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1 Introduction

In addition to the eight known planets in our Solar system, scientists have confirmed the

existence of 4,172 exoplanets, or planets orbiting stars other than the Sun, and identified

a further 2,522 exoplanet candidates [1]. The Solar system does not only contain planets,

though, it is also home to approximately 214 moons [2] . These moons are believed to

form either concurrently with the planet through accretion, or to be captured during the

final stages of planet formation. The theories of planet formation are universally applied to

all planets, as are those of moon formation. Thus, it is unlikely that the Solar system is

special enough to be the only one with moons. Therefore, it is reasonable to hypothesize the

existence of satellites orbiting exoplanets, also known as exomoons.

However, such satellites are small. Even within our own Solar system, the majority of

the moons were identified long after the planets themselves [2]. The farther away from Earth

we search, the more difficult it becomes to identify such bodies. In general, the search for

exoplanets, and therefore exomoons, takes one of five forms: radial velocity, astrometry,

direct imaging, gravitational microlensing, and transit. The term radial velocity refers to

the radial velocity of a star caused by the gravitational force acting on it by an orbiting

planet. This is seen from Earth via the Doppler shift that this velocity causes in the light

emitted by the star. The change in velocity of the star due to an exoplanet may also be

observed based on the miniscule motions of the star relative to other stars in the vicinity in

a process known as astrometry, though this requires particularly precise optics. The next

method of exoplanet identification is direct imaging, which images exoplanets by reducing the

signal from the star in order to see the weaker signal from the planet itself. Gravitational

microlensing works by taking advantage of the distortion of light due to the gravity of a

massive object. As with a lens, when the gravity of one body focuses the light emitted by

another, the farther body’s signal on Earth is increased. Planets orbiting this heavy body
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also lens the light, causing a spike in the light signal from the star. Finally, an exoplanet

may be identified when it passes directly between its host star and the observer on Earth.

When this occurs, the light signal from the star is reduced by a measurable amount. This

method was used, for example, by NASA on their Kepler mission which ran from 2009 to

2013 and found thousands of exoplanet candidates [3].

In October of 2018, Alex Teachey and David Kipping published evidence for the discovery

of the first-ever exomoon candidate. The finding was based on transit data from the Kepler

mission supplemented by images gathered by the Hubble Space Telescope [4]. The exomoon

candidate is believed be orbiting the gas giant planet, Kepler-1625b. Data suggests that

Kepler-1625b is several times the mass of Jupiter, while the exomoon likely has a Neptunian

mass and radius. These results follow from fitting of the light curve and modeling of the

theorized light curve for various potential bodies orbiting Kepler-1625b [4].

The potential exomoon is particularly large, especially when compared to the moons in

the Solar system. Of these, the majority orbit the planets of the outer Solar system, Jupiter,

Saturn, Neptune, and Uranus, which also host the largest moons. Among the largest are

Ganymede, which orbits Jupiter and is 2.4 times smaller than Earth [5], Titan, which orbits

Saturn and is 2.5 times smaller than Earth [6], and Callisto, which orbits Jupiter and is 2.6

times smaller than Earth [7]. Thus, the largest moons in the Solar system do not approach

the size of this proposed Neptunian satellite, which is approximately 3.9 times larger than the

Earth [8]. The large size of this potential exomoon raises the possibility of further satellites

orbiting it. After all, if the planet Neptune hosts 14 regular moons [2], a Neptune-sized

moon might host its own moons as well. If such submoons exist, what are the conditions

under which they would be stable?

The purpose of this work is to review existing literature on theoretical satellite-orbiting

bodies, or submoons, and to model these bodies in order to constrain stability conditions.

In order to achieve this goal, the stability conditions and formation conditions for moons
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will first be investigated. This process will identify stability factors that may be applied to

the study of submoons. In addition, the characteristics of the exomoon candidate, Kepler

1625-bi, will be reviewed in order to provide further context for a potential submoon in this

system.

Finally, the impact of stability criteria for submoons will be tested by simulating a sub-

moon system. These simulations will be achieved using an N-Body Fortran code, which

calculates the positions and gravitational interactions between initialized bodies.

1.1 Impetus for Work

Because submoons have not been observed in our Solar system, there has been little impetus

to study them in the past. However, a relatively recent exoplanet survey has revealed a

potential exomoon candidate orbiting the planet Kepler 1625-b. This planet was identified

in 2018 based on data collected by the Kepler space telescope, wherein the light signal emitted

from the star Kepler 1625 was analyzed for periodic light occultations due to a passing planet

[9]. This signal revealed telltale signs of a transiting planet, with an additional abnormality

in the light curve. This abnormality led to the targeted observation of three further transits

by Teachey et al. [4] which revealed the potential presence of an exomoon. The potential

orbital parameters of the exomoon were very loosely constrained by the data, as many

different configurations of the planet and exomoon system were theoretically possible. The

initial lightcurves could fit many configurations ranging from a Saturn-mass planet with

an Earth-mass moon to a very low-mass star with a Neptune-mass planet and no moon

at all, which are summarized in Table 1 (Table 1 of Heller 2018). However, Heller (2018)

identified the configuration, dubbed TKS, to be the most likely constellation of planet and

moon masses [9]. This configuration consisted of a G-type star, with a surface temperature

of between 5,000 and 6,000 Kelvin, a planet with a radius similar to that of Jupiter, and a

moon with Neptune-like dimensions [4].
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Table 1: This table, from Table 1 of Heller (2018), lists the possible configurations for Kepler-
1625 b and its proposed moon based on fitting of the observed lightcurve. The scenarios are
classified by the necessary radii of the star, planet, and satellite. The TKS solution based
on the work of Teachey et al. (2018) [4] is presented in the last row, and was determined to
be the most likely constellation of planet and moon masses and radii [9].

Based on these data, Teachey et al. (2018) proposed additional observations of the

Kepler 1625 system using the Hubble Space Telescope (HST). The HST data provided strong

statistical evidence in favor of the existence of an exomoon, though not definitive proof due

to the unknown systematic errors in the data [10]. The Teachey et al. (2018) fit to the new

transit data predicted a planet with a largely circular orbit about one astronomical unit (AU)

from the star, placing it a semi-major axis comparable to that of the Earth. This planet

was found to be approximately 103 Earth masses, or several Jupiter masses, and to have

a gravitational sphere of influence reaching out to 200 ± 50 planetary radii. Additionally,

it predicted an moon orbiting this planet on a very wide orbit of about 40 planetary radii.

This moon was also modeled to have a radius about four times the Earth’s radius. However,

the constraints on the moon were relatively weak, as there was a prograde and retrograde

orbital degeneracy and a possibility that the moon was moving on a 45◦ orbit rather than a

coplanar with the planet [11].

Despite the lack of orbital constraints, the large size and wide orbit of the proposed
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exomoon is highly unique. In fact, a Neptune-sized moon with a large semi-major axis could

even be able to host its own moon, or submoon. The proposal of this new exomoon has thus

led to a new wave of interest in potential submoons, which had thus far not been studied

much as they have not been observed in our own Solar system.

Interestingly, a subsequent study of the Kepler and HST data collected by Teachey et al.

(2018) resulted in a very different conclusion. Kreidberg et al. (2019) reanalyzed light curve

data and found that their model indicated a better fit with a planet-only solution. They

postulated that Teachey et al.’s exomoon candidate was purely a product of data reduction

rather than a physical phenomenon [12]. Teachey et al. addressed these concerns and found

that the new reduction by Kreidberg et al. was a less accurate fit, as it had higher intraorbit

and post-fit residual scatter for example. They argued that these problems can be explained

by systemic problems in Kreidberg’s reductions and that their own initial fit with the planet-

moon system was more accurate [13]. Overall, more analysis from other research groups will

help to either prove or disprove the existence of this large exomoon.

Regardless of the existence of the exomoon Kepler 1625-b i, it’s mere theorization has

sparked interesting research into the nature of submoons, where there is much to be explored.

1.2 Moon Stability Studies

As many of the factors affecting the stability of moons may be paralleled in the search for

the stability criteria of submoons, it is useful to summarize past research into moon stability.

Findings on moon stability can be used to inform the direction of submoon research as more

parallels are drawn between the two.

In its most basic form, the calculation of moon stability is based on the restricted three-

body problem, wherein the gravitational interactions of three bodies, each orbiting another,

are calculated. This problem is highly complex and cannot be directly solved. Rather, it is

modeled through computational simulations. However, when the mass of the second body,
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in this case the planet, is assumed to be very small compared to the mass of the first body,

the star here, the problem can be simplified to a two-body problem. When even further

simplified so that the moon is much smaller than the planet, the motion of the smaller mass

around the larger mass can be described in cartesian coordinates by the equations

ẍ− 2ẏ =
(

3− µ3

∆3

)
x, (1)

and

ÿ − 2ẋ =
(
− µ3

∆3

)
y, (2)

where µ3 is the mass of the smaller body times the gravitational constant G and ∆2 = x2+y2

[14].

Solving these differential equations yields a zero-velocity surface around the larger object,

upon which the smaller body’s velocity is zero. This surface bounds the sphere of gravita-

tional influence around the larger body, commonly referred to as the Hill sphere. The radius

of this sphere can be approximated as,

∆H ≈ a(1− e)µ3

3

1
3
, (3)

where ∆H is the Hill radius, a is the semi-major axis of the larger body, e is the eccentricity

of the larger body’s orbit, and µ2 is the mass of the larger body [14]. Thus, the sphere of

gravitational influence of a planet, for example, grows as the planet’s orbital radius increases,

as the planet’s orbit becomes more circular, and as the planet’s mass increases. Of course,

though this analysis provides a useful starting point for understanding some of the factors

of moon stability, it is highly simplified. Both more complex theoretical calculations and

simulations provide more insight into how different processes and bodies can affect moon

stability.
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Such research has shown that the stability of moons is strongly dependent on the char-

acteristics of the parent star, the physical and orbital parameters of the planet, and the

migration and scattering history of the planet. Of course, characteristics of the moons them-

selves, such as their size, location, inclination, and the orbital motion relative to planetary

rotation, are incredibly important factors in moon stability. Understanding these factors in

moon stability will provide valuable insight into the factors impacting submoons along with

providing guidance for future submoon stability research.

Overall, planets with low eccentricities, large masses, wide orbits, and no history of

migration or scattering are most likely to host stable moons. Furthermore, close-in moons

with low inclination and low eccentricity orbits are more likely to be stable, and moons on

retrograde orbits are more stable on very wide orbits than prograde moons. Planets orbiting

close to heavy stars are also more likely to host stable moons. The influence of moon mass

is unclear, as some research shows low mass moons to be more stable while other work finds

larger moons more stable.

The nature of the parent star around which satellites orbit can greatly affect their sta-

bility. For example, stars can drive photoevaporation that causes planetary mass loss. This

mass loss can cause moons to become unstable as the Hill sphere of the planet shrinks and

moon orbits expand and become more eccentric. The photoevaporation process is closely tied

to the star itself, as X-ray luminous stars more easily drive photoevaporation than others.

Thus, it can be expected that moons around such stars are less likely to exist on long-term

stable orbits [15].

In addition to photoevaporation, the star around which a moon orbits causes stellar

tides on the planet. These tides can slow a planet’s rotation and lead to the removal of

satellites through tidal migration [16]. Simulations have demonstrated that the absence of

satellites around Mercury and Venus can be accounted for by tidal interactions with the Sun

[17, 18]. Barnes & O’Brien (2002) found that for a large stellar mass, more than 1.5 times our
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Sun’s mass, Jovian planets can retain stable Earth-mass moons for approximately 5Gy [16].

However, by combining these stellar tides with lunar tides from orbiting satellites, Sasaki et

al. showed that that lighter parent stars host more stable moons. Thus, they conclude that

moons are generally more stable around lower mass M-type stars than G-type [19].

Thus, the luminosity and mass of a star can affect the stability of satellites through the

influence of photoevaporation and stellar tides.

While the nature of the host star is certainly an important factor in moon stability,

the size, location, and eccentricity of the parent planet must also be considered. Just as

photoevaporation and the resulting loss of planetary mass is affected by the nature of the

star, it is also affected by the location of the planet itself relative to the star. Kohler (2017)

found that the destabilization of moons through photoevaporation is more exaggerated for

planets located less than 1 AU from the host star [15]. In addition, when considering tidal

forces, Sasaki et al. (2012) found moons to be more stable when orbiting more massive

planets further from the star [19]. Thus, satellite stability is increased around planets with

larger semimajor axes when a variety of influences are considered.

In 2002, Barnes & O’Brien considered specifically the stability of satellites around close-in

planets with a semi-major axis of less than 0.6 AU. In the resulting model, the stable region

around a planet was directly related to its mass and semi-major axis as shown in Figure 1,

below (Fig. 3 of Barnes & O’Brien 2002). The three lines in Figure 1 show the minimum

planetary masses that can host moons with masses comparable to the Moon, Mars, and

Earth with a duration of 5 Gyr as a function of planetary semi-major axis and stellar mass.

In the Barnes & O’Brien model, as the stellar mass increases, moons are more stable, as

discussed above. In addition, as the planet mass increases, the stability region for each moon

mass increases as well. Finally, as the planet’s semi-major axis increases, the stability regions

also increase [16]. These findings are in agreement with the Hill radius given by Equation 3:

bodies with larger masses have larger Hill spheres, as do bodies with larger semimajor axes.
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Figure 1: This figure from Figure 3 of Barnes & O’Brien (2002) shows the stability region of
Earth-like moons as a function of planet mass, star mass, and planet semi-major axis. The
three lines indicate the minimum planetary masses necessary to host moons with masses
comparable to the Moon, Mars, and Earth for 5Gyr [16].

In addition to the location of the planet relative to the star, the location of the planet

relative to other planets can also be critical for moon stability. In their analysis of the

stability regions around giant planets in our Solar system, Shen & Tremaine (2008) found

that gravitational perturbations from other planets greatly affect stable zones beyond the

Hill sphere [20]. Furthermore, Domingos et al. (2006) described stability as a function of
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planetary eccentricity, as shown in Figure 2 (Figure 2 of Domingos et al (2006)) [21]. Shen &

Tremaine found that as the eccentricity of the planetary orbit increases, the stability region

and critical semi-major axis for both pro- and retrograde satellites decreases [20]. This

result makes sense, as a planet with an increased eccentricity undergoes large variations in

gravitational forces over the course of a single orbit.

Thus, more massive planets at larger semi-major axes with lower eccentricities have been

found to host more stable satellites. The location of the planet relative to other planets in

the system can also cause gravitational perturbations that shape stability regions beyond

the Hill sphere.

In addition to its inherent characteristics, the host planet’s past also plays an important

role in the presence of stable moons in orbit around it. This is an important consideration for

moon stability, as planetary migration is believed to be a very common occurrence. In fact,

the majority of the planets in the Solar system are theorized to have undergone significant

orbital migration during their formation [22].

One method of forming close-in giant planets, like those investigated by Barnes & O’Brien

(2002) or Kepler 1625-b, is through inward, or Type I, migration during the last stages of

planet formation. These planets are believed to form outside of the ice line and then migrate

inwards. As the planets experience a decreasing semi-major axis, their Hill sphere shrinks

and it becomes harder to gravitationally preserve their satellites. Interestingly, because the

planetary migration timescale is so much larger than the moon’s orbital period, 106 years

compared to about 102 days, the moon’s orbit is not directly affected by the migration and

the instability is mainly a result of the evolution of the Hill sphere [23]. Of course, there

are other processes affecting moons during migration. Notably, as a planet migrates, moons

orbiting within approximately 10 planetary radii may be caught in an evection resonance,

whereby their orbital eccentricities grow dramatically, resulting in a collision with the planet.

The exact boundary for moons caught in this resonance depends on the mass, oblateness, and
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size of the migrating planet. Some moons are able to survive an evection resonance depending

on the timing of the migration and inter-lunar perturbations [24]. Thus, planetary migration

can have enormous effects on satellites and the presence of satellites around newly discovered

planets can provide insight into their formation process.

Within the population of observed giant exoplanets, there is a broad eccentricity distribu-

tion. One possible explanation for this distribution is planet-planet scattering. This process

has a largely detrimental effect on existing satellites. Through N-Body simulations, Hong et

al. (2018) found that approximately 80 to 90% of moons were destabilized in planet-planet

scattering simulations. While the survival of moons did have a strong radial dependence,

even close-in moons only had a 20-40% survival rate. The survival rate also increased with

host planet mass, which makes sense considering Equation X for the Hill sphere [25]. Because

of the low survival rate of moons during scattering, observations of exomoons, or a continued

lack thereof, will provide more insight into the role of scattering in exoplanet formation.

Though the results of Hong et al. (2018) virtually precludes scattered planets from

retaining moons, Barr et al. (2017) have proposed a solution through which scattered planets

may still host moons. They show that when two rocky planets with masses between 0.25

and 10 Earth masses collide, a debris disk may be created from which new satellite systems

could accrete. Disk formation requires collisions at oblique angles and velocities near the

escape speed, and the mass of the disk is directly related to the impact velocity and angle,

increasing for high velocities and glancing impacts. The mass of the colliding planets also

affects the disk mass, as interactions between planets of equal masses create larger debris

disks. A more massive disk allows for more massive moons to form [26]. Thus, though

existing moons may not be retained through planet-planet scattering, these collisions could

result in new moon formation through the creation of a debris disk.

Perhaps the most important factor in moon stability, however, is the nature of the moon

itself. A close-in moon on a low-inclination, circular orbit, is generally found to be stable
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under a variety of conditions. In addition, the study of pro- and retrograde moons has

revealed that retrograde satellites generally have larger stability regions than prograde satel-

lites (Domingos et al. 2006). The impact of moon mass is dependent on the situation being

studied, when photoevaporation is taken into account, smaller moons are found to have a

higher survival rate [27], while tidal studies find that heavier moons are more stable if the

moon and planet are tidally locked but less stable if this does not occur [16]. Thus, more

research into the impact of satellite mass on stability when many factors are accounted for

is needed.

Through numerical simulations of the restricted elliptic three-body problem, Domingos

et al. (2006) calculated the borders of the stable regions of prograde satellites around planets

of various eccentricities as shown in Figure 2. In these simulations, the satellite was modeled

as a low mass test body on a fixed orbit. Domingos et al. (2006) found that in the large

majority of cases, a stable region exists for orbits close to the planet, and as the stable region

shrinks with increasing satellite and planet eccentricities, the allowed satellite semi-major

axis is reduced [21].
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Figure 2: This figure from Figure 2 of Domingos et al. (2006) shows the stability regions
of a prograde satellite as a function of satellite semi-major axis, satellite eccentricity, and
planetary eccentricity. The + symbol indicates collisions of the satellite and the dark areas
correspond to unstable regions, while the white areas correspond to stable regions [21].
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Furthermore, Domingos et al. (2006) found that as satellite eccentricity increases, the

stable region tends to shrink as well. Interestingly, in comparing prograde satellites, which

orbit in the same direction as the planet’s rotation, with retrograde satellites moving in

the opposite direction, it was found that retrograde satellites tend to have a larger stability

region. In fact, the stability region for a retrograde satellite with a low planetary eccentricity

was found to extend past the Hill sphere of the planet, as shown in the right image of Figure

3. These additional stable regions correspond to the F family of periodic orbits [21]. The

final expressions for the outer bounds of the stability regions for prograde and retrograde

satellites are given in terms of the Hill radius of the planet (Eq. 3) by

aEPro ≈ 0.4895 (1.0000− 1.0305eP − 0.2738eSat) , (4)

and

aERet ≈ 0.9309 (1.0000− 1.0764eP − 0.9812eSat) , (5)

where eP is the planetary eccentricity and eSat is the satellite’s eccentricity [21]. The inner

boundary of the stability region was determined by

Rp = a (1− eSat) , (6)

for both cases [21]. This study provides useful guidelines for moon stability in the most

general situation.
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Figure 3: These figures from Figures 4 and 5 of Domingos et al. (2006) show the generalized
stability regions of prograde (left) and retrograde (right) satellites as a function of satellite
semi-major axis and eccentricity. The white stable regions are bounded on the left by
Equation 6 and on the left by Equations 4 and 5 respectively. The addition stability region
in the prograde case is denoted by the letter ’F’, as it is associated with the F family of
periodic orbits [21].

Studies considering further influences on moon stability, such as photoevaporation or

tidal forces, generally agree with the results of Domingos et al. (2006), but they are able to

expand more on the impact of inclination, tidal forces, and other gravitational interactions

between planets. For example, in a 2008 study on distant gas giants in our Solar system,

Shen & Tremaine found that within the planets’ Hill spheres, no stable orbits existed for

moons with high inclinations relative to the planet’s orbital plane [20]. The destruction of

moons on high inclination orbits is likely due to so-called Kozai oscillations, which result in

moons on orbits in close proximity to the planets. When they are this close to the planet,

the moons are strongly affected by tidal evolution and disruption, causing direct collisions

between the satellite and the planet [28]. Thus, the impact of satellite inclination on stability

is an important factor when searching for stable regions.

In addition to investigating the impact of inclination, the Shen & Tremaine (2008) study

took into account the effects of gravitational interactions on satellites of the giant plants in

our Solar system. They found that prograde satellites were stable up to smaller semi-major
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axes than retrograde satellites, with values similar to those found by Domingos et al. (2008).

Specifically, they determined that many prograde satellites can survive out to about half the

Hill radius, while retrograde satellites can survive to circa 0.7 to 1 times to Hill radius [20].

In addition, Domingos et al. found that some coplanar satellites had stable orbits at semi-

major axes greater than twice the Hill radius for Jupiter, Uranus, and Neptune. Surprisingly,

Uranus and Neptune actually had some stable orbits with radii up to 10 times the Hill radius.

Domingos et al. determined that differences in stable orbits outside the Hill sphere between

the planets could be attributed to gravitational perturbations between planets and differences

in the planet-to-Sun mass ratios [21]. Thus, gravitational interactions between planets must

be considered when studying the stability of retrograde satellites outside the Hill sphere.

In constructing their stability regions, both Domingos et al. (2006) and Shen & Tremaine

(2008) did not account for variations in satellite mass, instead treating the satellite as a test

particle with negligible mass [21, 20]. These, however, become important when considering

the influence of photoevaporation, tides on the moons, or systems with multiple moons of

varying masses. When photoevaporation occurs, as discussed earlier, most satellites are

destroyed, but in about 25% of cases, small close-in satellites survive. Therefore, when

photoevaporation is a dominant process, it greatly shrinks the range of possible semi-major

axes and satellite masses. Similarly, when tidal processes are accounted for, the mass of the

satellites has an impact on its stability. Barnes & O’Brien (2002) find that more massive

satellites are removed more quickly by stellar tides and migration effects than less massive

moons around close-in planets [16]. In 2012, Sasaki et al. expanded on this work, finding

that the stability of moons is linked to tidal locking. They identified three main tidal locking

patterns: the planet locks with the star and then the moon, the planet locks only with the

moon, or the planet and moon are never tidally locked. Sasaki et al. (2012) found that

massive moons are more stable and have a longer lifetime for the first two cases, while they

have a shorter lifetime in the last case, where they are never tidally locked with the planet
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[19]. Thus, different tidal interactions can have varying effects on the stability of massive

moons as opposed to smaller satellites. Overall, introducing other influences on satellites

can provide insight into the importance of mass for moon stability.

The regions where moons can survive are impacted by a large variety of factors based on

the characteristics of the star, planet, and moon itself. Specifically, moons are found to be

more stable around distant planets with low eccentricities, large masses, and no history of

migration of scattering. In addition, they are generally more stable on close-in or retrograde

orbits with a low inclination and a low eccentricity. The impact of the mass of the star and

the moon itself depend heavily on the dominant conditions affecting the moon. These factors

for moon stability can be adapted to understand submoon stability by simply replacing the

star with a planet, the planet with a moon, and the moon with a submoon.

1.3 Submoon Stability Studies

In the past, some research has been done to narrow down stability conditions for submoons

and how they relate to the stability of moons. This research is, however, rather limited as

there was not much impetus to study submoons before the discovery of exomoon candidate

Kepler 1625-b i. Interestingly, some work was done on this topic in the 1970s and 1980s,

when it was theorized that the moon’s craters could be the result of submoons colliding with

the lunar surface [29, 30].

Submoon research has drawn many parallels to moon stability. The most recent work

suggests studying the stability of satellites around close-in planets with short periods is

especially useful, as the stability regions for moons orbiting planets have much smaller radii

than those of planets orbiting stars [31]. In general, the factors found to impact the stability

of submoons have mirrored those affecting the stability of moons, with some exceptions.

Through limited studies, it has been found that submoons can be stable on low eccentricity,

low inclination, wide radius orbits around moons also on a wide orbit. In addition, a low
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mass ratio between the submoon and its parent moon has been shown to lead to more long-

term stability. However, the study of submoons has thus far been incredibly limited and

there are many mechanisms and factors that have yet to be considered.

Though the majority of submoon research is well-correlated to moon research, one of the

main exceptions is the impact of the submoon semi-major axis. When a multitude of factors,

such as photoevaporation, migration, and tidal influences, are considered, moons on close-in

orbits have been found to be generally more stable. However, submoon research thus far

has shown that a large submoon semi-major axis corresponds to a longer lifetime [29, 30].

This finding can be seen in Figure 4 (Fig. 3 of Reid 1973), where the lifetimes of theoretical

objects orbiting our Moon are plotted with respect to their initial semi-major axis for various

submoon-moon mass ratios [29]. For each plotted mass ratio, the lifetime of the submoon

increases as the submoon semi-major axis increases. Thus, submoons on wider orbits are

stable for longer timescales than those on close-in orbits. These findings are also reproduced

in a more recent study, where Kollmeier & Raymond (2019) showed that 10-km submoons

could be stable around large moons only on wide-separation orbits [31]. Of course, there

are limitations to these studies: both Reid and Conway’s research was conducted without

many modern computational advancements which heavily limited the scope of their work,

and Kollmeier & Raymond’s work is meant only as a broad early investigation into submoon

stability. These limitations may also explain why these submoon findings do not align with

the corresponding findings for moons. Thus, though these works provide useful first steps,

future work is required to fully understand the impact of a submoon’s semimajor axis on its

stability.
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Figure 4: This figure from Figure 3 of Reid (1973) shows the lifetimes of bodies with various
masses orbiting the moon as a function of their initial scaled semimajor axis, aob. Each line
on the plot corresponds to a different mass, where µ = Mobject/Mmoon [29].

When considering moon stability, one of the most important factors is the planet’s orbit,

including its eccentricity, inclination, and semi-major axis. The planet’s orbital radius is

analogous to the moon’s semi-major axis when studying submoons. A planet on a wider

orbit is able to host moons in a larger region, as it has a larger Hill sphere given by Equation

3. This behavior has thus far been mirrored in submoon studies. In 1973, Reid found that

the number of stable mass ratios increases as the moon semi-major axis increases, and that

there is a critical moon semi-major axis below which no submoons can be stable, as shown

19



in Figure 5 (Fig. 2 of Reid 1973) [29]. In addition, Kollmeier & Raymond showed recently

that moons on wide orbits are most likely to host a stable submoon [31]. Thus, preliminary

research indicates that moons with large orbital radii are best suited to hosting submoons.

Figure 5: This figure, from Figure 2 of Reid (1973) shows the theoretical stability regions of
submoons as a function of the relative submoon mass (µ = Msubmoon/Mmoon) and the scaled
moon semi-major axis (as = rs

Rp
). Region I describes the area where there are no stable

submoons, while Region II describes the area where submoons could survive. Some moons
of the Solar system are shown for comparison [29].

Another main focus of both moon and submoon research is the mass of the bodies involved

(i.e. planet and moon and submoon). Of course, when investigating submoons, there are

three bodies to consider, instead of the two bodies interacting in the planet-moon system.

The addition of this third body, greatly complicates the system. After all, the so-called

“three-body problem” in classical mechanics has no general closed-form solution, and for the
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majority of initial conditions the resulting system is chaotic and requires numerical methods

to be solved [32]. In the past, submoon research has circumnavigated this problem either by

assuming that each mass is much larger than the next, or by treating the masses as point

sources [29, 30, 31].

Thus far, submoon research has focused heavily on the mass ratio between the moon and

submoon, rather than their individual masses. Recent results show that small submoons, as

compared to their host moon, are stable over a wider range of moon semi-major axes and

for a longer lifetime [29, 30]. As seen in Figures 4 and 5, a study of a small number of ratios

shows that higher mass ratios result in decreased submoon lifetimes and smaller stability

regions. In Figure 4, the curves indicate different submoon-moon mass ratios. Larger mass

ratios correspond to larger submoons in relation to the moon. Here, it can be seen, that

as the mass ratio increases, the curve becomes flatter, indicating that submoons survive

for a shorter period of time at large orbital radii. Similarly, in Figure 5, the mass ratio

between the submoon and the moon is plotted on the y-axis while the moon’s semi-major

axis is plotted on the x-axis. For large mass ratios, the region of possible surviving objects

shrinks. In fact, as the mass ratio increases, the necessary moon semi-major axis for a stable

submoon also increases [29]. In contrast to historical studies, Kollmeier & Raymond (2019)

were able to study the individual masses of the moon and submoon. They found that smaller

submoons are stable over a broader range of moon radii and semi-major axes, while larger

moons are also more likely to host stable submoons [31]. Thus, both historical and more

recent submoon studies show the increased stability of small submoons orbiting relatively

massive moons.

Counterintuitively, Conway (1985) also identified a critical submoon mass below which

submoons are not stable at a given eccentricity and semi-major axis. This critical submoon

mass results from the study of ‘Hill Type’ stability, which does not account for orbital

evolution over time, tidal forces, or interactions from other bodies [30]. Thus, though Conway
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does identify a minimum submoon mass, this mass is based on highly simplified calculations

and should be further studied through simulations that take many more factors into account.

In addition to the intrinsic properties of the bodies such as the planet, moon, or submoon,

there are processes that may affect the stability of moons, and therefore probably submoons

as well. Though many of these processes have yet to be investigated in the context of

submoons, the impact of tidal forces on submoons has been studied to an extent. Just as

tides on a moon from its host planet cause it to undergo tidal migration, thereby removing

its moons [16], tides on submoons from host-moons also cause orbital decay [29]. Reid found

that when the moon’s spin frequency is below the submoon’s orbital frequency, tides from the

moon, ‘drain’ the orbital angular momentum of the submoon and cause tidal decay. This

may lead to destabilization of submoons and eventual collisions with the moon itself. In

contrast, Conway (1985) found that tides actually circularize the submoon’s orbit and have

a stabilizing effect [30]. These opposing findings are the result of two different computational

approaches to the problem. However, now that new computational methods and technologies

have been developed, this problem may be reinvestigated to fully understand the true impact

of tides on submoon stability.

Though not a lot of work has been done on submoons, a good basis has been laid for

future work. One of the most recent submoon studies by Kollmeier & Raymond (2019)

provides a succinct overview of the current knowledge on submoon stability shown in Figure

6 (Fig. 1 of Kollmeier & Raymond). This figure summarizes theoretical submoon stability

zones around the moons of planets in our own Solar system. For each planet, the moons

are shown as black circles on a grid of orbital distances versus moon radius. The stability

zones in this space are then mapped out for submoons of various size. The dotted line

represents submoons with a radius of five kilometers, the solid line represents a radius of ten

kilometers, and the dashed line represents twenty kilometers. As the orbital distance and

radius of the moon increase, so does the stability probability of the submoons. In addition,
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larger submoons generally have smaller stability regions than small submoons [31]. These

findings are extensions of the work of Reid (1973) and Conway (1985) and agree with their

results.
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Figure 6: This figure from Figure 1 of Kollmeier & Raymond (2019) shows the stability
regions of submoons around the outer planets of the Solar system, along with Earth and
Kepler-1625b, as a function of orbital distance and radius of the moon. The gray area
indicates the region in the parameter space where submoons with a radius of ten kilometers
are stable for at least the age of the Solar system. In addition, the dashed line shows the
border of the stability region for twenty kilometer submoons while the dotted line shows
the border for five kilometer submoons. The moons of each planet are plotted within this
parameter space as well [31].

Overall, though some early work has been done to investigate the factors affecting sub-

moon stability, there is much more left to uncover. Many mechanisms and phenomena have
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yet to be accounted for in theoretical or computational models. For example, the effects

of neighboring bodies including perturbations from the star and planet, perturbations from

neighboring planets, and forces from additional moons have yet to be modeled. Additionally,

the properties of the submoon such as inclination, eccentricity, and pro- and retrograde or-

bits have not been considered. Furthermore, because a submoon orbits a moon, the motion

of that moon due to tidal forces must also affect the submoon. Lastly, most existing sub-

moon studies have focused on short time scales, and more research is needed to investigate

long-term stability.

Many of these open questions about submoons require simulations that take many factors

into account at once, including gravitational forces from the star, planet, and any additional

moons. This can be accomplished using an N-Body code that accounts for all bodies in the

system and their interactions over time.

2 Computational Methods for Studying Submoon Sta-

bility

2.1 N-Body Legacy Code

In order to simulate a possible submoon system, a Fortran N-Body code was used. This

legacy code calculates the equations of motion for each body in the system as well as the

forces between bodies. The original two- dimensional code was developed by Craig Agnor

at the Miami University, Ohio in 1996 and was based on the Hermite Integrator with Indi-

vidual Timestep Scheme (HITS) algorithm. The code was consequently improved as a third

dimension was added by Himburg (1998) and gas drag was added by Bullard (1999). The

code was also extended to include asteroids, rigid body rotation, and planetary satellites

(Abel 2001; Carpenter 2001; Fuse 2002).
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For each initialized body, the code designates a time (ti), timestep (∆ti), position (Xi),

velocity (vi), acceleration (ai), and jerk (d~ai
dt

). The equations of motion for the bodies are

then calculated over a series of iterative steps. First, the calculations are advanced to the

first relevant time. This is done by selecting the particle with the smallest value of ti +∆ti is

selected and setting the global time within the code, t, to this value. The predicted positions

and velocities of all the particles are then calculated at this time t. This is accomplished

through third order Taylor expansions given by

~Xp,j =
(t− tj)3

6

d~aj
dt

+
(t− tj)2

2
~aj + (t− tj) ~vj + ~Xj, (7)

where ~Xp,j is the predicted position of particle j which had a position of ~Xj, a velocity of

~vj, an acceleration of ~aj, and a jerk of
d ~aj
dt

at time tj, and

~vp,j =
(t− tj)2

2

d~aj
dt

+ (t− tj) ~aj + ~vj, (8)

where ~vp,j is the predicted velocity of particle j which had a velocity of ~vj, an acceleration

of ~aj, and a jerk of
d ~aj
dt

at time tj. The index j is run through all particles in the simulation.

Using these predicted values for position and velocity at time t, the acceleration and jerk

are then calculated. The acceleration of each body due to gravitational forces is found by

summing the gravitational interactions between each object as given by

~ai =
∑
j 6=i

[
Gmj ~rij
r3ij

], (9)

where G is the gravitational constant, mj is the mass of an object, and ~rij is the distance

between the ith and the jth objects defined by ~rij = ~Xp,j − ~Xp,i. Correspondingly, the jerk,

which is defined as the instantaneous change in acceleration, is calculated via the derivative
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of the acceleration and can be described by

d~ai
dt

=
∑
j 6=i

Gmj

[
~vij
r3ij
− 3

~rij ( ~vij · ~rij)
r5ij

]
, (10)

where G, mj, and ~rij are defined as above and ~vij is the relative velocity between the ith and

jth objects given by ~vij = ~vp,j − ~vp,i. The predicted position and velocities values are then

corrected using a third order Hermit interpolation polynomial such that

~Xi (ti + ∆ti) = ~Xp,i +
∆t4i
24

d2 ~a0,i
dt2

+
∆t5i
120

d3 ~a0,i
dt3

, (11)

where ~Xi (ti + ∆ti) is the position of the ith particle at time (ti + ∆ti), ~a0,i is the acceleration

of body i at the global time t, and

~vi (ti + ∆ti) = ~vp,i +
∆t3i
6

d2 ~a0,i
dt2

+
∆t4i
24

d3 ~a0,i
dt3

, (12)

where all values are defined as above. The corrected acceleration of body i can be found by

~ai (t) = ~a0,t + ∆t
d ~a0,i
dt

+
∆t2

2

d2 ~a0,i
dt2

+
∆t3

6

d3 ~a0,i
dt3

, (13)

where ~a0,t is defined as above,
d ~a0,i
dt

is the jerk of the body calculated at the global time, t,

and ∆t = t− ti.

The second and third derivatives of the acceleration used in these corrected position,

velocity, and acceleration calculations are given by

d2 ~a0,i
dt2

=
−6 ( ~a0,i − ~a1,i)−∆ti

(
4
d ~a0,i
dt

+ 2
d ~a1,i
dt

)
∆t2i

, (14)
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and

d3 ~a0,i
dt3

=
12 ( ~a0,i − ~a1,i) + 6∆ti

(
d ~a0,i
dt

+
d ~a1,i
dt

)
∆t3i

, (15)

where ~a1,i and
d ~a1,i
dt

are the acceleration and jerk calculated at time ti + ∆t.

Once the position and velocity vectors for a particle have been corrected, the code calcu-

lates a new timestep using the acceleration and its time derivatives. This timestep calculation

was developed by Aarseth (1985) and is given by

√√√√√√η
| ~a1,i|

∣∣∣d2 ~a1,i
dt2

∣∣∣+
∣∣∣d ~a1,i

dt

∣∣∣2∣∣∣d ~a1,i
dt

∣∣∣ ∣∣∣d3 ~a1,i
dt3

∣∣∣+ | ~a1,i|2
, (16)

where η is an adjustable parameter controlling the accuracy of the program. The acceleration

and jerk are calculated directly from Equations 9 and 10, while the second derivative is given

by

d2 ~a1,i
dt2

=
d2 ~a0,i
dt2

+ ∆ti
d3 ~a0,i
dt3

, (17)

where the derivative values are defined by Equations 14 and 15 and ∆ti is the initial timestep.

The third derivative term in Equation 16 is constant due to the use of a third order inter-

polation where all higher derivatives are taken to be zero.

Using this new timestep for each particle, the program identifies the new smallest value

of ti + ∆ti and the process is repeated.

This code can be used to simulate the motion of astronomical bodies such as planets,

asteroids, and satellites. In addition, it has been used in the past to successfully simulate

planet formation[33] and planet migration, such as Thommes model migration in which

proto-Uranus and -Neptune are formed on orbits between Jupiter and Saturn and are then

ejected to their current stable orbits through gravitational resonances [34].
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2.2 Data Analysis Codes

The output of the planet formation code includes information about collisions within the

system, the energy of the bodies, and the initial orbital parameters of the objects including

mass, density, radius, semi-major axis, eccentricity, and inclination. In addition, the code

outputs the three-dimensional positions and velocities of each body for each time step. This

data, while useful can be difficult to sift through, so two different analysis codes are used to

extract useful values from the given data: one for planets and one for moons.

The planet data analysis code reads the Cartesian velocity and position values of each

object and converts these values to ecliptic coordinates. Its outputs include the mass, semi-

major axis, eccentricity, and inclination of each individual body at a certain, user-defined,

time. These ecliptic coordinates allow for easier analysis of the data through the comparison

of semi-major axes, eccentricities, and inclinations for different bodies and over time.

The cartesian to ecliptic conversion is done using the solutions to Kepler’s equations

outlined in Danby (1988) [32]. Kepler’s equation, given by

M = E − esinE, (18)

describes the motion of a body on an elliptic orbit, where M is the mean anomaly, E is the

eccentric anomaly, and e is the eccentricity of the orbit. The mean anomaly, M , describes

the angular distance from the pericenter at time t and is given by

M = n (t− T ) , (19)

where n is the mean angular motion of the body and T is the time at which the body is at

the pericenter. The eccentric anomaly, E, also describes the angular position of the body
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along its orbit and is defined by

r = a (1− ecosE) , (20)

where r is the distance from the focus to the body, a is the semi-major axis of the ellipse,

and e is again the eccentricity [32]. From Equations 18, 19, and 20, the cartesian coordinates

of the body with the origin at the attracting focus of the ellipse are given by

X = a (cosE − e) , (21)

Y = a
√

1− e2sinE, (22)

Ẋ = −na
2

r
sinE, (23)

and

Ẏ =
na2
√

1− e2
r

cosE, (24)

where the variables are as defined above [32]. These relations are thus used in the planet

analysis code to convert from cartesian to ecliptic coordinates.

The moon data analysis code is very similar in structure and function to the planetary

analysis code. It works using the same method, but finds the ecliptic coordinates of moons

in relation to a user-defined mother planet rather than in relation to the Sun.

2.3 Additions to the Code

In order to simulate submoons, a subroutine was added to the existing planet formation

code. First, the option to call this subroutine and introduce a submoon into the system

was added to the main body of the code. This was done using a switch and an If-Then

statement. It was specified that the submoon could only be added if a moon was also added
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to the simulation. Within this If-Then statement, the user can specify around which planet

and moon the submoon should orbit, if there are multiple bodies in the simulation.

The submoon subroutine itself was based heavily on the existing moon subroutine, which

places a moon around a user-specified planet. It was, however, changed to account for the

submoons orbit around a moon instead of a planet and required data about the host moon’s

mass and heliocentric coordinates in addition to those of the planet.

The subroutine places bodies with user-specified characteristics such as mass, density,

eccentricity, inclination, and radius around the nth body in the simulation at a given semi-

major axis. The initial ecliptic coordinates are then converted to heliocentric coordinates

so that they are in the same coordinate system as the other bodies in the simulation. This

is accomplished first through the addition of a new subroutine which reverses the cartesian

to ecliptic calculation described above to convert the positions and velocities of submoons

from ecliptic to Cartesian coordinates. The resulting Cartesian coordinates of the submoon

are relative to the parent moon, so the heliocentric parent moon positions and velocities are

added in order to describe the location of the submoon relative to the Sun. This body is

then introduced into the system and the process described in Subsection 2.1 continues.

A submoon data analysis code was also created to convert the Cartesian output of the

main planet formation code to moon-centric ecliptic coordinates. This code uses the same

methods described for the planet and moon data analysis codes, calculating relative to a user-

defined moon rather than relative to a planet or the Sun. Though the methods for converting

between Cartesian and ecliptic coordinates described earlier are based on a two-body system,

they must still be used for the three-body system, simply because the three-body system

is infinitely more complex and has no ‘easy’ solutions. However, due to the fact that the

majority of the forces acting on the submoon stem from the moon and the large number of

trials that are conducted in any study, the effects of this discrepancy become negligible.
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3 Results

3.1 Earth, Moon, Satellite System

Because there are no known submoons, the new submoon subroutine was tested by placing

a fictional submoon around the Earth’s moon. This submoon body is based loosely on the

Explorer 35 lunar satellite, which orbited the moon for a short period of time [35, 36]. The

three bodies initialized in this test code were the Earth, its Moon, and the Lunar satelite

(EMS). The orbital and physical parameters are summarized in Table 2.

Table 2: This table shows the orbital and physical parameters of the intialized bodies for
the first set of trials. The planetary characteristics were based on the Earth, while the moon
characteristics were based on the Moon. The submoons characteristics were based loosely on
past lunar satellites. The semi-major axis listed for each body is given relative to its host.

Once the code was running and the output values seemed reasonable, the actual behavior

of the planet, moon, and submoon over time was investigated for the configuration of bodies

described by Table 2.

Initially, the simulations were run for 10,000 years, with a timestep of 500 years, meaning

that the values for each body were updated every 500 years. These simulations showed that

both the moon and the planet were on stable orbits around the Sun, but the behavior of
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the submoon was scattered. This can be seen in Figure 7, where the blue and green points

represent the planet and moon, respectively, while the red points show the submoon’s x and

y positions. In addition, Figure 8 shows the motion of the submoon relative to its host moon.

The submoon could be in orbit around the moon, though there are not enough data points

to clearly identify a trend. In addition, its motion relative to the Sun indicates that it might

be in orbit around the star rather than the moon. This could indicate a problem with the

code or merely and unstable submoon.

Figure 7: This figure shows the positions of the planet, moon, and submoon with the char-
acteristics given in Table 2 in the x-y plane relative to the Sun. The simulation was run to
10,000 years with a timestep of 500 years. The blue, green, and red points correspond to the
planet, moon, and submoon respectively.
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Figure 8: This figure shows the positions of the submoon with the characteristics given in
Table 2 in the x-y plane relative to the Moon. The simulation was run to 10,000 years with
a timestep of 500 years.

Because the submoon data did not seem to show the whole picture, additional simulations

were run, again for 10,000 years but with a timestep of 50 years instead of 500. These revealed

a much clearer picture of the submoon’s motion around the Sun, shown in Figure 11. The

submoon appears to orbit the Sun instead of the moon, as intended. However, Figure 10,

which shows the path of the submoon around the moon, seems to indicate the submoon

may in fact be orbiting the moon at a large semi-major axis. Once again, the data for the

submoon is relatively sparse, and more points are necessary to fully capture the submoon’s

motion.
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Figure 9: This figure shows the positions of the planet, moon, and submoon with the char-
acteristics given in Table 2 in the x-y plane relative to the Sun. The simulation was run to
10,000 years with a timestep of 50 years. The blue, green, and red points correspond to the
planet, moon, and submoon respectively.
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Figure 10: This figure shows the positions of the submoon with the characteristics given in
Table 2 in the x-y plane relative to the Moon. The simulation was run to 10,000 years with
a timestep of 50 years.

Thus, the timestep was again decreased from 50 years to five years, though the total

simulation time was kept at 10,000 years. The results of these further simulations are shown

in Figures 11 and 10. Figure 11 visualizes the motion of the planet, moon, and submoon

around the Sun. The submoon in red seems to orbit the Sun on a wide, elliptical orbit

with a relatively large variation in semi-major axis. Figure 10 shows the progression of the

submoon’s motion around the Moon over time. It is clear that the submoon is not orbiting

the moon directly. Once again, this result may be due to a problem with the code, but it

may also be the result of a very unstable submoon that is quickly removed from orbit around

the moon, only to be caught in an orbit around the Sun.
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Figure 11: This figure shows the positions of the planet, moon, and submoon with the
characteristics given in Table 2 in the x-y plane relative to the Sun. The simulation was run
to 10,000 years with a timestep of 5 years. The blue, green, and red points correspond to
the planet, moon, and submoon respectively.
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Figure 12: This figure shows the positions of the submoon with the characteristics given in
Table 2 in the x-y plane as a function of position relative to the Moon. The simulation was
run to 10,000 years with a timestep of 50 years. The first plot includes the first 50 points of
the simulation. The remaining plots include the first 100, 150, 200, 1000, and 2000 points
to show the evolution of the orbit over time.

In order to more closely investigate the behavior of the submoon when it is first placed

into orbit around the moon, a further set of simulations was run, this time with a maximum

run time of 100 years, and a 0.01 year timestep. These changes allowed for a detailed look

at the behavior of the submoon early on. The results in the x-y plane are summarized in

38



Figures 13 and 14. Relative to the Sun, the submoon continues to have what appears to

be a very elliptical orbit around the star. However, when its position is viewed relative to

the Moon, it becomes clear that the submoon does in fact orbit the moon, on an orbit that

varies from close to wide. This orbital motion early on, along with the results from the

longer simulation, indicates that the submoon was indeed placed where it was meant to be,

but that its orbit around the Moon was unstable and eventually decayed until the submoon

was caught in orbit around the planet. Of course, these are merely the results of a very

small number of simulations, so the behavior of the submoon in this code should definitely

be tested further to ensure the results are repeatable.

Figure 13: This figure shows the positions of the planet, moon, and submoon with the
characteristics given in Table 2 in the x-y plane relative to the Sun. The simulation was run
to 100 years with a timestep of 0.01 years. The blue, green, and red points correspond to
the planet, moon, and submoon respectively.
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Figure 14: This figure shows the positions of the submoon with the characteristics given in
Table 2 in the x-y plane relative to the Moon. The simulation was run to 100 years with a
timestep of 0.01 years.

Thus far, only the submoon’s motion in the x-y plane has been considered. However, its

orbit is not completely flat, as seen in Figures 15 and 16. Figure 15 shows the positions of the

submoon in the x, y, and z directions relative to the Sun. The submoon traces out a smooth

disk, which could be expected based on the x-y motion shown in Figure 13. Interestingly,

the three-dimensional motion of the submoon relative to the moon shown in Figure 16 is

much less smooth. Though the orbit has a similar disk-like shape, which agrees with its x-y

motion in Figure 14, the disk is significantly less smooth. These variations in smoothness

are likely due to perturbations from the moon and planet and may correspond to oscillations

in the semi-major axis seen in Figure 14.
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Figure 15: This figure shows the positions of the submoon with the characteristics given
in Table 2 in x, y, and z relative to the Sun. The simulation was run to 100 years with a
timestep of 0.01 years.
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Figure 16: This figure shows the positions of the submoon with the characteristics given in
Table 2 in x, y, and z relative to the Moon. The simulation was run to 100 years with a
timestep of 0.01 years.

3.2 Kepler 1625bi System

Once it was established that the new submoon subroutine could place submoons on a given

initial orbit and track their motion over time, a short test was done for the Kepler 1625-

bi system. The initial conditions and orbital parameters for the star, planet, moon, and

submoon used are summarized in Table 3. The values for the star, planet, and moon were

taken directly from the models of the system published in Teachey et al. (2018) [11], while

the physical and orbital characteristics of Triton, Neptune’s largest moon, were used for the

submoon. This configuration is referred to as the Triton configuration.
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Table 3: This table shows the orbital and physical parameters of the intialized bodies for the
second set of trials. The characteristics of the star, planet, and moon were based on models
of the system published by Teachey et al. (2018) [11]. The submoons characteristics were
based on Triton, Neptune’s largest moon. The semi-major axis listed for each body is given
relative to its host.

First, a trial was run with a total time of 10,000 years and a five year timestep. This

trial showed that both the planet and theorized moon are stable in the given configuration

for at least 10,000 years. However, on this timescale, the Triton-sized submoon was clearly

not stable in orbit around the moon or even the star. This can be seen in Figures 17 and

18, which again show the motion of the submoon in the x-y plane relative to the star and

moon, respectively. In the top right corner of the graph, it can be seen that the submoon

moved in the vicinity of the planet and/or moon for some time before being kicked out of

the system entirely. Thus, an additional trial was started to investigate the behavior of the

submoon at early times.
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Figure 17: This figure shows the positions of the planet, moon, and submoon with the
characteristics given in Table 3 in the x-y plane relative to the star. The simulation was run
to 10,000 years with a timestep of 5 years. The blue, green, and red points correspond to the
planet, moon, and submoon respectively. The planet and moon can be seen in the top right
corner of the plot, though the submoon’s rotation, in red, clearly shows that it was ejected
from orbit around any of the bodies.
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Figure 18: This figure shows the positions of the submoon with the characteristics given in
Table 3 in the x-y plane relative to the moon. The simulation was run to 10,000 years with
a timestep of 5 years. The submoon was clearly ejected from orbit around the moon.

The second trial had a total time of 100 years and a timestep of 0.01 years. The results

are shown in Figures 19, 20, 21, and 22. Figure 19 shows the precession of the submoon’s

orbit relative to the star. It may indicate either a very wide, unstable orbit around the moon,

or an unstable orbit purely around the star. However, Figure 20 shows the motion of the

submoon around the moon. The orbit is highly variable and not circular, despite the fact

that the submoon was initialized on a completely circular orbit with an eccentricity of 0.0.

However, the body does appear to orbit around the moon, at least on a very short timescale.

Interestingly, plots of the three-dimensional submoon orbit both relative to the star (Fig.

21) and relative to the moon (Fig. 22), show a flat area and a highly distorted area. In both

cases, this phenomenon is likely the product of the submoon’s elliptical orbit. When it is

far from the other bodies in the system, its orbit become smooth and flat, while it becomes

more chaotic and distorted when the submoon experiences gravitational perturbations from
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the moon and planet.

Figure 19: This figure shows the positions of the planet, moon, and submoon with the
characteristics given in Table 3 in the x-y plane relative to the star. The simulation was run
to 100 years with a timestep of 0.01 years. The blue, green, and red points correspond to the
planet, moon, and submoon respectively. The submoon is in a quickly precessing unstable
orbit around the star.
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Figure 20: This figure shows the positions of the submoon with the characteristics given in
Table 3 in the x-y plane relative to the moon. The simulation was run to 100 years with a
timestep of 0.01 years. The orange triangle shows the submoon’s initial position, while the
green square shows its final position after 100 years. Though the submoon is not in a stable
orbit around the moon, it is also not ejected from the system after 100 years.
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Figure 21: This figure shows the positions of the submoon with the characteristics given
in Table 3 in x, y, and z relative to the star. The simulation was run to 100 years with
a timestep of 0.01 years. The distortion in the bottom left corner is likely due to strong
interactions between the star, planet, moon, and submoon when the submoon approaches
the star.
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Figure 22: This figure shows the positions of the submoon with the characteristics given in
Table 3 in x, y, and z relative to the moon. The simulation was run to 100 years with a
timestep of 0.01 years. Once again, the distortion in the lower left corner is likely a product
of strong gravitational forces acting on the submoon as it approaches both the moon and
planet.

Kollmeier & Raymond (2019) found the upper boundary on the mass of a stable submoon

orbiting Kepler 1625-bi based on the tidal evolution of the system to be approximately the

mass of the dwarf planet Ceres [31]. Thus, another set of trials was run in which the

submoon’s mass and density were adjusted to approximate those of Ceres as shown in Table

4. The semi-major axis was also decreased to 3.5 × 108 meters. This set of parameters is

referred to as the Ceres configuration.
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Table 4: This table shows the orbital and physical parameters of the Ceres-like submoon.
The planet and star characteristics described in Table 3 are not changed for this set of trials.
The submoons characteristics, however, were based on Ceres, a small dwarf planet [37]. The
semi-major axis listed is relative to the moon.

Three different simulations were run with these parameters, each initializing the submoon

at a different, randomly determined location along its orbit. They were run for 100 years with

a timestep of 0.01 years. In the first case, shown in Figure 23, the submoon was initially

caught in wide, precessing orbit around the star. After 75.65 years, it collided with and

merged into the star. In the second case, the submoon was quickly removed from the system

and was not caught in orbit around any of the bodies, as shown in Figure 24. Finally, in

the third case, the submoon immediately crashed into the planet. Thus, even with a smaller

mass, the submoon was still not stable.
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Figure 23: This figure shows the positions of the planet, moon, and submoon with the
characteristics given in Table 3 in the x-y plane relative to the star. The simulation was run
to 100 years with a timestep of 0.01 years. The blue, green, and red points correspond to the
planet, moon, and submoon respectively. The submoon is in a quickly precessing unstable
orbit around the star until it collides with the star after 75.65 years.
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Figure 24: This figure shows the positions of the planet, moon, and submoon with the
characteristics given in Table 3 in the x-y plane relative to the star. The simulation was run
to 100 years with a timestep of 0.01 years and has the same initial conditions as the trial
presented in Figure 23, but the submoon was started at a different point along its orbit. The
blue, green, and red points correspond to the planet, moon, and submoon respectively. The
submoon is immediately ejected from the system.

Thus, though more testing of the Kepler 1625-bi system is necessary, preliminary results

indicate that the planet and moon are stable for up to 10,000 years, while neither a Triton-

like nor a Ceres-like submoon is stable over any significant period of time. Overall, these tests

of the submoon subroutine show reasonable simulated submoon behavior. The instability

of the all three submoons tested is likely a product of the configuration, though errors in

the code cannot be ruled out, as there are no known submoons to which to compare their

motion. Thus, while more testing of the code is necessary for total confirmation of its validity,

preliminary results show reasonable behavior based on the given initial conditions.
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4 Discussion and Conclusion

Over the course of this work, the behavior of submoons was modeled using an N-Body code.

This was achieved by adding a subroutine which initializes a body orbiting a moon into an

existing code that calculates the position, velocity, acceleration, and jerk of N bodies based

on their gravitational interactions with each body in the simulation. This approach differs

from past submoon investigations, in that it models the bodies in their actual locations with

all of the forces they are expected to feel. Other works have focused on finding solutions to

highly simplified equations meant to describe the motion of the bodies due to tidal evolution

[29, 30, 31]. These solutions do not account for the same factors that an N-body code does,

including the influences of the initial planet and moon rotations, the moon on the planet’s

rotation, or the submoon on the moon’s rotation [31]. In addition, these works assumed that

the submoons mass was much smaller than that of the moon, which was not done in these

simulations [29, 30, 31].

Preliminary results of the N-Body code show that the submoons tested did not occupy

stable orbits around their host moons for any significant period of time, but much future

work is required to fully confirm these results and the code’s validity. Checking the validity

of the code’s results is especially difficult, as there are no known submoon’s whose behavior

could be recreated and little work has been done to model fictitious submoons. Thus, in

order to more thoroughly understand submoon stability and behavior as well as the code

itself, more studies must be conducted, which will need to span a much larger parameter

space, including varying the sizes of the bodies involved (planet, moon, submoon), the semi-

major axes, and the eccentricities and inclinations of the orbits. Hopefully, as more work is

done to study submoons within the general astrophysical community, there will also be more

data from other researchers with which to compare this N-Body code’s results and through

which to better understand submoons.
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In addition to a general survey of the various orbital and physical parameters involved in

a submoon’s behavior and stability, more research should be conducted into how the factors

that greatly affect moons would impact submoons. This includes the presence of other bodies

in the vicinity of the submoon, such as other submoons, additional moons, or even close-by

planets. The impact of migration on submoon stability should also be investigated, as this is

believed to be an incredibly common occurrence in late-stage planet formation. In general,

the formation of submoons and the planetary formation mechanisms required to form or

retain submoons should also be investigated, as future observations regarding the presence

of submoons, or lack thereof, could then provide constraints on planet and moon formation

processes. Thus, the investigation of submoon behavior in the context of factors that have

a large impact on moon formation will become a very important future research field and

help to answer remaining questions about planet and moon formation.

Overall, this work provides the tools necessary to begin a more in-depth study of sub-

moons, their behavior and stability, which is highly encouraged in order to better understand

the formation and history of both the Solar system and other extrasolar systems.
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