
Research Article
Received: 1 June 2020 Revised: 8 July 2020 Accepted article published: 20 July 2020 Published online in Wiley Online Library:

(wileyonlinelibrary.com) DOI 10.1002/pi.6089

Wirelessly triggered bioactive molecule
delivery from degradable electroactive
polymer films
Mark D. Ashton,a Isabel C. Appen,a Melike Firlak,a,b Naomi E. Stanhope,a

Christine E. Schmidt,c* William R. Eisenstadt,d* Byul Hure* and
John G. Hardya,c,f*

Abstract

The development of stimuli-responsive drug delivery systems offers significant opportunities for innovations in industry. It is
possible to produce polymer-based drug delivery devices enabling spatiotemporal control of the release of the drug triggered
by an electrical stimulus. Here we describe the development of a wireless controller for drug delivery from conductive/electro-
active polymer-based biomaterials and demonstrate its function in vitro. The wireless polymer conduction controller device
uses very low power, operating at 2.4 GHz, and has a supply voltage controller circuit which controls electrical stimulation volt-
age levels. The computer graphical user interface program communicates with the controller device, and it receives device
information, device status and temperature data from the controller device. The prototype of the wireless controller system
can trigger the delivery of a drug, dexamethasone phosphate, from a matrix of degradable electroactive polymers. Further-
more, we introduce the application of in silico toxicity screening as a potentially useful method to facilitate the design of
non-toxic degradable electroactive polymers for a multitude of biotechnological applications, addressing one of the key com-
mercial challenges to biomaterial development, in accordance with ‘safe by design’ principles.
© 2020 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.
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INTRODUCTION
Polymer-based bioactive molecule delivery systems are routinely
employed to improve the biological efficacy of the bioactive mol-
ecules, wherein the polymers are key elements in the technology
since they can control the release of bioactive molecules
(e.g. agrochemical, drug etc.).1–3 Although there are many clinical
implementation hurdles, intelligent bioactive molecule delivery
systems offer significant opportunities for innovations in
industry.4–7

Devices capable of the precise control of levels of drugs in spe-
cific tissues or the bloodstream may enable maintenance of the
drug within its therapeutic window (effective but not associated
with undesirable side effects) and with their chronopharmacolo-
gies controlled in line with the chronobiology of the specific con-
dition. Stimuli-responsive drug delivery systems potentially
enable the treatment of such conditions because they have
potential for spatiotemporally controlled drug delivery.8 Indeed,
materials responding to stimuli (such as enzymes, light, pH, tem-
perature, ultrasound and electric/magnetic fields) have been
developed for use as drug delivery devices,9–24 with reviews
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specifically on the application of electroactive materials for drug
delivery.25–31

A variety of electronic interfaces for the body have been clini-
cally translated for long term applications, including electrodes
for the central nervous system for deep brain stimulation,
cochlear implants etc., that are designed to function for years;
however, they are all metal-based, with mechanical mismatch-
associated problems (e.g. inflammation and scar tissue formation
around the metal–tissue interface) that motivates the develop-
ment of softer non-degradable conductive coatings
(e.g. conductive polymers),32–39 potentially using microscale/
nanoscale patterns to instruct cell behaviour,40,41 or indeed capa-
ble of delivering bioactive substances from the electrode coating
(e.g. anti-inflammatories such as dexamethasone phosphate
(DMP) and antimicrobials).42

Wirelessly controlled electronic devices have been developed
for a variety of applications, including (but not limited to)
antennae,43,44 drug delivery devices,45–53 light emitting diodes
(enabling optogenetic applications)54–58 and sensors (perhaps
the most popular application)59–67 due to their potential integra-
tion in and control of other devices (e.g. wheel chairs,68 drug
delivery devices55,69 etc.). Wirelessly controlled bioelectronics
can be useful for recording cellular activity (particularly frommus-
cle and nerve tissues)70–79 or indeed for the stimulation of such
tissues,80–83 with examples of systems capable of both recording
and stimulation.84–86

Transient electronics are an emerging field of technologies and
have potential for fulfilling the market need for stimuli-responsive
biomaterials used for shorter term applications (seconds to
months).87–91 Wireless control of such transient technologies
has been a research goal for some time,92,93 with a variety of ele-
gant examples reported in the literature, including resorbable
electronic patches for wirelessly controlled electrothermic drug
delivery to the brain,94 and wirelessly controlled sensing
and delivery devices enabling control of genistein and metformin
delivery.95

Bioerodible/biodegradable conductive/electroactive polymer-
based materials may be useful for drug delivery, tissue engineer-
ing and regenerative medicine.96–99 In response to the significant
interest in using conductive/electroactive polymers for drug
delivery, we reported the first application of degradable electro-
active polymer-based materials (e.g. the polymer depicted in
Fig. 1) for electrochemically triggered drug delivery either upon
the application of a potential step or by potential cycling using a
circuit with a computer-controlled potentiostat.100,101 Here we
report the further development of this novel research via a device
that makes it possible to wirelessly trigger the delivery of a clini-
cally relevant model drug DMP (Fig. 1) from the electroactive
polymer-based materials in vitro.102 The electroactive polymers
used to prepare the polymer films in this report were copolymers
of oligoanilines linked to polyethyleneglycol (PEG) via ester bonds

that were prepared and characterised as previously described,101

and we extend our investigations here by reporting the applica-
tion of in silico toxicity screening103 as a potentially useful method
to facilitate the development of non-toxic degradable electroac-
tive polymers, thereby addressing some of the commercial chal-
lenges to biomaterial development,104 in accordance with ‘safe
by design’ principles.105,106

EXPERIMENTAL
Materials
Unless otherwise noted, chemicals were purchased from Sigma
Aldrich (Gillingham, UK) and used as supplied. The electroactive
polymers used to prepare the polymer films in this report were
copolymers of oligoanilines linked to PEG (2 kDa) via ester bonds
that were prepared and characterised as previously described
(by techniques including FTIR, NMR, TGA, DSC, XRD, UV–visible,
cyclic voltammetry, surface profilometry and conductivity).101 A
stock solution of the polymer and DMP (90 mg polymer, 10 mg
DMP, 500 μL hexafluoroisopropanol) was prepared, and films of
approximately 5 mg (as determined using a high precision bal-
ance) were cast on bioinert glassy carbon working electrodes
(0.0314 cm2, CH Instruments Inc., Austin, TX, USA) and dried under
high vacuum for 72 h at 60 °C, after which they were cooled to
room temperature and used for delivery experiments. Phosphate
buffered saline (PBS) was prepared by the dissolution of one tablet
(item P4417) in 200 mL of deionised water, yielding 0.01 mol L–1

phosphate buffer, 0.0027 mol L–1 potassium chloride and 0.137 mol
L–1 sodium chloride, pH 7.4, at 25 °C.

Wireless polymer conduction controller (WPCC) system
The wireless polymer conduction controller (WPCC) system for
drug delivery includes an electrochemical cell, a remote wireless
controller device and a wireless module that communicates with
the controller device. The electrochemical cell used in the experi-
ment is a three-electrode system composed of a working elec-
trode (a carbon electrode that is coated with the drug loaded
polymer films) and the reference electrode (a platinum wire)
immersed in PBS (4 mL), housed in a glass beaker with a fitted
lid. The WPCC is connected to the electrochemical cell, and it
includes a low-power microcontroller unit (MCU), a low power
2.4-GHz wireless module, a bias controller, a temperature sensor
and a boost converter. The bias controller is connected to the
electrochemical cell and controls the release of the drug. A graph-
ical user interface (GUI) control program manages the communi-
cation with the remote controller devices, and it receives device
information, device status and temperature data. The prototype
wireless controller device is designed to be compact. The width
and length of the printed circuit board (PCB) are 30 mm × 52 mm
(1.18 in. × 2.04 in.) The anode and cathode wires are attached to
the bias controller block, and they are clipped to the polymer film

Figure 1. The structure of the degradable electroactive polymer and drug (dexamethasone phosphate, DMP) used in this experiment.
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coated glassy carbon working electrode and the platinum wire
reference electrode. The hardware is designed to consume very
low power. The MCU was programmed to control the compo-
nents on the PCB includingwirelessmodule, the temperature sen-
sor and digital-to-analogue converter (DAC) integrated circuit. It
was designed to be operated in normal operation status for a cou-
ple of months without replacing the single coin cell battery.

WPCC hardware and firmware
The wireless device was designed using a low-power MCU. A
Texas Instruments (TI) (Austin, TX, USA) MSP430x2 series MCU
was used as it supports several layers of active and sleep modes.
An external 32.768-kHz crystal oscillator was placed on the board
for an auxiliary clock. An advanced and adaptive network technol-
ogy (ANT) wireless module was mounted on the board, con-
nected to the MCU through a universal asynchronous receiver/
transmitter interface. The ANT is an ultra-low power wireless pro-
tocol that can send wireless information from one device to
another. The ANT supports many sensor network topologies such
as peer-to-peer, star and practical mesh. The 2.4-GHz ANTmodule
can use any RF frequency from 2.4 to 2.524 GHz other than
2.457 GHz which is reserved for ANT+. The MCU controls the
ANT module during active or sleep modes. Effective use of the
sleep mode of the ANT module minimises power consumption.
These core hardware elements and the firmware structure were
introduced previously and were applied to environmental sensor
applications.66,67

A supply voltage controller block was implemented, the circuit
diagram of which is shown in Fig. 2. The DAC integrated circuit
communicates with theMCU using an I2C (inter-integrated circuit)
interface. The bias controller block includes an operational ampli-
fier. A TI OPA344 was used as a part of a buffer circuit. The voltage
was generated to supply the voltage to the polymer films. When it
is excited, the controller supplies a voltage of 0.6 V resulting in a
0.6 V difference between anode and cathode nodes of the electro-
chemical cell. If it needs to be cut off, the DAC is controlled to gen-
erate virtually zero voltage across the anode and cathode nodes.
The microprocessor firmware program was developed in the

C/C++ environment using Code Composer Studio (TI). First,
the controller device performs the initialisation. After it finishes the
initialisation, it goes into a normal loop state. In the normal loop
state, the device executes essential operations such as controlling
the wireless module and temperature sensor as fast as it can; then
the controller device enters a sleep mode. The controller device
wakes up every 2 s and resumes the normal loop state when trig-
gered by the internal wake-up signal. When events occur, the pro-
gram processes the relevant operations accordingly. For precisely
controlled drug release, the time control of the supply voltage con-
troller signal is localised using the clock of the MCU. For safety, if
the stop button is pressed, the supply voltage controller attempts
to stop generating the voltage immediately.

WPCC software
TheWPCC GUI programwas developed under Visual C++ environ-
ment. As described above, the ANT wireless protocol was used for

Figure 2. A circuit diagram of the supply voltage controller, booster converter and associated components.

Figure 3. Example screen capture of the GUI.
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communication. In the normal state of operation, theWPCC sends
a broadcast information packet every 2 s. The information packet
includes temperature sensor data, the device ID, status informa-
tion and a time stamp. The controller program receives the packet
data, which is displayed on the computer screen (as shown in
Fig. 3). There is a ‘Release’ button on the right side. There is a ‘con-
trol duration’ drop-down menu, which can select pre-determined
durations in seconds (e.g. 10, 20, 30, 60 s), or a user can manually
type in the duration in seconds. If/when the release button is
pressed, the control program sends an event to the device. If
the received event is valid, the wireless controller generates the
supply voltage for the given period of time; then the voltage
becomes virtually zero when the timer expires. There is a ‘stop’
button that attempts to stop the operation and to set the control
signal inactive.

Drug delivery experiments
Electrically triggered release of DMP from the films deposited on
glassy carbon substrates into PBS (4 mL) was controlled with the
WPCC as outlined above. The films were allowed to rest for 10 s
prior to stimulation at 0.6 V for 60 s to release DMP; the system
was allowed to equilibrate for 10 min before a 10 μL aliquot was
taken and frozen prior to analysis. The medium was unchanged
between cycles, and the data are reported as cumulative release
as a percentage of the total mass of drug in the film over the

period of the experiment. DMP release into PBS was quantified
by UV–visible spectroscopy using a Thermo Scientific Nano-
Drop2000c spectrophotometer (Thermo Fisher Scientific, More-
cambe, UK) and compared to passive release samples
(i.e. release of DMP from an equivalent setup without the applica-
tion of a trigger). Experiments were carried out in triplicate (n = 3)
with the mean average of the data presented with the standard
deviation.

In silico toxicity studies
In silico toxicity screening studies of the polymers were carried out
using Derek Nexus (v.6.0.1, certified knowledge base 2018 1.1) in
Nexus v.2.2.2 provided by Lhasa Ltd (Leeds, UK). The simplified
molecular-input line-entry system (SMILES) notations for the olig-
omers screened are displayed in Table S1. The SMILES were
entered into the integrated structure editor in Nexus and default
prediction settings were used for Derek Nexus. Any compound
activating an alert with a reasoning level of ‘equivocal’ or above
was treated as a positive prediction from the system.

RESULTS AND DISCUSSION
Polymer synthesis and film preparation
Here we report the development of a prototype device that is
capable of wirelessly monitoring/sending temperature data and
controlling the release of a clinically relevant drug (DMP) from

Figure 4. A simplified block diagram of the wireless controller system and electrochemical cell and a photograph inside the wireless polymer conduction
controller device.

Figure 5. Photographs of the electrochemical cell, wireless controller device and the insides of the WPCC device.
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films of degradable electroactive polymers101 in vitro. The electro-
active polymers used to prepare the polymer films in this report
were copolymers of oligoanilines linked to PEG (2 kDa) via ester
bonds that were prepared and characterised as previously
described (by techniques including FTIR, NMR, TGA, DSC, XRD,
UV–visible, cyclic voltammetry, surface profilometry and
conductivity),101 and films of similar quality to those previously
described were produced as described in the experimental
section.

Wirelessly controlled drug delivery
The WPCC system is composed of an electrochemical cell (for
in vitro validation studies), a remote wireless controller device

and a wireless module that communicates with the controller
device (a simplified block diagram of the wireless control system
is depicted in Fig. 4). The core hardware elements and the firm-
ware structure were previously reported for environmental sensor
applications66,67 and are further developed here for novel drug
delivery applications.102 The prototype wireless controller device
was designed to be compact, consume very low power and oper-
ate in normal operation status for a couple of months without
replacing the single coin cell battery. Photographs of the electro-
chemical cell, wireless controller device and the insides of the
WPCC device are shown in Fig. 5.
The capability of the WPCC to control the delivery of DMP-

doped films of the degradable electroactive polymer101 into PBS
(used in this work to mimic physiological conditions) was vali-
dated over a short period of time, where the electroactive poly-
mer films were subjected to three rounds of electrical
stimulation for 1 min and rest for 10 min for equilibration of the
system. The experimental delivery paradigm was adapted from
our previous report101 using a wired setup designed to suit the
use of a biodegradable battery capable of delivering 0.6 V
described by Bettinger and coworkers.107 We observed currents
in the nanoamp to microamp regime as these polymers are not
highly conductive, and such low currents are not likely to cause
harm to tissues with which they are in contact. If using more con-
ductive polymers it might be necessary to minimise contact of the
conductive material with the tissue (to ensure low currents, below
the milliamp regime) potentially by encapsulation of the device
within a polymeric matrix (e.g. foam/hydrogel on the surface of
the material), but that would clearly affect the rate of delivery
from the materials.
In these studies, the cumulative release of DMP into the PBS was

quantified via UV–visible spectroscopy over the experiment last-
ing 33 min, and is compared to passive release from the films in
an equivalent setup without application of the electrical stimulus.
Approximately 25% of the DMP was released passively from the
films over the course of the experiment, whereas approximately
85% of the DMP was released upon application of the electrical
stimulus over the same duration, clearly validating the efficacy
of the wireless control system.

In silico toxicity studies for electroactive oligomers
employing ‘safe by design’ principles
The ethically sound development of new technologies involves
self-critical assessment of the hazards that substances (used in
the production of and/or comprising the final product) present
to the environment and life. In vitro and in vivo tests have shown
a variety of different reactions to electroactive/conductive poly-
mers.98,99 In silico toxicity screening methods have been devel-
oped primarily to aid the design of bioactive molecules
(e.g. agrochemicals, drugs etc.) and help minimise the number
of in vivo tests that need to be undertaken to understand/demon-
strate their safety and to facilitate product development in line
with ‘safe by design’ principles.105,106 While the PEG component
of the polymers101 was chosen as PEGs are Food and Drug Admin-
istration (FDA) approved for a broad selection of medical applica-
tions, the electroactive oligomers101 are not FDA approved, and
their safety needs to be studied before contemplating their trans-
lation to environmental/medical applications.
Herein, we apply a bioinformatics approach to understand risks

associated with the polymer employed in this study101 using
Derek Nexus (v.6.0.1) to assess the toxicity of the polymers. We
assess the electroactive oligomers (flanked by short PEG chains,

Figure 6. Delivery of DMP from degradable electroactive polymer films in
PBS as determined by UV–visible spectroscopy. Cumulative release of
DMP from electroactive polymer films (expressed as percentage of the
total DMP content of the films (0.5 mg DMP + 4.5 mg polymer)): passive
release (grey bars) and electrically stimulated release (black bars).

Figure 7. Electroactive oligoanilines in each of the different oxidation
states (leucoemeraldine, emeraldine 1, emeraldine 2 and pernigraniline
states) all of which were identified as potential causes of multiple toxico-
logical endpoints including cancer, methaemoglobinaemia and skin sensi-
tisation in mammals due to the presence of aniline derivatives.

Wirelessly triggered bioelectronic drug delivery systems www.soci.org

Polym Int 2020 © 2020 The Authors.
Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.

wileyonlinelibrary.com/journal/pi

5

http://wileyonlinelibrary.com/journal/pi


shown in Table S1) in each of the different oxidation states (leu-
coemeraldine, emeraldine 1, emeraldine 2 and pernigraniline
states, shown in Table S1), inspired by literature reporting subtle
differences in the toxicity of graphene oxide in different oxidation
states.108,109 Derek Nexus identified that the electroactive oligo-
meric anilines in each of the different oxidation states (leucoemer-
aldine, emeraldine 1, emeraldine 2 and pernigraniline states,
shown in Figs 6 and 7) within the electroactive oligomers (shown
in Table S1) are potential causes of multiple toxicological end-
points including cancer, methaemoglobinaemia and skin sensiti-
sation in mammals due to the presence of aniline derivatives.
Derek Nexus also predicts leucoemeraldine to cause chromosome
damage in vitro, due to the phenylenediamine, and the emeral-
dine 1, emeraldine 2 and pernigraniline states to be mutagenic
in vitro, due to the phenylenediamine having been oxidised to
the quinoneimine. Both endpoints provide predictions for poten-
tial genotoxicants and carcinogens. These observations are sup-
ported by data from in vitro toxicology studies of oligoanilines
from Wei and coworkers, who report that the median lethal dose
(LD50/LC50) for aniline dimers, trimers and tetramers was of the
order of ca 70–300 μg mL–1 (dependent on the functionality dis-
played at their termini) with a short period of exposure
(24 h).110,111

Systematic studies of the relationship between the synthesis
and toxicity of conjugated oligomer derivatives (based on ani-
lines, pyrroles, thiophenes etc.) are necessary to understand if
such materials are safe for widespread use in technical and med-
ical applications104 employing ‘safe by design’ principles.105,106 In
the case of the polymer described herein incorporating aniline
oligomers, it is possible to contemplate using them for short term
application as minimally invasive (insertable) medical
devices112–114 that would be removed immediately after use
and disposed of as hazardous medical waste by incineration.
Clearly their toxicity limits their appeal as candidates for long term
implantation (e.g. as tissue scaffolds)98,115,116 where their poten-
tial to be carcinogenic, mutagenic and skin sensitisers could man-
ifest itself (particularly when used in the quantities necessary for
electrical stimulation of cells or the delivery of significant quanti-
ties of drugs).

CONCLUSIONS
In addition to the imperative need for fundamental research on
environmental bioelectromagnetics,117 we foresee significant
development of electronic circuitry and systems to control/reg-
ulate the delivery of power (from various sources) to devices
that are wearable or indeed implanted in vivo.118–123 Here we
describe the development of a wireless controller for drug
delivery from degradable electroactive polymer-based bioma-
terials and validate its efficacy in vitro. The low power WPCC
device operates at 2.4 GHz, receives device information, device
status and temperature data from the controller device, and
can trigger the delivery of a clinically relevant drug from a
matrix of degradable electroactive polymers in vitro; such tech-
nology could be adapted for application for a variety of differ-
ent bioelectronic applications. The use of more conductive
polymers may necessitate minimisation of contact of the con-
ductive polymers with tissue (to ensure low currents, below
the microamp regime) potentially by encapsulation of the
device within a polymeric matrix (e.g. foam/hydrogel on the
surface of the material), but that would clearly affect the rate
of delivery from the materials.

When designing other degradable conducting polymers for
medical/technical applications it is important to contemplate
their fate at the end of their useful lifetime. Here we demonstrate
the utility of in silico toxicity screening as a potentially valuable
method to facilitate the development of non-toxic electroactive
oligomers for inclusion in degradable electroactive polymers for
a multitude of biotechnological applications. This approach
addresses key commercial challenges to electroactive biomaterial
development,104 in accordance with ‘safe by design’
principles,105,106 and thereby advances the field, with potential
long term benefits via improved patient compliance.
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