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Abstract

In a public good provision or a public bad abatement situation, the
non-cooperative interplay of the participants typically results in low lev-
els of provision or abatement. In the familiar class of n-person quadratic
games, we show that Coarse Correlated equilibria (CCEs) - simple medi-
ated communication devices that do not alter the strategic structure of
the game - can significantly outperform the Nash equilibrium in terms of
the policy objective above.
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1 INTRODUCTION

Mediated communication is a true and tested way to achieve incentive-compatible
coordination on efficient outcomes in many non-cooperative games; such schemes
generate concepts like correlated equilibrium (CE), as proposed by Aumann (Au-
mann (1974), Aumann (1987)) and coarse correlated equilibrium (CCE) (Moulin
and Vial (1978))1.

In non-cooperative games, the main motivation behind these notions has
been to improve upon Nash, it terms of (expected) utility of the players them-
selves. CCEs obtain better utility compared to Nash outcomes even when CEs
fail to do so (for example, when the game is a potential game, as shown in (Ney-
man (1997)). Moulin, Ray, and SenGupta (2014) explicitly computed utility-
maximising CCEs in a 2-player quadratic game.

There are many economic situations in which one may wish to improve Nash
outcomes not (just) in terms of utility of the players, but rather with respect to
an exogenous social objective like aggregate effort or output. Here we focus on
two particular instances:

1. Public good provision game, with constant marginal cost of contribution
and with the benefit from the public good being concave, quadratic in
total contributions;

2. Emission abatement game (Barrett (1994)), where each country’s benefit
function is a function of the total abatement level chosen by all countries,
and the cost function of each country is a convex quadratic function of its
own abatement level.

In situations like above, a mediator (such as, a public tax authority or an en-
vironmental agency) might very well be more interested in equilibrium outcomes
which can extract better quantity levels than that in a purely non-cooperative
Nash outcome; for example, a mediator would prefer to choose a device which
maximises total abatement levels achieved or the total contributions made to
the public good provision.

In this paper, we analyse CCEs to find such desired levels in a class of
games; we consider n-person symmetric quadratic games, with a concave po-
tential function. Abatement game (Barrett (1994)), that can also be viewed as
the public good game with quadratic costs, serves as our special case for this
general analysis.

To illustrate our contribution, consider a baseline 2-person abatement game
in which the utility of country i is given by the function q − 2q2 − q2i , where qi

1Moulin and Vial (1978) called this equilibrium concept a ‘correlation scheme’, while Young
(2004) and Roughgarden (2009) called this ‘coarse correlated equilibrium’ and Forgo (2010)
called it ‘weak correlated equilibrium’.

2



is the choice of abatement level by country i and thus q (= q1 + q2) is the total
abatement level. One can show that for this game, the optimal CCE (total)
utility is πCCE = 23

104 ≈ 0.2211, while the Nash (total) payoff is πN = 11
50 ≈ 0.22

and hence, π
CCE

πN ≈ 1.0052 (which implies an improvement over the Nash payoff
by 0.5%, that may seem small but can be a significant amount if one thinks
of real-life magnitudes); in this particular case, in terms of quantities, we get
qCCE

qN
≈ 1.057, an improvement over the Nash abatement by 5.7%. If one wishes

to maximise just the abatement quantity level for this specific game, then the
best possible scenario would have been associated with another similar CCE

for which qCCE

qN
≈ 1.53, i.e., 53% improvement over the Nash abatement level;

however, the corresponding utility falls by about 35% below the Nash utility
level. Of course, one may then naturally ask what if we wish to achieve at least
the Nash utility while maximising the abatement level; the answer (for this par-
ticular baseline game) is that we can have a maximum of 11.5% improvement in
the abatement maintaining such a restriction, with the utility just above (0.05%
more than) the Nash utility.

Not surprisingly, as will be clear from our analysis below, there may be a
tension between two equally important goals, utility and quantity (abatement)
levels for such games. Our results illustrate the severity of the trade-off between
the CCE maximising players’ payoffs and the CCE maximising aggregate abate-
ment.

There have been quite a few applications of CE and CCE to economic mod-
eling in the literature in the recent past. The randomisation device in any CE
or a CCE has a natural interpretation in many economic situations (see Arce
(1995), Arce (1997)) and can be seen as mediating institutions like government
agencies, international bodies or trade associations like European Union, WTO
(World Trade Organisation), United Nations Framework Convention on Cli-
mate Change (UNFCCC), etc. For instance, in the context of climate change
negotiation, an independent agency2 (European commission for EU Emissions
Trading Scheme) can provide recommendations to all the signatories towards the
ultimate goal of global emission reduction (see Forgo, Fulop, and Prill (2005),
Forgo (2010), Forgo (2011)). CCE in one-shot games are shown to approxi-
mate Nash equilibria in repeated games (see for example, Awaya and Krishna
(2019), Awaya and Krishna (2020)). CCE structure can be seen in other games
of economic significance with expending effort (Fleckinger (2012), Deb, Li, and
Mukherjee (2016)), gathering information (Gromb and Martimort (2007), pub-
lic good provision3, duopoly models (Ray and SenGupta (2013), Gerard-Varet

2Although we can not point to a precise example in real life, our abstract mediator embodies
in spirit the kind of commitment shown in the 1992 UNFCCC that several authors have
analysed (see for example Slechten (2020)).

3See Reischmann and Oechssler (2018) for some experimental results in implementing CCE
outcome in a repeated public good game. Also see Georgalos, Ray, and SenGupta (2020) for
some experimental results on CCE.
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and Moulin (1978)) etc; a number of studies (Forgo et al. (2005), Forgo (2010),
Roughgarden (2009)) relate CCE to no-regret learners.

Our paper builds on the above 2-player example and proves the following
general results:

1. we study quantity-maximising CCEs for any n-person symmetric quadratic
games and find an analytical algorithm to compute the optimal quantity-
maximising CCEs for such n-person games;

2. we analyse an n-person abatement game showing that utility and quantity
levels are two conflicting aspects in such a scenario;

3. we formally characterise CCEs in n-person abatement games and show
that the improvement in abatement over the Nash level increases depend-
ing on a single parameter r (increasing as r decreases); CCEs obtain higher
quantity (abatement) levels even maintaining the same utility as in Nash
equilibrium but this (relative) improvement diminishes with the number
of players, n.

International and transnational environmental agreements have been the
subject of many research papers in last two decades. Following Barrett’s work on
the feasibility of creating stable international environmental agreements (IEAs),
a number of cooperative and non-cooperative game theoretic approaches have
been explored including coalition formation and applications of coalitional form
games, (see Finus (2008), Tulkens (1998), Barrett (2004), McGinty (2007), and
the references therein). To the best of our knowledge CE and CCE have not
been explored in this context. Our results provide theoretical underpinnings to
the belief that mediation is instrumental in such discussions.

The contribution of this paper is two-fold. First as a theoretical exercise, our
result is perhaps the first attempt of characterising the benefit from coarse corre-
lation in this class of games. Second, as the importance of enforcing agreements
is an important theme in the environmental literature, our characterisation for
the abatement game suggests why and how a mediator (an independent agency)
could be used for agreements and commitments in abatement games in practice.

Our results are in the same spirit as and complement the recent results
in public good games extended to networks, see Pandit and Kulkarni (2018),
Chadha and Kulkarni (2020), Bramoullé and Kranton (2007), where authors
study effort and utility maximising Nash equilibria.
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2 MODEL

2.1 Coarse Correlated Equilibrium (CCE)

Consider an n-person normal form game, G = [Q1, Q2, . . . , Qn;u1, u2, . . . , un],
with Q =

∏
iQi, where the strategy sets, Qi’s are closed real intervals and the

payoff functions ui : Q→ R, i = 1, . . . , n, are continuous. We write C(Q) for the
set of such continuous functions and similarly, C(Qi) for the set of continuous
functions on Qi.

Let L(Q) with generic element L and L(Qi) with generic element `i denote
the sets of probability measures on Q respectively. Let the mean of ui(Q) with
respect to L be denoted by ui(L).

The deterministic distribution at z is denoted by δz, and for product dis-
tributions such as δq1 ⊗ `2 ⊗ . . . ⊗ `n we write u1(δx1

⊗ `2 ⊗ . . . ⊗ `n) simply
as u1(q1, `2, . . . , `n), and for short u1(q1, `−1) or more generally for any player
i we write ui(qi, `−i). Given L ∈ L(Q), we write Li for the marginal distri-
bution of L on Qi, defined as follows: ∀f ∈ C(Qi), f(Li) = f∗(L), where
f∗(q1, q2, . . . , qn) = f(x1) for all (q1, q2, . . . , qn) ∈ Q.

Definition 1. A coarse correlated equilibrium (CCE) of the game G is a lottery
L ∈ L(Q) such that ui(L) ≥ ui(qi, L−i) for all (q1, q2, . . . , qn) ∈ Q.

2.2 Quadratic Games and its CCEs

We consider the following symmetric n-player games that we call a quadratic
game; in this game, the strategy sets Qi = R+, for all i, and the payoffs are of
the following general (quadratic) form:

ui(q1, q2, . . . , qn) =

n∑
i=1

aqi +

n∑
i=1

n∑
j=1

bqiqj + cq2i , (1)

where a,b, c are constants.
We now characterise the set of CCEs for the above game. If L is the distri-

bution of a symmetric random variable Z = (Z1, . . . , Zn), consider respectively
the expected values of Zi, Z

2
i , and Zi · Zj 6=i and denote them as below; for

i = 1, . . . , n:

α = EL[Zi],

β = EL[Z2
i ] and

γ = EL[Zi · Zj ] for any j 6= i, j = 1, . . . , n.

We first show that the CCE participation constraint (as in Definition 1) for the
n-player quadratic game can be completely expressed in terms of these three
moments of L.

Lemma 1. Any symmetric lottery L ∈ Lsy(Rn+) is a CCE of the quadratic
game (1) if and only if

maxz≥0
{

(a+ b(n− 1)α)z + cz2
}
≤ naα+ b(n− 1)γ + cβ;
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Proof of Lemma 1 above is a straightforward extension of the proof of Lemma
1 in Moulin et al. (2014), using Definition 1 above for our n-person quadratic
game, and hence is omitted here. We now identify the range of the vector
(α, β, γ) when L ∈ Lsy(Rn+) in the following lemma. Note the conditions given
in Moulin et al., 2014 are special cases of the following derived set.

Lemma 2. For any L ∈ Lsy(Rn+) and the corresponding n dimensional random
variable Z = (Zi), we have

α, γ ≥ 0; β ≥ γ; β + (n− 1)γ ≥ nα2. (2)

The proof of Lemma 2 is in the Appendix. Note that the conditions presented
in Lemmata 1 and 2 of Moulin et al. (2014) are special cases of our results
(Lemmata 1 and 2) above.

2.2.1 Quantity Maximisation

Note that the corresponding utility of any player i from the above CCE Lsy(Rn+)
is:

naα+
n(n− 1)

2
bγ + cβ.

As mentioned in the Introduction, in this paper we focus on achieving the max-
imum level of quantity (qi’s) in this quadratic game, instead of maximising the
utility level using CCE. However, it is difficult to obtain any further explicit
characterisation of the lotteries for the n-player case; so, we first provide an
existence result of L for given parameters that satisfy (2).

First note that, given α, β and γ satisfying (2), it should be true that for
some k1

k2
= ξ > 1,

β = (k1 + 1)α2 (3)

γ =
n− 1− k2
n− 1

α2 (4)

Now observe that there exist distributions (for example, multivariate Gaus-
sian) of the symmetric random variable (Q1, . . . , Qn) with the mean vector
(E(Q1) = E(Qn) = α) and covariance matrix

∑
= k1α

2


1 ρ · · · ρ
ρ ρ
...

. . .

ρ ρ 1

 ,

where ρ = − 1
ξ(n−1) .

This argument leads to the following Lemma.

Lemma 3. If α, β and γ meet the system (2), there exists a symmetric lottery
L with precisely these parameters.
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Using symmetry, the quantity-maximising CCE can now be computed by
solving the following convex quadratic programme:

max
α,β,γ

α (5)

such that β ≥ γ (6)

β + (n− 1)γ ≥ nα2 (7)

(n− 1)bγ + cβ ≥ maxz≥0
{

(a+ (n− 1)bα)z + cz2
}
− aα (8)

α, γ ≥ 0; (9)

We are now ready to present the quantity-maximising CCE for our n-player
quadratic game. Consider the following algorithm:

Algorithm 1. Algorithm Quantity-CCE is given by the following steps:

1. Fix α.

2. Find a feasible point in the polytope (5) - (9). If there exists such a point
go to step 3; else, go to step 4.

3. Set α = α+ ε and go to step 2.

4. Set ε = ε
2 and go to step 3.

Theorem 1. Algorithm 1 (Algorithm Quantity-CCE) finds the quantity-maximising
CCE for the n-person quadratic game (1).

Theorem 1 can be proved easily (using Lemmata 1− 3). Since the objective
of (5) - (9) is independent of β and γ, it is enough to find the largest value of
α such that there exists at least one feasible solution to (6) - (9). Algorithm
Quantity-CCE imitates binary search to find this maximum α, which proves our
Theorem.

One may now wish to compare the maximised quantity levels from the op-
timal CCE found by Algorithm 1 with that from the Nash equilibrium of a
quadratic game. However, for any arbitrary quadratic game (1), it involves too
many possible cases, depending on the parameter values. Thus, we focus on a
specific quadratic game from the literature (the abatement game as discussed
in the Introduction) to provide some new insights.

3 ABATEMENT GAMES

We present below a specific quadratic game, proposed in Barrett (1994) as a
model of pollution-abatement game played by n countries. The payoff function
of a country i = 1, 2, ..., n is a function of the abatement levels (qi) chosen by

7



the countries, with the total abatement as Q =
∑n
i=1 qi. The benefit function4

of country i is

Bi(Q) =
B

n
(AQ− Q2

2
),

while the cost function of each country is a convex quadratic function of its
own abatement level qi and is

Ci(qi) =
Cq2i

2
.

The payoff function of country i is thus given by:

ui(qi, qj 6=i) =
AB

n
(Q)− B

2n
(Q)2 − C

2
q2i , where A, B and C are all positive.

We now set a = AB
n , b = B

2n , c = C
2 for simplicity and rewrite the above

payoff function in the following form:

ui(qi, qj 6=i) = a(

n∑
i=1

qi)− b(
n∑
i=1

qi)
2 − cq2i . (10)

We call the above game an abatement game. The (symmetric) Nash equi-

librium level of abatement (qNeqi ) and the corresponding payoff πNeqi are given
by

qNeqi =
a

2(nb+ c)
; πNeqi =

a2[n2b+ (2n− 1)c]

4(nb+ c)2
.

The abatement game is clearly a potential game with the potential function

P (qi) = a

(
n∑
i=1

qi

)
− b

 n∑
i=1

n∑
j=1

qiqj

− c n∑
i=1

q2i ,

which is smooth and concave. Therefore, the only CE is the Nash equilibrium
qNeq (Neyman (1997)). The following Proposition characterises the CCE of this
game.

Proposition 1. A symmetric lottery L ∈ Lsy(Rn+) is a CCE of the abatement
game if and only if

max
z≥0
{[a− 2(n− 1)bα]z − (b+ c)z2} ≤ aα− (b+ c)β − 2b(n− 1)γ (11)

and the corresponding utility (for country i) is

ui(L) = naα− (nb+ c)β − n(n− 1)bγ.

4Note that the benefit function in the published version of Barrett (1994) has a typo that
we have corrected here.
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Proof of Proposition 1 is a straightforward extension of the proof of Propo-
sition 1 in Dokka et al. (2019), for our n-person abatement game, and hence is
omitted here. The following Corollary is now immediate.

Corollary 1. The lottery L(α, β, γ) is a CCE of the abatement game if and
only if

either, α >
a

2b(n− 1)
and aα ≥ (b+ c)β + 2(n− 1)bγ, (12)

or, α ≤ a

2b(n− 1)
and aα ≥ (b+ c)β + 2(n− 1)bγ +

[a− 2(n− 1)bα)]2

4(b+ c)
. (13)

We now present two further important observations out of the above char-
acterisation (proofs of which are in the Appendix).

Claim 1. When n = 2, the case α > a
2b(n−1) is impossible.

Claim 1 shows that an abatement game with three or more players requires
separate analysis as there are more CCEs possible resulting in different outcomes
of the game.

Our next observation relates to the benefit and cost parameters of the game.
Let us denote r = c

b .

Claim 2. When r = c
b > 1, the only CCE of the abatement game coincides

with the Nash equilibrium of the game.

Henceforth, we will only consider the case when r = c
b < 1.

3.1 Abatement Maximisation

Using the techniques used in Algorithm 1, we can precisely characterise the CCE
for the abatement game that maximises the total abatement level, Q =

∑n
i=1 qi

and thereby compare it with the Nash equilibrium abatement level.

Proposition 2. For a fixed r = c
b < 1,

1. when (1−r) ≥ 2
n , the optimal values of the three moments of the abatement-

maximising CCE for the abatement game are α = a
n(b+c) , β = nα2 and

γ = 0,

2. when (1−r) < 2
n , the optimal values of the three moments of the abatement-

maximising CCE for the abatement game are α = a

2b[(n+r)−
√

(n−1)(1−r2)]
,

β = nα2 and γ = 0.

Proposition 2 suggests that by having negatively correlated strategies (γ =
0), CCE could achieve better average abatement compared to a fully non-
cooperative Nash outcome. The lottery in Proposition 2 has the following inter-
pretation: if a particular country is not able to abate due to certain economic
or other shocks, overall abatement is still achievable via correlation.
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Using Proposition 2, we can immediately measure the relative improvement
in the abatement level from the abatement-maximising CCE over that of the

Nash equilibrium abatement level, given by qCCE

qN
.

Corollary 2. For a fixed r = c
b < 1,

1. when (1− r) ≥ 2
n , qCCE

qN
= 2(n+r)

n(1+r) ,

2. when (1− r) < 2
n , qCCE

qN
= n+r

(n+r)−
√

(n−1)(1−r2)
.

Corollary 2 requires no detailed proof. From Corollary 2, we note that the
total abatement from the abatement-maximising CCE over the Nash abatement
increases as r decreases. Also, notice that for larger n, the condition (1−r) ≥ 2

n
is more likely to be satisfied.

We illustrate these features by plotting the maximum abatement gain by

CCE over Nash, that is qCCE

qN
, with respect to r, for three different values of n

in Figure 1 (the blue curve is for n = 3, the green one is for n = 10 while is
red is for n = 50). The coloured vertical lines in Figure 1 provide the cutoffs
in Corollary 2; case 1 lies to the left of the corresponding line (blue for n = 3,
green for n = 10 and red for n = 50) while case 2 lies to the right.

3.2 Utility Maximisation

One could also characterise the utility-maximising CCE for the abatement game.
The expressions for α, β and γ associated with the utility-maximising CCE for
the n-player case are messy and are difficult to interpret. Instead, here we
present the simpler case of a 2-player abatement game.

Proposition 3. If r = c
b < 1, the optimal values of the three moments of the

utility-maximising L in a 2-player abatement game are given by (α̃, β̃, γ̃):

α̃ =
a

b

2 + 2r − r2

2(4 + 5r)
,

β̃ =
a2

b2
4 + 8r + r2 − 4r3

4(4 + 5r)2
and γ̃ =

a2

b2
4 + 8r − r2 − 4r3 + 2r4

4(4 + 5r)2
;

while the optimal CCE is L̃ = 1
2δ(z,z′) + 1

2δ(z′,z), with

z, z′ =
a

b

2 + 2r − r2 ± r
√

1− r2
2(4 + 5r)

.

Proof of Proposition 3 has been postponed to the Appendix. Recall also
from Claim 1 that the CCE in the 2-player case can be very different from that
of the n-player game.
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Figure 1: qCCE

qN
vs r for n = 3(blue), n = 10(green) and n = 50 (red)

3.3 Abatement and Utility

We observe that in the 2-player abatement game, the utility at the abatement-
maximising CCE is always lower than the Nash utility level. One can thus
naturally ask how much improvement in the abatement level we can achieve
keeping the utility level at least that of Nash. The analytical answer to this
question can be found for the 2-player case; the maximum improvement in the
abatement level over Nash, keeping the utility level held at least at the Nash
outcome, is at most 25%. (Proposition 4 in the working paper by Dokka et al.
(2019))

We here performed a simulation for this analysis with n > 2 and observe
that even after imposing the utility constraint, we still achieve improvement
over the Nash abatement level, however this diminishes with n. In Table 1, we
illustrate our simulation results for different value of n (n = 3, 4, 5, 10, 50, 100)
for the parameter values a = b = 1 and c = 0.78.
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n α (with utility constraint) Nash quantity
3 0.143 0.132275132
4 0.112 0.10460251
5 0.09 0.08650519
10 0.0474 0.046382189
50 0.009893 0.009846396
100 0.004965 0.004961302

Table 1: Abatement level at the optimal CCE with utility constraint

The simulation results presented in Table 1 clearly shows that CCEs (main-
taining the same utility as in Nash equilibrium) do obtain higher abatement
levels than the Nash levels; however, this improvement decreases with n.

4 REMARKS

We have analysed coarse correlated equilibria to find the quantity-maximising
outcome for n-person symmetric quadratic games, such as abatement games.
As an example of this class of games, we have characterised the abatement-
maximising CCEs for the n-person abatement game. Such a computation is the
first of its kind for coarse correlated equilibria for the abatement game and, this
is why we regard this exercise as an interesting first step towards more sophis-
ticated computations to understand mediation in general for such games. In
addition, we explicitly characterise the utility-maximising CCE for a 2-player
abatement game. We also contrast the abatement maximising levels with main-
taining the utility level at the Nash outcome for any n-person abatement game.

There is a huge recent literature in the algorithmic game theory that focuses
on the popular ratios, known as the price of anarchy (PoA) and price of stability
(PoS) in similar framework. While the analysis of both PoA and PoS do apply
to the situation we study here, the questions we consider in this paper are dif-
ferent. The existing literature focuses on measuring the loss of efficiency with
respect to one measure only; PoA with respect to one measure (say, utility) is
not studied conditional on PoA on another measure (say, quantity levels). To
the best of our knowledge, we are the first to provide such an analysis in a small
but economically relevant class of games.

There are clearly a few limitations of our results. We have used a quadratic
payoff function, and not any general differentiable concave function; hence, sub-
sequently, we considered symmetric lotteries. We would like to emphasise that
even though our results are obtained in a symmetric game, they provide impor-
tant basis for argument for mediation and correlation in this context. This is
not just because it enables us to use the techniques identified in Moulin et al.
(2014); this choice has been justified in the literature (such as the RICE model
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in Nordhaus and Boyer (2000) that tries to set up abatement cost functions fit-
ting real data). Quadratic approximation is indeed a natural choice for payoffs
as shown in the models by Bosetti et al. (2009), Finus, Altamirano-Cabrera,
and Ierland (2005), Klepper and Peterson (2006).

As a natural extension, asymmetric version of our abatement game could be

studied with asymmetry in costs, i.e., considering Ci(qi) =
Ciq

2
i

2 . In this case, the

Nash equilibrium quantities will be qNeq−asymi = a
2ci(1+b

∑
j

1
cj

)
. An analytical

study of CCEs employing general asymmetric lotteries seems hard and closed-
form expressions for lottery parameters seems unlikely. It is possible to extend
our results to this version of the game by considering symmetric lotteries even
though the game itself is asymmetric. Another extension that can be considered
for future work is to consider asymmetry arising by introducing player-specific
benefit functions, which leads to an entirely different game compared to the
games we considered here.

5 APPENDIX: PROOFS

Proof of Lemma 2 For L to be feasible, it should be true that the variance-
covariance matrixML(Z) is positive semi-definite (PSD). Omitting the subscript
L for ease of notation, let Yi = Zi − α for all i:

V ar(Zi) = E[Y 2
i ] = β − α2 = β∗,

Cov(Zi, Zj) = E[YiYj ] = γ − α2 = γ∗.

So, we need to express a matrix with β∗ on the diagonal and γ∗ on the off-
diagonal is PSD. This means that we have for all x ∈ Rn

β∗(

n∑
1

x2i ) + 2γ∗(
∑

1≤i≤j≤n

xixj) ≥ 0. (14)

Standard techniques show that this holds if and only if

β∗ ≥ γ∗ and β∗ + (n− 1)γ∗ ≥ 0, (15)

where β∗ ≥ 0 but γ∗ can be positive or negative. Note that β∗ is necessary, and
if β∗ = 0 then we need γ∗ = 0 as well. Assume now β∗ > 0.

Case 1: γ∗ ≥ 0.
In this case, we can write (14) as

(1− γ∗

β∗
)(

n∑
1

x2i ) +
γ∗

β∗
(

n∑
1

xi)
2 ≥ 0, (16)

which holds if and only if β∗ ≥ γ∗.
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Case 2: γ∗ < 0.

In this case, (14) is

(1− −γ
∗

β∗
)(

n∑
1

x2i ) ≥
−γ∗

β∗
(

n∑
1

xi)
2. (17)

If we fix the sum
∑n

1 xi, the minimum of the LHS above is achieved when all
xi are equal, so that the inequality holds for all x if and only if it holds for x on
the diagonal, i.e.,

1 +
−γ∗

β∗
≥ n−γ

∗

β∗
⇐⇒ β∗ + (n− 1)γ∗ ≥ 0.

Combining both cases and switching back to β and γ, we get the result. �

Proof of Claim 1 Fix α and consider the system of conditions on the vector
(β, γ). The line (b+ c)β + 2(n− 1)bγ = aα is flatter than the line β + γ = 2α2;
therefore, the two corresponding half spaces intersect in the positive orthant if
and only if aα

b+c ≥ 2α2. But the latter contradicts α > a
2b . �

Proof of Claim 2 Consider the following polytope for a fixed Ψ = {(β, γ)|β ≥
γ, β + (n− 1)γ ≥ nα2} under the additional constraint 13. Note that Ψ is un-
bounded from above and bounded from below by the interval [P,Q], where P =
(α2, α2) and Q = (nα2, 0). The minimum in Ψ of (b+c)β+2(n−1)bγ is achieved
at P. Therefore, if P meets 13 it is our optimal pair of (β(α), γ(α)); if not there

is no CCE. P meets 13 if and only if ((2n − 1)b + c)α2 ≤ − b
2α2−a(nb+c)α+ a2

4

b+c ,

which is (a− 2(nb+ c)α)2 ≤ 0. This is only possible when α = a
2(nb+c) which is

nothing but Nash outcome. �

Proof of Proposition 2 (First part). Increasing the value of α shrinks the
feasible region of the polytope

{(β, γ)|β ≥ γ;β + (n− 1)γ ≥ nα2; (b+ c)β + 2b(n− 1)γ ≤ aα}

eventually to a single point which is the intersection of the half-lines (b+ c)β +
2b(n − 1)γ = aα and β + (n − 1)γ = nα2 on the β-axis. This point gives
α = a

n(b+c) . However, this is only valid when resulting α ≥ a
2b(n−1) , that is, we

must have (1− r) > 2
n . �

Proof of Proposition 2 (Second part). For the second case, the intersection

point of β = nα2 and (b+ c)β + 2b(n− 1)γ = aα− (a−2b(n−1)α)2
4(b+c) is the positive

root of the following quadratic equation:

[(n− 1)2 + (1 + r)2n]α′2 − (n+ r)α′ +
1

4
= 0,

14



where α = a
bα
′. �

Proof of Proposition 3 First consider the equilibrium condition in Proposi-
tion . Note that if a − 2bα < 0 ⇐⇒ α > a

2b , the LHS. of that inequality (the
maximum over z ≥ 0) is 0; therefore, the equilibrium condition in Proposition
becomes

aα ≥ (b+ c)β + 2bγ = b(β + γ) + cβ + bγ > b(β + γ) ≥ 2bα2,

which is a contradiction. So, we must have α ≤ a
2b ; then, the LHS. of the

equilibrium condition is (a−2bα)2
4(b+c) and the condition is now

(b+ c)β + 2bγ ≤ aα− (a− 2bα)2

4(b+ c)
= −

b2α2 − a(2b+ c)α+ a2

4

b+ c
. (18)

We now fix α and solve step 1 in Lemma 3: we must minimise (2b+c)β+2bγ in
the polytope Ψ = {(β, γ)|β ≥ γ, β + γ ≥ 2α2} under the additional constraint
(18). Note that Ψ is unbounded from above and bounded from below by the
interval [P,Q], where P = (α2, α2) and Q = (2α2, 0). We distinguish two cases
here.

Here, the minimum of (b+ c)β + 2bγ in Ψ is achieved at Q; so, if Q fails to
meet the constraint (18), this constraint does not satisfy anywhere in Ψ. Thus,
we must choose α such that

2(b+ c)α2 ≤ −
b2α2 − a(2b+ c)α+ a2

4

b+ c
(19)

⇐⇒ Λ(α) = (3b2 + 4bc+ 2c2)α2 − a(2b+ c)α+
a2

4
≤ 0 (20)

The discriminant of the right-hand polynomial Λ(α) is a2(b2 − c2); therefore,
(19) restricts α to an interval [α−, α+], between the two positive roots of Λ(α).
For such a choice of α, the constraint (18) cuts a subinterval [R,Q] of [P,Q],
where R meets (18) with an equality. Note that R = P only if α = qNi (from
Case 1 and the fact that Λ(qNi ) < 0); otherwise R 6= P . Clearly, R is our
optimal choice for (β(α), γ(α)) and it solves the system

β + γ = 2α2; (b+ c)β + 2bγ = −
b2α2 − a(2b+ c)α+ a2

4

b+ c
.

Therefore,

β(α) =
1

b2 − c2

[
b(5b+ 4c)α2 − a(2b+ c)α+

a2

4

]
and

γ(α) =
1

b2 − c2

[
−(3b2 + 4bc+ 2c2)α2 + a(2b+ c)α− a2

4

]
.
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Now in step 2 of Lemma 3, we must maximise 2aα−(2b+c)β(α)−2bγ(α) under
the constraints α ≥ 0 and Λ(α) ≤ 0. Developing this objective function yields
the programme

1

b2 − c2
max
α
{−b2(4b+ 5c)α2 + a(2b2 + 2bc− c2)α− a2c

4
} (21)

under the constraints

α ≥ 0 and Λ(α) = (3b2 + 4bc+ 2c2)α2 − a(2b+ c)α+
a2

4
≤ 0.

The unconstrained maximum of the objective function is achieved at α̃ =
a(2b2+2bc−c2)

2b2(4b+5c) .

We now show that Λ(α̃) ≤ 0. With the change of variable r = c
b , this

amounts to

(3 + 4r + 2r2)(2 + 2r − r2)2

4(4 + 5r)2
− (2 + r)(2 + 2r − r2)

2(4 + 5r)
+

1

4
≤ 0

⇐⇒ 4 + 8r − 5r2 − 12r3 + 3r4 + 4r5 − 2r6 ≥ 0.

The above polynomial is 0 at r = 1; it is also easy to check, numerically, that it
is non-negative on [0, 1]. The proof is now complete if we express α̃, β̃ and γ̃ in
terms of r. This is indeed easy for α̃. One may also verify, using the expression
for α̃ that

β̃ = β(α̃) =
1

b2 − c2

[
b(5b+ 4c)α̃2 − a(2b+ c)α̃+

a2

4

]
=

a2

b2
4 + 8r + r2 − 4r3

4(4 + 5r)2
and

γ̃ = γ(α̃) =
1

b2 − c2

[
−(3b2 + 4bc+ 2c2)α̃2 + a(2b+ c)α̃− a2

4

]
=

a2

b2
4 + 8r − r2 − 4r3 + 2r4

4(4 + 5r)2
.

Finally, we construct the optimal CCE L̃. For n = 2, our Lemma 2 implies
β̃ + γ̃ = 2α̃2; moreover, from Lemma 2iii) in Moulin et al. (2014), we see that

L̃ is an anti-diagonal lottery of the form L̃ = 1
2δ(z,z′) + 1

2δ(z′,z), where z and z′

are non-negative numbers such that z+z′ = 2α̃ and z2 +z′2 = 2β̃. This implies
2zz′ = (2α̃)2− (2β̃) = 2γ̃; hence, z, z′ solve Z2−2α̃Z+ γ̃ = 0. The discriminant

is α̃2 − γ̃ = β̃ − α̃2 = a2

b2
r2(1−r2)
4(4+5r)2 ; thus, the expressions for z and z′ follow. �
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