can

language agnostic. Although currently it connects to the central Redis server (this is

considered an anti-pattern, (Richardson, 2019, p. 40) and (Fowler, 2014) and (Schmitz,

2017)), it can easily be modified to have its own connection.

 The usage splits in two parts: the server and the client. Server-side, the app

accepts only two routes, with one method each. First, you are expected to send a POST

request to the main page (“/”) with the user_id (username), and the private_key and

client_email (credentials by Google), then the server saves that info and returns a 201

status code to indicate success. Then you can send GET requests to a URL defined by the

comma-separated list of metrics you want, and the user_id

(“/my_user_id/pageviews,sessions”). The server returns 401 (“Unauthorized”) if the user

is not authenticated, 400 (“Bad Request”) if no metrics were given, and 200 (“OK”) if the

request was successful. Client-side, the programmer is expected to implement an

interface (an abstract base class, APIConnection) and handle the sending of requests

within that. Our implementation is just a wrapper around requests.post and requests.get

with some custom logic for displaying data, and a menu for requesting data.

212

 https://github.com/rakyll/hey

https://github.com/rakyll/hey

5. Conclusions & future work

 It has been difficult getting this project so far. I had to overcome architecture and

design issues and think ahead about issues like scaling, security, and even possible

business models for anyone wishing to continue development efforts. The following

paragraphs will comment on issues faced, as well as suggestions for future work.

 The biggest hurdle in this project has been my lack of experience, which made

everything more time-consuming. There are a lot of processes which could‟ve been

improved but weren‟t, lots of code that wasn‟t well-written at first, limited use of design

patterns and a clean project architecture. A related issue has been writing clean code.

Using Dash‟s model for all the interactivity means that the whole codebase needs to

conform to a certain pattern. This doesn‟t necessarily reflect well on the back-end logic.

Another problem regarding code quality has been that, at times, development of

components has been hurried, perhaps a bit too much (e.g. trying to complete a new

feature before a presentation). Most of these were dealt with since v0.3 came out, but

future contributions should take some time to revise existing code and use more rigorous

procedures, including cleaning up the code.

 Speaking of procedures, almost the whole codebase was contributed by me which

in turn meant that use of testing, documentation, version control, and many other good

practices may have been too superficial. A team that decides to pick up where this project

left off would need to actually implement proper code review with branches and pull

requests, more closely monitor code quality, better handle CI/CD, continue the writing

docstrings and add more generic documentation, including for the overall usage, manage

project requirements, and last -but certainly not least- continue with serious unit-testing

and, in general, greater test-writing efforts.

 Speaking of incomplete work, a lot of decisions have been deferred implicitly or

explicitly (e.g. SQL database choice), while for some others we avoided hard-committing

(e.g. the one-app vs multi-app dash architecture is easy to reverse). This has mostly been

a conscious stance, following the words of Robert Martin, that “good architecture defers

decisions” (Martin, 2015). However, a more serious and calculated approach is needed,

as some of these decisions should definitely be made.

 Some of the mini-apps that we went over in the previous section are not finished,

and some that we didn‟t go over but are currently in the live demo and/or GitHub

repository may even lack a complete implementation. We will go over these next.

 First, the Data mini-app now has an extra functionality to allow uploads of larger

files, reportedly in the gigabytes. Although we briefly mentioned this before, these files

are not actually handled yet, as simply loading them into Redis would be wasteful, while

reading them in memory to perform visualization and modeling would also cause

problems. The use of this component has also not been tested a lot. Viewing data is also

not implemented fully, as it is currently not handling editing the data. The schema tab

doesn‟t handle paging either, and it should also have a lot more choices for sub-

categories. A very interesting new direction is creating integrations and solutions that

involve operations on data, for example using technologies such Elasticsearch (e.g. text

search) or Dremio (e.g. data cataloging), and perhaps adding some data management

functionality for creating new columns with custom features (e.g. created from user-

specified formulas) or connecting specifying more complex schemas connecting datasets

in an SQL fashion. The latter could be achieved by using dash-cytoscape (or whatever the

new tool for the Model Builder is). This is especially important since the only possibility

of connecting datasets right now is to add two or more of them in the Model Builder

while taking care that their dimensions are aligned either in rows or columns (and thus

are concatenated with Pandas).

 Next, the Visualization mini-app needs a lot more improvements. First and

foremost, the ChartMaker needs to handle cases like two traces sharing the X-axis but

having a secondary Y-axis with different values, or having no common axis at all, or

plotting multiple graphs at once in a grid. The “Key performance indicators” tab needs to

implement more KPIs (including user-defined). The “Maps & Geoplotting” should be

extended to allow connections with other mapping libraries and APIs, and become more

optimized. The same apply to the “Network graphs” tab. The “Text visualizations” can

only create a word cloud, so that needs additional options as well. Additionally, the

“Dashboard Maker” still needs to implemented (and corrected), or perhaps dropped in

favor of the Presentation mini-app (see below). All of the above are in serious need of

UI/UX improvements. Finally, a very interesting proposition is to allow integrations with

other commercial tools, e.g. exporting data to Qlik.

 The Modeling app is perhaps the best part of the app. It also needs UI/UX

improvements, especially the “Model Builder” which should probably be reworked

completely using a better interface (and probably lots of JavaScript) than the current one

built with dash-cytoscape. Part of the code cleaning effort should also go here. It is

important that future contributions that seek to scale this project should be able to handle

partial/incremental training all the way from reading data to potentially augmenting

sklearn‟s models. Future contributions could also mean adding more models and

integrations with other libraries, as well as adding a model builder for deep learning.

Also, new model classes could be added that just provide utilities (e.g. connecting

datasets, plotting, progress reports).

 Two new mini-apps didn‟t make it in the previous chapter, since they are still in

the proof-of-concept stage and non-functional. The Presentation mini-app is meant to

become a different way to create and present exported visualizations, stories, reports, in

much the same way as presentation software and competitor tools handle it. This app

needs to be implemented either by creating new Dash components using React, or by

implementing a custom interface from scratch (which still needs to get graphs from

Dash). The other demo mini-app, named “DevOps”, is meant as a demonstration of how

the models built and trained within the Modeling app can become useful in other

applications. Currently, it only provides the option to download a trained model as a

pickle, and showcases (with a graphical interface) of how a REST API exposing the

models should work; providing endpoints to predict new data with the selected model,

retrain it, or download it. While implementing the rest of this shouldn‟t be too hard, a few

interesting (or necessary) directions would be allowing users to send their own models to

train, and making sure to provide meta-data (e.g. the required schema) to the users of the

API, taking a special care for implementing security and authentication correctly, and

maybe some functionality for non-technical people like auto-generating embeddable

forms for inference (which should help with building innovative apps).

 Although we discussed a lot about what was and was not created, there are still a

few more, but they need to be mentioned separately since they represent a new category:

lost opportunities. The biggest “lost opportunity” was that no „intelligence‟ was infused in

the software. Contrary to the DIVE paper, we didn‟t implement a visualization

recommendation (let alone mixed-initiative) system. Neither did we implement the ML

model recommendation. These were some of the important initial goals of the project that

got sidelined by the need to focus on more pressing issues regarding the main

functionality of the applications. Working on this, though, is well-defined and could be

implemented in different ways for each mini-app. For Visualization, I was considering

two ways: 1) a large collection of heuristics can be used to define a subset of all possible

visualizations that are potentially interesting, and 2) treat this a machine learning problem

where column types/subtypes are mapped to potential visualizations. Both techniques

can be used, either by using one to refine the other, and/or asking the user‟s input. More

or less the same applies for the Modeling mini-app, but there is one more way that

Modeling can be „infused with intelligence‟: collective intelligence. The idea is that

rather than train an ML model after collecting user data, you can directly allow the users

to interact and assist each other. In either case, implementing these is definitely not

impossible, and for the simplest case you don‟t even need to train a model.

 The second miss was my inability to correctly implement an HTTP proxy (neither

with werkzeug‟s ProxyMiddleware nor with Nginx) along with Dash. One of the

promises of the v0.3+ architecture was that each mini-app would be able to work and

scaled (and load-balanced) independently. Since this failed, the overall performance of

the app is worse than when it was a unified Dash app, without so much gained in terms of

cleaner structure. However, the ability to easily extend the whole program with easy-to-

make mini-apps still compensates overall. Whenever the HTTP proxy solution will be

implemented, we expect much bigger performance improvements. That said, an

architecture involving an HTTP proxy means that the main Flask app won‟t be able to

share user credentials and app configurations the same way, so more components might

need to be added in the architecture to account for that.

Bibliography
Al-Khoder, A., & Harmouch, H. (2015, 3). Evaluating four of the most popular Open Source and

Free Data. International Journal of Academic Scientific Research, 3(1), 13-23.

Barbettini, N. (2018). OAuth 2.0 and OpenID Connect (in plain English). OktaDev. Retrieved from

https://www.youtube.com/watch?v=996OiexHze0

ben26941. (2017, 11 21). Weka equivalent of sklearn's pipelines and feature-unions. Retrieved

from Stack Overflow: https://stackoverflow.com/a/47416412

Berthold, M., Cebron, N., Dill, F., Gabriel, T., Kotter, T., Meinl, T., . . . Wiswedel, B. (2009, 6).

KNIME - the Konstanz information miner: version 2.0 and beyond. ACM SIGKDD, 11(1),

26-31. doi:10.1145/1656274.1656280

ChKwK. (2018, 8 22). What is a good ggplot2 equivalent to Python? Retrieved from Reddit:

https://www.reddit.com/r/datascience/comments/996zkv/what_is_a_good_ggplot2_eq

uivalent_to_python/e4ljloz/

Cohen, S. (2015, 1 8). What challenges has Pinterest encountered with Flask? Retrieved from

Quora: https://www.quora.com/What-challenges-has-Pinterest-encountered-with-

Flask/answer/Steve-Cohen

Datanyze. (n.d.). Business Intelligence Market Share Report. Retrieved 8 2019, from Datanyze:

https://www.datanyze.com/market-share/business-intelligence

Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., . . . Zupan, B. (2013, 8).

Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research, 2349-

2353.

Erl, T., Carlyle, B., Pautasso, C., & Balasubramanian, R. (2012). SOA with REST: Principles,

Patterns & Constraints for Building Enterprise Solutions with REST. New Jersey, US:

Prentice Hall.

Fowler, M. (2014, 3 25). Microservices. Retrieved from Martin Fowler:

https://martinfowler.com/articles/microservices.html

Frank, E., Hall, M., & Witten, I. (2016). The WEKA Workbench, Online Appendix for Data Mining:

Practical Machine Learning Tools and Techniques, Morgan Kaufmann.

Goodger, D., & van Rossum, G. (2001, 5 29). Docstring Conventions. Retrieved from Python.org:

https://www.python.org/dev/peps/pep-0257/

Hagberg, A., Schult, D., & Swart, P. (2008). Exploring network structure, dynamics, and function

using NetworkX. 7th Python in Science Conference (pp. 11-15). Pasadena, CA, USA: Gael

Varoquax, Travis Vaught and Jarrod Millman (Eds).

Hermann Negri, L., & Vestri, C. (2017, 9 8). peakutils. doi:10.5281/zenodo.887917

Holmes, G., Donkin, A., & Witten, I. (1994). WEKA: a machine learning workbench. Proceedings

of ANZIIS '94 - Australian New Zealnd Intelligent Information Systems Conference. IEEE.

doi:10.1109/ANZIIS.1994.396988

Hu, K., Orghian, D., & Hidalgo, C. (2018). DIVE: A Mixed-Initiative System Supporting Integrated

Data Exploration Workflows. ACM SIGMOD Workshop on Human-In-the-Loop Data

Analytics (HILDA (p. 7). Houston, TX, USA: ACM Digital Library.

doi:10.1145/3209900.3209910

Hunter, J. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering,

9(3), 90-95. Retrieved from https://ieeexplore.ieee.org/document/4160265

Industrifonden. (n.d.). Qlik. Retrieved from Industrifonden: https://industrifonden.com/success-

stories/qlik/

Jones, E., Oliphant, T., Peterson, P., & et al. (2001). SciPy: Open source scientific tools for

Python.

Levy, A. (2013, 5 16). Seattle’s Tableau raises $254M in year’s biggest tech IPO. Retrieved from

Seattle Times:

http://old.seattletimes.com/html/businesstechnology/2021001333_tableauipoxml.html

Martin, R. (2015, 12 15). Principles of Clean Architecture. Retrieved from YouTube:

https://www.youtube.com/watch?v=o_TH-Y78tt4

McKinney, W. (2010). Data Structures for Statistical Computing in Python. 9th Python in Science

Conference, (pp. 51-56).

Meurer, A., Smith, C., Paprocki, M., Certik, O., Kirpichev, S., Rocklin, M., . . . Scopatz, A. (2017, 1).

SymPy: symbolic computing in Python. PeerJ Computer Science. Retrieved from

https://doi.org/10.7717/peerj-cs.103

Microsoft. (2017, 2 16). Microsoft breaks through in the Gartner Magic Quadrant for Business

Intelligence and Analytics Platform. Retrieved from Microsoft blog:

https://blogs.microsoft.com/blog/2017/02/16/microsoft-breaks-gartner-magic-

quadrant-business-intelligence-analytics-platforms

Microsoft. (2018, 2). Microsoft recognized as a leader in analytics and BI platforms for 11 years.

Retrieved from Microsoft info: https://info.microsoft.com/ww-landing-gartner-bi-

analytics-mq-2018-partner-consent-test.html

nish2288. (2018, 5 27). docker. Retrieved from Power BI Community:

https://community.powerbi.com/t5/Desktop/docker/td-p/426116

Occhino, T., & Walke, J. (2013). JS Apps at Facebook. USA: JSConfUS 2013. Retrieved from

https://www.youtube.com/watch?v=GW0rj4sNH2w

Oliphant, T. (2006). A guide to NumPy. Trelgol Publishing.

Park, H. (2019, 7). The Death of Big Data and the Emergence of the Multi-Cloud Era. Retrieved

from KD Nuggets: https://www.kdnuggets.com/2019/07/death-big-data-multi-cloud-

era.html

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, E.

(2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research,

2825-2830. Retrieved from

http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

Peters, T. (2004, 8 19). The Zen of Python. Retrieved from Python.org:

https://www.python.org/dev/peps/pep-0020/

Qlik. (2019, 2). 2019 Magic Quadrant for Analytics and Business Intelligence Platforms. Retrieved

from Qlik: https://www.qlik.com/us/gartner-magic-quadrant-business-intelligence

Richardson, C. (2019, 1). Microservices adoption anti-patterns: Obstacles to decomposing for

testability and deployability . Retrieved from LinkedIn:

https://www.slideshare.net/chris.e.richardson/melbourne-jan-2019-microservices-

adoption-antipatterns-obstacles-to-decomposing-for-testability-and-deployability

Robinson, D. (2017, 9 6). The Incredible Growth of Python. Retrieved from Stack Overflow Blog:

https://stackoverflow.blog/2017/09/06/incredible-growth-python/

R-Project. (2019, 10). Contributed Packages. Retrieved from R-Project.org: https://cran.r-

project.org/web/packages/

Sanders, R. (2014). Developing Flask Extensions. PyCon 2014. Retrieved from

https://www.youtube.com/watch?v=OXN3wuHUBP0

Schmitz, D. (2017, 8 30). 10 Tips for failing badly at Microservices. Retrieved from YouTube:

https://www.youtube.com/watch?v=X0tjziAQfNQ

Stack Overflow. (2019). Stack Overflow Developer Survey. Retrieved from Stack Overflow

Insights: https://insights.stackoverflow.com/survey/2019#technology

TIOBE. (2019, 10). TIOBE Index. Retrieved from TIOBE: https://www.tiobe.com/tiobe-index/

van Rossum, G., Warsaw, B., & Coghlan, N. (2001, 7 5). Style Guide for Python Code. Retrieved

from Python.org: https://www.python.org/dev/peps/pep-0008/

W3C Working Group, Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., . . . Orchard,

D. (2004, 2 11). Web Services Architecture. Retrieved from W3.org:

https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest

Walsh, P., & Pollock, R. (n.d.). Table Schema. Retrieved from Frioctionless Data:

https://frictionlessdata.io/specs/table-schema/

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.

Witten, Frank, Trigg, Hall, Holmes, & Cunningham. (1999). Weka: Practical machine learning

tools and techniques with Java implementations. Computer Science Working Papers,

University of Waikato. Hamilton, New Zealand: University of Waikato, Department of

Computer Science.

Wu, T. (2019, 6 16). What are the top ten problems for data scientists? Retrieved from Quora:

https://www.quora.com/What-are-the-top-ten-problems-for-data-scientists

xello. (n.d.). Power BI Desktop vs Power BI Pro and Premium: What's the difference? Retrieved

from xello: https://xo.xello.com.au/blog/power-bi-desktop-vs-power-bi-pro-and-

premium-differences

York, R. (2009). Beginning JavaScript and CSS Development with jQuery. Indianapolis, IN, USA:

Wiley Publishing, Inc.

Appendix 1, Gartner reports

Gartner Magic Quadrant, 2017, https://blogs.microsoft.com/blog/2017/02/16/microsoft-

breaks-gartner-magic-quadrant-business-intelligence-analytics-platforms/

Gartner Magic Quadrant, 2018, https://info.microsoft.com/ww-landing-gartner-bi-

analytics-mq-2018-partner-consent-test.html

Gartner Magic Quadrant, 2019, https://www.qlik.com/us/gartner-magic-quadrant-

business-intelligence

Gartner Magic Quadrant, 2019, https://rapidminer.com/resource/gartner-magic-quadrant-

data-science-platforms/

Appendix 2, table comparison of tools

Appendix 3, sklearn performance

 (Pedregosa, et al., 2011, p. 4)

Appendix 4, Redis benchmarks

Appendix 5, Flask + hey Benchmarks

Report 1

 Total: 10.4634 secs

 Slowest: 3.2022 secs Fastest: 0.0331 secs Average:

0.0522 secs

 Requests/sec: 955.7123 Total data: 670000 bytes Size/request:

67 bytes

Response time histogram:

 0.033 [1] |

 0.350 [9949] |■■

 0.667 [0] |

 0.984 [0] |

 1.301 [0] |

 1.618 [0] |

 1.935 [0] |

 2.251 [0] |

 2.568 [0] |

 2.885 [0] |

 3.202 [50] |

Latency distribution:

 10% in 0.0342 secs

 25% in 0.0352 secs

 50% in 0.0364 secs

 75% in 0.0374 secs

 90% in 0.0392 secs

 95% in 0.0400 secs

 99% in 0.0424 secs

Details (average, fastest, slowest):

 DNS+dialup: 0.0001 secs, 0.0331 secs, 3.2022 secs

 DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0000 secs

 req write: 0.0000 secs, 0.0000 secs, 0.0024 secs

 resp wait: 0.0521 secs, 0.0329 secs, 3.2009 secs

 resp read: 0.0000 secs, 0.0000 secs, 0.0003 secs

Report 2 (cached)

 Total: 7.2396 secs

 Slowest: 0.0425 secs Fastest: 0.0041 secs Average:

0.0361 secs

 Requests/sec: 1381.2998 Total data: 670000 bytes Size/request:

67 bytes

Response time histogram:

 0.004 [1] |

 0.008 [3] |

 0.012 [7] |

 0.016 [4] |

 0.019 [6] |

 0.023 [5] |

 0.027 [5] |

 0.031 [6] |

 0.035 [2698] |■■■■■■■■■■■■■■■■■■

 0.039 [6119] |■■

 0.042 [1146] |■■■■■■■

Latency distribution:

 10% in 0.0338 secs

 25% in 0.0347 secs

 50% in 0.0360 secs

 75% in 0.0373 secs

 90% in 0.0389 secs

 95% in 0.0400 secs

 99% in 0.0411 secs

Details (average, fastest, slowest):

 DNS+dialup: 0.0001 secs, 0.0041 secs, 0.0425 secs

 DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0000 secs

 req write: 0.0000 secs, 0.0000 secs, 0.0008 secs

 resp wait: 0.0360 secs, 0.0020 secs, 0.0424 secs

 resp read: 0.0000 secs, 0.0000 secs, 0.0004 secs

Appendix 6, Contributor guidelines
As you are probably aware, this project is almost entirely written in Dash, Python. There are

very few Javascript snippets here and there, and there are also some custom Dash

components made with React. For CSS this project uses part of Dash's defaults, some

Bootstrap, and of course some custom sheets.

Table of contents

 Learning resources

 Style guide recommendations

 General info on project structure

 General info on contributions

o Contributions for code quality

o Contributions for visualizations

o Contributions for data

o Contributions for modeling

o Contributions for deployment and scaling

 List of contributors

Learning resources

 Basics: To write Dash, you just need a basic knowledge of HTML. It is probably

impossible to contribute without first going over the The Dash docs, which are also

the best place to start your reading. Going through their tutorial, and then taking a

quick look on each component library listed should get you up to speed with what

you need to know about callbacks, the main feature of Dash, and more.

 Visualizations: Dash steps on the shoulders of plotly for its visualizations, so if you are

interested in working on visualizations take a look at the Plotly docs page, and/or at

D3.js for Dash from the Dash docs.

 Custom components / React: If you're a JS wiz with a react spellbook, then we love

you a bit more (you can design your own components!). You can start working with

custom components, and React, Javascript. Take a quick look at what these Dash

docs page say: React for Python Developers, and Writing your own components.

 Machine Learning: There are hundreds of material out there and we won't go over

them here but familiriaty with sklearn and its programmatic API is strongly desired

(see Quickstart, User guide, API reference, Developers guide, especially the Estimators

chapter).

https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md#learning-resources
https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md#style-guide-recommendations
https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md#general-info-on-project-structure
https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md#general-info-on-contributions
https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md#contributions-for-code-quality
https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md#contributions-for-visualizations
https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md#contributions-for-data
https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md#contributions-for-modeling
https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md#contributions-for-deployment-and-scaling
https://github.com/KMouratidis/EDA_miner/blob/master/CONTRIBUTING.md#list-of-contributors
https://dash.plot.ly/
https://plot.ly/python/
https://dash.plot.ly/d3-react-components
https://dash.plot.ly/react-for-python-developers
https://dash.plot.ly/plugins
https://scikit-learn.org/stable/tutorial/basic/tutorial.html
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/developers/index.html
https://scikit-learn.org/stable/developers/contributing.html#estimators

Style guide recommendations

You need to write at least somewhat pythonic code. A few good starting points are: PEP-8

and The Hitchhiker's Guide to Python. Also take a quick look at this quick discussion about

project structure (mentioned again later).

Regarding imports, it seems to me far easier to find stuff when they are in a particular order,

with a line separating each category:

1. The core Dash libraries (e.g. dash, dcc, html, daq, dash_table) and other Dash

components including any custom (e.g. visdcc, dash_rnd)

2. Import modules from the app: first server.app, then other high-level modules, then

anything else ordered however you like.

3. Import any other libraries necessary, ordered by fancy points.

Example
import dash_core_components as dcc
import dash_html_components as html
import dash_table
import visdcc

from server import app
from utils import cleanup, r
from menus import SideBar, MainMenu, landing_page
from apps import data_view, exploration_view
from apps.exploration_tabs import KPIs

import turtle
from functools import partial
import pandas as pd

Naming is extremely important. Use plural for lists (e.g. traces = [scatter]) and singular

with optional numbering for sole items (e.g. trace1 = scatter). Edit away others' work if

necessary, and feel free to suggest more rules that will help us keep our sanity. Also, if you

find some names weird, flame the author hard and suggest alternatives.

General info on project structure

The older project structure was a mess, but I hope the new one (post v0.3, aka 19th August

2019) is much cleaner. The app is structured as a main Flask app (responsible for user

management, mainly) which connects various other Flask and Dash apps at the WSGI level

with Werkzeug's DispatcherMiddleware. If you want to add a new app all you need to do is

follow the instruction in the wsgi.py file (i.e. register the flask extensions and give it a URL

path).

https://www.python.org/dev/peps/pep-0008/
https://docs.python-guide.org/writing/style/
https://docs.python-guide.org/writing/structure/
https://werkzeug.palletsprojects.com/en/0.15.x/middleware/dispatcher/

You can get acquainted with the project by looking at /docs after starting the app, or

(equivalently) reading the module and package docstrings. Another way is by visiting the

/images folder where you will find an old version of eda_miner_callback_chain.html which was

the Dash-rendered graph showing every function in the project (also found as images,

divided over several screenshots) on v0.2. Another way is to look directly at the

directory_tree.png, (made with the linux tree command).

It is extremely likely that after these you will still want an explainer; don't worry, anyone

working on the project will be more than happy to help you (see Contact section). Anyhow,

here is the rough idea:

 Top level modules define the overall app (Flask server, models, forms, flask

extensions) including some utils; probably not the place to start playing.

 /static and /templates/ are the place to go if you feel like adding some custom

JS/CSS (or HTML for the main Flask app) or storing your images.

 App folders; these are (almost-)standalone applications in either Dash/Flask (maybe

Django?). If you want to create an extension that does something more elaborate or

separate than existing apps, or just want to add your pre-existing Dash/Flask apps,

you create a new directory and do it (remember to visit wsgi.py!). Here are a three of

them:

o data: This Dash app contains all the logic for the user to handle data, be it

uploading data or fetching them from an API. It also detects a data schema

following some heuristics, and allows the user to edit it. Found at /data, and

needs login.

 Contents of each app are largely up to you. We will soon release a

"mini-app" template with more detailed instruction so you can use

that as a reference.

 Current apps usually include a server.py (Dash config & definition)

and an app.py (index page) file as well as different python files for

each sub-page (we usually use tabs as a navigation method, feel free

to deviate).

o docs is a standalone app that parses the rest of the python codebase as

strings, extracts docstrings and automatically creates an API reference page

found at /docs (no login required).

o google_analytics is a REST API built with Flask and runs completely

independently of the main Flask server. It was initially created as a separate

"micro-service" because of an incompatibility with the libraries that we used

but that is no longer the case. Still, we decided to keep it mainly for

demonstration purposes. Go over to /data/data_utils/api_layouts to see

how GAnalyticsAPI interacts with it.

Suggestion on project structure are also welcome.

General info on contributions

Almost everything here is a soft suggestion, not a hard requirement. If you're

confident in your coding, don't pay too much attention to these guidelines.

Do the thing

-Varrick, inventor, businessman, rebel.

For now, modules in the top level of the app should probably not be modified, unless you're

an experienced dev (optionally with Flask knowledge). For other modules, there are

docstrings with a few more words on whether work is encouraged in those modules. Do

note: Any and every contribution is welcome; those modules are just marked as such to notify

beginners to be cautious, or they merely mark areas where we think improvements are

needed most - and are easy to implement. Each module as well as each package has its own

guidelines (see Notes to others section of each), which are there to give you a gereral idea of

what you could do. That said, docstrings are somewhat outdated as of this writing (19th

August 2019).

Advanced users can safely ignore all that. If you want to contribute but don't know

where to start, find issues marked with good first issue in GitHub Issues. If you have

some standalone code that works but don't know where that fits into the project, open an

issue or a pull request. A few examples:

 Stylistic elements (UI/UX, CSS, themes, graph coloring)

 API integrations, data gathering & handling

 Machine Learning Algorithms (classes with a sklearn-like API: .fit, .predict,

.transform)

 Custom React components (e.g. resize-n-drag).

Also, if you have suggestions open an issue with a "feature request" tag. A few suggestions

on good (and potentially easy) contributions that are really needed (and not mentioned

below):

 Writing function/class/module docstrings

 Writing tutorials on the usage of the app

 Writing tutorials for helping other contributors

 Writing (unit-)tests

 Benchmarking (parts or all of the app, libraries, other tools used)

Contributions for code quality

With v0.3 I tried quite a lot to improve code quality; that is to make everything more

readable, with more/better comments and docstrings, cleaner and visually appealing, as well

as make it simpler for new contributors to do their thing. I believe I did well (not perfect) with

/data/apis where you have clear instructions on how to make a new API connection, and

then the rest is handled for you. I probably didn't help with /visualization. I know I failed

super hard with /modeling/model_builder; a few times it made me want to cry (thank you,

pizza, for the emotional support!). Helping here is HUGELY APPRECIATED. Really. If you are

a brave soul and attempt it, do not hesitate to spam and flame me with questions till I cry.

Contributions for visualization

Dash graphs are mainly done in plotly, and we don't promise much for other libraries (but

fire away anyway!). We have tried our hands at using matplotlib which somewhat works

(plotly has some integration). D3 visualizations should also be possible and are welcome. If

you want to wrap some JS library as a collection of React components then that is great as

well. You will also probably find discussions about integrating Dash with other visualization

tools (such as for folium, e.g. here and here).

Visualization is currently handled by the /visualization app. It is split across 6 modules but

might be trimmed in the future. These modules are (and some ideas on what can be done):

 ChartMaker: Handling basic 2D and 3D visualizations which are built using individual

traces, much like a poor man's ripoff of Plotly's Online Graph Maker. Other modules

(e.g. maps, kpis) might be integrated here.

 KPIs: Handling... KPIs! Currently it only calculates a simple Baseline (without any sort

of filtering). You could augment the baseline by adding filters (e.g. for promo dates),

or new KPIs, or even allow users to create their own.

 Maps: Currently only two types of maps are supported, choropleths, geoscatters (and

a combination), and "lines on map", all from Plotly. You could add more, or provide

more options, even mapping functionality with/from other libraries and providers.

 Networks: Very basic network/graph visualizations. Currently it has trouble handling

more than a couple hundred nodes so that is one possible way to contribute. Also,

styles and interactivity for the cytoscape graph. You might also want to try

integration with networkx or other libraries.

 Text visualizations: For now it only handles a simple wordcloud. Feel free to add

additional visualizations, but do leave word-vector visualizations for later (or use very

small models) since increasing server boot time is an issue.

 DashboardMaker: Create your own dashboards, Power BI style. Not quite, because

the drag-and-resize is not yet complete, and a lot of stuff still need to be done; so

that's your cue, React wizs ;)

Contributions for data

Everyone needs data to work with, and currently there are two ways ways to get data: the

user can upload a file, or we can connect to their account somewhere and fetch data via an

API. After that, the user should be able to inspect and edit both the data and the inferred

schema. Here are a few suggestions on what you could do:

 Connections to APIs: Currently only 6 connections to APIs are supported (Google

Analytics, Google Drive / Spreadsheets, Twitter, Quandl, Spotify, and Reddit). For

these connections, we only access a very limited subset of what their APIs offer (e.g.

only playlists for Spotify), so this is one thing you can work on. If you want to

customize the API connections or create a new one, you need to subclass

https://community.plot.ly/t/folium-maps-and-dash/6956
https://community.plot.ly/t/dash-and-folium-integration/5772
https://plot.ly/create/#/

APIConnection from /data/data_utils/api_layouts.py. Basically it needs two Dash

layouts (giving credentials, and getting data after successful authentication), a

(potentially dummy) method to prettily display fetched results, a connect method (to

connect to the API), and a fetch_data method to actually get the data and save it as a

pandas.DataFrame (use the inherited save_data_and_schema).

 Uploading data: A simple box where the user can drag-n-drop files (or

click/navigate/open) to upload. A few things can be done here like adding supported

for different filetypes (currently only csv, json, xls/x, and feather are supported), or

handling large file uploads (see also Dash Resumable Upload).

 Schema inference: Responsible for detecting the data types of the various columns,

using (currently) heuristics. You can improve the heuristics, create a better interface

for viewing the data (e.g. with pagination), or other (?).

 View data: A Dash DataTable for inspecting the data. Potential improvements here

include handling pagination, editting better (e.g. save edits), and schema-relevant

operations (e.g. categorical columns svisualizationshould have a dropdown).

 New features:

o Ability to connect datasets with a schema, like in SQL.

o Concatenate datasets (columns/rows).

o Permanent storage of data fetched from APIs, e.g. by concatenating previous

results. This is important.

o Query the data with an SQL-like syntax (with or without a front-end GUI) or

natural language (text2sql).

o Create new columns/features using formulas. Spreadsheets can handle it, so

why not us too? This used to be part of the FeatureMaker class in the

ModelBuilder but was removed for convenience.

Contributions for modeling

This app is responsible for training Machine Learning (Data Mining, Business Intelligence,

Statistics, whatever) models. If you want to train a simple model, the single_model.py module

handles that case, but if you want something more complex then you would have to go to

the model_builder.py, define a custom pipeline, and switch over to pipelines.py to train it.

Each is accessible by selecting its respective tab.

 Single model: A simple GUI with few dropdowns to select dataset and variables, and

a div with tabs for showing the various result types (currently 2: text metrics like

accuracy, confusion matrix, MSE, and graphical results).

 Model Builder: Using dash-cytoscape we use graph nodes to represent the various

"estimators" (using sklearn language). Every model class MUST conform to the

sklearn API (fit, predict, transform). You can add new models/classes (see

/modeling/models/pipeline_classes.py). If you are brave enough, you can try

converting cytoscape graphs to models (see /modeling/models/graph_structures.py)

and/or creating pipelines from them (see /modeling/models/pipeline_creator.py) as

well as training them (see /modeling/pipelines.py).

https://community.plot.ly/t/show-and-tell-dash-resumable-upload/9519

Contributions for deployment and scaling

Up to now, deployment has not been that much of a concern because I was mostly handling

it on my own. However, as the app grows and is tied to other services (Redis,

google_analytics, some other SQL soon?) we will need a better way to handle this. Currently

I'm working a bit on a docker-compose script, especially since docker seems the best way to

package and set-up the whole project.

The idea behind splitting up the various apps was due to two reasons: allowing for easier

addition of new apps (which was achieved), and allowing each app to scale independently

(which is currently not done at all). Connecting Flask and Dash apps at the WSGI level is easy

and allows for the login_manager and other extensions to be connected easily. It is possible

that connecting these extensions does not need all apps to be under the same server, but I

simply don't know about that stuff and will look into them later on. If not, then each app will

have to be separable and get its own url and connected via another dispatcher / proxy (e.g.

see Werkzeug's HTTP Proxy). If you have other suggestions, or know a way to pass user

session / information in a secure way across Dash/Flask apps, those would be extremely

welcome as well.

Scaling and performance are issues I didn't concern myself with so far, at least not much.

Since v0.3 some early attempts have been made in improving performance:

 Instead of loading datasets from Redis every time we need to create options

according to dataset columns, we load the data schema which is a small dict growing

only according to number of columns. The same principle applies to other parts

where data copying has decreased.

 Caching (memoization) and expiration for Redis data were added to a lot of API calls,

and will probably be added to a lot more. That said, a lot of performance upgrades

can still be done, including overall scaling. Here are some ideas:

 Some plotly visualizations can benefit from either using OpenGL or performing

aggregations in Python before plotting. This lessens the burden both for internet

bandwidth and the browser, at the potential cost of graphing precision. For more

than a few hundred/thousand data points these are probably worth it.

 The pre-v0.2 application could be scaled by simply creating more containers. This can

be done now, too, but it would be a waste (and the user database would need some

extra handling). Instead, each app should be scaled on its own (see previous

paragraph).

 Currently CI/CD is lacking. I am using a custom Python script to copy files, create

docs, run tests, update coverage, and remove non-public code from the private

version (as of 19th August 2019 there is no such code: the login has been just

integrated, export to PDF has been dropped completely). Integration with TravisCI

and other tools exist but are at an early stage. I will be looking into this a bit more

over the coming months, as well as tools like Ansible and Jenkins. If you know about

these, do lend a hand or tips.

 Deployment: I used to have it deployed on an old computer of mine but now it is

deployed on Amazon (pre-v0.2), sponsored by Prof. Ioannis Magnisalis (website).

Neither of us look hard enough into this; a different Amazon service may be more

fitting, or a combination of them. Reach out to either of us for suggestions or details.

https://werkzeug.palletsprojects.com/en/0.15.x/middleware/http_proxy/
http://magnio.tech/

List of contributors

Notice: try to keep them in alphabetical order, edit if you notice inconsistencies! Also, note

that most contributions are not visible in the public version of the repository.

 Active (as of 19th August 2019):

o Gkoustilis George, promotion, and asking tough questions.

o Magnisalis Ioannis, oversight of the project, including academic and

implementation guidance.

o Mouratidis Kostas, everything related to code.

o Tentsoglidis Iordanis, mostly the theoretical part, and university promotion.

 Past:

o Katrilakas George, mostly the theoretical part, and a bit on treemaps.

o Timamopoulos Chris, mostly the theoretical part, and a bit on 3D

scatteroplot.

o Tsichli Vaso, most of the graphs, a bit on model fitting reporting, LOTS of

suggestions for the interface. Patient receiver of my spam.

Appendix 7, Directory Tree
Output of running the at the top-level directory the command: tree -I

"*.png|*.pyc|*pycache*|*.css*|*.jpg*" --dirsfirst .

.

├── EDA_miner

│ ├── dash_rnd

│ │ ├── dash_rnd.dev.js

│ │ ├── dash_rnd.min.js

│ │ ├── _imports_.py

│ │ ├── __init__.py

│ │ ├── metadata.json

│ │ ├── original_source_credits.txt

│ │ ├── package.json

│ │ └── ResizeDraggable.py

│ ├── data

│ │ ├── assets

│ │ ├── data_utils

│ │ │ ├── api_connectors.py

│ │ │ ├── api_layouts.py

│ │ │ ├── ganalytics_metrics.py

│ │ │ ├── __init__.py

│ │ │ └── schema_heuristics.py

│ │ ├── apis.py

│ │ ├── app.py

│ │ ├── __init__.py

│ │ ├── schemata.py

│ │ ├── server.py

│ │ ├── upload.py

│ │ ├── users.db -> ../users.db

│ │ └── view.py

│ ├── devops

│ │ ├── app.py

│ │ ├── __init__.py

│ │ ├── server.py

│ │ ├── upload.py

│ │ └── view.py

│ ├── docs

│ │ ├── all_layouts.py

│ │ ├── app.py

│ │ ├── doc_maker.py

│ │ └── __init__.py

│ ├── google_analytics

│ │ ├── app.py

│ │ ├── Dockerfile

│ │ ├── README.md

│ │ └── requirements.txt

│ ├── modeling

│ │ ├── models

│ │ │ ├── graph_structures.py

│ │ │ ├── __init__.py

│ │ │ ├── pipeline_classes.py

│ │ │ └── pipeline_creator.py

│ │ ├── app.py

│ │ ├── __init__.py

│ │ ├── model_builder.py

│ │ ├── pipelines.py

│ │ ├── server.py

│ │ ├── single_model.py

│ │ ├── styles.py

│ │ └── users.db -> ../users.db

│ ├── presentation

│ │ ├── app.py

│ │ └── __init__.py

│ ├── static

│ │ ├── css

│ │ ├── images

│ │ │ ├── graph_images

│ │ │ └── icons

│ │ ├── favicon.ico

│ │ └── navbar_interactivity.js

│ ├── tasks

│ │ ├── assets

│ │ ├── app.py

│ │ ├── __init__.py

│ │ └── server.py

│ ├── templates

│ │ ├── apps

│ │ │ ├── data.html

│ │ │ ├── modeling.html

│ │ │ └── visualization.html

│ │ ├── base_dash.py

│ │ ├── base.html

│ │ ├── change_password.html

│ │ ├── create_presentation.html

│ │ ├── forgot_password.html

│ │ ├── index.html

│ │ ├── login.html

│ │ ├── profile.html

│ │ ├── register.html

│ │ ├── reset_password.html

│ │ ├── show_presentation.html

│ │ └── user_apps.html

│ ├── visualization

│ │ ├── graphs

│ │ │ ├── graphs2d.py

│ │ │ ├── __init__.py

│ │ │ ├── kpis.py

│ │ │ ├── textviz.py

│ │ │ └── utils.py

│ │ ├── app.py

│ │ ├── chart_maker.py

│ │ ├── dashboard_maker.py

│ │ ├── __init__.py

│ │ ├── kpis.py

│ │ ├── maps.py

│ │ ├── networks.py

│ │ ├── server.py

│ │ ├── text_viz.py

│ │ └── users.db -> ../users.db

│ ├── app_extensions.py

│ ├── config.py

│ ├── data_server.py

│ ├── devops_server.py

│ ├── docs_server.py

│ ├── env.py

│ ├── env_template.py

│ ├── exceptions.py

│ ├── flask_app.py

│ ├── forms.py

│ ├── initialize_project.py

│ ├── __init__.py

│ ├── layouts.py

│ ├── model_server.py

│ ├── models.py

│ ├── presentation_server.py

│ ├── tasks_server.py

│ ├── users.db

│ ├── users_mgt.py

│ ├── utils.py

│ ├── visualization_server.py

│ └── wsgi.py

├── example_data

│ ├── boston.feather

│ ├── churn.csv

│ ├── data.csv

│ ├── gtd_11to14_0615dist.csv

│ ├── gutenberg_sentences.csv

│ ├── iris.csv

│ ├── monthly-milk-production-pounds-p.csv

│ ├── network.csv

│ └── population.csv

├── images

│ ├── screenshots

│ └── directory_tree.txt

├── tests

│ ├── data

│ │ ├── data_utils

│ │ │ ├── __init__.py

│ │ │ ├── test_data_utils.py

│ │ │ └── test_schema_heuristics.py

│ │ └── __init__.py

│ ├── chromedriver

│ ├── coverage_report.txt

│ ├── __init__.py

│ ├── test_app.py

│ ├── test_docker.sh

│ ├── testing_utils.py

│ ├── test_tabs.py

│ ├── test_user_auth.py

│ ├── test_utils.py

│ └── users.db

├── CODE_OF_CONDUCT.md

├── CONTRIBUTING.md

├── Dockerfile

├── LICENSE

├── project_info.txt

├── README.md

└── requirements.txt

28 directories, 136 files

