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The present work focused on the reduced graphene oxide contains a minimum of six oxygen atoms 

for the higher dipolar strength. The ionization potential and electron affinity decreased only for the 

six oxygen atoms based graphene. The six oxygen atoms based graphene have the highest dipole 

moment. The reduced graphene has 0.25 eV bandgap, which is very suitable for electron transfer. 

The six oxygen atoms based graphene leads to the least gauge including atomic orbital (GIAO) 

rotational tensor; however, it has the highest isotropic polarizability difference, diamagnetic 

susceptibility tensor difference, paramagnetic susceptibility tensor difference, and total susceptibility. 

The C-C bond length has increased only for the six oxygen atoms based graphene.     

________________________________________________________________________________ 

Introduction 

Graphene oxide is a type of nanomaterial which 

is water-soluble. It has prepared by the chemical 

action of oxygen with graphite crystals. The 

sheets of graphene oxide are planar in structure. 

For enhanced mechanical properties and 

excellent electrical conductivities, graphene 

oxide sheets are used for the different 

applications [1]. The oxygen content in the 

graphene oxide monolayers is found in a vast 

amount. Layers of graphene oxide are used in the 

field-effect transistor. In the manufacturing of 

biosensor, graphene oxide is helpful. For light-

emitting diode and solar cell devices, a visible 

transparent electrode is required, which can be 

achieved through the use of graphene oxide [2]. 

In the graphene oxide, oxygen atoms are 

connected with graphene along basal edges and 

corners. The conductive nature of graphene oxide 

depends on its chemical and atomic structure. 

Here, the type of hybridization plays a significant 

role. The hybridization makes it a classical 

carrier transport material [3]. By adopting 

different methods of reduction like chemical and 

thermal, the resistance of graphene material 
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could be reduced up to several orders. Now, this 

graphene oxide will become a semi-metal like 

graphene. The theoretical study reveals that the 

bandgap varies up to certain electron volts [4]. 

Due to the hydrophilic nature of graphene oxide, 

it is capable of forming aqueous colloids; this 

helps in large scale use of graphene. For the 

change in physical properties of Graphene oxide 

to graphene, the removal of functional groups is 

necessary, and an insulating material will thus 

get converted into semi metal. With respect to 

water solubility, graphene is hydrophobic [5]. 

With the help of the thin-film technique, 

graphene oxide is easily deposited in electronic 

devices. In the biomedical field, graphene oxide 

is used as a component in the drug delivery 

system. Just as carbon nanotube (CNT), reduced 

graphene oxide can also be used as a microwave 

absorbing material and also as a shielding 

material for electromagnetic interface [6]. With 

the increase in frequency, the value of 

permittivity of reduced graphene oxide 

decreases; this shows that the dielectric response 

of reduced graphene oxide is frequency-

dependent [7]. The conductivity of reduced 

graphene oxide is lesser than that of graphite 

because of the reduction process, which shows 

the presence of residual groups [8]. For 

microwave absorption, an impedance match 

characteristic is essential; however, a tremendous 

value of permittivity is risky for impedance 

matching. As a result, strong reflection and weak 

absorption take place in graphite; therefore, 

reduced graphene is a better option [9]. It also has 

a disadvantage in the form of dielectric loss and 

magnetic loss. The novel materials, such as 

carbon nanotubes and graphene, are difficult to 

be used in an integrated form [10]. In the present 

work, we are introducing that reduced graphene 

contains a minimum of six oxygen atoms for the 

higher dipolar strength, which is more suitable 

for the anisotropy and electrical conductivity. 

The reduced graphene has more exceptional 

applications as compared with pure graphene; 

secondly, the pure graphene is costly; however, 

reduced graphene is cheap and easy to 

manufacture. The motivation of this work is we 

can predict doping of other unknown organic 

materials with pure graphene. 

Computational methodology 

All the molecules are optimized by the Gaussian 

09 Software package [11] with the help of 

density functional theory (DFT) method B3LYP 

[12-13] by 6-31G** basis set [14]. With the help 

of python aggregation [15], the oxygen atoms are 

doped in the graphene and optimized 300 number 

of times and found the most stable conformation. 

The oxygen atoms are step by step added in the 

graphene and optimized by DFT methodology, as 

shown in Figures 1 and 2. Here, minimum 

negative energy-based conformations are 

concerning because of minimum energy based 

conformations are more stable for the reaction 

mechanism and other purposes. The B3LYP 

function and 6-31G** basis set are suitable for 

the organic compound; however, in the case of 
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metals, this strategy not useful, thereby another 

DFT methodology (PBE) and the basis set 

(def2tzvp) is helpful.       

Results and Discussion 

Six oxygen atoms based graphene having more 

significant absorbance due to out of plane 

wagging of OH atom as well as C-C atom 

stretching, thereby reduced graphene increases 

the bond length. Six oxygen atoms based 

graphene also express rocking and stretching of 

OH atom, which enhances the absorbance of the 

reduced graphene. However, five and seven 

atoms based graphene have only revealed the 

rocking and scissoring of OH atom and therefore 

express the lower absorbance as a comparison 

with six atoms based graphene. Khoei et al. [16] 

have reported the C-C atom bond length of each 

hexagonal lattice increases due to OH group 

doped in the graphene; the present work also 

expresses the bond length increases only for the 

six oxygen atoms based graphene as shown in 

Figure 2 and given in Table 3. Leenaerts et al. 

[17] have reported the doping of water cluster 

with graphene-enhanced the dipole moment and 

expressed very small resistance in the present 

work also the dipole moment increased only for 

the 6th oxygen atom and expressed 0.2eV 

bandgap which is suitable for the electron 

transfer from highest occupied molecular orbital 

(HOMO) to lowest unoccupied molecular orbital 

(LUMO) as given in Table 1. Hernandez et al. 

[18] have reported DFT as the most suitable tool 

for the prediction of graphene and water 

molecule interaction in the present work also, 

DFT(B3LYP) methodology is used for the 

experimental evidence. Abid et al. [19] have 

reported the increased doping of oxygen atom in 

the graphene to enhance the bandgap of graphene 

oxide here; we found that bandgap increased with 

doping of oxygen atom so we can say theoretical 

prediction correlated with the experimental 

evidence as given in Table 1. Yang et al. [20] 

have reported the polarity of graphene oxide 

connected with the adsorption ability to different 

monomers, and these monomers modify the 

capability of the graphene oxide for the different 

applications. Acik et al. [21] have reported in the 

review doping of oxygen atom tune the bandgap 

of graphene oxide. By the Ab initio simulation, it 

has been found that the 11.1% ratio of O/C 

(oxygen/carbon) expresses the 0.35eV bandgap. 

Here 6th, oxygen atom gives the 0.25 eV 

bandgap, which has correlated with the 

simulation prediction. The bandgap of reduced 

graphene oxide exists between 2.8eV to 0.02eV; 

Here, reported bandgap is existing between in 

this range. Mathkar et al. [22] have reported gas-

based hydrazine strategy is more suitable rather 

than the other synthesis methods for the 

preparation of reduced graphene oxide. Miao et 

al. [23] have reported an increased amount of 

nitrogen atom doping in graphene to enhance the 

magnetic properties in the present nitrogen atom 

replaced with an oxygen atom, which also 

improves the magnetic properties of reduced 



FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY (2020, VOLUME 08, ISSUE 01)  

170 

 

graphene oxide as given in Table 2. Singh et al. 

[24]  have reported six oxygen atoms based 

reduced graphene oxide interacted with the 

polymer (7OBA) in π-π stacking and enhanced 

the electric conductivity as well as dielectric 

anisotropy of the composite which is more 

suitable for the nonlinear applications. The 

dipolar strength has increased for the six oxygen 

atoms, as shown in Figure 3 and expressed in 

Table 1. The B3LYP function with the 6-31G** 

basis set is most suitable for the organic 

compound that is the reason for choosing this 

strategy [24-25]. 

Table 1. Description of the gauge including atomic orbital 

(GIAO) rotational tensor, dipole moment, bandgap and 

total energy of reduced graphene oxide with an expansion 

of oxygen atom  

No. of 

Oxygen 

atoms 

GIAO 

(a.u.) 

Dipole 

Moment 

(Debye) 

Bandgap 

(eV) 

Energy 

(a.u.) 

1 -0.0019 2.95 0.25 -2833.71 

2 -0.0018 6.46 0.25 -2908.93 

3 -0.0017 5.73 0.25 -2984.15 

4 -0.0016 5.57 0.25 -3059.37 

5 -0.0017 5.97 0.26 -3134.58 

6 -0.0015 7.56 0.25 -3209.80 

7 -0.0018 5.35 0.27 -3285.02 

8 -0.0019 7.10 0.27 -3360.25 

 

 

 

 

Table 2. Description of the diamagnetic susceptibility, 

paramagnetic susceptibility and total susceptibility with an 

expansion of oxygen atom 

No. of 

Oxygen 

atoms 

Diamagnetic 

susceptibility 

(a.u.) 

Paramagnetic 

susceptibility 

(a.u.) 

Total 

susceptibility 

(a.u.) 

1 -10401.51 10251.51 -149.99 

2 -10863.84 10714.50 -149.33 

3 -11355.02 11203.70 -151.31 

4 -11851.87 11698.74 -153.13 

5 -12138.48 11986.00 -152.48 

6 -12607.73 12454.83 -152.89 

7 -12888.30 12736.14 -152.15 

8 -13278.63 13129.01 -149.62 

 

Table 3. Description of C-C bond length of the benzene 

ring in the reduced graphene oxide with 5, 6 and 7 oxygen 

atoms 

Number of carbon 

atoms 

C-C 

bond 

length 

with 5 

oxygen 

atoms  

C-C 

bond 

length 

with 6 

oxygen 

atoms  

C-C 

bond 

length 

with 7 

oxygen 

atoms 

C73-C18 1.42310 1.42303  1.42258 

C18-C21 1.43059 1.43068 1.43029 

C21-C65 1.42413 1.42419 1.42348 

C65-C68 1.42301 1.42303 1.42352 

C68-C70 1.43037 1.43048 1.43004 

C70-C73 1.42268 1.42274 1.42220 
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Figure 1. Step by step optimized reduced graphene oxide 

with an extension of oxygen atom by random position and 

more stable conformation.  

 
Figure 2. The optimized geometry of five, six and seven 

atoms based reduced graphene oxide indicating C-C atom 

bond length, six oxygen atoms based graphene expresses 

a maximum change in bond length  

 

Figure 3. Dipolar strength of five, six, and seven oxygen 

atoms based on reduced graphene oxide. The six oxygen 

atoms based on reduced graphene, indicating more dipolar 

strength. 

Conclusions 

In the present work, it has been found that 

reduced graphene oxide contains a minimum of 

six oxygen atoms for higher dipolar strength. The 

C-C atoms bond length and dipole moment have 

enhanced only for the six oxygen atoms based 

graphene. The ionization potential and electron 

affinity reduced only for six oxygen atoms based 

graphene. The six oxygen atoms based graphene 

oxide have the least GIAO rotational tensor; 
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however, it has the highest isotropic 

polarizability difference, diamagnetic 

susceptibility tensor difference, paramagnetic 

susceptibility tensor difference, and total 

susceptibility. Graphene oxide has a high surface 

area, so it is more suitable for use as electrode 

material for batteries, solar cells, chemical 

sensors, and capacitors. Graphene oxide is 

cheaper and easier to manufacture as compared 

with pure graphene. The mixture of polymer and 

graphene oxide enhances the properties of the 

complex like elasticity, tensile strength, 

conductivity, ion conductors, hydrogen storage, 

and nanofiltration membranes. The six oxygen 

atoms based graphene expressed the π-π stacking 

with the liquid crystal materials, which is suitable 

for the solar cell and other application devices.  
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