

Programmatic Automation
and Yield Optimization on
the Ad Exchange

Galinos Giaglis

SID: 3305150010

Supervisor: Prof. Christos Tjortjis

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in E-Business, Innovation & Entrepreneurship

(Part-time)

DECEMBER 2018

THESSALONIKI – GREECE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Hellenic University: IHU Open Access Repository

https://core.ac.uk/display/328007021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[2]

Abstract

This dissertation was written as a part of the MSc in eBusiness, Innovation &

Entrepreneurship at the International Hellenic University.

The total media ad spending worldwide will rise to 7.4%, to $628 Bn in 2018,

according to an eMarketer report, while the digital media (digital advertising) itself will

account for almost 45% of the investments made, partly thanks to the global ecommerce

shifting sizeable amounts of budgets from the TV ecosystem to the Digital placements.

Marketer projections put digital advertising to a valuation of $129 Bn by 2021, making the

digital advertising sector one of the largest in the non-tangible products market and one of the

most intriguing to further investigate, automate and invest in. The advertising ecosystem is

currently comprised of thousands of intermediary entities between an advertiser and a

publisher; the two most essential aspects of this market. Unfortunately, the chain between the

advertiser and the publisher is not a straight line and is usually filled with the intermediaries

that in some cases provide excellent value and in other cases just intervene with the price and

misalign the information between an advertiser and a publisher. The misinformation caused

by the intermediaries along with the many different subchannels of digital advertising that

exist in the market, e.g. direct buys, programmatic buys, performance buys, currently affect

the way ads are being bought online. The purpose of this dissertation is to investigate the

actions needed and create an algorithm that sets a (economic) yield management strategy,

directly setting the price that they sell their ads on the global exchange.

This goal was successfully achieved by creating a software that works in four steps.

First collects historical data from websites, their ad placements and the ad vendors’ reporting

tool, clears the redundant data, analyzes all possible variables affecting the price of the ad and

deciding which truly affect the price and then using information around these variables makes

suggestions for higher or lower price that can consecutively lead to higher revenue for a

publisher.

I would like to acknowledge my supervisor Dr. Christos Tjortjis for his valuable help

and support in all stages of this Dissertation.

Galinos Giaglis

7 December 2018

[3]

Contents

Abstract .. 2

1 Introduction .. 5

1.1 Literature overview ... 7

1.2 Proposed approach definition .. 8

1.3 Terms definition .. 11

2 Data ... 13

2.1 Getting the Dataset .. 13

2.2 Describing the Dataset .. 13

2.3 Categorical feature analysis .. 18

2.4 Numerical measures analysis .. 19

3 Methodology ... 21

3.1 Description .. 21

3.2 ModelSpecification ... 22

3.2.1 Naive hypothesis – Simple Average .. 22

3.2.2 Moving average ... 24

3.2.3 Weightedmovingaverage ... 25

3.2.4 ARIMA (p, d, q)... 26

3.2.5 Seasonal ARIMA (SARIMA) .. 29

4 Results .. 34

5 Software Usage ... 37

6 Conclusion .. 40

6.1 Future Steps ... 40

6.2 Weaknesses ... 40

7 References .. 41

8 Appendices ... 43

[4]

8.1 Software code .. 43

[5]

1 Introduction

A publisher may decide to sell advertising space (ad inventory) online in two different and

distinct ways. The first way it is by signing an Insertion Order (IO) with the Advertiser. In

this IO the advertiser will buy a predefined amount of Ad Impressions (a term used for the

quantity of advertising) at a predefined price in a predefined position on the website. This

process is called “Direct Sell” or “Reservation Sell” and is considered the most sacred form

of advertisement as each IO is as important as a contract between the advertiser and the

publisher. When a publisher can’t sell all of the ad inventory, one uses “Ad Exchanges”, i.e

Google, Appnexus, Rubicon Project, Index Exchange among others, which have several

thousand buyers connected to them and act as an intermediary between their buyers and the

publishers. By having such a large volume of advertisers, they have the ability to fill any gaps

that exist from the publisher’ inability to sell all of the ad inventory directly. This type of

selling the remnant inventory is called “Programmatic Sell” and is the focus of investigation

for this dissertation.

In our dissertation we will investigate the pricing strategies a publisher can set by utilizing a

handful of variables that affect the price an ad can be sold at. Some of these variables are the

size of the ad (e.g. 300x250, 300x600 etc.), the device type (e.g. Desktop, Mobile, Tablet,

Connected TV), the transparency of the advertiser (e.g. Branded or Anonymous) among

others. Our focus will be to identify all affecting variables, separate the most relevant, use the

pertinent information to predict a higher revenue generating price and apply that strategy

starting the cycle again the next day.

To be more specific, in this dissertation we present a time series algorithmic procedure on

how to forecast floor pricing values of Google Ad Manager pricing rules, in order to achieve

revenue increment (maximization) based on historical data. We describe our dataset

extensively so that we can acquire information on the behavior of floor values along with the

rest of the features and especially the ones highly correlated to the Ad eCPM. For each set of

features that affect the Ad eCPM value, we tried several models in an iterative way in our

effort to find the best fit to our dataset. These models were checked according to a set of

statistical metrics and the results were visualized. Finally, for each set of features along with

the model that fit best, we forecasted the values of Ad eCPM which indicated the optimal

Floor value for each pricing rule. Furthermore, we are in the phase of developing a neural

[6]

network based on the proposed modeling approach that would programmatically learn, decide

and set of the optimal Floor value of each pricing rule.

The first chapter of this dissertation includes the introduction where a brief walk through the

algorithmic procedure that was developed is presented. In addition, a literature review is

provided aside with the proposed approach definition. It focuses on the advantages that this

approach has, including general information about the software developed

In the second chapter, an example dataset is analyzed and decomposed in order to understand

the given dimensions and metrics that will try to fit in the modeling phase of the solution.

In the third chapter, the methodology of the analysis is explained including the five different

models specified. In this section, each model of the analysis which concluded in using the

Seasonal ARIMA process is explained with its weaknesses in comparison to the one produced

by this process.

Next in the fourth chapter, the results and several outcomes of the analysis are shown. This

section presents the results by visualizing the model fittings and the forecasting values aside

with the original data. In addition, this section shows the final results after applying the

software analysis and modeling to the real-time website pricing rules.

In the fifth chapter, the instructions of how to use the developed software are explained by

giving a variety of ways to run it.

In the sixth chapter, the concluded results are shown with the suggestions for improvement.

The last chapter includes the full source code of the application in an ipython notebook

format that ran on a specific website, over a time period of three months. The resulting

revenue uplift is still under monitoring because of the exogenous factors that may apply to

this optimization problem.

[7]

1.1 Literature overview

To the best of our knowledge, researchers’ interest is focused on real time bidding (Wush

Chi-Hsuan Wu, 2015), (Weinan Zhang, 2016), (Jun Wang, 2016) techniques which require

data mining provided by scripting tools or custom pieces of code that reside on the client’s

website. These pieces of code are responsible for tracking features and metrics in order to

understand and deliver statistical values and probabilistic models to solve the revenue

optimization problem. Such solutions provide a state-of-the-art approach, in an academic

interest perspective, but lack on application in real-life websites. Their major drawback rises

when the owner of the website declines to provide access for equivalent research. Moreover,

several solutions need to retain a waiting state of the ad unit in order to get the best revenue

for each ad impression. This fact causes the “line-item to be auctioned” to expire, because of

the time margin expiration leading to the impressions being lost.

Surveys like (Shuai Yuan, 2014) also state clearly how most of the website analysis are based

on cookie manipulation and information retrieval in order to analyze efficiently online user

characteristics so as to target respectively their ad campaigns.

[8]

1.2 Proposed approach definition

The proposed approach is trying to achieve a solution through experimentation with historical

data retrieved from the ad vendor manager tool (Google Ad Manager) and not from the

website directly. This gives us the opportunity to follow several dimensions and extract

information based on a set of metrics which eventually provide the ability to forecast floor

pricing values and thus optimize our revenue.

In addition, from a scientific point of view, we state that our algorithmic procedure tries to

solve a time related problem, thus it requires a time series problem solving approach. This

differentiates our solution from a regular regression problem solution in 2 ways:

1. It is time dependent. So, the basic assumption of a linear regression model, that the

observations are independent, doesn’t hold in this case.

2. Along with an increasing or decreasing trend, most time series have some form of seasonality

trends, i.e. variations specific to a particular time frame. For example, if we visualize Ad

Impressions over time, we will invariably find lower values in the weekdays rather than the

weekend which depicts the fact that more people tend to browse their favorite content sites on

the weekend and by that, the number of page requests increase which consequently increases

the ad impressions.

Also, the resulted pricing rules are provided to the Google Ad Manager tool and processed for

a period of three days over real-life websites in order to acquire feedback about the model

parameters and the resulting revenue gain.

[9]

Figure 1: Flowchart diagram

Following the above assumptions, we propose an algorithmic procedure consisted of six steps

as shown in Figure 1.

To start with, we acquire a historical query from the Google Ad Manager reporting tool

containing specific dimensions and metrics as features of our dataset. These features will be

manipulated and finally exposed to the modeling functions.

To derive numerical results from all the features gathered in the previous step, there has to

follow an indexing step, where all the features that are not numerical will be transformed into

numerical ones. Then the data set is ready to be studied through different statistical functions

so that certain properties will be revealed. Among them are the correlation factors of the

features such as inventory size, device category and branding type which will reveal

association rules between them and will be used as filtering factors.

In the third step, the features that have the strongest correlation factors are chosen and

specifically those that correlate best with Ad eCPM. Certain visualizations are provided to

give the researcher a hint of the distribution of the data set values itself, along with

histograms showing how close to the normal distribution these measures are. All features

[10]

compete at a correlation matrix having a score that indicates the correlation between their

values, e.g., inventory size ‘300x250’ is strongly correlated with mobile devices and

especially with smart phones while their associated branding type is ‘branded.’

While reaching step four, our data set is being filtered by the feature values that scored best

and indicated from the third step. Each set of these pairs ‘feature – value’ will be modeled

independently and a different model will be trained by the software. The final set of feature

values plus the labeled values is acquired for the modeling step aside with the aggregation

information to form a per day value of Ad eCPM.

The fifth step is the modeling phase of this procedure and consists of six modeling solutions.

Starting with a naïve hypothesis model, this procedure presents a baseline model. Next

approaches are more sophisticated introducing a moving average model and as an extension

of a weighted average model. A holt-winter exponential smoothing model is also

demonstrated. At last an ARIMA model and a Seasonal ARIMA model present the best

approach to this case study. Each of them are tested against several statistical measures and

conclusively picked the best parameter initialization for them.

As a final step, this procedure uses the final model is selected on the modeling phaseand

forecasts data for a period of time ahead. The resulting outcomes are visualized and

demonstrated respectively along with evidence of correctness.

The proposed procedure by this dissertation unfortunately has also its drawbacks, with the

most important to be introduced by the Google Ad Manager reporting tool which does not

provide data with a sampling rate less than a day e.g. hourly or per minute. Thus, the

presented procedure can forecast Ad eCPM values at a minimum per day time period basis. In

case of a larger time period selected e.g. per week, a larger dataset should be acquired in order

to limit the forecasting error inside the proposed probability confidence interval.

Moreover, exogenous factors that will influence Ad eCPM values in the 24 hours’ time frame

cannot be introduced into our model because of the lack of relevant information by the

vendors’ reporting tool.

[11]

1.3 Terms definition

The full meanings of the abbreviations used in this dissertation are:

Ad Manager – The Google tool used to deliver the ads on the page. It is essential an Ad

Server or an intermediary delivering the ads from the publisher to the user

Ad Impressions – Absolute number that shows the amount of advertising ads shown

Ad Requests – Absolute number that shows the number an ad was requested (but not

always shown)

Fill Rate or Coverage – The ratio of the Ad Impressions Served / the Ad Requests sent

Ad eCPM–The price for 1,000 Ad Impressions

CPM = Cost per Mile, the cost for 1,000 units

Revenue – Ad eCPM * (Ad Impressions/1000)

Ad Inventory – The available inventory the publisher can sell

Direct Sell – When a publisher sells his inventory directly to the advertiser

Programmatic Sell – When a publisher offers his remnant inventory in the Ad

Exchanges

Branding Type – When the advertiser wishes to disclose her name and landing page

URL. Two types of branding types exist, Branded (full disclosure) and Anonymous (no

disclosure)

Floor Value – the minimum ad eCPM price required for an ad to be eligible for display

in a website.

ACF – Autocorrelation function

PACF – Partial Autocorrelation function

AR – Autoregressive

MA – Moving Average

ARIMA – Autoregressive Integrated Moving Average

[12]

SARIMA – Seasonal Autoregressive Integrated Moving Average

AIC – Akaike Information Criterion

BIC – Bayesian Information Criterion

[13]

2 Data

2.1 Getting the Dataset

The required dataset was, at first, generated by using Google Ad Manager reporting tool where

reports have been generated manually in Microsoft Excel sheets for each website that would be

examined. After the finalization of this developer tool, the extraction of each dataset is going

to be programmatically generated through the API of Google Ad Manager reporting tool.

Though the acquisition of the dataset came straight from the vendor’s tool, the selection of the

dimensions and measures that would successfully provide a well-formed and useful piece of

data was rather difficult.

2.2 Describing the Dataset

Each row of the dataset consisted, as shown in Table 1, of four categorical fields (Pricing rules,

Inventory sizes, Device categories, and Branding types) which represent the features, a date-

time field which will be used later in the procedure as an index field and five numerical fields

which represent the measures of each row.

Table 1: Data Sample before transformations

Table 1 displays a raw sample of the data set provided from the reporting tool of Google Ad

Manager before applying any transformation to the original data. It’s worth mentioning that the

information of the floor value of each pricing rule contained in the data set was obtained by a

historical record of the website that was analyzed which was held in an external spreadsheet.

[14]

This difficulty was introduced by Google Ad Manager tool, which doesn’t support the historical

tracking of these values, but it can only provide the latest value used.

To support the proposed procedure, there has been an informal sub-step between the first step

of importing data and the second step of indexing the categorical features, according to which

the fields containing the information for date, pricing rule name and floor price value are

matched between the two data frames.

In the indexing step of the procedure, the original data are transformed by an ordinal encoder

transformation function, which is implemented in the Scikit–Learn toolkit (Scikit-Learn, 2018),

to their numerical values respectively. This estimator transforms each categorical feature to one

new feature of integer values starting from 0 to the number of distinct categories – 1. Such an

integer representation can be used to convert categorical features to integer codes because their

ordering is irrelevant to the information that they provide.

Table 2 shows a sample of the data set after the OrdinalEncoder transformation took place.

Table 2: Transformed sample of the data set through OrdinalEncoder

In order to get an insight of the given data set, the third step is dedicated to visualize the data

distribution over all the features, categorical and numerical, against the Ad eCPM values.

[15]

Figure 2: Floor pricing value distribution (blue line) with histogram

aside with normal distribution (black line)

Figure 2 represents the way that floor price values are distributed in each of the pricing rules

specified for a certain website.

The following three figures give a detailed overview of how eCPM is distributed against the

categorical features used in the data set.

Figure 3 shows that most of the generally well-paid ads are promoted by branding type

‘Branded’ which is the most profitable of them regarding revenue.

[16]

Figure 3: Branding Type histogram

Figure 4 represents the statistical analysis of the Device categories field of the data set, which

shows that the best paid in average Ad eCPM are the ads that were displayed on a Desktop

device while High-end mobile devices and Tablets share a rather large number of impressions.

Figure 4:Device Categories histogram

[17]

Moreover,

Figure 5 gives a detailed visual estimation of the importance of each inventory size and how it

is being distributed to the different values of Ad eCPM. In the example presented, the most

profitable size is ‘300x250,320x100,320x50’ is presented with an average value of 0.28, even

though some of these sizes take part in other categories as well with lower average values.

Figure 5: InventorySize Histogram

[18]

2.3 Categorical feature analysis

Supporting the observation that all the features are categorical, such as Pricing rules, Inventory

sizes, Device Categories, and Branding types the proposed procedure indexes these features to

their ordinal representation through the appropriate transformation and gives an integer value

respectively. The rest data in the data set are numerical values that can participate in our

modeling process as they are. Thus there is no need for extra preprocessing of the data.

In Figure 6 the categorical indexing is being displayed with the discrete values on the x-axis vs.

the different features on the y-axis and the different pricing rules as the color coding.

Figure 6: Categorical features distribution against Ad eCPM

[19]

2.4 Numerical measures analysis

In contrast with the categorical features, the numerical measures are imported as provided by the

Google Ad Manager reporting tool.

Figure 7: Numerical features distribution

(Ad eCPM, Ad request eCPM, Estimated revenue, and Floor values)

Although it is mandatory to scale all continuous numeric input features so that not a single

feature influences the model performance, we chose not to standardize our data set because the

only features that could interfere with our modeling estimation are Ad requests and Ad

Impressions.

Moreover, after the step of categorical features encoding, the data set visualization provides the

capability to extract linearity between features to combine them in new ones properly. In this use

case, the procedure showed a linear correlation between Ad Requests – Revenue and Ad

Impressions – Revenue which can be explained because the Revenue value results from the

multiplication of Ad Impressions and a value called Close CPM which depicts the actual payable

[20]

value of each impression. This multiplication gives an estimate of the revenue gained which on

average is provided by Ad eCPM.

Also, the Ad Impressions measure can be described by a factor of Ad Request’s value. This

linearity between Ad requests, Ad Impressions, and Estimated revenue also denotes that these

measures won’t provide any information gain to the modeling procedure and their values will

affect the revenue directly and not the Ad eCPM value.

As we can see both in Figure 7 and Figure 8, there is a strong statistical relationship which is

measured by Pearson correlation factor (0.943 or 94.3%) between Ad eCPM and Floor value of

each pricing rule which is the key property of our research.

Figure 8: Correlation Diagram against all dimensions

Based on this working hypothesis this algorithm provides a forecasting model of the

Ad eCPM against other dimensions introduced by our data set, to achieve increased revenue

with the appropriate adjustment of the Floor value of each pricing rule on a per-site basis.

[21]

3 Methodology

3.1 Description

As a starting step on the modeling phase of this algorithmic procedure, a correlation

matrix – diagram as shown in Figure 9 is created, in order to model the Ad eCPM

behavior. This matrix consists of Pearson correlation factor values against the

information gained about Ad eCPM values.

Subsequently, feature sets that have strong correlation factors over the three major

categories: Branding types – Device Categories – Inventory Sizes are defined. Each set

consists of a tuple of three integer values, e.g. (1, 1, 7) which indicates that there is a

strong relationship among Branded type equal to 1 – ‘Branded’, Device category equals

to 1 – ‘Desktop’ and Inventory size equals 7 – ‘300x600, 336x280, 300x250’.

Figure 9: Correlation diagram based on average Ad eCPM values against

all dimensions of (Branding type, Device Category, Inventory Size)

Each of these sets underwent to a testing phase of different modeling schemes so that

the best model fitting would be acquired.

[22]

3.2 Model Specification

To achieve the best fitting for the proposed model to the specified data set, five different

modeling approaches were used, starting from a naïve hypothesis as our baseline model

to more sophisticated models created by ARIMA and Seasonal ARIMA processes.

3.2.1 Naive hypothesis – Simple Average

A model like 𝑦̂𝑡 = 𝑦𝑡−1 is a great baseline for any time series prediction, as it relies to

just the previous value of our data series and thus the error that will be introduced is

rather small. Moreover, financial related series are likely to depend on the previous time

period value and as forecasting steps increase, the error margin increase too. To

overcome this problem, we, assumed that the future value of our variable depends on the

average of its 𝑘 previous values and 𝑘 equals to the length of the time series. Such

forecasting technique which forecasts the expected value equal to the average of all

previously observed points is called Simple Average technique.

𝑦̂𝑡 =
1

𝑘
∑ 𝑦𝑡−𝑛

𝑘

𝑛=1

[23]

Figure 10: Simple average modeling

Although this approach gives a prediction with a reasonable error for the first

forecasting step, most of the time, if it is used to forecast more than one step ahead it

will lead to a rather large amount of errors in the last forecasting value.

[24]

3.2.2 Moving average

To provide a more accurate forecasting value, we used a simple moving average model,

which forecasts the next value(s) in a time series based on the average of a fixed finite

number 𝑝 of the previous values. Thus, for all 𝑖 > 𝑝

𝑦̂𝑡 =
1

𝑝
∑ 𝑦𝑡−𝑛

𝑝

𝑛=1

This approach also incorporates the seasonal flow of the values of the time series, but

again it only gives a rather rough prediction when we increment the forecasting steps.

Figure 11: Moving average example modeling

As shown in the above Figure 11 the moving average modeling method fits better the

training dataset because it incorporates the seasonal trend of the data. The basic

weakness of this modeling approach is that if the train data set has few data points; the

error produced increments rapidly as forecasting steps increase.

[25]

3.2.3 Weighted moving average

As a next modeling approach, we chose a weighted moving average model which uses

for the forecasting step value a different way of weighting the past observations and sum

up to the weight value to one. The larger weights often assigned to the more recent

observations promoting the corresponding values.

𝑦̂𝑡 = ∑ 𝑤𝑛𝑦𝑡+1−𝑛

𝑘

𝑛=1

In the above equation 𝑤𝑛 are the weights for each of the previous values and 𝑘 is the

number of them to consider in the sum.

Figure 12: Weighted moving average example modeling

This modeling approach has the advantage that if the autocorrelation factor of the data

set to be fit depends over the k lag values, the predicted values approximate better the

testing data set. Given this attribute, this approach also has its weakness because the

weights array has a finite number of elements.

[26]

3.2.4 ARIMA (p, d, q)

Autoregressive Integrated Moving Average (ARIMA) models consist of 3 basic steps.

The Auto regression part AR (𝑝) where 𝑝 is the order of the AR model, the Integration I

(𝑑) part and the Moving average MA (𝑞) part. While exponential smoothing models

were based on a description of trend and seasonality in the data, ARIMA models aim to

describe the correlations in the data with each other.

𝛷(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + 𝜃(𝐵)𝜀𝑡

Where𝜀𝑡 is a white noise process with mean zero and variance𝜎2, 𝐵 is the backshift

operator, and 𝛷(𝑧) and 𝜃(𝑧) are polynomials of order 𝑝 and 𝑞 respectively.If𝑐 ≠ 0 ther

e is an implied polynomial of order 𝑑in the forecast function.

Figure 13 shows exactly the model predictions over the train data and the accuracy of

each ARIMA model of order 𝑝 and 𝑞 respectively.

Figure 13: Different parameter values in ARIMA (p, d, q) along with

the original data

[27]

Figure 14: Quantiles convergence plots

In addition, in Figure 14 we present the plots that provide us information about the

approximated values for the ARIMA modeling approach as described by Algorithm 1.

All of the above modeling schemes are all examined through statistical measures of

error and information retrieval. One of them is the Mean Square Error rate (MSE), and

another is the 𝑟2 measure which provides the metric of the accuracy for the examined

model.

The Akaike information criterion (AIC) (Bozdogan, 1987) is an estimator of the relative

quality of statistical models for a given set of data. Given a collection of models for the

data, AIC estimates the quality of each model, relative to each of the other models.

Thus, AIC provides a means for model selection. The advantages are that it is valid for

both nested and non-nested models, it can compare models with different error

distribution and finally, it can avoid multiple testing issues.

Some weakness of the AIC is that it cannot be used to compare models of different data

sets. Thus, the selected model with the lowest AIC is only valid and better than another

for the specific data set.

[28]

Figure 15 ARIMA Model fitting

As an example of the ARIMA model fitting Figure 15 show the resulting visualization

for the predicted data denoted by the blue line against the original data set. As an

extension of the information that describes best the model Table 3 presents thoroughly

all the parameters required to define this model fitting.

Table 3: ARIMA (2, 0, 2) model summary

[29]

3.2.5 Seasonal ARIMA (SARIMA)

An improvement over ARIMA is Seasonal ARIMA which takes into account the

seasonality of dataset. As shown in Figure 16 the original data are decomposed into a

series of trend and seasonality. This decomposition is required to determine the

seasonality factor which will be used by the equation of the appropriate model.

Figure 16: Data decomposition showing trend and seasonality

First of all, this class of models was introduced by Box and Jenkins (1976) and offers a

good representation of many seasonal series that we find in practice and in simplified

form is written as the ARIMA model (𝑃, 𝐷, 𝑄)𝑚 × (𝑝, 𝑑, 𝑞) where the period of the

seasonal series is𝑚.

𝛷(𝐵𝑚)𝜑(𝐵)(1 – 𝐵𝑚)𝐷(1 – 𝐵)𝑑𝑦𝑡 = 𝑐 + 𝛩(𝐵𝑚)𝜃(𝐵)𝜀𝑡

𝛷(𝑧) and 𝛩(𝑧) are polynomials, each containing no roots inside the unit circle,

representing the seasonal AR operator of order 𝑃 and the seasonal moving average MA

operator of order 𝑄 respectively. If𝑐 ≠ 0 the implied polynomial is of order 𝑑 + 𝐷 in

the forecasting function.

[30]

ARIMA and SARIMA forecasting is selecting an appropriate model order, that is the

values𝑝, 𝑞, 𝑃, 𝑄, 𝐷, 𝑑. If 𝑑 and 𝐷 are known, we can select the orders 𝑝, 𝑞, 𝑃 and 𝑄 via

an information criterion such as the𝐴𝐼𝐶:

𝐴𝐼𝐶 = −2 𝑙𝑜𝑔(𝐿) + 2(𝑝 + 𝑞 + 𝑃 + 𝑄 + 𝑘)

Where𝑘 = 1 if 𝑐 ≠ 0 and 0 otherwise, and 𝐿 is the maximized likelihood of the model

fitted to the differenced data(1 – 𝐵𝑚)𝐷(1 – 𝐵)𝑑𝑦𝑡 .

As already mentioned, the goal again is to select the model that minimizes the AIC

amongst all of the models that are appropriate for the data.

The AIC (K.P. Burnham, 2004) also provides a method for selecting between the

additive and multiplicative error models. The point forecasts from the two models are

identical so that standard forecast accuracy measures such as the MSE or mean absolute

percentage error (MAPE) are unable to select between the error types. The AIC is able

to select between the error types because it is based on likelihood rather than one-step

forecasts.

Figure 17 SARIMA model fitting

Again as an example of the SARIMA process of model fitting, Figure 17 visualizes the

way that predictions are fit over the original data set, while

[31]

Table 4 describe the coefficients of the model function.

[32]

Table 4: Model coefficients description table

As an example of SARIMA(2,0,1)7(1,0,1) the above equations evaluate to:

(1 – 𝐵7)0(1 – 𝐵)0 = 1

𝛷(𝐵𝑚) = 𝛷(𝐵7) = 1 − 𝛷1𝐵7

𝜑(𝐵) = 1 − 𝜑1𝛣

𝛩(𝐵𝑚) = 𝛩(𝐵7) = 1

𝜃(𝐵) = 1 + 𝜃1𝛣

Forming the final equation of the model which is:

𝛷(𝐵𝑚)𝜑(𝐵)𝑦𝑡 = 𝑐 + 𝜃(𝐵)𝜀𝑡

(1 − 𝛷1𝐵7)(1 − 𝜑1𝛣)𝑦𝑡 = 𝑐 + (1 + 𝜃1𝛣)𝜀𝑡

(1 − 𝜑1𝛣 − 𝛷1𝐵7 + 𝛷1𝜑1𝐵8)𝑦𝑡 = 𝑐 + (1 + 𝜃1𝛣)𝜀𝑡

𝑦𝑡 − 𝜑1𝑦𝑡−1 − 𝛷1𝑦𝑡−7 + 𝛷1𝜑1𝑦𝑡−8 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1

𝑦𝑡 = 𝜑1𝑦𝑡−1 + 𝛷1𝑦𝑡−7 − 𝛷1𝜑1𝑦𝑡−8 + 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1

And finally, the forecasting function will be:

𝑦𝑡+1 = 𝜑1𝑦𝑡 + 𝛷1𝑦𝑡−6 − 𝛷1𝜑1𝑦𝑡−7 + 𝑐 + 𝜃1𝜀𝑡

[33]

Figure 18: Autocorrelation and partial autocorrelation plotting of the time series original data

Algorithm Algorithm 1 Determine appropriate model order 𝑝, 𝑞, 𝑃, 𝑄, 𝐷, 𝑑 for SARIMA

modeling approach.

For each high correlated feature list of (Branding type BT, Inventory size IS, Device category

DC):

1. Construct Autocorrelation, and partial autocorrelation plots to heuristic determine an

approximation of 𝑝0, 𝑞0, 𝑃0, 𝑄0, 𝐷0, 𝑑0

2. Based on the previous step we calculate the AIC information criterion for𝑖𝜖[𝑝0 − 2, 𝑝0 + 2],

𝑘𝜖[𝑞0 − 2, 𝑞0 + 2],𝑙𝜖[𝑃0 − 2, 𝑃0 + 2], 𝑗𝜖[𝑄0 − 2, 𝑄0 + 2] and 𝐷0, 𝑑0𝜖{0, 1}, where 𝑙, 𝑗 ≤ 𝑝0,

𝑞0 respectively.

3. Finally, we choose 𝑝, 𝑞, 𝑃, 𝑄, 𝐷, 𝑑 that evaluate as 𝑚𝑖𝑛𝐴𝐼𝐶 from the derived table.

[34]

4 Results

To test the software and the methodology that was created, all models have been applied

on two different pricing rules over a specific website and the results of each analysis

present revenue increase after providing the forecasted floor pricing values as new rules

at Google Ad Manager pricing rules editing tool.

Figure 19: Forecasted values of Ad eCPM and their revenue

Figure 19 shows the revenue increment after applying the forecasted Ad eCPM values

for 11 consequent days on the pricing rule floor price. Also, Table 5 presents the

revenue uplift estimation for these days.

[35]

Table 5: Estimated revenue uplift case 1

Dates Estimated Revenue

05-10-2018 8.82 €

06-10-2018 8.53 €

07-10-2018 8.70 €

08-10-2018 8.62 €

09-10-2018 6.23 €

10-10-2018 6.96 €

11-10-2018 10.14 €

12-10-2018 10.91 €

13-10-2018 9.71 €

14-10-2018 10.55 €

15-10-2018 10.48 €

This revenue uplift was achieved at first by keeping the number of impressions nearly

constant with load balancing of the available traffic of the specific ad units that are

being examined. Only 20% of the real traffic appeared at the examined ad units were

under the forecasting process.

Moreover, we acquired the resulting forecasted Ad eCPM values by the SARIMA

process as depicted in Figure 17. Those values were applied as floor values for the

specific pricing rule, and the resulting revenue increment was reported back as feedback

from the Google Ad Manager reporting tool. This procedure of course must be at a

constant level and should have daily feedback of the forecasting error so as to eliminate

the case like Figure 20.

[36]

 In Figure 20 on the other hand, shows that in this case although the forecasted Ad

eCPM values presented uplift on the revenue for six days, the model error rate increased

rapidly, and a re-evaluation should be instantiated. This fact led to a decrease in the

estimated revenue which after a re-training and evaluation of the new forecasting values

showed an increasing trend. Again, the uplift of the estimated revenue was increasing

roughly higher than 10% for these six days as shown in Table 6.

Table 6: Estimated revenue uplift case 2

Dates Estimated Revenue

05-10-2018 9.78 €

06-10-2018 10.28 €

07-10-2018 8.18 €

08-10-2018 7.77 €

09-10-2018 8.76 €

10-10-2018 10.90 €

Figure 20: Forecasted values of Ad eCPM and their revenue

[37]

5 Software Usage

The software that has been developed is made on the Python 3.7.0 programming

language. It has been used Jupyter notebook server for developing the test modeling

approach locally as shown in Figure 22, while the final tool was deployed on a Google

Colaboratory notebook.

Jupyter notebook environment installed as a local server can be obtained, is supported

and fully documented on (Jupyter notebook environment , 2018) as shown in Figure 23.

Google Collaboratory is a free Jupyter notebook environment that requires no setup and

runs entirely in the cloud as displayed in Figure 21.

The advantage of Collaboratory over Jupyter notebook local server is that any machine

learning and neural network algorithms can be accelerated using Google’s Cloud

computing engine and by using powerful graphic card GPUs or TensorFlow Processing

Units  - TPUs while the local server is limited to the computational resources provided

by the personal computer.

Figure 21: Google Collaboratory online environment

[38]

Figure 22: Jupyter local notebook environment

In order to address the final implementation of the proposed software solution, certain

popular libraries and toolboxes of Python were used such as (Numpy, 2018), (SciPy,

2018), (Pandas, 2018) and (Scikit-Learn, 2018) combined with two basic visualization

libraries (MatplotLib, 2018) and (Seaborn, 2018).

For the statistical models, as well as for conducting statistical tests, and statistical data

exploration such as ARIMA and SARIMA processes Statsmodels (Seabold, 2010)

module has been used.

To visualize any interactivity, we also used (Bokeh, 2018) visualization library which

supports such actions over plotted data.

[39]

Figure 23: Jupyter environment website

[40]

6 Conclusion

The problem this dissertation tried to solve was to create a time series algorithmic

procedure such as to forecast floor pricing values of Google Ad Manager pricing rules,

to achieve revenue increment (maximization) based on historical data. At first, the data

was provided through a programmatic procedure based on the API of Google Ad

Manager reporting tool and offered a dataset with several pricing rules over several

websites with the same or different ad unit dimensions. The algorithm managed to work

in multiple instances and is now becoming a pillar of how the Yield Management sector

for publishers. Utilizing the important variables that affect pricing and trying to leverage

the maximum available amount of advertising money is something all publishers need to

do. With this algorithm and way of operating the way for maximum efficiency is being

paved.

6.1 Future Steps

To make this procedure more independent and accurate on the forecasting values that

are provided, we propose a deployment on a neural network environment where the

decision and the application of each pricing value would be instant by the Artificial

Intelligent algorithm. These kinds of algorithms eliminate the problem of real-time

feedback and provide more efficient ways to evaluate forecasting models. Moreover, the

ability to introduce external parameters other than the actual ad parameters, e.g.,

weather conditions, sudden viral news, acts of God is also something that we should

heavily take into account. Since we have moved towards the first step of actually

incorporating data to actively affect our decision to set a price, anything that is relevant

to the ad will now become an important factor.

6.2 Weaknesses

The proposed approach also suffers of some weak points that focus on the feedback

scheme that should instantiate a re-evaluation process phase as soon as the error rate of

the forecasting values goes over a threshold value. Moreover, the time margin being

only up to a day is not sufficient to go into a marginal analysis

[41]

7 References

Bokeh. (2018, December 1). Retrieved from Bokeh: https://bokeh.pydata.org/en/latest/

Bozdogan, H. (1987). Model Selection and Akaike’s Information Criterion (AIC): The

General Theory and Its Analytical Extensions. Psychometrika , pp. 345–370.

Jun Wang, S. Y. (2016). Real-Time Bidding based Display Advertising: Mechanisms

and Algorithms. ECIR .

Jupyter notebook environment . (2018, December 1). Retrieved from Jupyter notebook

environment : https://jupyter.org/

K.P. Burnham, D. A. (2004). Multimodel Inference: Understanding AIC and BIC in

Model Selection. Sociological methods and research , pp. 261–304.

Kan Ren, W. Z. (2018, April). Bidding Machine: Learning to Bid for Directly

Optimizing Profits in Display Advertising. IEEE TRANSACTIONS ON KNOWLEDGE

AND DATA ENGINEERING .

MatplotLib. (2018, December 1). Retrieved from MatplotLib: https://matplotlib.org/

Numpy. (2018, December 1). Retrieved from Numpy 1.15.4: http://www.numpy.org/

Pandas. (2018, December 1). Retrieved from Pandas: http://pandas.pydata.org/

Scikit-Learn. (2018, December 1). Retrieved from Scikit-Learn: https://scikit-learn.org

SciPy. (2018, December 1). Retrieved from SciPy: https://scipy.org/

Seabold, S. a. (2010). Statsmodels: Econometric and statistical modeling with python.

9th Python in Science Conference .

Seaborn. (2018, December 1). Retrieved from Seaborn: https://seaborn.pydata.org

Shuai Yuan, J. W. (2014). A Survey on Real Time Bidding Advertising. IEEE ADKDD .

[42]

Weinan Zhang, J. X. (2016). Learning, Prediction and Optimisation in RTB Display

Advertising. CIKM .

Wush Chi-Hsuan Wu, M.-Y. Y.-S. (2015, August). Predicting Winning Price in Real

Time Bidding with Censored Data. ACM .

[43]

8 Appendices 1

8.1 Software code 2

 3

-*- coding: utf-8 -*- 4

"""Final_AdeCPM_Analysis.ipynb 5

 6

Automatically generated by Colaboratory. 7

 8

Original file is located at 9

 https://colab.research.google.com/drive/1IuW6sKwpsGmyCSiDxD-fEoKAflENOOkL 10

 11

#Prerequisites 12

""" 13

 14

!pip install -U scikit-learn 15

!pip install -U seaborn 16

!pip install -U numpy 17

!pip install -U scipy 18

!pip install -U matplotlib 19

!pip install -U statsmodels 20

!pip install -U xlrd 21

 22

"""##Importing all libraries""" 23

 24

import warnings as wn 25

wn.simplefilter('ignore') 26

 27

import pandas as pd 28

frompandas.plotting import table 29

 30

importmatplotlib.pyplot as plt 31

importnumpy as np 32

[44]

fromsklearn.preprocessing import OrdinalEncoder, MinMaxScaler 33

 34

from mpl_toolkits.mplot3d import Axes3D 35

importmatplotlib as mpl 36

importseaborn as sns 37

 38

from __future__ import print_function 39

 40

importscipy as sc 41

importstatsmodels.api as sm 42

importstatsmodels.formula.api as smf 43

 44

fromsklearn.metrics import mean_squared_error, 45

mean_absolute_error,mean_squared_log_error,r2_score 46

 47

defdfCorrelationPlot(df, figsize=(10, 6), threshold=0.5, threshsize=0, vmin=0, vmax=1, figname='') : 48

correlations = df.corr() 49

correlations = 50

correlations[correlations[:]>threshold].dropna(axis=1,thresh=threshsize).dropna(axis=0,thresh=threshsiz51

e).fillna(0) 52

fig = plt.figure(figsize=figsize) 53

ax = fig.add_subplot(111) 54

hm = sns.heatmap(round(correlations,3), annot=True, ax=ax, cmap="coolwarm",fmt='.3f', 55

linewidths=.005, vmin=vmin, vmax=vmax) 56

if ~(figname=='') : 57

plt.savefig(figname) 58

plt.show() 59

return correlations 60

 61

"""# Data Import 62

 63

Original Data 64

 65

Importing Data from Excel spreadsheet. 66

""" 67

 68

originalDF = pd.read_excel('adwords_new_clean.xlsx', sheet_name='Data', index_col=None) 69

[45]

prDF = pd.read_excel('pronews_price_floors.xlsx', sheet_name='DATA', index_col=[0,1,2]) 70

originalDF = originalDF.join(prDF, on=['Pricing rules', 'Days', 'Branding types']) 71

print(originalDF.columns) 72

originalDF.describe() 73

 74

"""Some sample data rows.""" 75

 76

originalDF.head() 77

 78

"""## Encoding - Label indexing""" 79

 80

feature_names = ['Pricing rules', 'Inventory sizes', 'Device categories', 'Branding types'] 81

featuresDF = originalDF[feature_names] 82

OrdinalENC = OrdinalEncoder() 83

OrdinalENC.fit(featuresDF) 84

i=0 85

for cat in OrdinalENC.categories_: 86

print(feature_names[i], ' -> ', cat) 87

 i+=1 88

featuresDFindexed = pd.DataFrame(OrdinalENC.transform(featuresDF), columns=feature_names, 89

index=None) 90

df = originalDF[['Days', 'Ad requests', 'Ad impressions', 91

 'Ad request eCPM (β‚¬)', 'Ad eCPM (β‚¬)', 'Floor', 92

 'Diff AdCPMAdReqCPM', 'Estimated revenue (β‚¬)']] 93

df[feature_names] = featuresDFindexed 94

df = df.set_index('Days') 95

 96

"""And the resulted dataframe.""" 97

 98

df.head() 99

 100

"""## Scaling 101

 102

Scaling features that are too large to manipulate aside others. 103

""" 104

 105

MinMaxscaler = MinMaxScaler() 106

[46]

df[['Ad requests','Ad impressions']] = MinMaxscaler.fit_transform(df[['Ad requests','Ad impressions']]) 107

df.head() 108

 109

"""## Basic Data-Set Plotting 110

 111

1. Floor value distribution per Pricing Rule 112

""" 113

 114

fromscipy.stats import norm 115

fig = plt.figure(figsize=(12, 6)) 116

for i in range(1, len(OrdinalENC.categories_[0])+1): 117

ax = fig.add_subplot(2, 4, i) 118

 ax.set_title(OrdinalENC.categories_[0][i-1].replace('pronews.gr', '')) 119

sns.distplot(df[df['Pricing rules']==i-1]['Floor'], ax=ax, fit=norm) 120

plt.tight_layout() 121

plt.show() 122

 123

"""### 2. Numerical features distribution""" 124

 125

plt.figure(figsize=(12, 12)) 126

g = sns.pairplot(df, hue='Pricing rules', vars=['Ad requests', 'Ad impressions', 'Ad eCPM (β‚¬)', 'Floor', 127

'Estimated revenue (β‚¬)']) 128

for i, j in zip(*np.triu_indices_from(g.axes, 1)): 129

g.axes[i, j].set_visible(False) 130

 131

replacements = OrdinalENC.categories_[0] 132

for i in range(len(g.fig.get_children()[-1].texts)): 133

label = int(float(g.fig.get_children()[-1].texts[i].get_text())) 134

 g.fig.get_children()[-1].texts[i].set_text(replacements[label].replace('pronews.gr ', '')) 135

g.fig.get_children()[-1].set_bbox_to_anchor((1.1, 0.5, 0, 0)) 136

plt.show() 137

 138

"""### 3. Categorical features distribution""" 139

 140

plt.figure(figsize=(12, 12)) 141

g = sns.pairplot(df, hue='Pricing rules', vars=['Inventory sizes', 'Device categories', 'Branding types', 'Ad 142

eCPM (β‚¬)']) 143

[47]

for i, j in zip(*np.triu_indices_from(g.axes, 1)): 144

g.axes[i, j].set_visible(False) 145

 146

replacements = OrdinalENC.categories_[0] 147

for i in range(len(g.fig.get_children()[-1].texts)): 148

label = int(float(g.fig.get_children()[-1].texts[i].get_text())) 149

 g.fig.get_children()[-1].texts[i].set_text(replacements[label].replace('pronews.gr ', '')) 150

g.fig.get_children()[-1].set_bbox_to_anchor((1.1, 0.5, 0, 0)) 151

plt.show() 152

 153

"""## Correlations""" 154

 155

dfCorrelationPlot(df,threshold=0.0,threshsize=0,figname='CorrelationPlotDF.pdf') 156

 157

"""## Group by Inventory sizes vs Ad eCPM 158

 159

Histogram plots that show the distribution of data against inventory sizes according to the Ad eCPM 160

values. 161

""" 162

 163

grpDaysInventory = df.reset_index().groupby(['Days','Inventory sizes'], as_index=False)['Ad eCPM 164

(β‚¬)'] 165

grpDaysInventory.aggregate(np.average) 166

DaysInventoryDF = grpDaysInventory.aggregate(np.average)[['Days', 'Inventory sizes','AdeCPM 167

(β‚¬)']] 168

DaysInventoryDFpivot = DaysInventoryDF.pivot(index='Days', columns='Inventory sizes', values='Ad 169

eCPM (β‚¬)').fillna(0) 170

axes = DaysInventoryDFpivot.hist(figsize=(16,20), layout=(5,5), sharey=True, sharex=True) 171

inventENC = OrdinalENC.categories_[1] 172

for i in range(axes.shape[0]): 173

for ax in axes[i]: 174

try: 175

num = int(float(ax.title.get_text())) 176

iflen(inventENC[num])>24: 177

inv = inventENC[num][:24]+'...' 178

else: 179

inv = inventENC[num] 180

[48]

ax.set_title(inv+'\n (avg: '+str(round(DaysInventoryDFpivot[[num]].mean()[num], 2))+')') 181

ax.set_xlabel('Ad eCPM (β‚¬)') 182

ax.set_xlim(0,0.4) 183

ax.set_ylabel('Frequency') 184

except: 185

continue 186

plt.show() 187

 188

"""## Group by Device categories vs Ad eCPM""" 189

 190

grpDaysDevice = df.reset_index().groupby(['Days','Device categories'], as_index=False)['Ad eCPM 191

(β‚¬)'] 192

DaysDeviceDF = grpDaysDevice.aggregate(np.average)[['Days', 'Device categories','AdeCPM (β‚¬)']] 193

DaysDeviceDFpivot = DaysDeviceDF.pivot(index='Days', columns='Device categories', values='Ad 194

eCPM (β‚¬)').fillna(0) 195

axes = DaysDeviceDFpivot.hist(figsize=(9,8), layout=(2,2), sharey=True, sharex=True) 196

devicesENC = OrdinalENC.categories_[2] 197

for i in range(axes.shape[0]): 198

for ax in axes[i]: 199

num = int(float(ax.title.get_text())) 200

ax.set_title(devicesENC[num]+' (avg: '+str(round(DaysDeviceDFpivot[[num]].mean()[num], 2))+')') 201

ax.set_xlabel('Ad eCPM (β‚¬)') 202

ax.set_xlim(0.15,0.4) 203

ax.set_ylabel('Frequency') 204

plt.show() 205

 206

"""## Group by Pricing rules vs Ad eCPM""" 207

 208

grpDaysRules = df.reset_index().groupby(['Days','Pricing rules'], as_index=False)['Ad eCPM (β‚¬)'] 209

DaysRulesDF = grpDaysRules.aggregate(np.average)[['Days', 'Pricing rules','AdeCPM (β‚¬)']] 210

DaysRulesDFpivot = DaysRulesDF.pivot(index='Days', columns='Pricing rules', values='Ad eCPM 211

(β‚¬)').fillna(0) 212

axes = DaysRulesDFpivot.hist(figsize=(12,9), layout=(3,3), sharey=True, sharex=True) 213

devicesENC = OrdinalENC.categories_[0] 214

for i in range(axes.shape[0]): 215

for ax in axes[i]: 216

try: 217

[49]

num = int(float(ax.title.get_text())) 218

ax.set_title(devicesENC[num].replace('pronews.gr ', '')+ 219

 ' (avg: '+str(round(DaysRulesDFpivot[[num]].mean()[num], 2))+')') 220

ax.set_xlabel('Ad eCPM (β‚¬)') 221

ax.set_xlim(0,0.6) 222

ax.set_ylabel('Frequency') 223

except: 224

continue 225

plt.show() 226

 227

"""## Group by Branding types vs Ad eCPM""" 228

 229

grpDaysBranding = df.reset_index().groupby(['Days','Branding types'], as_index=False)['Ad eCPM 230

(β‚¬)'] 231

DaysBrandingDF = grpDaysBranding.aggregate(np.average)[['Days', 'Branding types','AdeCPM (β‚¬)']] 232

DaysBrandingDFpivot = DaysBrandingDF.pivot(index='Days', columns='Branding types', values='Ad 233

eCPM (β‚¬)').fillna(0) 234

axes = DaysBrandingDFpivot.hist(figsize=(10,4), layout=(1,2), sharey=True, sharex=True) 235

brandENC = OrdinalENC.categories_[3] 236

for i in range(axes.shape[0]): 237

for ax in axes[i]: 238

try: 239

num = int(float(ax.title.get_text())) 240

ax.set_title(brandENC[num]+' (avg: '+str(round(DaysBrandingDFpivot[[num]].mean()[num], 2))+')') 241

ax.set_xlabel('Ad eCPM (β‚¬)') 242

ax.set_ylabel('Frequency') 243

except: 244

continue 245

plt.show() 246

 247

"""# Correlations Ad eCPM over Branding, Devices and Inventories 248

 249

##Correlation Matrix 250

 251

Threshold value 0.95 and binding length at least 7 252

""" 253

 254

[50]

newDF = pd.concat([DaysBrandingDFpivot, DaysDeviceDFpivot, DaysInventoryDFpivot], 255

axis=1, keys=['Branding','Device','Inventory']) 256

resCorrelations = dfCorrelationPlot(newDF, 257

threshold=0.95, 258

threshsize=7, 259

figsize=(12,8), vmin=0.92, 260

figname='CorrelationPlotBrandingDeviceInventory_0.95_7.pdf') 261

 262

"""##Correlated categorical dimensions 263

High scored features identification 264

""" 265

 266

resCorr = resCorrelations.reset_index() 267

for i in range(OrdinalENC.categories_[2].shape[0]): 268

 r = resCorr 269

try: 270

 r = r[(r['level_1']==i) & (r['level_0']=='Device')] 271

 Branding = 272

int(r.Branding[r.Branding==np.max(r.Branding.as_matrix())].dropna(axis=1).columns[0]) 273

inventory = int(r.Inventory[r.Inventory==np.max(r.Inventory.as_matrix())].dropna(axis=1).columns[0]) 274

print(OrdinalENC.categories_[2][i]) 275

print('\t'+str(Branding)+':'+OrdinalENC.categories_[3][Branding], 276

str(inventory)+':'+OrdinalENC.categories_[1][inventory]) 277

except: 278

continue 279

print('==') 280

for i in range(OrdinalENC.categories_[1].shape[0]): 281

 r = resCorr 282

try: 283

 r = r[(r['level_1']==i) & (r['level_0']=='Inventory')] 284

 Branding = 285

int(r.Branding[r.Branding==np.max(r.Branding.as_matrix())].dropna(axis=1).columns[0]) 286

 Device = int(r.Device[r.Device==np.max(r.Device.as_matrix())].dropna(axis=1).columns[0]) 287

print(i, OrdinalENC.categories_[1][i]) 288

print('\t'+str(Branding)+':'+OrdinalENC.categories_[3][Branding], 289

str(Device)+':'+OrdinalENC.categories_[2][Device]) 290

except: 291

[51]

continue 292

 293

"""#Model fitting phase ARIMA proccess 294

 295

##Analytical AIC criterion matrix 296

 297

Analytical estimate of the Akaike information criterion (AIC) along with visualization of Q-Q plots per 298

model parameters. 299

""" 300

 301

cond = (df['Branding types']==1) &(df['Device categories']==1) &(df['Inventory sizes']==7) 302

data = df.loc[cond,['Ad eCPM (β‚¬)']] 303

grpData = pd.DataFrame(data.groupby(['Days'], as_index=True)['Ad eCPM (β‚¬)'].agg(np.average)) 304

all_days = pd.date_range(grpData.index.min(), grpData.index.max(), freq='D') 305

grpData = grpData.reindex(all_days) 306

grpData = grpData.fillna(grpData.rolling(4,min_periods=1).mean()) 307

grpData['Lag_1']=grpData - grpData.shift(1) 308

grpData['Lag_2']=grpData['Ad eCPM (β‚¬)'] - grpData['Ad eCPM (β‚¬)'].shift(2) 309

grpData['Lag_3']=grpData['Ad eCPM (β‚¬)'] - grpData['Ad eCPM (β‚¬)'].shift(3) 310

grpData['UP_DOWN']=(grpData['Lag_1']>=0).astype(int) 311

grpData = grpData.fillna(0) 312

 313

maxp=3 314

maxd=0 315

maxq=2 316

 317

aic_full = pd.DataFrame(np.zeros((maxp+1,maxq+1), dtype=float)) 318

models = pd.DataFrame(np.zeros((maxp+1,maxq+1), dtype=object)) 319

 320

fig = plt.figure(figsize=(12,8)) 321

ax = fig.add_subplot(111) 322

 323

for p in np.arange(0,maxp+1): 324

for q in np.arange(0,maxq+1): 325

models.iloc[p,q] = sm.tsa.ARIMA(grpData['Ad eCPM (β‚¬)'], order=(p,0,q)) 326

try: 327

models.iloc[p,q] = models.iloc[p,q].fit(disp=False) 328

[52]

aic_full.iloc[p,q] = models.iloc[p,q].aic 329

 fig = sm.qqplot(models.iloc[p,q].resid, line='q', ax=ax, fit=True, label='Model 330

('+str(p)+','+str(q)+')') 331

except: 332

aic_full.iloc[p,q] = 0.0 333

print(aic_full) 334

 335

colormap = plt.cm.Pastel1 336

colors = [colormap(i) for i in np.linspace(0, 1, (maxp+1)*(maxq+1)*2)] 337

fori,j in enumerate(ax.lines): 338

j.set_color(colors[i]) 339

plt.legend(loc='best') 340

plt.show() 341

 342

"""##Visualization of the models described in the previous step""" 343

 344

fromdatetime import datetime as dt 345

fig = plt.figure(figsize=(12,8)) 346

ax = fig.add_subplot(111) 347

grpData.loc[dt.strptime('2018-08-01 10:00:00','%Y-%m-%d %H:%M:%S'):,['Ad eCPM 348

(β‚¬)']].plot(ax=ax) 349

 350

d = 0 351

 352

for p in np.arange(0,maxp+1): 353

for q in np.arange(0,maxq+1): 354

try: 355

 predictions = models.iloc[p,q].predict(start=dt.strptime('2018-08-01 10:00:00','%Y-%m-%d 356

%H:%M:%S'), 357

end=dt.strptime('2018-10-10 10:00:00','%Y-%m-%d %H:%M:%S'), 358

dynamic=False) 359

predictions.shift(-1).plot(ax=ax, label='ARIMA('+str(p)+','+str(d)+','+str(q)+')') 360

except: 361

continue 362

 363

colormap = plt.cm.Accent 364

colors = [colormap(i) for i in np.linspace(0, 1, (maxp+1)*(maxq+1)*2)] 365

[53]

fori,j in enumerate(ax.lines): 366

ifj.get_label()=='Ad eCPM (β‚¬)': 367

j.set_color('r') 368

else: 369

j.set_color(colors[i]) 370

plt.legend(loc='best') 371

plt.show() 372

 373

"""#Best model fit 374

 375

Visualization of the predictions made by the model scored highest in the previous phase. 376

""" 377

 378

fromdatetime import datetime as dt 379

fig = plt.figure(figsize=(12,8)) 380

ax = fig.add_subplot(111) 381

grpData.loc[dt.strptime('2018-07-10 10:00:00','%Y-%m-%d %H:%M:%S'):,['Ad eCPM 382

(β‚¬)']].plot(ax=ax, color='r', marker='o') 383

 384

p = 2 385

d = 0 386

q = 0 387

model = models.iloc[p,q] 388

predictions = model.predict(start=dt.strptime('2018-07-10 10:00:00','%Y-%m-%d %H:%M:%S'), 389

end=dt.strptime('2018-10-31 10:00:00','%Y-%m-%d %H:%M:%S'), 390

dynamic=False) 391

 392

predictions.shift(-1).plot(ax=ax, label='ARIMA('+str(p)+','+str(d)+','+str(q)+')', color='b', marker='o') 393

 394

test = grpData.loc[dt.strptime('2018-07-10 10:00:00','%Y-%m-%d %H:%M:%S'):,['Ad eCPM (β‚¬)']] 395

fromsklearn.metrics import mean_squared_error, 396

mean_absolute_error,mean_squared_log_error,r2_score 397

 398

tbl = pd.DataFrame({ 399

'AIC' :models.iloc[p,q].aic, 400

'BIC' :models.iloc[p,q].bic, 401

'r2' : r2_score(test, predictions.iloc[:92]), 402

[54]

'MAE' :mean_absolute_error(test, predictions.iloc[:92]), 403

'MSE' :mean_squared_error(test, predictions.iloc[:92]), 404

'RMSE' :np.sqrt(mean_squared_error(test, predictions.iloc[:92])) 405

}, index=['ARIMA('+str(p)+','+str(d)+','+str(q)+')']) 406

 407

table(ax, np.round(tbl.T, 4), loc='center right', colWidths=[0.2, 0.2]) 408

 409

plt.legend(loc='best') 410

plt.show() 411

 412

"""##Model Summary""" 413

 414

print(model.summary2()) 415

 416

"""##Forecasted values 417

 418

The forecasted values of the previous model. 419

""" 420

 421

print('Forecasts') 422

print(predictions.iloc[92:]) 423

 424

"""#Seasonal ARIMA proccess 425

 426

##Data decomposition 427

 428

Decomposing data to show thier trend, seasonality 429

""" 430

 431

fromstatsmodels.tsa.seasonal import seasonal_decompose 432

cond = (df['Branding types']==1) &(df['Device categories']==1) &(df['Inventory sizes']==7) 433

data = df.loc[cond,['Ad eCPM (β‚¬)']] 434

grpData = pd.DataFrame(data.groupby(['Days'], as_index=True)['Ad eCPM (β‚¬)'].agg(np.average)) 435

all_days = pd.date_range(grpData.index.min(), grpData.index.max(), freq='D') 436

grpData = grpData.reindex(all_days) 437

grpData = grpData.fillna(grpData.rolling(4,min_periods=1).mean()) 438

 439

[55]

ts = grpData.loc[dt.strptime('2018-07-01 10:00:00','%Y-%m-%d %H:%M:%S'):,['Ad eCPM (β‚¬)']] 440

decomp = seasonal_decompose(ts) 441

 442

tr = decomp.trend 443

ses = decomp.seasonal 444

 445

plt.figure(figsize=(12,8)) 446

plt.subplot(311) 447

plt.plot(ts, label='Original', marker='o') 448

plt.legend(loc='best') 449

plt.subplot(312) 450

plt.plot(tr, label='trend', marker='o', color='r') 451

plt.legend(loc='best') 452

plt.subplot(313) 453

plt.plot(ses, label='seasonal', marker='o', color='g') 454

plt.legend(loc='best') 455

plt.show() 456

 457

"""##ACF and PACF plots 458

 459

Also show their autocorrelation and partial autocorrelation plots. 460

""" 461

 462

fig = plt.figure(figsize=(12,7)) 463

ax1 = fig.add_subplot(211) 464

fig = sm.graphics.tsa.plot_acf(ts.values.squeeze(), lags=40, ax=ax1) 465

ax2 = fig.add_subplot(212) 466

fig = sm.graphics.tsa.plot_pacf(ts, lags=40, ax=ax2) 467

 468

"""## SARIMA model fitting""" 469

 470

p = 3 471

d = 0 472

q = 1 473

sesP = 1 474

sesD = 0 475

sesQ = 0 476

[56]

ses = 2 477

 478

nm = sm.tsa.statespace.SARIMAX(grpData['Ad eCPM (β‚¬)'], order=(p,d,q), 479

seasonal_order=(sesP,sesD,sesQ,ses)).fit(disp=False) 480

predictions = nm.predict(start='2018-07-10 10:00:00', end='2018-10-09 10:00:00', dynamic=False) 481

print(nm.summary()) 482

 483

"""##Visaulizing data""" 484

 485

fig, ax = plt.subplots(figsize=(12,8)) 486

grpData.loc[dt.strptime('2018-07-10 10:00:00','%Y-%m-%d %H:%M:%S'):,['Ad eCPM 487

(β‚¬)']].plot(ax=ax,color='b', 488

label='Original Observations') 489

predictions.shift(-1).plot(ax=ax, 490

label='SARIMAX('+str(p)+','+str(d)+','+str(q)+')x('+str(sesP)+','+str(sesD)+','+str(sesQ)+') 491

m='+str(ses),color='r') 492

 493

test = grpData.loc[dt.strptime('2018-07-10 10:00:00','%Y-%m-%d %H:%M:%S'):,['Ad eCPM (β‚¬)']] 494

 495

tbl = pd.DataFrame({ 496

'AIC' :nm.aic, 497

'BIC' :nm.bic, 498

'r2' : r2_score(test, predictions), 499

'MAE' :mean_absolute_error(test, predictions), 500

'MSE' :mean_squared_error(test, predictions), 501

'RMSE' :np.sqrt(mean_squared_error(test, predictions)) 502

}, index=['Model('+str(p)+','+str(q)+')']) 503

 504

table(ax, np.round(tbl.T, 4), loc='center right', colWidths=[0.2, 0.2]) 505

 506

plt.legend(loc='best') 507

plt.show() 508

 509

"""##Forecasting 7 steps ahead""" 510

 511

print(nm.forecast(steps=7)) 512

 513

[57]

"""##Plotting residuals""" 514

 515

residuals = pd.DataFrame(nm.resid, columns=['Residuals']) 516

ax = residuals.plot.hist(figsize=(10,6)) 517

residuals.Residuals.plot.kde(ax=ax, secondary_y=True) 518

importscipy.stats as sc 519

x=np.arange(-0.15,0.15,0.001) 520

plt.plot(x,sc.norm.pdf(x,0,0.0265),label='N(0,1)') 521

plt.legend(loc='upper left') 522

plt.show() 523

 524

"""#Last method on modeling data 525

 526

##Exponential Smoothing 527

 528

Specifically Holt - Winters method on Exponential Smoothing 529

""" 530

 531

fromstatsmodels.tsa.holtwinters import ExponentialSmoothing 532

Holtdf = grpData['Ad eCPM (β‚¬)'] 533

split = round(len(grpData['Ad eCPM (β‚¬)'])*0.8) 534

train, test = Holtdf.iloc[:split], Holtdf.iloc[split:] 535

model = ExponentialSmoothing(train, seasonal_periods=9, seasonal="mul").fit() 536

pred = model.predict(start=test.index[0], end=test.index[-1]) 537

 538

fig, ax = plt.subplots(figsize=(10,6)) 539

plt.plot(train.index, train, label='Train') 540

plt.plot(test.index, test, label='Test') 541

plt.plot(pred.index, pred, label='Holt-Winters') 542

 543

tbl = pd.DataFrame({ 544

'AIC' :model.aic, 545

'BIC' :model.bic, 546

'r2' : r2_score(test, pred), 547

'MAE' :mean_absolute_error(test, pred), 548

'MSE' :mean_squared_error(test, pred), 549

'RMSE' :np.sqrt(mean_squared_error(test, pred)) 550

[58]

}, index=['Holt-Winters']) 551

 552

table(ax, np.round(tbl.T, 4), loc='center right', colWidths=[0.2, 0.2]) 553

plt.legend(loc='best') 554

plt.show() 555

 556

"""##Residuals of Holt - Winters method""" 557

 558

residuals = pd.DataFrame(model.resid, columns=['Residuals']) 559

ax = residuals.plot.hist() 560

residuals.Residuals.plot.kde(ax=ax, secondary_y=True, color='b',label='kde') 561

 562

importscipy.stats as sc 563

x=np.arange(-0.15,0.15,0.001) 564

plt.plot(x,sc.norm.pdf(x,0,0.02),label='N(0,1)') 565

 566

plt.legend(loc='upper left') 567

plt.show() 568

