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Chapter 1

Introduction

For the past three centuries, the piano has been considered one of the most important string
instruments in the music industry. Today, many people are familiar with both the grand
and upright pianos that are widely used across the world in concert halls and households
alike. Significant research has been conducted in an effort to understand the intricacies that
make the piano sound complex and unique and several references detail the history of the
piano. Most of the information in this chapter is considered common knowledge within the
scientific community, but a significant amount of the information can be found in Refs. [1]

and [2].

1.1 History of the Piano

Prior to the 18th century, the two most common keyboard instruments were the clavichord
and harpsichord. These instruments date back to the 1400s and were popular in the Baroque
era. The clavichord is rectangular in shape and uses a tangent mechanism, which moves up
to strike a string when a key is depressed. This sound can be sustained as long as the key
is pressed. However, a fundamental limitation of the instrument is that the volume of the
sounds produced is low and thus the instrument is not ideal for performance.

The harpsichord has a shape similar to a modern grand piano and utilizes a plucking



method to produce sound. When a key is depressed, the jack system moves up and the
string is plucked. The string will continue to vibrate with a natural rate of decay until the
key is released, at which point the damper falls back to it’s initial resting position on the
string. The primary issue with this instrument is the lack of volume control by the performer.
While the instrument can be set to either produce loud or soft sounds, the individual loudness
of each note cannot be controlled. Significant effort was expended to create an instrument
to solve these issues.

Bartolomeo Cristofori is credited with being the first to design and build what would
become the modern piano around 1700. Cristofori’s ingenious design solved both problems
present in the clavichord and harpsichord. He designed an action system in which leather
hammers were used to strike the strings. He also designed an escapement mechanism, which
enabled the hammer to hit the string and immediately rebound whether the player held the
key down or not. Furthermore, he added a “back check,” which catches the hammer so that
it cannot strike the string more than once. To stop the string motion, he installed a damper
for every key that rests on the strings until the key is depressed. When a key is pressed
the damper rises and remains above the string until the key is released and it returns to its
resting position on the string.

Some of the other important aspects that Cristofori included in his design were using
strings with roughly twice the tension of ones used in harpsichords. To account for the
added tension, the diameter of the strings was also nearly doubled and extra bracing was
added to the case. Additionally, an una corda mechanism was installed. This piece could be
hand-shifted in order to force the hammer to only strike one of the multiple strings associated
with each key. This mechanism made the resulting sound softer, slightly modified the timbre
of the note, and is still used in modern pianos under the colloquial name, the “soft pedal.”

This new instrument by Cristofori solved the problem of being able to play both loud
and soft and gave musicians control over the volume of each note they played. For this

reason, Cristofori originally named the new instrument gravecembalo col piano e forte, which



translates as “large keyboard instrument with soft and loud.” Over time the name was
shortened to pianoforte and then further reduced to piano, as it is referred to today.

The piano evolved over the next two centuries. One of the most significant changes was
the expansion of the musical range. Cristofori’s original designs only called for 4 or 4%
octaves, but by the mid-1800s the range had grown to 7% octaves, or 88 notes, which is stan-
dard for most modern pianos. Another important development stemmed from the necessity
for pianos to produce more sound. This required heavier strings, which required heavier
hammers. In turn, the case and frame also needed to be strengthened to accommodate the
added tension, which led to the development of the metal frame in the mid-19th century.
The last significant change was the development of the upright piano to accommodate the
desires of the middle class consumers of the 19th century. The 20th century saw few changes
to the piano other than the introduction of the baby grand piano and the miniature upright
piano after the United States 1930s economic depression. With the more affordable and
space conscious versions, pianos became household staples in much of Europe and America

and few changes have been made to the designs since.

1.2 The Modern Piano

Pianos have been in common use throughout the 20th and 21st centuries. The general
consensus is that the grand piano is superior to the upright piano and is therefore typically
used for concert performance. In contrast, the upright was designed to conserve space and be
used in homes and practice studios. The grand piano has the distinct advantage that it has
room for longer strings, which can have greater tension and thus produce more sound. As
well, because the hammers are positioned below the keys, they can utilize gravity to return
to their resting position as opposed to springs.

Grand pianos range from about 6 to 9 feet long, while the term baby grand is used to

refer to any piano of length less than 6 feet. The standard upright piano ranges in height
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Figure 1.1: Labeled diagram of a grand piano. [3]

from 4-5 feet, however, there are miniature models which stand less than 3 feet tall. The
range of modern pianos varies from 7}1 octaves to 8 octaves, depending on the model, and
has a wide dynamic range.

The process of producing sound begins when the player presses down on a key and
causes a hammer to strike the string or strings associated with that key. Once struck, the
strings vibrate and this energy is transferred through the bridge to the soundboard. The
soundboard vibrations then cause the surrounding air to be compressed, which results in the
sound that is heard by the audience. The following sections provide a brief description of
each component of the piano. The majority of the information is derived from three serial

works by Conklin. [4-6]
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1.2.1 Frame and Case

In the early 1700’s, Cristofori used a wooden frame to support the piano mechanisms and
string tension. The 54 strings were believed to have exerted a force of approximately 7500
N on the frame. As more keys, triple strings, and wound bass strings were added, the force
increased dramatically and required a new frame design. The modern frame of the grand
piano is made from cast iron to withstand the immense force exerted by the strings. In the
modern piano, the over 200 strings exert approximately 150,000 Newtons (approximately
33,000 1bs) on the frame.

The case of the grand piano is made of hard wood to provide a solid casing for all of
the internal components. Typically, one long strip of approximately 8-9 cm thick laminated
maple is used to construct the case and can weigh several hundred pounds. Similar to the
frame, it is important that the case has a large mechanical impedance to prevent vibrations
from the soundboard efficiently transferring to the case. [7] The lid of a grand piano serves
to increase radiation efficiency of low and medium range frequencies. Together, the case
and lid direct the sound coming from the soundboard towards an audience in line with the
opening of the lid.

It is important to note that all of the structural components have resonances that will
be excited as a result of the string vibrating. However, work conducted by Tan et al. in
2018 was able to show that the soundboard is the dominate contributor to sound production
except at high frequiencies (notes A6 and above) when the lid of the piano is the main

contributor. [§]

1.2.2 Soundboard

The soundboard serves to amplify the sound produced by the strings. In most pianos, Sitka
spruce or red spruce are used to construct the soundboard. Long strips of spruce 10-20 cm
wide are glued together along the grain and then cut to fit in the case. Typically, the center

of the soundboard is approximately 9 mm thick and tapers off toward the edge where it is
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approximately 6 mm thick. When first placed into the piano the soundboard is crowned,
however, due to the force exerted by the strings the soundboard flattens until there is only
a slight curvature. The exact amount of crowning varies and has an effect on the balance
between the radiation efficiency of high and low frequencies. Additionally, most soundboards
are varnished, which helps protect against the absorption of moisture and improves tuning
stability. The flattening of the soundboard and the deformation of the wooden pieces due
to moisture are two of the most common problems that pianos have as a result of age, in
addition to rusting of the strings and infestation with bugs or rodents.

To provide additional support to the soundboard, long pieces of hard wood, called ribs,
are placed on the underside of the soundboard. These ribs are placed perpendicular to
the grain and support the spruce along its weaker direction. Chaigne showed that slight
differences in the spacing of the ribs can have a significant effect on the resonance of the
soundboard. [9] This is a result of the influence that the ribs and bridges have on the modal
structure. [10] Furthermore, the orientation of the soundboard with respect to the case and
bridges is important in determining the final sound quality.

The grain of the soundboard is oriented diagonally to the direction of the case and
approximately parallel to the direction of the treble bridge. Typically, the grain forms a
30-50 degree angle with the direction of the base bridge.

Studies have shown that the mechanical impedance, defined as the resistance to motion
of the structure when a harmonic force is applied at the driving point, depends on frequency
and can significantly effect the sound produced. [5] Furthermore, work conducted by Moore
and Zietlow demonstrated that the modal shapes and resonant frequencies of the soundboard
can be affected by the amount of force placed on the soundboard by the strings. [10]

The unique shape and properties of the soundboard present many challenges when at-
tempting to model the piano. Many researchers have studied the vibro-acoustic behavior
of the soundboard and attempted to build a complete model. Work towards a complete

model began with Suzuki in 1986 [11] quickly followed by Kindel and Wang [12], Conklin [5]
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and Giordano [13,14]. In the 2000s, investigations by Berthaut et al. [15], Ege et al. [16],
Boutillon and Ege [17] and Chabassier et al. [18] have come increasingly close to fully de-
scribing the instrument. The most recent works include a modal analysis of the grand piano

by Corradi et al. [19] and a model for an upright piano soundboard by Trevisan et al. [20]

1.2.3 Bridges

To transfer energy from the strings to the soundboard, there must be a point of termination
of the strings and a connection between the two components. The treble and bass bridges,
typically made from either solid or laminated hard-wood, serve this purpose. Both bridges
are placed on the upper side of the soundboard and the bass bridge is raised a few centimeters
above the treble bridge. This overlapping of the two bridges has the distinct advantage that
the bass strings can be longer while still conserving space, and the strings are all more
centrally located over the soundboard, which improves the resonance and sound quality.

The primary purpose of the bridge is to couple the strings to the soundboard. The vi-
brations of the string transfer to the bridge, which causes it to move in all three dimensions.
The transverse motion of the bridges accounts for the majority of the power in the piano
sound, however, the other motions contribute non-trivial amounts of energy and thus must
be included in models. Furthermore, Giordano and Korty were able to show that the longi-
tudinal motion of the string couples to the transverse motion of the bridge. [21] Reference [5]
also details the importance of the bridge design in creating the best sound quality.

The bridges present a higher impedance to the strings than if the strings were connected
directly to the soundboard. The difference in the impedance of the string and bridge largely
determines the loudness, duration, and quality of the sound produced and can be modified

by altering the design of the bridges.
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1.2.4 Strings

In the modern piano, there are 88 keys, 52 white and 36 black. The higher notes have
three short, small diameter strings while most notes below B, are double, larger diameter
wrapped strings. The lowest octave on the piano has only a single large diameter wrapped
string per key. The strings are typically made from high carbon steel and the wound strings
are wrapped in a copper casing.

At the far end of the grand piano, the strings are held by the hitch pins attached to the
iron frame. At the other end, near the keys, they are held by the tuning pins. One end
of the steel tuning pins is threaded and inserted into the pin block, which is supported by
the frame, and the other end is shaped to fit a tuning key. The pin block must be made of
strong enough wood to support the high stress imposed by the string and be able to resist
movement from the pins slipping. In most pianos, maple is used to make the pin block.

While it may be assumed that every string associated with a single key should be tuned
to the same frequency, a study conducted by Kirk found that professional tuners often tune
the multiple strings to be slightly out of unison, which results in some beating against one
another. [22] The study further found that both trained and amateur listeners preferred the
slight deviation in tuning between the strings than perfect unison tuning. This difference in
frequency of vibration has a significant impact on the bridge motion. When the frequencies
are in phase, the bridge moves more and transfers energy more effiently. Weinrich showed
how this led to the “double decay,” or the intial fast decrease in sound amplitude followed
by a much slower decay of the intensity of a note. [23]

The speaking length of the string, or the effective length of vibration, is defined by the
bridges at the far end of the piano and either the capo d’astro bar or an agraffe near the keys.
The capo d’astro bar is a metal plate running over the Dy strings and above. An agraffe is
a metal stud that each lower string passes through. Both the capo d’astro bar and agraffe
serve the same purpose of providing string support and controlling the speaking length.

It has been known for over one hundred years that the overtones of the piano strings

14



do not align with the harmonics of the fundamental frequencies. The inharmonicity is
particularly pronounced in the wrapped bass strings. For some strings, the higher partials
can differ from the harmonics by two whole steps. [24] This phenomenon is a result of the
stiffness of the piano strings. Reference [24] provides an analytical approach to describe these
overtone frequencies. This fact is important to the understanding of the work presented in

the following sections.

Motion of the strings

When the string is struck by the hammer, three types of motion result and all are important
to the sound that is produced. The most obvious and understood motion is the transverse
motion of the string. When the hammer strikes the string, a transverse wave propogates
the length of the string to the bridge and the bridge couples the string to the soundboard
allowing the sound to be heard. Most of the vibrational energy is reflected due to the
impedance mismatch between the bridge and the string, causing the impulse to progate up
and down the string resulting in a standing wave. The energy in the standing wave is slowly
transferred to the soundboard via the bridge. Studies have shown that the transverse motion
of the string is both perpendicular and parallel to the soundboard and each of these motions
affect the sound in a slightly different way because the bridge has a different impedance
depending on the direction of motion. [23]

The second type of string motion is known as the free-response longitudinal motion. The
initial hammer strike induces a longitudinal standing wave in the string. These waves occur
at the longitudinal resonance frequencies of the string which are characterized by both the
speed of sound in the string material and the length of the string. [25] The velocity of this
wave is approximately ten times faster than that of the transverse wave and thus has been
shown to act as a precursor to the transverse motion and affect the transient sound. [21]

The third motion of the string is referred to as a forced-response longitudinal motion.

These waves are generated due to the stretching of string that is a result of the transverse

15



displacement of the string. [26] As the string moves out of plane, the string is forced to
elongate and compress. This motion produces frequencies that are found at the harmonics
of the transverse motion as well as at their sum and difference frequencies. Due to the
inharmonic overtones attributable to the stiffness of the string, these frequency components
do not align with the harmonics of the transverse motion of the string. The theory of this
type of string motion is elaborated on in Section 2.2. Understanding this motion is important

to understanding the theory of phantom partials.

1.2.5 Hammers and Action

Piano hammers have been modified since the 18th century but in many ways are still similar
to those used by Christofori. All hammers have a wooden core that is covered by layers
of material that is soft and compressible. Originally leather was used as the outer layers,
but during the 1800s most piano makers switched to felt. One design element that remains
unchanged is that multiple layers of material are used and the outer-most layer is always
the softest. Another commonality is that the bass hammers are larger and heavier than the
treble hammers. This is because more force is required to make the bass strings vibrate with
the same amplitude as the treble strings. However, all of the hammers are larger and heavier
in the modern era as a result of increased string tension.

The hammers are connected to the keys by the mechanical mechanism known as the
action. The modern action was adapted and modified from Cristofori’s original design over
the course of approximately a century until it was largely finalized in the mid-1800s. Many
of Cristofori’s original mechanisms are still in place but the modern action is much more
intricate, creating added sensitivity to touch and regulation of the response of the hammers.

The interaction between the hammer and string has been studied extensively due to its
direct impact on the sound produced. Felt is a complicated material to study, which makes
understanding the interaction between hammer and string difficult. Multiple studies have

found that the relationship between applied force of the hammer and compression of the felt
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exhibits hysteristic behavior. [27] Additionally, small adjustments to the hammer felt can
have a significant impact on the spectrum produced by each string. [28,29] There can be up
to a 10 dB difference in the power of the partials produced between a “too soft” hammer
strike and a “too hard” hammer strike.

The velocity at which the hammer strikes the strings is also important to the sound
quality. Four to five meters per second seems to be the optimal speed. Birkett recently
conducted a complete analysis of the string motion induced by the hammer strikes for one

to three meters per second velocities. [30]

1.2.6 Pedals and Dampers

Over time, the dampers were modified to improve functionality and three pedals were added
to increase the musical capabilities of the instrument. The dampers are made from wood
and have a wool covering. They rest on top of the strings at all times until the key is pressed.
As the key is depressed the action system raises the damper, and when the key is released
gravity brings the damper back to its resting position. The extreme upper register of the
piano, typically above Fg, does not have any dampers because the natural decay of the sound
is significantly more rapid than for the lower notes.

Modern pianos use three pedals to add sound variability. From left to right the peddles are
the una corda pedal (also known as the soft pedal), the sostenuto pedal, and the sustaining
pedal. In a modern piano the soft pedal moves the entire action and keyboard slightly to
the right so that one less string is struck when a key is pressed. This produces a sound with
lower volume because one less string is contributing to the total vibrations transferred to the
soundboard and a softer portion of the hammer is striking the strings. Alternatively, this
pedal can be used to raise the entire action so that the strings are closer to the hammers.
This results in less energy being transferred to the strings, which results in less sound being
produced.

The sustaining pedal works by raising every damper simultaneously. This allows for each

17



string to vibrate even when the keys are not pressed. Therefore, when a key is pressed
and released, the strings will exhibit a natural decay of vibration and the other strings can
function as sympathetic resonators. The last pedal, the sostenuto pedal, is not found on
every piano but when it is included, it is typically placed in the middle of the other two.
This pedal is similar to the sustaining pedal but only keeps the dampers raised for the
individual keys that are currently depressed when the pedal is engaged. Thus only those few
strings will continue vibrating when the keys are released.

This concludes the description of the history of the piano and all of it’s components.
Understanding each component individually allows for investigations into some of the finer
aspects of piano sound production. This thesis will discuss the experiments and modeling
conducted to investigate the origins of phantom partials, which are anomalous frequency
components found in the sound of the piano. First a description of phantom partials in-
cluding the history, classical theory, and the results of recent research is presented. This is
followed by two plausible theories for the origin of the phantom partials. Then, results of new
experiments that lend insight into the origin of these frequency components are described.
Finally, a model describing the experimental results is provided along with a discussion of

its results in relation to the experimental conditions and conclusions.
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Chapter 2

Phantom Partials

Phantom partials are anomalous frequency components identifiable in the sound of the piano.
They occur at the sum and difference frequencies of two overtones. For over 30 years, it
was widely accepted that these frequency components resulted from the forced-longitudinal
motion of the string. [31] However, recent work conducted at Rollins College showed that the
string provides minimal contribution to the total power of the phantom partials in comparison
to that attributable to the structural components. [32,33] This chapter provides foundational
knowledge about phantom partials that will aid in understanding the experiments and model
presented in the following chapters.

Every string or set of strings on the piano is tuned to a different fundamental frequency
corresponding to a different note of the Western scale. The sound produced when the
hammer hits the string is a combination of the fundamental frequency and all of its successive
overtones. The fundamental frequency is determined by the speaking length of the string
and the wave speed, which is equal to the square root of the ratio of the tension and linear
density of the string. In addition to the fundamental frequency, there are overtones that
are close to harmonic frequencies found at integer multiples of the fundamental frequency.
However, in the piano, the higher overtone frequencies are stretched due to the stiffness of

the string and are not harmonics of the fundamental. Thus, the actual frequencies produced
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are slightly higher than the true harmonics.
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Figure 2.1: An example of a power spectrum for the Bg. The red, solid arrow represents the
phantom partial found at the sum of the two overtones marked by the black, dashed arrows.

Because the overtones do not align with the harmonics, it is possible for the sum and
difference frequencies of two overtones to also not align with the related overtone of the
transverse motion of the string. For example, if the fundamental frequency is 27.5 Hz, the
third and fourth harmonics would be identified at 82.5 Hz and 110.3 Hz, respectively. The
sum of these frequencies is 192.8 Hz, which is slightly lower than the seventh harmonic found
at approximately 193.2 Hz. This effect can be identified in a power spectrum such as the
one in Fig. 2.1. In this power spectrum of the B} piano string, the two black dashed arrows
indicate two successive overtones and their sum is indicated by the red arrow. It is clear that
this frequency has a significant amount of power but does not align with any of the other
overtones. Bank and Leightnon have demonstrated that these anomalous frequencies can be

perceived by a listener and thus are a vital component of the piano sound. [34]

2.1 Historical Context

The first reported identification of these frequency components was by Knoblaugh in 1944

where he referred to them as “clang tones.” [35] Knoblaugh attributed these anomolous
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frequency components to the hammer strike, which induced a complex motion of the bass
bridge. Alfredson and Steinke had a similar idea, that the components were caused by
hammer interaction with the string, when they identified them in 1978. [36] Unaware of
Knoblaugh’s work, Nakaguma and Nakumura identified the partials in 1993 and termed
them “secondary partials.” [37] However, apparently unaware of all previous work, Conklin
identified these components in the piano spectrum and termed them “phantom partials,”
which remains the common name today. [38] Conklin later attributed these partials to the
forced longitudinal motion of the string, and the production of the phantom partials has
been generally attributed to a geometric nonlinearity of the string since then. [31]

In the years following Conklin’s work, models of the grand piano began to include the
generation of these anomalous overtones. The first complete mathematical model of the piano
including this effect was published in 2013 by Chabassier, et al. [18] Etchenique, et al. later
provided experimental evidence confirming the quadratic dependence of the amplitude of the
phantom partial on the amplitude of string vibration that was assumed by Chabassier. [25]

However, work completed in 2017 by Rokni, Neldner, Adkison and Moore demonstrated
the significance of components other than the string in the production of phantom partials.
[32] Experiments where the bridge of the piano was driven at two frequencies when every
string was damped and again when all but one string were damped resulted in nearly the
same power in the phantom partial. Further research demonstrated the importance of the
structural components of the piano in the generation of the phantom partial. [33] The results

of experiments reported in these two journal articles will be elaborated on in a later section.

2.2 Historic Theory of Phantom Partials

We begin our discussion with the commonly accepted theory of phantom partials as of 2015.
As previously discussed in Section 1.2.4, two types of longitudinal waves propagate along

the string of the piano. The forced-longitudinal waves are most directly associated with
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the production of the phantom partials, however, all three wave motions will be considered.

[25,39]

Stretched string element

&) E(x-+dx)

Figure 2.2: Diagram of a string element while at equilibrium and while stretched, after
Ref [25].

Fig. 2.2 depicts a small portion of string both at rest and while stretched. At equilib-
rium, the string has an elemental length of dx, and a corresponding length of ds(x) when
stretched by the out of plane displacement. Transverse displacement is represented by y and
longitudinal displacement by &.

The elemental length dz is infinitesimally small and thus ds can be written as

2 2
ds = \/(2—50 + 1) dx? + (%) dx?. (2.1)

Changes in the element length will effect the tension in the string, T'(z), which is determined

by Hooke’s law and is given by

T(x) =Ty + ES (Z—; - 1) , (2.2)

where T} is the tension of the string at equilibrium, £ is Young’s modulus, and S is the

cross-sectional area of the string. Substituting Eq. 2.1 into Eq. 2.2 and ignoring all higher
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order terms results in an expression for the string tension,

%, (%)2], 23

indicating that the transverse displacement of the string results in a force along the longitu-

T~=T,+ ES

dinal direction.
The force per unit length due to the out of plane displacement represents the difference
in tension between the two ends of the segment and can be determined by expanding y and

¢ as a series of polynomials. This longitudinal force per unit length is given by

F, = ES— (2.4)

825 ES —T, [9(dy/0x)?
de 2 ox '

The force acts on a differential mass pudx, where u is the mass per unit length of string.

Using Newton’s second law, Eq. 2.4 can be rewritten as

2 2 2
Jhas ES%JESM.

Hoe dz? ox (2.5)

This equation of motion for the longitudinal vibration takes the form of the standard wave
equation with an additional force term. The additional force term is a result of the transverse
displacement and a second-order nonlinearity. Similarly, the transverse motion wave equation

can be derived and written as

82 02y 1ESQ (8y8§) (2.6)

P = Toge T oz \ o O

In this case, the additional force depends on the product of the transverse and longitudinal
displacements. Equation 2.6 indicates that the longitudinal and transverse motions are
coupled.

To determine the link between the force in the longitudinal direction and the transverse
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motion of the string, we assume the normal modes of the string can be approximated by

standing waves with zero amplitude at the ends, i.e.,

y(xt) =Y Apsin(wnt)sin(k,x), (2.7)

n=1

where A, is the amplitude of the n* mode, w, is the angular frequency, k, is the wave
number and ¢ is time. The wave number can be approximated by k, = nw/L for a string
pinned at both ends, where L is the speaking length.

For simplicity in understanding the physical system, only two modes, n and m, will be

considered. In this case, the transverse motion can be rewritten as
y(x,t) = Apsin(wpt)sin(ky,x) + Amsin(wpt)sin(ky,x). (2.8)

Substituting Eq. 2.8 into the second term of Eq. 2.4 results in an equation for the force per

unit length in the longitudinal direction,

—(ES - T,
F,, = ™ Li ) [Ain%os(km:)sin(knx)sin2(wnt)
+ A2 mPcos(kpx)sin(kp,z)sin? (wpt)
N A, A, nm
2

([cos([wn — wp]t) — cos([wn + wm|t)] X [mcos(k,x)sin(ky,z) + ncos(k:mx)sm(k:nx)]ﬂ

(2.9)

From Eq. 2.9 the sum and difference frequencies of the longitudinal waves induced by
transverse motion can be identified as w, — w,, and w, + w,,. Higher harmonics can also be
identified but here we only consider the sum and difference frequencies because the harmonics
are present in the transverse motion of the string.

Isolating the terms containing sum and difference frequencies, Eq. 2.9 can be written as
Fri+—) = BmnAmAn{cos(wn — wit) — cos([w, + wilt)}, (2.10)
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where 3,,, represents all of the constants. Experimental work conducted by Etchenique,
et al. experimentally showed the linear relationship between the power in the longitudinal
motion and the amplitude of the two driving frequencies indicated by this equation. [25]
This linear relationship thus indicates that the amplitude of the longitudinal motion has a
quadratic dependence on the string displacement because the amplitudes A,, and A, are

both proportional to the displacement.

2.3 Production in Non-string Components

As indicated in the previous sections, in the decades since the the discovery of phantom
partials their origins have been assumed to be in the string. However, the question was
asked to N. Etchenique by N. Giordano at an Acoustical Society of America conference, is it
possible that some portion of the power in the phan