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Abstract. Estimation of a monomer concentration of an ethylene polymerization process 
has been a challenging problem due to its highly nonlinear behavior and interaction among 
state variables.  Applying of an extended Kalman filter (EKF) to provide the estimates of 
the concentration based on measured bed temperatures has usually been prone to errors. 
Here, alternatively, neural network-based hybrid estimators have been developed and 
classified into three structures which integrating of either EKF or Kalman filter (KF) to 
neural network (NN) to provide the estimates. The NNs are integrated to provide the 
estimates’ error or concentration’s estimates corresponding to individual structure for 
reducing the estimation error. Simulation results have shown that the hybrid estimators can 
provide good estimates under nominal condition and disturbance cases. However, in dealing 
with noises, the NN-KF hybrid estimator gives superior robustness with smooth and 
accurate estimated values. 
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1. Introduction 
 

An ethylene polymerization process involves many 
challenging problems including nonlinear dynamic 
behavior, multivariable interactions between each state 
variable and unmeasurable state variables. In order to 
achieve desired objectives such as maximum profit or 
minimum cost, an effective model based control algorithm 
based on accurate estimates of states and parameters has 
to be applied. However, it has been known that some 
measurements i.e. concentrations are available at low 
sampling rate with significant time delays. To overcome 
this difficulty, robust state estimation is needed. 

 In recent years, one of most commonly used 
estimators for nonlinear chemical processes has been an 
extended Kalman filter (EKF) [1-3] which extends the 
Kalman filter (KF) approach to nonlinear systems by local 
linearization. This estimator offers good estimation 
performance as quoted in several literatures. Speicher et al. 
used an EKF to estimate the plate temperature in heavy 
plate rolling [4]. The EKF was validated by means of 
experimental data recorded during the measurement 
campaign. Dewasme et al. developed an EKF for various 
hardware sensor configurations taking account of their 
reliability and cost and including a possible kinetic 
parameter estimation [5]. The filters were validated using 
experimental data collected on a lab-scale bioreactor. 
McAuley and MacGregor used EKF as a soft sensor to 
estimate the melt index and polymer density values of a 
polyethylene reactor [6]. Due to the ease of 
implementation, the EKF has been used in many systems 
[7-9]. Nevertheless, the EKF has been shown to perform 
poorly for highly nonlinear systems because it is based on 
local linearization of dynamic models giving significant 
linearization error [10, 11]. 

 To improve the accuracy of estimates for these 
nonlinear estimations, an alternative way is to combine the 
EKF with a well-known tool such as neural network (NN) 
in a hybrid estimation approach for reducing the error of 
estimation, as mentioned by Jarinah and coworkers [12]. 
NNs have several advantages which include distributed 
information processing and the inherent potential for 
parallel computation. The potential for processing and 
approximation relates to the operating data without prior 
knowledge of the process. NNs can be employed to be 
models, estimators and controllers depending on their 
learning data. Daosud et al. applied the NN as an inverse 
model which was formulated into an inverse model 
controller for a steel pickling process [13]. Kittisupakorn 
et al. demonstrated a multi-layer feedforward neural 
network based model predictive control for a steel 
pickling process [14]. Others applications of NNs for 
chemical process have also been investigated [15-18]. 
However, the main problem in NN modelling is the poor 
generalization because of over-fitting and under fitting of 
the data especially in dealing with noise which normally 
occur in real process [19]. To overcome the problems of 
the conventional NN observer, NN-based observer 
coupled with conventional (model-based) types are 

implemented [12]. Hussain et al. used a hybrid neural 
network (HNN) to predict porosity in a food drying 
process [20]. Other applications of NN-based observers 
can also be found in many papers [21-23]. However, for 
conditions where this observer is not accurate enough for 
the process systems, Ideal hybrid observers which are 
combinations of more than one observer such as NN-
based observer coupled with EKF should be implemented 
for improving estimation in certain systems [12]. 
Nevertheless, NN-based hybrid estimators have rarely 
been reported with any applications so far [24]. 

 In this paper, a novel NN-based hybrid estimator has 
been studied and investigated for application to an 
ethylene polymerization process considered as one of 
biggest synthetic commodity sources of polymer in the 
world today. The highly nonlinear dynamic behavior, its 
multivariable nature and the interaction between state 
variables of the process lead to the difficulty in estimating 
unmeasurable states by both KF and EKF. Therefore, the 
aim and contribution of this work are to develop NN-
based hybrid estimators combining of NN and KF or 
EKF for estimating monomer concentration using 
available bed temperatures. To demonstrate the 
robustness of the proposed estimators, tests involving 
various disturbances and noise have been performed in 
these studies. 
 

2. Process Description 
 

An ethylene polymerization reactor is a fluidized bed 
reactor which uses feed gas partly combined with the 
recycled gas to introduce bubbling fluidized bed of 
Ziegler-Natta catalysts. The reactor consists of a catalyst 
feeder, a product withdrawal system which is employed to 
maintain a constant bed height inside the reactor, gas 
recycling which includes a cyclone and a compressor as 
shown in Fig. 1. Gaseous species are Ethylene (monomer), 
Butene (comonomer), hydrogen and nitrogen. 
Mathematical models of the ethylene polymerization 
reactor studied in [25] is used in this work. Physical 
properties and nominal operating of the system are 
summarized in Table 1. 

Mass and energy balance equations of the process (Eq. 
(1)-(7)) indicate the behavior of state variables changing 
with time are as follows. 
 
Mass balances on gaseous species: 
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Catalyst active sites balance: 
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Reactor energy balance: 
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Heat exchanger energy balance: 
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The above equations are linearized and used in the 

EKF algorithm consisting of seven state variables which 
are CM1, CM2, CH, CN, Yc, T and Tg.  In addition, they are 
used to provide simulated process data which will be 
divided into three sets: training, testing and validating data. 
Use of each model equations to design different 
estimation approaches will be described in the next section. 
 

 
 
Fig. 1. The ethylene polymerization reactor. 
 

3. Design of Estimators 
 
In general, chemical reactions can be observed from 
measurements of the amount of reactants used which are 
the concentrations of monomers in this process. However, 
they cannot be directly measured, so an estimation 
approach is needed. An extended Kalman Filter (EKF) 
consists of two computational steps, i.e., corrector and 
predictor steps. Thereby equations used in the EKF are 
divided into two major parts which are time update 
equations and measurement update equations used in the 
predictor and corrector steps respectively. One important 

factors affecting the estimated accuracy is the model’s 
accuracy; If it represents a process well, the estimate 
certainly is accurate. In this work, the linearized models 
used in the prediction step of the EKF is the discrete-time 
state model based on mathematical process models (Eq. 
(1)-(7)) in the form: 
 

+ =1| |( , )k k k k kx f x u  (8) 

 

where 
|k kx  is the state vector at time k and 

ku  is the 

input vector at time k ([Fm1(k), Fm2(k),  FH(k), FN(k), 
Fc(k)]) 

The priori estimate error covariance ( 1+ |k kP ) is calculated 

from Eq. (9) 
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where Ak is the nxn dimension state transition matrix at 
time k, obtained from solving the differential process 
model equations according to each state variable 

(
( )

=
 | ,

,
|

k k kk x u

f x u
A

x
) and Q is the nxn dimension process 

error covariance matrix. The estimated measurement 
equation is defined as 
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where +1|k ky  is the estimated measurement variable as 

+1|k kT . 

In the correction step, the equations consist of a gain 
of Kalman, posteriori estimate error covariance and a state 
estimated equation, Eq. (11) – (13), respectively. 
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where +1kC  is the 1xn dimension measurement matrix 

defined as 
( )

++


=

 1|1

,
|
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C

x
, +1ky  is measurement 

value at time k+1 and R is the measurement noise 
covariance. 

To estimate the monomer concentration (Cm1), the 
EKF uses information of measured bed temperature (Tmea) 
at each sampling time step to determine the states and 
parameters based on the Eq. (8)-(13). Since the ethylene 
polymerization process is complicated and highly non-
linear, the EKF usually provides less accurate estimates of 
states. The prediction step equations have been 
formulated as follows: 
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Simulation results (Fig. 4(a)) have shown that the estimates 
by the EKF based on linearized models which are 
normally obtained from basic identification method, 
cannot fit to the target data (monomer concentration). In 
the same way, using a single NN estimator (NNest) for 
highly non-linear process provided the estimated result 
with less accuracy especially in dealing with noise in 
various conditions as shown in Table 3 for mean squared 
error (MSE). The components of NNest are defined in 
Table 2. For improving of the estimated accuracy, the 
estimation approach is introduced in hybrid form which is 
NN cooperating with EKF.  

 In this work, three hybrid estimators: NNEKF1, 
NNEKF2 and NNKF corresponding to model format 
and inside data flow are proposed to provide estimates of 
the monomer concentration (Cm1) in the reactor of the 
ethylene polymerization process, the estimators are 
applied to provide Cm1 from the measured bed 
temperature (Tmea) at each sampling time. The details of 
each estimator are described as follows. 

 

Table 1. The physical properties and nominal operating conditions of the ethylene polymerization reactor [25]. 
 

 
3.1. NNEKF1 Estimator 
 

The first estimator, NNEKF1, is developed from 
EKF combined with NN, which is an idea of reducing the 
error between EKF estimated value and the plant value, 
as shown in Fig. 2. Due to the non-linearity of the process 
to be estimated and the observability of measured 

variables, an EKF is applied to provide the first estimate 
of monomer concentration (Cest1) in the NNEKF1 
estimators. After that the Cest1 is included along with the 
different value (Er) between the monomer concentration 
from the plant (Cm1) and the first estimate of the monomer 
concentration from the EKF (Cest1) where Er is predicted 
by the NN1. Then the output of the NNEKF1 estimator 

Concentration (mol/m3)  Deviation rate constant (1/s); kd 0.0 
   Monomer; CM1 297.06 Temperature (K)  
   Co-monomer; CM2 116.17    Bed; T 355.85 
   Nitrogen; CN 166.23    Feed; Tf 300.15 
   Hydrogen; CH 105.78    Reference; Tref 360.15 

Heat capacity (J/molK)     Recycle stream before cooling; Tgi 409.15 

   Monomer; CpM1 46.05    Recycle stream after cooling; Tg 324.85 
   Co-monomer; CpM2 100.48    Cooling water before cooling; Twi 293.15 
   Nitrogen; CpN 28.89    Cooling water after cooling; Two 308.15 
   Hydrogen; CpH 32.24 Activation energy for propagation 37681.2 
   Recycle gas and water; Cpw 75.36    (J/mol); E  

Heat capacity of polymer (J/gK); Cpp 3.56 Water holdup in the heat exchanger  2.0x106 

Flow rate (mol/s)     (mol); Mw  
   Cooling water; Fw 3.11x105 Thermal capacitance of the vessel 5.86x107 

   Recycle; Fg 8500    (kJ/K); MrCpr  
   Monomer; FM1 131.13 Polymer outlet rate (kg/s); Op 3.64 
   Co-monomer; FM2 3.51 Ideal gas constant (atmm3/Kmol); R 82.6x10-6 

   Nitrogen; FN 2.52 Number of moles of catalyst site  5.85 
   Hydrogen; FH 1.60    (mol); Yc  
   Bleed; Bt 10.39 Heat of reaction (J/g); Hr -3743 

Catalyst flow rate (kg/h); Fc 2.0 Volume of gas phase in the reactor  500 
Pressure (atm)     (m3); Vg  
   Total pressure; Pt 20.0 Rate constant (m3/mols)  

Active site concentration (mol/kg); ac 0.55    Monomer Propagation; kp1 0.085 
Mass of polymer in the bed (kg); Bw 7.0x105    Co-monomer Propagation; kp2 0.003 
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is the second estimated monomer concentration (Cest2) 
obtained from the summation of Cest1 and Er. 

 For EKF in this structure, the equations used in the 
prediction step are state space form equations, linearized 
model, as defined in Eq. (14). The A and B matrixes are 
updated corresponding to the estimated state variables 

( + +1| 1k kx ) in the correction step Eq. (11)-(13). The priori 

estimate error covariance ( +1|k kP ) is obtained from Eq. (9). 

The Cest1 is determined by the EKF according to the 
measured bed temperature input (Tmea). After that Cest1 and 
Tmea  are used  by the NN1 for predicting the error (Er). 
The NN1 is designed as a feedforward neural network 
with the optimal structure consisting of 3 nodes in input 
layer, 4 nodes in the one hidden layer and one output node 
with respect to the minimum mean squared error (MSE) 
method [13]. The optimal structure of NN (NN1) is 
shown in Fig. 2. 

 The selected inputs to the NN are the previous and 
current values of Cest1 and the current value of Tmea, which 
directly correspond to the current value of Er or the 
output of the network. The training, testing and validation 

data sets are obtained by selecting appropriate data from 
the output of EKF (Cest1), the measured bed temperature 
(Tmea) and the monomer concentration (Cm1) obtained 
from the simulation of the ethylene polymerization 
process models by solving Eq. (1)–(7). These equations 
are solved to obtain the process states according to various 
step changes in the input variables, i.e., flow rates (Fm1, Fm2, 
FH, FN and Fc). The target data for NN1 training or the 
errors (Er) are produced from the different value of Cm1 

and Cest1. The defined NN is trained with the Levenberg–
Marquardt algorithm in the MATLAB NN toolbox where 
the objective is to reduce the error between the NN 
predicted error and the actual error value. The optimal 
structure is selected by the minimum MSE method which 
provides the NN structure giving the minimum MSE 
value in prediction. Details of the procedure for obtaining 
feedforward neural network models are explained in [13]. 
The optimal NN (3-4-1 configuration), NN1, is connected 
in series after the EKF to predict the Er at current time. 
Then the Er is added to Cest1 for improving the estimated 
accuracy and sent out as NNEKF1 estimator output, the 
second estimated monomer concentration (Cest2). The 
component of the NN1 is shown in Table 2. 

 

 
 
Fig. 2. The structure of NNEKF1 estimator. 
 
Table 2. The components of NN models. 
 

Components NNest NN1 NN2 NN3 

Training Algorithm ৷–––––––––––––––  Levenberg–Marquardt algorithm      ––––––––––৷ 
Basis Function ৷–––––––––––––––             Linear Basis Function          ––––––––––৷   
Activation Function ৷–––––––––––––––                  Sigmoid Function             ––––––––––৷ 
Input of NN Tmea(k), Tmea(k-1), 

Tg(k), Tg(k-1) 
Tmea(k), Cest1(k), 
Cest1(k-1) 
 

, 1| 1i k kx + +  ; 

1,2,...,7i =  

, 1| 1
ˆ

i k kx + +   ; 

1,2,...,7i =  

Output of NN Cest(k) Er(k) Cest(k) 
 

Cest(k) 
 

Optimal structure 
(Input node-Hidden 
node-Output node) 

4-4-1 3-4-1 7-4-1 7-10-1 

 
3.2. NNEKF2 Estimator 
 

The structure of this estimator is designed by 
combining between EKF and a feedforward neural 
network as shown in Fig. 3(a) (NN2). The models of EKF 
are the same as in the NNEKF1 estimator. The EKF is 

used to estimate all state variables of the process based on 
the models at current time. From the Fig. 3(a), it is realized 
that as the EKF estimates both monomer concentration 
and bed temperature based on measured bed temperatures, 
the estimated bed temperature (Test) is more accurate than 
the estimated concentration (Cest1). From this advantage, 
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the Test or + +1| 1k kT and the other estimated state variables are 

continually used to find accurate predicted monomer 
concentration (Cest) by NN. 

 The inputs of NN2 are selected as the current value 
of all estimated state variables from the EKF in relative 
with the current value of Tmea. The training target data are 
simulated monomer concentration (Cm1), by solving Eqs. 
(1)–(7) at the current time. The training and obtaining 
procedure of the optimal NN are defined in [12]. The 
optimal NN of the NNEKF2 estimator, NN2, consists of 
7 nodes of input layer, 4 nodes of one hidden layer and 
one node of output layer (7-4-1 configuration). The 
optimal NN is used to predict the monomer concentration 
which is the output of the NNEKF2 estimator from the 
estimated state variables of EKF. Details regarding NN2 
are defined in Table 2. 
 
3.3. NNKF Estimator 
 

From the previous section, it is observed that each 
estimated state variable obtaining from the EKF is the 
state variable of the process. Therefore, all estimated state 
variables are directly affected by the error of measurement 
and noise signal as defined in Eq. (13). Also, they are very 
sensitive because of the changing of A and B matrix in 
every time state as shown in Eq. (14). 

 For this reason, the estimates of Cest1 are low accuracy. 
When they are sent as the inputs to NN, the NN will give 
low accuracy as well.  To handle this, another estimator is 
designed using a KF based on state space model 
(linearized model) of the process combined with NN as 
shown in Fig. 3(b). The KF uses the time update equations 
in the form of state space model obtaining from subspace 
method via MATLAB identification toolbox. The state 
space model is indicated as follows 
 

+ =  + 1| |
ˆ ˆ

k k k k kx A x B u  (15) 

+ += 1| 1|
ˆ

k k k ky C x  (16) 

 

where |
ˆ

k kx  is pseudo state vector at time k and +1|k ky  is 

the estimated measurement variable as +1|k kT . 

Simulation of the ethylene polymerization process 
under the condition as Table 1 is carried out to provide 
data for training and testing of the proposed estimators 
The pseudo state variables consist of seven state values that 
are selected by maximum percentage of fitting via 
subspace method and also based on process models. The 
sensitivity analysis, in case of noise, indicates that the 
estimated pseudo state variables are less sensitive than the 
estimated state variables. Although random noise is 
introduced more than 5 % of the measured value (300 K), 
the third pseudo state variable is almost identical to its 
normal condition. 

 With less effect of noise and measurement error on 
the estimated pseudo state variables, the NN can provide 
the accurate estimated monomer concentration according 

to Tmea. The NN in the NNKF estimator (NN3) consists 
of 7 nodes of input layer, 10 nodes of one hidden layer 
and one node of output layer (7-10-1 configuration). The 
inputs of NN3 are selected as the current value of all 
estimated pseudo state variables from the KF in relative 
with the current value of Tmea. Hence, the estimated 
monomer concentration is predicted by NN3, which is the 
output of NNKF estimator. The components of NN3 are 
defined in Table 2. 
 

 
 
Fig. 3. The structure of estimators: a) NNEKF2 and b) 
NNKF. 
 

4. Simulation Results 
 

All proposed estimators are applied and compared to 
estimate the monomer concentration in the ethylene 
polymerization reactor using the measured bed 
temperature at each sampling time. The performances and 
robustness tests are carried out with four cases: the 
nominal case, noise case, disturbance case and disturbance 
together with noise case. 
 
4.1. Nominal Case 
 

In this case, the estimators provide the estimated 
monomer concentration using the measured bed 
temperatures which are calculated from the ethylene 
polymerization process models under the nominal 
condition. The simulation results of all estimators are 
shown in Fig. 4. 

From Fig. 4(a), with the measured bed temperature, 
the EKF gives poor estimates of the monomer 
concentration as indicated in the dash line. Because of the 
complexity of the process, highly non-linear behavior and 
interaction between state variables (i.e. Cm1 and T), the 
state space equations in the predictor step of EKF rarely 
represent the exact states of the process. So, the predictor 
step provides the predicted state variables with high error 
which strongly effect to the estimated monomer 
concentration in the corrector step where the function of 
Kalman gain and measurement error are combined (eq. 
(13)). However, the NNEKF1 provides good estimates 
because of the error compensation by the combined NN 
as shown in Fig. 4(b). For the NNEKF2 and NNKF 
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estimators (Fig. 4(c) and (d)), the estimated monomer 
concentration are provided in a satisfied accuracy with less 
MSE as shown in Table 3 because accurate estimated bed 

temperature ( + +1| 1k kT  ) is used in NN for estimating the 

concentration. 
 

 
(a) 
 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 4. The estimated monomer concentration under 
normal condition: (a) EKF, (b) NNEKF1, (c) NNEKF2 
and (d) NNKF. 
 
4.2. Noise Case 
 

For the case in the presence of noise, random noises 
accounting to 2 K from the bed temperature are 
introduced into the measured bed temperature to evaluate 
robustness and performance of the estimators under real 
situations. The estimated results show that the NNEKF1 
and NNEKF2 cannot provide the estimates of the 
monomer concentration due to the inputs to NN (i.e. the 
first estimated monomer concentration) are strongly 
affected by noise signal which directly cause inaccurate 
estimated concentration in the further NN estimation. On 
the other hand, the NNKF estimator excellently estimates 
the monomer concentration under presence of noise of 2 
K till even 35 K as shown in Fig. 5(a) and 5(b), respectively. 
Since estimated pseudo state variables continually fed into 
NN are slightly affected by noise signal, estimated 
concentration by NN are reasonably accurate. The MSE 
values of estimations using these estimators in dealing 
with noises are summarized in Table 3. 
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Table 3. Performance comparison between the designed estimators under the nominal case, noise case and disturbance 
case. 
 

Condition 
MSE values 

NNest NNEKF1 NNEKF2 NNKF 

Nominal case 4.732 1.124x10-3 2.922x10-5 1.632x10-4 
Noise case (2K) 10.849 NaN† NaN 1.633x10-4 

Noise case (35K) 2599.951 NaN NaN 2.532x10-4 
Disturbance case (Fm1) 56.833 48.091 53.067 50.861 
Disturbance case (Fc) 4.864 9.870 x10-2 216.555 1.174 x10-1 
Disturbance (Fm1 and Fc) with noise (35K) 2462.166 NaN NaN 47.152 

 †NaN = the estimator cannot estimate the concentration. 
 
 
4.3. Disturbance Case 
 

The designed estimators are also tested involving 
several disturbances. For the disturbance case, changes in 
the flow rate of the streams, Fm1 and Fc are introduced by 
increasing its nominal operation values by 10%. Fig. 6 
shows the results of the NNEKF1, NNEKF2 and NNKF 
estimators for estimating the monomer concentration 
with introduced Fm1 disturbance. It can be seen from Fig. 
6 that all of the proposed estimators can give the estimates 
of the monomer concentration accurately. Their results 
show the small discrepancy from the target concentration 
along the time as shown in Fig 6(a), 6(b) and 6(c). Similarly, 
the estimated results in the presence of changes in Fc have 
less error indicating from their MSE values. The MSE 
values obtained from the NNEKF1, NNEKF2 and 
NNKF estimators for this case are summarized in Table 
3. They indicate that these estimators can still provide 
good performances even when the disturbances are 
introduced into the system. 
 
4.4. Disturbance with Noise Case 
 

In this case, Fm1 and Fc are introduced by increasing 
their nominal operation values by 10% together with 
random values of noise by 35 K from the bed temperature 
to the process. From the estimated results show that, there 
is only one hybrid estimator which is NNKF can handle 
this condition. Due to the fact that the introduced 
measurement noise can be handled by KF leading to 
accurate estimated pseudo state variable, therefore the NN 
can provide good estimates of the concentration. It can be 
seen that NNKF not only provides the good estimated 
accuracy of the monomer concentration as shown in Fig. 
7, it gives the smooth estimated result and less MSE value 
as well (Table 3). 
 

 
(a) 
 

 
(b) 

 
Fig. 5. The estimated monomer concentration under 
presence of noise: (a) 2K noise NNKF and (b) 35K noise 
NNKF. 
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(a) 
 

 
(b) 

 

 
(c) 

 
Fig. 6. The estimated monomer concentration under the 
disturbance case: (a) NNEKF1, (b) NNEKF2; (c) NNKF. 
 

 
 
Fig. 7. The estimated monomer concentration under the 
disturbance and noise case by using NNKF estimator. 
 

5. Conclusions 
 

Most chemical processes are complex, highly 
nonlinear with multivariable interacting systems, such as 
the ethylene polymerization process. Therefore, they are 
normally difficult to observe current conditions or state 
variables based on available measurements. Hence, in this 
work, a novel method using hybrid neural network (HNN) 
with Kalman filter (KF) is designed with three structures 
according to inside models and data flows for estimating 
the monomer concentration of an ethylene 
polymerization reactor using the measured bed 
temperature. Simulation study has shown that all 
proposed hybrid estimators give good estimates of 
monomer concentration under nominal and with 
disturbances conditions with low MSE values. However, 
the combined KF and NN estimator using the linearized 
model and pseudo state as NN input, provides superior 
estimation in dealing with noises as where providing the 
accurate and smooth estimated monomer concentration. 
These results validate the robustness of the NNKF hybrid 
estimator which make it highly promising to be 
implemented in nonlinear multivariable interacting 
systems such as this ethylene polymerization process. 
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Nomenclature 
 
ac  active site concentration of catalyst (mol/kg) 
Bw  mass of polymer in the fluidized bed (g) 
Bt  overhead gas bleed (mol/s) 
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CM1  concentration of monomer (mol/m3) 
CM2  concentration of co-monomer (mol/m3) 
CN  concentration of nitrogen (mol/m3) 
CH  concentration of hydrogen (mol/m3) 
CpM1  heat capacity of monomer (J/mol K) 
CpM2  heat capacity of co-monomer (J/mol K) 
CpH  heat capacity of hydrogen (J/mol K) 
CpN  heat capacity of nitrogen (J/mol K) 
Cpw  heat capacity of recycle gas and water (J/mol K) 
Cpp  heat capacity of polymer (J/mol K) 
E  activation energy for propagation (J/mol) 
Fc  catalyst flow rate (kg/s) 
Fw  cooling water flow rate (mol/s) 
Fg  recycle flow rate (mol/s) 
FM1  monomer flow rate (mol/s) 
FM2  co-monomer flow rate (mol/s) 
FH  hydrogen flow rate (mol/s) 
FN  nitrogen flow rate (mol/s) 
i state variable i of the process 
j component j in the reactor 
kd  deactivation rate constant (1/s) 
kp1  monomer propagation rate constant (m3/mole s) 
kp2  co-monomer propagation rate constant 
(m3/mole s) 
MrCpr  thermal capacitance of the reaction vessel (kJ/K) 
Op  polymer outlet rate (kg/s) 
R  ideal gas constant (atm m3/K mol) 
T  bed temperature (K) 
Tf   feed temperature (K) 
Tref  reference temperature (K) 
Tgi  temperature of recycle stream before cooling (K) 
Tg  temperature of recycle stream after cooling (K) 
Twi  cooling water temperature before cooling (K) 
Two  cooling water temperature after cooling (K) 
Vg  volume of gas phase in the reactor (m3) 
Yc  number of moles of catalyst site (mol) 

Hr  heat of reaction (J/g) 
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