
FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY (2020, VOLUME 08, ISSUE 01)  

76 

 

Study of the effectiveness of various cannabinoid receptor 1 (CB1) agonists using 

molecular docking and molecular dynamics modeling 

Volodymyr V. Tkachenkoa*, Volodymyr S. Farafonova, Viktor V. Tokareva, Irina G. Tkachenkoa,b 
a School of Chemistry, V. N. Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv 61022, 

Ukraine 
b Kharkiv Scientific Research Forensic Center, Ministry of Internal Affairs of Ukraine, Kovtuna str., 

32, Kharkiv 61036, Ukraine 

v.v.tkachenko@karazin.ua 

 

Keywords: cannabinoid receptor 1, molecular docking, molecular dynamics simulations, agonists, 

binding energy. 

The binding of a series of small organic molecules, acting as agonists of the cannabinoid receptor 

CB1, was investigated by means of three methods of computational chemistry. Binding modes were 

predicted by means of molecular docking, and binding free energy was estimated via docking, 

molecular-mechanics Poisson-Boltzmann surface area method, and multistate Bennett acceptance 

ratio. No evident correlation was observed for the molecules between the experimental 

characteristics of affinity and three computed binding free energy estimates. The reasons for the 

discrepancy were discussed. 

________________________________________________________________________________ 

Introduction 

The endocannabinoid system (ECS) is a 

perspective therapeutic target, which 

participates in multiple physiological processes, 

such as appetite stimulation, immune response, 

vomiting control, pain modulation [1-3], and 

also in pathological conditions, for example 

Huntington’s disease and stroke [4, 5]. 

CB1 and CB2 receptors constitute most 

recognized part of ECS. Their natural agonists, 

so-called endocannabinoids, are anandamide 

and 2-arachidonoylglyerol. Another well-known 

partial agonist is Δ9-tetrahydrocannabinol 

(THC), the natural component of plant 

Cannabis sativa, which is used for centuries for 

its recreational and medicinal properties [1, 6]. 

In last decades new potent agonists of 

CB1 and CB2 receptors were synthesized. While 

initially they were developed with legitimate 

research purposes, synthetic cannabinoids 

started new era of “designer drugs”, semi-legal 

replacements of regulated psychoactive 

compounds. While most of these synthetic 

cannabinoids are already known to scientific 

community, their structural diversity presents 

unlimited possibilities for further modification, 

thus evading state regulation [7, 8]. 
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Fast development of synthetic 

cannabinoids poses significant treat for public 

health. They have low binding affinity and are 

not subject to any clinical tests, so overdosing is 

frequent, with typical symptoms including 

anxiety and panic attacks [9, 10]. 

Earlier studies had to use QSAR to 

predict affinity of synthetic cannabinoids [11].   

But recent publication of high precision CB1 

[12,13] and CB2 [14] crystal structures allows 

to estimate and explain binding affinity using 

more reliable methods of molecular docking 

[15] and molecular dynamics [16,17]. 

We expect that comparison of computed 

binding affinity of known agonists will allow to 

develop high-quality agonist pharmacophore 

models. This, along with purely 

pharmacological applications, will make robust 

identification and classification of narcotic 

drugs with THC-like action, and pave the path 

for estimation of their health risks. 

Experimental part 

Computational Methods 

We chose three principally different 

approaches to estimate binding free energies of 

ligands to CB1. The first one is the common 

method of molecular docking, and the others are 

based on molecular dynamics (MD) simulation. 

The second one is Molecular Mechanics 

Poisson-Boltzmann Surface Area (MMPBSA) 

[18] approach. It is but approximate but 

computationally cheap and parameterized 

specifically for protein-ligand systems. The 

third method is multistate Bennett acceptance 

ratio (MBAR) from the family of alchemical 

transformation approaches [19,20]. It is a 

rigorous method of universal applicability but is 

costly because requires longer equilibration and 

several additional simulations to be performed. 

Protein preparation for docking. The 

initial structure of CB1 protein in active apo- 

conformation was taken from the paper [17]. 

There, it was reconstructed from the crystal 

structure available in Protein Data Bank (ID: 

5XRA [12]). Namely, the missing and mutated 

parts were restored, and equilibration via 

molecular dynamics in physiological conditions 

(immersed into lipid bilayer solvated in 0.15 M 

NaCl solution) was performed. 

The final structure of the intact active 

conformation of CB1 protein for docking was 

prepared using the Structure Preparation module 

of the Molecular Operating Environment 

(MOE) software [21]. The protonation and 

tautomeric states of Arg, Asp, Glu, His and Lys 

residues were adjusted to match pH = 7.0 using 

the Protonate 3D module. Restrained 

minimization with the AMBER forcefield was 

performed via the Energy Minimize panel. 

Ligand preparation for docking. Well-

known cannabinoid receptor CB1 agonists were 

selected for our study (Figure 1): widely 

studied THC, three N-pentylindole derivatives 

(JWH-018, UR-144, PB-22) and their 

monofluorinated derivatives (AM-2201, XLR-

11, 5F-PB-22, respectively). All these ligands 



FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY (2020, VOLUME 08, ISSUE 01)  

78 

 

have Ki values <50 nM according to the 

ChEMBL database. 

 

 
Figure 1. Agonist structures selected for investigation. 

 

All ligand structures (Figure 1) for Δ9-

tetrahydrocannabinol (THC), naphthalen-1-yl(1-

pentyl-1H-indol-3-yl)methanone (JWH-018), 

(1-(5-fluoropentyl)-1H-indol-3-yl)(naphthalen-

1-yl)methanone (AM-2201), (1-pentyl-1H-

indol-3-yl)(2,2,3,3-

tetramethylcyclopropyl)methanone (UR-144), 

(1-(5-fluoropentyl)-1H-indol-3-yl)(2,2,3,3-

tetramethylcyclopropyl)methanone (XLR-11), 

quinolin-8-yl-1-pentyl-1H-indole-3-carboxylate 

(PB-22) and quinolin-8-yl 1-(5-fluoropentyl)-

1H-indole-3-carboxylate (5F-PB-22) were 

initially drawn using the ChemDraw 

Professional and prepared using the LigX 

module of MOE. LigX generated stereoisomers 

and tautomers within a pH range of 7.0 ± 2.0. 

For each ligand, the lowest energy conformer 

was retained. Next, the ligands were optimized 

via energy minimization using the 

“AMBER10:EHT” forcefield while allowing 

adjustment to H atoms. The RMSD gradient 

value was kept at 0.1 kcal/mol·A2 (energy 

minimization is terminated when RMSD 

gradient falls below this value). The calculated 

electrostatic potential charges were used as 

partial charges of ligand atoms. 

Molecular docking. The ligands were 

docked to the orthosteric binding site of the 

active conformation of the CB1 structure by 

using the Dock panel of MOE software. We 

decided to dock the selected ligands only for 

active conformation of the CB1 receptor, since, 

according to Jung et al [17], agonists more 

favorably interacted with the active form and 

had lower binding energies to the inactive one.  

The induced-fit docking (IFD) protocol 

was used in all cases. The receptor was kept at 

“Receptor Atoms” while receptor site was 

chosen to be “Selected atoms”. No “wall 

constraints” were used. All docking jobs were 

performed with the placement method “Triangle 

Matcher” with post placement refinement kept 

as “Forcefield”. The initial scoring function was 

kept as “London dG”, and “GBVI/WSA dG” 

was used as the final scoring function [22]. The 
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pose with the lowest docking score (S-score) 

was retained for each ligand. 

MD simulations setup 

The initial structures of CB1 protein in 

active apo- conformation and in active 

conformation with bound THC were taken from 

the original paper [17]. They consist of the 

protein embedded to a 1-palmitoyl-2-

oleoylphophatidylcholine (POPC) bilayer 

surrounded by 0.15 M NaCl solution, and are 

equilibrated via MD run without (apo- 

conformation) or with THC inside. 

Here, as initial configurations for MD, 

the same structure was employed with a ligand 

placed inside the protein in a pose predicted by 

molecular docking (Figure 2). At the same 

time, four water molecules initially found inside 

the empty apo- protein were removed. In the 

case of THC, we used the original structure 

from [17] without modifications. 

The distribution of protonation states in 

the initial structure was preserved; it matches 

pH = 7.0. Particularly, His residues are neutral, 

with H atom bonded to Nδ (acronym "HSD"). 

We employed two forcefields for the 

computations. Firstly, following the original 

study [17], CHARMM36 and CGenFF 

forcefields [23,24] were used in order to keep 

compatibility. Potential model for POPC is 

already present in it, while the ones for ligands 

were prepared using ParamChem web server. 

As usual for CHARMM, water was described 

with TIP3P model. 

 

 
Figure 2. Initial configuration for MD simulations with 

CB1 in apo- conformation. Phophatidylcholine groups are 

colored orange, while the rest of POPC molecules is 

colored brown. Water, NaCl, and ligand are not shown. 

 

The second one was OPLS-AA/M 

forcefield [25] that is a recent update of a well-

known and validated OPLS-AA forcefield, 

containing improved parameters for peptide 

dihedral angles. For POPC, a compatible 

modern potential model was taken from [26, 

27]. It is developed in the framework of OPLS-

AA, but contains some changes in parameters 

describing dihedral angles allowing it to 

reproduce the properties of POPC bilayers well. 

For ligands, the potential models were prepared 

with the help of LigParGen server, which is 

tailored for the OPLS-AA/M forcefield [28]. 

Because all the ligands were neutral molecules, 

the atomic point charges were computed using 

1.14*CM1A model with LBCC correction. 
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Finally, water model was TIP3P because POPC 

was parameterized together with it [27]. 

Molecular dynamics simulations was 

carried out using GROMACS 5 software. For 

CHARMM36 runs, we reproduced the settings 

from [17]. Namely, temperature 310 K and 

pressure 1 bar were maintained by means of 

Nose-Hoover thermostat and Parrinello-Rahman 

barostat with semiisotropic coupling, 

respectively; time constants equaled 1 ps. The 

parameters were as follows: time step 2 fs, 3D 

periodic boundary conditions, constraints on all 

bonds involving hydrogen atoms, PME method 

for computing electrostatics with real space 

cutoff 1.2 nm, cutoff of van der Waals 

interactions at 1.2 nm with force-switch at 1 nm. 

The duration of a run was 5 ns for each ligand. 

For OPLS-AA/M runs, some settings 

were changed: thermostat time constant was 0.4 

ps, constraints on all bonds, PME real space 

cutoff 1 nm, plain cutoff of van der Waals 

interactions at 1 nm. The same and settings were 

employed during parameterizing POPC [27]. 

Simulations ran for 10 ns because additional 

equilibration of the initial configurations 

(originally made in CHARMM36 forcefield) 

was needed. 

The MMPBSA computations were 

performed using g_mmpbsa program [29,30]. 

Polar interactions were treated by non-linearized 

version of Poisson-Boltzmann equation for 

higher accuracy, apolar ones were calculated 

basing on solvent-accessible surface areas, the 

rest of settings were set at default values (in 

particular, eco = 80, pdie = 2, srad = 1.4). For 

processing, protein-ligand complex 

configurations were extracted each 20 ps from 

the last 5 ns (OPLS-AA/M) or 3 ns 

(CHARMM36) of MD trajectories. 

Because MBAR method requires 

simulating a single system at several values of 

coupling parameter λ, two series of additional 

simulations were carried out for each ligand. 

Firstly, each ligand was simulated in CB1 at 

each λ value for 6 ns starting from the final 

configuration of its ordinary MD run. The first 3 

ns were discarded as equilibration and were not 

used for calculations. Secondly, each ligand was 

solvated in a water box with size 6.5 nm and 

then simulated at each λ value for 3 ns; the first 

1 ns was omitted. The following λ schedules 

were used: {0.0;  0.2;  0.4;  0.6;  0.8;  1.0;  1.0} 

for electrostatic interactions and {0.0;  0.2;  0.4;  

0.6;  0.8;  0.9;  1.0} for van der Waals 

interactions, where λ values 0.0 and 1.0 

correspond to the specified interactions between 

ligand and environment turned on and off, 

respectively. The difference between schedules 

ensures the electrostatic interactions are 

disabled before the van der Waals ones are that 

is required to avoid singularities. For the last 3 λ 

values, stochastic dynamics integrator was used, 

as is recommended for proper sampling.  

Results and discussion 

 Docking results 
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All agonist ligands studied were docked 

to the CB1 active conformation by molecular 

docking to predict the ligand binding pose at the 

orthosteric binding site. The docking results for 

some agonists, namely XLR-11, PB-22 and 5F-

PB-22 are shown in Figures 3-5, respectively. 

All ligands were well fixed in the active 

conformation of the receptor and showed 

similar binding poses at the orthosteric binding 

site. 

 
Figure 3. Binding pose of XLR-11 in CB1 active 

conformation. 

 
Figure 4. Binding pose of PB-22 in CB1 active 

conformation. 

 

 
Figure 5. Binding pose of 5F-PB-22 in CB1 active 

conformation. 

The main interactions between the above 

ligands and amino acid residues of the CB1 

receptor are shown in Figures 6-8. The data 

obtained show that the main amino acid residues 

forming the binding pocket and causing 

interactions with the ligands at the orthosteric 

binding site in the CB1 active conformation are 

Phe10, Phe72, Ser75, Phe76, Phe79, Phe91, 

Leu95, Val98, Thr99, Phe102, Ile169, Phe170, 

Trp181, Met265, Lys278, Phe281, Ala282, 

Ser285, Cys288. 

 
Figure 6. Ligand interactions of XLR-11 in CB1 active 

conformation. 
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Figure 7. Ligand interactions of PB-22 in CB1 active 

conformation. 

 

 
Figure 8. Ligand interactions of 5F-PB-22 in CB1 active 

conformation. 

 

Thus, the main interactions between the 

studied agonists and the receptor are 

hydrophobic and pi-stacking. All considered 

agonists, except THC, contain N-pentylindole 

fragment in their structures. In this way, the 

pentyl group and aromatic fragments are mainly 

responsible for hydrophobic interactions with 

the receptor, and the indole fragment is 

responsible for pi-stacking interactions. It 

should be noted that either the pyrrole core (in 

XLR-11, Figures 3,6) or the benzene core (in 

5F-PB-22, Figures 5,8), or both indole 

condensed rings simultaneously (in PB-22, 

Figures 4,7), can participate in stacking 

interactions.  

Sometimes hydrophilic interactions also 

occur. For example, the ester group in PB-22 is 

in close proximity to polar amino acid residues 

such as Thr99, Lys278 and Ser285 (Figures 

4,7). Interestingly, for the fluorinated analogue 

of this agonist, 5F-PB-22, such interactions are 

already absent (Figures 5,8). This fact can be 

explained by the different arrangement of the 

pentyl (in PB-22) and fluoropentyl (in 5F-PB-

22) tails in the binding pocket, and, as a result, 

the spatial closure of the 5F-PB-22 ester group.  

Next, we carried out the comparative 

analysis for the studied agonists affinity 

parameters to CB1 receptor and for their 

binding energies calculated via molecular 

docking. The dissociation constant of the 

ligand-receptor complex (Ki) and the half 

maximal effective concentration (EC50) were 

chosen as affinity parameters. High-affinity 

ligand binding implies that a relatively low 

concentration of a ligand is adequate to 

maximally occupy a ligand-binding site and 

trigger a physiological response. The lower the 
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Ki is, the more likely there will be a chemical 

reaction between the ligand and the receptor. 

Low-affinity binding (high Ki values) implies 

that a relatively high concentration of a ligand is 

required before the binding site is maximally 

occupied and the maximum physiological 

response to the ligand is achieved. EC50 refers to 

the concentration of ligand, which induces a 

response halfway between the baseline and 

maximum after a specified exposure time. It is 

commonly used as a measure of a drug’s 

potency. A comparison of these two parameters 

with the calculated binding energies of agonists 

with the CB1 receptor (S-score) is given in the 

Table 1. 

 

Table 1. Comparison of CB1 receptor affinity parameters 

and binding energy from docking for the agonists studied 

Agonist Ki  

(nM) 

EC50 

(nM) 

S-score  

(kcal/mol) 

THC 13.7 250 -9.29 

JWH-018 9.5 102 -9.05 

AM-2201 1.0 38 -9.25 

UR-144 29 421 -9.19 

XLR-11 24 98 -9.28 

PB-22 1.5 5.1 -9.41 

5F-PB-22 0.5 2.8 -9.45 

 

The following conclusion can be drawn 

from the obtained results: there is no strict 

correlation between the actual binding 

parameters and the binding energy estimated as 

docking S score. However, the highest affinity 

agonists (PB-22 and 5F-PB-22) also have the 

highest S-scores. In addition, for all N-

pentylindole derivatives studied, one regularity 

is observed: for monofluorinated analogues, the 

S-score is always slightly higher than for 

fluorine-free ligands. Interestingly, this clearly 

coincides with the correlation of affinity 

parameters for the corresponding fluorine-

free/monofluorinated agonist pairs.  

In addition, it is easy to see that the 

S-score values for all the N-pentylindole 

derivatives studied are in the range of 

-9.29±0.25 kcal/mol, where the first value 

corresponds to the S-score for THC. This result 

is consistent with the fact that all of these 

substances, like THC, are proven agonists of the 

cannabinoid receptor CB1. 

 Molecular dynamics results 

 Using MBAR method, as implemented 

in gmx bar utility, free energies of decoupling a 

ligand from protein, ΔG  ecouple protein, and from 

water, ΔG  ecouple water, were computed. Binding 

free energy denoted ΔGbind (BAR) was 

computed as the difference between the stated 

values (Eq. 1). The results for both forcefields 

are collected in Table 2. Due to the 

computational cost of simulations, for 

CHARMM36 force field, only two ligands 

(THC and UR-144) were examined. 

ΔGbind (BAR) = ΔGdecouple water – ΔGdecouple protein (1) 
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Table 2. Comparison of CB1 receptor affinity parameters 

and MBAR binding energy estimate for the agonists 

Ligand ΔGbind (BAR), kcal/mol 

Forcefield OPLS-AA/M CHARMM36 

THC -22.6 ± 1.5 -26.6 ± 1.8 

PB-22 -20.3 ± 1.1  

5F-PB-22 -15.8 ± 1.1  

XLR-11 -15.3  ± 1.4  

UR-144 -15.1 ± 0.9 -19.1 ± 0.8 

AM-2201 -8.1 ± 1.6  

JWH-018 -7.6 ± 1.2  

 

The ΔGbind values computed via 

MMPBSA approach are listed in Table 3. 

 

Table 3. Comparison of CB1 receptor affinity parameters 

and MMPBSA  binding energy estimatie for the agonists 

Ligand ΔGbind (MMPBSA), kcal/mol 

Forcefield OPLS-AA/M CHARMM36 

THC -42.7 ± 3.3 -37,3 ± 2,5 

PB-22 -43.7 ± 2.5 -32.6 ± 2.7 

5F-PB-22 -40.6 ± 2.5 -32.6 ± 2.6 

XLR-11 -40.4 ± 2.7 -33.5 ± 2.7 

UR-144 -40.4 ± 2.1 -33,1 ± 2,5 

AM-2201 -43.3 ± 2.8 -33.8 ± 2.5 

JWH-018 -44.5 ± 2.5 -36.6 ± 2.6 

Surprisingly, among all the 

characteristics computed here, only ΔGbind 

(BAR) considerably varies between the ligands, 

while the others (S-score and ΔGbind 

(MMPBSA)) are almost equal for all of them 

having the spread within the range of 

uncertainty. However, no evident correlation is 

present between ΔGbind (BAR) and experimental 

affinity parameters of ligands (EC50, Ki), as can 

be seen from comparison (Figure 9). The most 

striking case is UR-144 that has the highest 

EC50 and K among the examined set but shows 

moderate ΔGbind (BAR). 

 Turning to another forcefield does not 

improve the correlation. Both the absolute 

values ΔGbind (MMPBSA) of ligands and their 

order differ in the two forcefields studied, while 

the spread is similarly small (~3 kcal/mol 

between the lowest and the highest values) and 

the uncertainty is of close magnitude (~2.6 

kcal/mol). The same situation is observed for 

ΔGbind (BAR), as well. 

 As a result, as it was shown for 

molecular docking before, two MD-based 

methods of computing binding free energy 

tested here appeared to be able just to determine 

that all examined compounds show high affinity 

to CB1 (i.e. are agonists) but failed to accurately 

distinguish between more and less active 

agonists. 
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Figure 9. ln Ki values of the ligands plotted versus their 

ΔGbind (BAR), computed using, OPLS-AA/M forcefield. 

 

 It is difficult to identify the reasons for 

this issue. Likely, it is not a result of forcefield 

choice, because two representatives shown 

similar behavior. The simulation time was 

several ns that should be enough to sample 

orientations of a ligand in such constrained 

space. For ΔGbind (MMPBSA), the uncertainty 

has to decrease one order of magnitude in order 

to make the values for various ligands 

significantly different, and they still will differ 

slightly by magnitude. Yet, for MBAR, this 

duration may still be insufficient. Also, a tighter 

λ schedule may be important for accurate 

estimations. However, fulfilling both options 

will drastically increase computational cost of 

the method making it unsuitable for application 

to large sets of ligands of interest. 

 A possible source of systematic error is 

the exclusion of water molecules from the 

cavity. A presence of a single water molecule 

may lead to large energy shift in ligand binding 

energy if formation of a hydrogen bond occurs. 

Examining this option requires search for a 

place a water molecule may reside near the 

ligand. Also, it will not affect the ΔGbind 

(MMPBSA) values because in these 

computations, all water is treated implicitly. 

Conclusions 

Extensive computational estimation of 

affinity of a set of agonists to CB1 receptor by 

three different methods was done. However, no 

correlation between the calculated binding free 

energy and experimentally measured affinity 

parameters (EC50, Ki) was observed. As a result, 

the problem of robust discrimination of small 

organic molecules with respect to affinity to 

CB1 receptor by means of computational 

methods remains open. It will be the subject for 

our following investigations. 

Acknowledgements 

Authors thank Ministry of Education and 

Science of Ukraine for financial support in the 

frame of project “Molecular docking for express 

identification of new potential drugs” 

(0119U002550) and to Dr. Wookyung Yu 

(Department of Brain Science, Daegu 

Gyeongbuk Institute of Science and 

Technology, Daegu, South Korea) for provided 

files of reconstructed structures of CB1 protein. 

References 

[1] Zou S, Kumar U. Cannabinoid Receptors and 

the Endocannabinoid System: Signaling and Function in 

the Central Nervous System. Int. J. Mol. Sci. 

2018;19(3):833. 



FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY (2020, VOLUME 08, ISSUE 01)  

86 

 

[2] Yin A, Wang  F, Zhang X. Integrating 

endocannabinoid signaling in the regulation of anxiety 

and depression. Acta Pharmacologica Sinica. 

2019;40:336-341. 

[3] Silvestri C, Di Marzo V. The 

Endocannabinoid System in Energy Homeostasis and the 

Etiopathology of Metabolic Disorders. Cell Metab. 

2013;17(4):475-90. doi: 10.1016/j.cmet.2013.03.001 

[4] Casteels C, Rawaha A, Vandenbulcke M, 

Vandenberghe W, Van Laere K. Cannabinoids and 

Huntington’s disease. In: Fattore L. Cannabinoids in 

Neurologic and Mental Disease. San Diego: Elsevier 

Science Publishing Co Inc; 2015. p. 61-97. 

[5]  Kolb B, Saber H, Fadel H, Rajah G. The 

endocannabinoid system and stroke: A focused review. 

Brain Circ. 2019;5(1):1–7. doi:10.4103/bc.bc_29_18 

[6] Hourani W, Alexander SPH. Cannabinoid 

ligands, receptors and enzymes: Pharmacological tools 

and therapeutic potential. Brain and Neuroscience 

Advances. 2018;2:1-8. doi: 10.1177/2398212818783908. 

[7] Carroll FI, Lewin AH, Mascarella SW, 

Seltzman HH, Reddy P. Designer drugs: a medicinal 

chemistry perspective. A. Ann N Y. Acad Sci. 

2012;1248:18-38. doi: 10.1111/j.1749-

6632.2011.06199.x. 

[8] Wiley JL, Marusich JA, Huffman JW, Balster 

RL, Thomas BF. Hijacking of Basic Research: The Case 

of Synthetic Cannabinoids. Methods Rep RTI Press. 

2011;2011:17971.doi:10.3768/rtipress.2011.op.0007.1111 

[9] Cohen K, Weinstein AM. Synthetic and Non-

synthetic Cannabinoid Drugs and Their Adverse Effects - 

A Review From Public Health Prospective. Front Public 

Health. 2018;6:162-170. doi:10.3389/fpubh.2018.00162 

[10] Weinstein AM, Rosca P, Fattore L, London 

ED. Synthetic Cathinone and Cannabinoid Designer 

Drugs Pose a Major Risk for Public Health. Front 

Psychiatry. 2017;8:156-166. 

doi:10.3389/fpsyt.2017.00156 

[11] Paulke A, Proschak E, Sommer K, 

Achenbach J, Wunder C, Toennes SW. Synthetic 

cannabinoids: In silico prediction of the cannabinoid 

receptor 1 affinity by a quantitative structure-activity 

relationship model. Toxicol Lett. 2016;245:1-6. doi: 

10.1016/j.toxlet.2016.01.001. 

[12] Hua T, Vemuri K, Nikas SP, Laprairie 

RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho JH, Han 

GW, Ding K, Li X, Liu H, Hanson MA, Zhao S, Bohn 

LM, Makriyannis A, Stevens RC, Liu ZJ. Crystal 

structures of agonist-bound human cannabinoid receptor 

CB1. Nature 2017;547(7664):468-471. 

[13]  Krishna KK, Shalev-Benami M, Robertson 

MJ, Hu H, Banister SD, Hollingsworth SA, Latorraca NR, 

Kato HE, Hilger D, Maeda S, Weis WI, Farrens DL, Dror 

RO, Malhotra SV, Kobilka BK, Skiniotis G. Structure of a 

Signaling Cannabinoid Receptor 1-G Protein Complex. 

Cell. 2019;176(3):448-458. doi: 

10.1016/j.cell.2018.11.040 

[14] Li X, Hua T, Vemuri K, Ho JH, Wu Y, Wu 

L, Popov P, Benchama O, Zvonok N, Locke K, Qu L, Han 

GW, Iyer MR, Cinar R, Coffey NJ, Wang J, Wu M, 

Katritch V, Zhao S, Kunos G, Bohn LM, Makriyannis A, 

Stevens RC, Liu ZJ. Crystal Structure of the Human 

Cannabinoid Receptor CB2, Cell. 2019;176(3):459-467. 

https://doi.org/10.1016/j.cell.2018.12.011 

[15] Hurst DP, Garai S, Kulkarni PM, Schaffer 

PC, Reggio PH, Thakur GA. Identification of CB1 

Receptor Allosteric Sites Using Force-Biased MMC 

Simulated Annealing and Validation by Structure–Activity 

Relationship Studies. ACS Med. Chem. Lett. 

2019;10(8):1216-1221. 

[16] Loo JSE, Murali L, Lee SS, Kueh ALW, 

Alexander SPH. Ligand discrimination during virtual 

screening of the CB1 cannabinoid receptor crystal 

structures following cross-docking and microsecond 

molecular dynamics simulations. RSC Adv. 

2019;9:15949-15956. 

[17] Jung SW, Cho AE, Yu W. Exploring the 

Ligand Efficacy of Cannabinoid Receptor 1 (CB1) using 

Molecular Dynamics Simulations. Sci Rep. 

2018;8(1):13787-13797. 



FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY (2020, VOLUME 08, ISSUE 01)  

87 

 

[18] Wang C, Greene D, Xiao L, Qi R, Luo R. 

Recent Developments and Applications of the MMPBSA 

Method. Front. Mol. Biosci. 2018;4:87. 

[19] Shirts MR, Chodera JD. Statistically optimal 

analysis of samples from multiple equilibrium states. J. 

Chem. Phys. 2008;129:129105. 

[20] Williams-Noonan BJ, Yuriev E, Chalmers 

DK. Free Energy Methods in Drug Design: Prospects of 

"Alchemical Perturbation" in Medicinal Chemistry; J. 

Med. Chem. 2018;61(3):638-649. 

[21] Molecular Operating Environment (MOE), 

2014.09; Chemical Computing Group Inc., 1010 

Sherbooke St. West, Suite #910, Montreal, QC, Canada, 

H3A 2R7, 2014. 

[22] Naïm M, Bhat S, Rankin KN, Dennis S, 

Chowdhury SF, Siddiqi I, Drabik P, Sulea T, Bayly CI, 

Jakalian A, Purisima EO. Solvated interaction energy 

(SIE) for scoring protein-ligand binding affinities. 1. 

Exploring the parameter space. J. Chem. Inf. Model. 

2007;47(1):122-133. 

[23] Huang J, MacKerell AD Jr. CHARMM36 

all-atom additive protein force field: validation based on 

comparison to NMR data. J Comput 

Chem. 2013;34(25):2135-45. 

[24] Vanommeslaeghe K, Hatcher E, Acharya C, 

et al. CHARMM general force field: A force field for 

drug-like molecules compatible with the CHARMM all-

atom additive biological force fields. J Comput Chem. 

2010;31(4):671–690. 

[25] Robertson MJ, Tirado-Rives J, Jorgensen 

WL. Improved peptide and protein torsional energetics 

with the OPLS-AA force field. J. Chem. Theory Comput. 

2015;11:3499–3509. 

[26] Kulig W, Pasenkiewicz-Gierula M, Róg T. 

Topologies, structures and parameter files for lipid 

simulations in GROMACS with the OPLS-aa force field: 

DPPC, POPC, DOPC, PEPC, and cholesterol. Data in 

Brief 2015;5:333–336. 

[27] Maciejewski A, Pasenkiewicz-Gierula M, 

Cramariuc O, Vattulainen I, Róg R. Refined OPLS-AA 

force field for saturated phosphatidylcholine bilayers at 

full hydration. J. Phys. Chem. B 2014;118:4571–4581. 

[28] MD Dodda LS, Cabeza de Vaca I, Tirado-

Rives J, Jorgensen WL. LigParGen web server: an 

automatic OPLS-AA parameter generator for organic 

ligands. Nucleic Acids Res. 2017;45(W1):W331–W336. 

[29] Kumari R, Kumar R, Open Source Drug 

Discovery Consortium, Lynn A. g_mmpbsa - A 

GROMACS tool for high-throughput MM-PBSA 

calculations. J. Chem. Inf. Model. 2014;54:1951-1962. 

[30] Baker NA, Sept D, Joseph S, Holst MJ, 

McCammon JA. Electrostatics of nanosystems: 

application to microtubules and the ribosome. Proc. Natl. 

Acad. Sci. U. S. A. 2001;98(18):10037–10041. 


