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Abstract

Background/Aims: In oncology, new combined treatments make it difficult to

order dose levels according to monotonically increasing toxicity. New flexible

dose-finding designs that take into account uncertainty in dose levels ordering were

compared to classical designs through simulations in the setting of the monotonicity

assumption violation. We give recommendations for the choice of dose-finding design.

Methods: Motivated by a clinical trial for patients with high-risk neuroblastoma, we

considered designs that require a monotonicity assumption, the Bayesian Continual

Reassessment Method, the modified Toxicity Probability Interval, the Bayesian Optimal

Interval design, and designs that relax monotonicity assumption, the Bayesian Partial

Ordering Continual Reassessment Method and the No Monotonicity Assumption design.

We considered 15 scenarios including monotonic and non-monotonic dose-toxicity

relationships among 6 dose levels.

Results: The No Monotonicity Assumption and Partial Ordering Continual

Reassessment Method designs were robust to the violation of the monotonicity

assumption. Under non-monotonic scenarios, the No Monotonicity Assumption design

selected the correct dose level more often than alternative methods on average. Under

the majority of monotonic scenarios, the Partial Ordering Continual Reassessment

Method selected the correct dose level more often than the No Monotonicity Assumption

design. Other designs were impacted by the violation of the monotonicity assumption

with a proportion of correct selections below 20% in most scenarios. Under monotonic

scenarios, the highest proportions of correct selections were achieved using the Continual

Reassessment Method and the Bayesian Optimal Interval design (between 52.8% to

73.1%). The costs of relaxing the monotonicity assumption by the No Monotonicity

Assumption design and Partial Ordering Continual Reassessment Method were decreases

in the proportions of correct selections under monotonic scenarios ranging from 5.3% to

20.7% and from 1.4% to 16.1%, respectively compared to the best performing design and

were higher proportions of patients allocated to toxic dose levels during the trial.
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Conclusions: Innovative oncology treatments may no longer follow monotonic dose levels

ordering which makes standard phase I methods fail. In such a setting, appropriate

designs, as the No Monotonicity Assumption or Partial Ordering Continual Reassessment

Method designs, should be used to safely determine recommended for phase II dose.

Keywords: Dose Escalation; Monotonicity assumption; Oncology; Partial

Ordering; Phase I.
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Introduction

The main objective of phase I clinical trials is to identify the maximum

tolerated dose (MTD). The MTD is defined as the highest dose that can be

administrated, targeting an acceptable rate of toxicity defined as dose-limiting

toxicities (DLT). A number of study designs has been proposed to identify the

MTD in single agent trials: algorithm-based, e.g. the 3+3 method1,

model-based e.g. the Continual Reassessment Method2, and model-assisted

designs, e.g. the Toxicity Probability Interval method3 or the Bayesian

Optimal Interval designs4. The common feature of these methods is the

assumption of a monotonic relationship between toxicity and dose that holds

in single-agent trials.5 However, it becomes more common in oncology to

combine targeted treatments with established cytotoxic chemotherapy

regimens.6 In case of a synergistic interaction between two treatments,

non-monotonic shapes, namely a plateau or a bi-modal relationship, can be

expected.7

An example is the SIOPEN’s clinical trial in high-risk neuroblastoma which

motivated this work. Neuroblastoma is the most frequent individual type of

solid tumour in children.8 Pre-clinical data suggests that the use of

immunotherapy (the dinutuximab beta targeting the disialoganglioside GD2)

in combination with a conventional chemotherapy can improve the induction

treatment.9;10;11 The SIOPEN clinical trial will assess the toxicity of

dinutuximab combined with the induction chemotherapy under different
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schedules. The combination of dinutuximab with this chemotherapy regimen

varies depending on the dose of dinutuximab and also on the schedule of

administration (see Figure 1). In the following, a dose level refers to a

combination of immunotherapy dose and extent of co-administration with

chemotherapy. The starting dose level corresponds to a sequential

administration of chemotherapy and dinutuximab with no overlapping

administration: standard chemotherapy regimen drugs (cisplatin and

etoposide) are given from day 1 to 4 and dinutuximab is started on day 5.

The dose escalation is designed to reach the highest dose of immunotherapy

and a concomitant administration of immunotherapy and chemotherapy, dose

level 5 and 6.

The main challenge of this trial is that not all dose levels can be ordered

according to a monotonically increasing toxicity. Specifically, it is unknown

whether dose levels 3 and 4 are more or less toxic than dose levels 4 and 5,

respectively. Thus, the monotonicity assumption upon which standard

single-agent dose-finding designs are based is violated, and corresponding

methods cannot be efficiently applied. Furthermore, the combination space in

this example, while partially ordered, is not a matrix of combination

comprised of discrete levels of two agents that is the framework, for which

many existing combination methods are developed for.12 As a result, these

methods cannot be applied to conduct dose-finding in the motivating

example. Others approaches considering the related schedule-finding problem

have been published. Braun et al.13 proposed a design to find the best
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day
1     

day
4   

  

 Time since initiation 
of P/E course, in days.    

              

Dinutuximab 
dose 
mg/m

2
/course   

Cisplatin + 
Etoposide* 

  

dose level 1 22,5 
                        

    
                        

dose level 2 50 
                        

    
                        

dose level 3 50 
                        

    
                        

dose level 4 70 
                        

    
                        

dose level 5 70 
                        

    
                        

dose level 6 87,5 
                        

      
                        day with dinutuximab infusion

*Cisplatin (from day1 to day4) and etoposide (from day1 to day3) are given at the same dose at all dose levels. 

Figure 1: Dose levels for the combination trial of dinutuximab and chemotherapy course
(P/E).

’Maximum Tolerated Schedule’. In this design, the main concern is delayed

toxicity occurring after repeated treatment administrations. Thus, the

primary endpoint is the time to toxicity. This is of interest for applications

where toxicity is expected after the first administration. In our setting,

toxicity is expected in the first cycle. Thall et al.14 proposed an extension of

the method by Braun et al.13 to jointly optimize dose and schedule in a two

step procedure. Guo and Yuan15 also proposed a design based on a Bayesian

dynamic model that jointly optimizes dose and schedule for toxicity and

efficacy. These dose-schedule designs assume that “the duration of therapy
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increases” and do not straightforwardly allow for the incorporation of the

uncertainty in the toxicity ordering between “dose levels”. For example, in

their approach, of Guo and Yuan assume that the mean toxicity probability

can be written as the function of difference in two doses. In our example,

however, it remains unclear what the distance between two doses would be as

the “dose-levels” are “combination of two treatments given at different doses”.

Furthermore, in the motivating setting, one needs to deal with the effect

arising from the therapies given sequentially or with overlapping (for various

number of days) that complicates the problem further. Therefore, we did not

include these methods in our comparison. Instead, two recently proposed

dose-finding designs, the model-based Partial Ordering Continual

Reassessment Method by Wages et al.16, and the model-free “No

Monotonicity Assumption” design by Mozgunov and Jaki17, are flexible

enough to be applied to the motivating trial directly.

The aim of our study is to investigate the performance of several Phase I

dose-finding designs in the setting of the monotonicity assumption violation.

Specifically, we aim to investigate the consequences of applying designs based

on the monotonicity to such settings, and to study how well the alternative

designs overcome the uncertainty about the ordering. While several

comparison of dose-finding designs have been proposed in the literature

18;19;20;21, they primarily concern settings with a known monotonicity ordering,

or specific combination settings (see e.g. Riviere et al.12); the comparison

studies in settings similar to the motivating trial are still sparse to date.
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This article is structured as follows. In the methods section, we introduce the

designs that relax monotonicity assumption and their statistical principles. In

the results section, we specify the simulation settings, the elicitation of

optimal parameters for each design and provide operating characteristics in

the scenarios inspired by the motivating example. We conclude with practical

recommendations and discussion in the discussion section.
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Methods

Consider a clinical trial in which M dose levels x1, . . . , xM are studied and N

patients are available in the trial. Let Y be a binary random variable, where

yi = 1 denotes the observation of a DLT for patient i. The DLT probability

given xm is denoted by pm = P(Y = 1|xm), m = 1, . . . ,M . The goal of the

trial is to find the MTD xT such that P(Y = 1|x = xT ) = γ where γ is the

targeted rate of toxicity.

Below, we recall dose finding designs that relax the monotonicity assumption,

the Partial Ordering Continual Reassessment Method and the No

Monotonicity Assumption design. We refer the reader to O’Quigley et al.2 for

the details of the Continual Reassessment Method, to Ji et al.3 for the details

of the Toxicity Probability Interval method, and to Liu and Yuan4 for the

details of the Bayesian Optimal Interval design.

Partial ordering continual reassessment method

Consider a trial, in which at least two dose levels can not be ordered. Conaway

et al.22 proposed a framework of partial order restrictions in order to provide

efficient toxicity estimations. Wages et al.16 extended this approach using a

working parametric model, such as proposed in O’Quigley et al.2. Let us assume

that S monotonic orderings are considered as clinically plausible. For ordering s,

DLT probabilities are assumed to have a parametric form pm = ψs(αm, θ) where

αm is the standardized level for dose m and θ is the working model’s unknown
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parameter. Denote the prior distribution of θ by f0 and let ri ∈ {x1, . . . , xM}

be the dose level recommended for the patient i. Then, as toxicity data for n

patients is available, the likelihood under ordering s can be computed as

Ln,s(θ) =
n∏
i=1

φs(ri, yi, θ)

where φs is

φs(ri, yi, θ) = ψs(ri, θ)
yi(1− ψs(ri, θ))1−yi. (1)

The posterior distribution for parameter θ under ordering s can be computed

using Bayes’s theorem as

fn,s(θ) =
f0(θ)

∏n
i=1 φs(ri, yi, θ)∫

R f0(u)
∏n

i=1 φs(ri, yi, u)du
. (2)

In total, S dose-toxicity models are fitted. Given the prior distribution of

orderings qs = {q1, . . . , qS}, the posterior probability of ordering s after n

patients takes the form

πn,s =
qs
∫
RLs,n(u|y1, . . . , yn)f0(u)du∑S

s=1 qs
∫
RLs,n(u|y1, . . . , yn)f0(u)du

. (3)

The next group of patients is allocated based on ordering s∗ corresponding to

the maximum of πn,s, s = 1, . . . , S. For ordering s∗, let θ̂s∗,n be the

corresponding posterior mean. Using the “plug-in” estimate for the DLT

probability p̂m,n = ψ∗s(αs∗, θ̂s∗), we assign the next group of patients to the
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dose level rn+1 minimizing for all m

rn+1 = min
m

(|p̂m,n − γ|) (4)

The design proceeds until the maximum number of patientsN have been treated

or if the following safety constraint

P (ψ(α1, θ) > γ) > ξ (5)

is violated, where ξ is a probability controlling overdosing, and the left-hand

side is found with respect to the posterior density.

The Partial Ordering Continual Reassessment Method design is a

model-based design and relies on a particular working model and pre-specified

set of S ordering. One can benefit from using model-free designs in a setting

with unexpected dose-toxicity shapes or in case of a large number of possible

orderings.

No Monotonicity Assumption design

As an alternative to model-based designs, Mozgunov and Jaki17 proposed an

information-theoretic approach to dose-finding trials that does not require any

parametric or monotonicity assumption. We will refer to this design as to a “No

Monotonicity Assumption” design. This approach models DLT probabilities for
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all dose levels as independent Beta random variables and uses the criterion

δ(pm) =
(pm − γ)2

pm(1− pm)
(6)

for the dose-escalation. The No Monotonicity Assumption design does not

imply a monotonicity assumption in the decision rules. It was found that due

to special properties of (6), the correct MTD selection can be achieved

without monotonicity assumption. We extend the estimator used by

Mozgunov and Jaki17;23 to decrease the contribution of the prior information

faster and proportionally to nm. The estimate of pm, after observing tm DLT

for nm patients assigned to the dose level xm takes the form

p̂m =
tm + νm

nλm

nm + βm
nλm

where λ is the down-weighting parameter and βm, νm > 0 are sets of

parameters of the prior Beta distribution B(νm + 1, βm − νm + 1) of

probability pm.

The first allocation is based on prior information νm, βm, only. Assume that

nm patients were assigned to each dose levels and tm DLT were observed,

respectively. The next cohort of patients will be assigned to dose level x∗m for

which the criterion (6) is minimized. The design proceeds until the total

number of patient N is reached or a safety constraint is violated. The No

Monotonicity Assumption design uses a time-varying safety constraint17;23.
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The dose level xm is unsafe if after nm patients accrued at this dose level

∫ 1

γ

fnm(p)dp ≥ ξnm = max(1− knm, ξfinal) (7)

where ξnm is the overdosing probability, fnm is the Beta posterior, k the rate

of the safety constraint strictness and ξfinal the final level of confidence. The

increasing overdosing probability implies that the safety constraint becomes

stricter as the trial goes. Similarly, the No Monotonicity Assumption design

includes a futility constraint to avoid patient allocation to dose level below the

MTD. Dose level xm is futile if after nm patients

∫ 1

γ′
fnm(p)dp ≤ ζ (8)

where γ′ is the futility bound and ζ the controlling probability. Parameters of

both safety and futility constraint should be calibrated over scenarios of

interest using information about partial ordering. The No Monotonicity

Assumption design incorporates the information about monotonicity between

any pair of dose levels by restrictions known as the coherent

escalation/de-escalation principles 24 formulated as follows:

• Coherent escalation: if at least one DLT was observed given a current dose

level for a previous cohort, more toxic dose levels (with respect to a partial

monotonic ordering) cannot be selected for next patient.

• Coherent de-escalation: if no DLT outcomes were observed for a previous

cohort given the current dose level then less toxic dose cannot be selected

for the next cohort.
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At the end of the trial, the dose level minimizing the criterion (6) is designated

as the MTD.

Results

Trial setting

To compare the operating characteristics of the dose-finding designs, we

consider a simulation study in the setting of (partially) unknown ordering of

dose levels. The SIOPEN’s clinical trial for patients with high risk

neuroblastoma which motivated this work, was a first step to improve the

induction treatment9;10;11, i.e. the first part of the treatment aiming to reduce

the tumor burden in order to facilitate surgery and subsequent treatments.

Different chemotherapy regimens have been evaluated with increasing

intensities of conventional chemotherapies over the last four decades25;26. The

SIOPEN’s clinical trial will assess the toxicity of a combined treatment. We

considered six dose levels combining immunotherapy and chemotherapy using

different schedules with n = 30 patients. Based on past experience, the

expected accrual rate is 4 patients by month and the toxicity is evaluated after

3 weeks, so we considered the inclusion of 3 patients cohorts in this trial. The

goal was to find the MTD corresponding to the dose level with the toxicity

probability closest to the target value of γ = 0.30. We considered a trial with

one de-escalation dose level (d1), a starting dose level (d2) and four escalation

dose levels (d3 – d6). The main challenge was that the administration of the

drugs in combination (either simultaneously or sequentially) could have a
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significant impact on the toxicity. A clinician could not put in a monotonic

order dose levels d3, d4 and d4, d5. This resulted in two partial orderings

(partial in the sense that we can only order 5 out of 6 dose levels):

d1 < d2 < d3 < d5 < d6 (9)

and

d1 < d2 < d4 < d5 < d6 (10)

These two orderings were studied by various scenarios given in Figure 2.

Scenarios 1 and 2 corresponded to cases of excessive toxicity with the MTD
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Figure 2: Considered dose-toxicity shapes. The MTD is marked by a triangle and the dashed
horizontal line corresponds to the target DLT rate γ = 0.3.

being d1 and d2, respectively. For instance, scenario 1 accounted for the case

in which an unexpected mechanism of toxicity occurred and the starting dose

15



level toxicity was higher than expected by a clinician. These scenarios would

reveal the ability of the designs to avoid allocation to too toxic dose levels and

recommend the MTD at the beginning of the dose-escalation. For scenarios 3,

all possible permutation of the orderings due to unknown order of d3, d4 and

d4, d5 were considered. The scenario 3.1 was a monotonic scenario with the

MTD being d4. Scenarios 3.2 and 3.3 accounted for cases where orders of

d3, d4 and d4, d5 were inverted, with the MTD being d3 and d5 respectively.

The non-monotonic order resulted in a non-trivial shape of the dose-toxicity

relation. Scenarios 4 and 5 corresponded to flat dose-toxicity relations and

were included to investigate the ability of the designs to escalate quickly and

avoid patient’s allocation to sub-therapeutic doses. Scenario 5 corresponded

to the case of under dosing at all dose levels. Scenario 6, in which all doses

were toxic, evaluated the capacity of the safety constraints to avoid an

unethical recommendation to a toxic dose and an early stopping of study.

Scenarios 7-9 corresponded to cases where none of the dose levels matches

exactly the target toxicity probability of 0.30. These scenarios were chosen to

check the designs trend to select overdosing or underdosing levels. Note that

the permutation of dose levels d3, d4 and d4, d5 that did not change the MTD

location are not included in those scenarios.

In the simulation study, we focused on (i) the proportion of dose level

selection, (ii) the average number of patients assigned to each dose level, (iii)

the proportion of early stopping due to excessive toxicity, (iv) the probability

of selecting toxic dose levels as the MTD, (v) the percentage of patients
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assigned to toxic dose levels (above the MTD). Before the analysis, each of the

four designs were calibrated according to the stated trial setting.

Designs specification

For methods, which require parameters calibration, the “operational prior”

(the prior working uniformly well in many different scenarios) were specified

as follows.

For the Continual Reassessment Method and the Partial Ordering Continual

Reassessment Method simulations, the working model for dose-toxicity was the

one-parameter power model. For both methods, the following standardized

values were used:

(0.20, 0.30, 0.40, 0.50, 0.59, 0.67)

These values were obtained using using the getprior function from dfcrm

package27 using a half width of 0.05, a target toxicity of γ = 0.30, and the

prior MTD being the dose level 2. Sensitivity analyses showed that a half

width of 0.05 provided better operating characteristics than other values (see

Supplemental Materials for more details, considered values were 0.04, 0.06,

0.08 and 0.10). The least informative normal prior according to the algorithm

by Cheung28, θ ∼ N (0, 0.752) was used for both Continual Reassessment

Method and Partial Ordering Continual Reassessment Method. Overdosing

probability ξ = 0.80 was used for the safety constraint (5). In addition, the

Partial Ordering Continual Reassessment Method required orderings to be

specified. Using partial orderings 9 and 10, there were three feasible orderings
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in this setting

d1 < d2 < d3 < d4 < d5 < d6

d1 < d2 < d4 < d3 < d5 < d6

d1 < d2 < d3 < d5 < d4 < d6

These three orderings were included in the Partial Ordering Continual

Reassessment Method design and a clinician considered that all of them were

equally possible a-priori q1 = q2 = q3 = 1/3.

The Toxicity Probability Interval method requires specification of an

equivalence interval according to a physician’s advice. Following the

motivating example the parameters ε1 = ε2 = 0.10 were chosen. For others

parameters, the dose level 2 was used as the prior MTD and the cutoff

probability for excessive toxicity was ξ = 0.90

The Bayesian Optimal Interval design required specification of an

optimization interval, we used default values (0.18 - 0.42) as recommended by

Liu and Yuan4. For sake of comparability, the stopping rule based on the

cumulative number of patients treated at the same dose was not used. The

safety parameters of the Bayesian Optimal Interval design proposed in the

original work were used: the elimination dose threshold, pE = 0.95, and the

early stopping rule, δ = 0.05. The use of the early stopping rule, as explained

by Zhou et al.29, was motivated by the fact that investigators emphasized the

importance of conducting the motivating trial as safely as possible. The
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operating characteristics of the Bayesian Optimal Interval design without

using the early stopping rule can be found in Supplementary Materials.

The No Monotonicity Assumption design requires vectors ν = [ν1, . . . , νm]T and

β = [β1, . . . , βm]T to be specified prior to the trial. For the prior information

strength, β = 1 was chosen to emphasize a limited amount of information

available about dose levels. Then, ν represents prior mode probabilities for all

treatment levels (as standardized values above). These values were calibrated

as described by Mozgunov and Jaki17 over the considered set of scenarios. The

operational prior used in the simulations was

ν = [0.20, 0.23, 0.26, 0.29, 0.32, 0.35]T

This prior reflected the clinician elicitation that dose levels were in monotonic

order. Note, that this ordering could change as the trial progresses in contrast

to other methods. The prior probabilities were chosen to be close to each

other to ensure that all dose levels could be tested if data suggested so. For

the parameter of down-weighting λ = 0.25 was chosen. The coherent

escalation/de-escalation principles were applied with respect to the partial

orderings (9) and (10). Parameters of safety (7) and futility (8) constraints

were tuned over all scenarios and k = 0.005, ξfinal = 0.9, γ′ = 0.25, ζ = 0.3

were fixed for this simulation study.

The optimal non-parametric benchmark design30;31 was included to get an
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optimal design reference.

For each scenario, 10 000 simulations were run using R32. The R code

underlying the simulations is available on GitHub at

(https://github.com/dose-finding/comparison-non-mono).

Operating characteristics

Operating characteristics for all considered designs are given in Tables 1-4.

They present the proportion of each dose selections with proportion of correct

selections in bold, the average number of patients assigned to each dose level

and several safety metrics: the proportion of early stopping due to safety

(Stop), the probability of selecting toxic doses as the MTD (SelTox) and the

average proportion of patients assigned to toxic doses above the MTD

(%Tox). Note that for scenarios where no dose levels met the target toxicity

probability, given in Tables 3 - 4, the dose level with true toxicity rate just

below the target was considered correct.

We start from considering the proportion of correct selections in scenarios

where the monotonicity assumption holds. The benefits of using a parametric

model were shown in monotonic scenarios as the Continual Reassessment

Method had the highest proportion of correct selections in scenario 2 (53.7%),

scenario 3.1 (52%); the Toxicity Probability Interval method had the highest

proportion of correct selections in scenario 1 (65.4%) and the Bayesian

Optimal Interval design had the highest proportion of correct selections in

scenario 4 (55.8%). The Bayesian Optimal Interval design also showed the

20
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highest proportion of correct selections in scenarios where no dose level

exactly matches the target toxicity probability: scenario 7.1, 8.1 and 9.1 with

73.1%, 61.1% and 60.8% respectively. The designs relaxing the monotonicity

assumption, No Monotonicity Assumption and Partial Ordering Continual

Reassessment Method, can lead to lower proportion of correct selections in the

monotonic scenarios. For instance, in scenario 3.1, No Monotonicity

Assumption and Partial Ordering Continual Reassessment Method had 40.0%

and 40.7% proportion of correct selections, nearly a 13% decrease compared to

Continual Reassessment Method. The differences were larger in scenarios

where no dose level exactly matches the target toxicity level, for example,

scenario 9.1 where the No Monotonicity Assumption design had a lower

proportion of correct selections by 21% compared to the Bayesian Optimal

Interval design.

Considering the proportion of correct selections in scenarios where the

monotonicity assumption was violated, the No Monotonicity Assumption

design showed the highest proportion of correct selections in most scenarios

with, for instance, 65% and 53.9% in scenarios 7.2 and 8.3. The Partial

Ordering Continual Reassessment Method showed the second highest

proportion of correct selections, after the No Monotonicity Assumption

design, in all non-monotonic scenarios with an exception in scenario 3.2, in

which Partial Ordering Continual Reassessment Method had the highest

proportion of correct selections of 44.7% against 38.5% for the No

Monotonicity Assumption design. The violation of the monotonicity
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assumption impacted the proportion of correct selections of the Bayesian

Optimal Interval design, Toxicity Probability Interval method and Continual

Reassessment Method design with proportions below 20% in the majority of

non-monotonic scenarios. In scenario 3.2, the Continual Reassessment Method

and Bayesian Optimal Interval design had 33.5% and 27.0% proportion of

correct selections, respectively, but they were still below the No Monotonicity

Assumption design and the Partial Ordering Continual Reassessment Method,

which had respectively 38.5% and 44.7%.

Investigating safety, the Continual Reassessment Method, the Partial

Ordering Continual Reassessment Method, the Bayesian Optimal Interval

design and the Toxicity Probability Interval method were able to terminate a

trial earlier for safety requirements in the highly toxic scenario 6 in nearly

90% of trials. The No Monotonicity Assumption design allowed early

terminations in 86.7% of simulated trials in scenario 6. The proportion of

early stopping for safety in scenario 1 exceeded 20% for the Bayesian Optimal

Interval design, the Continual Reassessment Method and the Partial Ordering

Continual Reassessment Method designs. In all other scenarios, all designs

had a probability of stopping close to 0. Considering the probability of

selecting a toxic dose in monotonic scenarios, the Toxicity Probability Interval

method had the lowest probability in all scenarios.

In monotonic scenarios, the Partial Ordering Continual Reassessment Method

had a higher probability to select toxic dose in scenarios 8.1 and 9.1 while
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performing similarly to No Monotonicity Assumption design under the rest of

monotonic scenarios. Considering the probability of selecting a toxic dose in

non-monotonic scenarios, the Toxicity Probability Interval method was still

the safest design. The Continual Reassessment Method showed the highest

probability of selecting a toxic dose in all non-monotonic scenarios with, for

instance, 52.5% in scenario 7.2. Comparing designs relaxing the monotonicity

assumption, the No Monotonicity Assumption design had the same or lower

probability of selecting a toxic dose than the Partial Ordering Continual

Reassessment Method under twelve scenarios, with a reduction of up to 6.5%

in scenario 6. Under scenarios 3.2, 6 and 7.1, the No Monotonicity

Assumption design resulted in higher proportions of toxic dose

recommendations than the Partial Ordering Continual Reassessment Method

with differences between 1.4% to 5.7%.

Concerning the percentage of patients assigned to toxic dose levels under

monotonic scenarios, the designs relaxing monotonicity, Partial Ordering

Continual Reassessment Method and No Monotonicity Assumption design,

resulted in more patients receiving toxic doses compared to the rest of the

designs, especially in scenario 2 with 35.6% and 41.5% of patients assigned to

toxic dose levels, respectively compared to 26% for the Toxicity Probability

Interval method corresponding to the least proportion of patients allocated to

toxic doses. Under non-monotonic scenarios however, all designs showed

comparable percentage of assignment to toxic doses except for the

conservative Toxicity Probability Interval method. Comparing the designs
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relaxing monotonicity, the No Monotonicity Assumption design assigned more

patients to toxic doses than the Partial Ordering Continual Reassessment

Method under scenarios 3.2 and 8.2 where the dose level after the MTD drop

below the target DLT rate. The largest difference was in scenario 3.2 where

the Partial Ordering Continual Reassessment Method assigned 15.4% versus

25.3% patients on toxic doses for the No Monotonicity Assumption design.

Both designs had comparable assignment to toxic doses in other

non-monotonic scenarios.

Discussion and recommendations

In this work, we have considered the setting, in which neither single agent nor

the majority of combination dose-finding methods can be directly applied.

This motivated the consideration of more flexible designs relaxing the

monotonicity assumption, namely, Partial Ordering Continual Reassessment

Method and No Monotonicity Assumption design that are unique in their

ability to handle partially ordered combinations that do not necessarily form a

grid of combinations. Both model-based and model-assisted designs based on

monotonicity assumption failed to identify the MTD consistently when this

assumption was violated. It was found that the ordering can have a large

impact on a phase I study and the monotonicity assumption should be

carefully justified during the planning of a phase I trial with a combination of

treatments. The designs relaxing the monotonicity assumption led to robust
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performances in all permutations of orderings. On average across all

considered scenarios, the No Monotonicity Assumption design selected less

often toxic doses than the Partial Ordering Continual Reassessment Method

but the Partial Ordering Continual Reassessment Method allocated on

average less patients to toxic doses.

The motivating trial assesses toxicity of a combination of a cytotoxic

chemotherapy with an immunotherapy. The assumption that higher dose

leads to higher efficacy and toxicity holds, but for dose levels 3, 4 and 5. Yet,

one may have interest in assessing both toxicity and efficacy as in Wages and

Tait33. In the setting of our motivating trial the proposed endpoint for

efficacy would have been response to treatment. This requires tumour

response evaluation after nearly 85 days of treatment, which was not feasible,

as efficacy outcomes couldn’t be obtained soon enough to make adaptive

decision for a new cohort given an accrual rate of 4 patients per month. The

problem of late onset outcome in early phase clinical trials was discussed by

Cheung and Chappell34, and later by Braun35 and Liu and Ning36. An

application can be found in Ick et al.37.

If a monotonic order cannot be specified, two alternatives, the Partial

Ordering Continual Reassessment Method and the No Monotonicity

Assumption design, should be considered. Regardless which design is chosen,

we advocate that the first (and essential) step is to restrict the number of

orderings in each particular setting. Wages et al.38 showed that the
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performance of the Partial Ordering Continual Reassessment Method

decreases as the number of orderings increases. Also, it has been

demonstrated by Mozgunov and Jaki17 that No Monotonicity Assumption

design accuracy could also decrease if the number of potential dose-toxicity

relations for calibration is large.

The choice of the orderings should be made after an extensive discussion with

experts whatever the design. The first point to discuss is the validity of the

monotonicity assumption. Then we recommend that the choice of the design

should be guided by a comprehensive simulation study taking into account the

preference for each scenario. For instance, if an investigator believes that a

scenario with the MTD being the last dose is the most probable in a

non-monotonic relationship, the Partial Ordering Continual Reassessment

Method should be considered as a primary candidate. On the other hand, if a

scenario with the MTD located in the middle of the dose range about which

the monotonicity assumption can be violated, the No Monotonicity

Assumption design should be prioritized. The No Monotonicity Assumption

design should also be prioritized if interaction that can lead to large difference

in toxicity can occur as in non monotonic scenarios 7.2 and 9.2. Depending on

the scenario, small changes in the set of parameters used for the Continual

Reassessment Method and the Partial Ordering Continual Reassessment

Method can impact the operating characteristics of the design. As

investigators usually do not have data prior the trial to guess the most likely

scenario, simulations should be conducted with great care with respect to the
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choice of the initials parameters and the scenarios. Importantly, as stated by

Mozgunov and Jaki23 and shown above, relaxing of monotonicity assumption

might result in higher number of DLTs for both No Monotonicity Assumption

design and Partial Ordering Continual Reassessment Method. It can be

explained by the fact that they require to investigate more dose levels before

selecting the correct ordering. This cost of considering different orderings

should be taking into account when planning a study. The parameters of

safety constraints should be extensively discussed with the experts to avoid

the exposure of patients to excessively toxic dose levels.
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Table 1: Operating characteristics in scenarios 1-3.2: proportions of selections at each dose
level and respective average number of patients assigned (in brackets). The proportion of the
true MTD selection is in bold. The proportion of early stopping for safety is given in column
”Stop”, the probability of selecting toxic doses as the MTD in ”SelTox” and the percentage
of patients assigned to the toxic doses in ”%Tox”. Results are based on 104 replications.
CRM: Continual Reassessment Method; PO-CRM: Partial Ordering Continual Reassessment
Method; mTPI: modified Toxicity Probability Interval design; BOIN: Bayesian Optimal
Interval design; NMA: No Monotonicity Assumption design.

d1 d2 d3 d4 d5 d6 Stop SelTox %Tox
Scenario 1 0.30 0.40 0.50 0.60 0.90 0.90
Benchmark 76.4 20.5 0.3 0.1 0.0 0.0

CRM
48.5 25.7 3.9 0.2 0.0 0.0 21.7 29.7 52.3
(12.5) (10.4) (2.9) (0.4) (0.0) (0.0)

PO-CRM
49.3 25.0 3.6 1.6 0.0 0.0 20.4 30.3 53.6
(12.2) (10.1) (2.8) (1.2) (0.1) (0.0)

mTPI
65.4 9.9 5.1 0.2 0.0 0.0 19.5 15.2 63.3
(9.8) (13.7) (2.9) (0.3) (0.0) (0.0)

BOIN
40.7 29.1 5.1 0.3 0.0 0.0 24.9 34.4 60.6
(10.3) (12.0) (3.3) (0.4) (0.0) (0.0)

NMA
54.8 23.6 4.9 2.1 0.1 0.0 14.5 30.7 52.5
(13.4) (8.8) (2.3) (2.2) (1.5) (0.0)

Scenario 2 0.14 0.30 0.40 0.50 0.70 0.75
Benchmark 14.1 62.3 20.6 3.0 0.0 0.0

CRM
15.0 53.7 24.8 3.0 0.1 0.0 3.4 27.9 30.9
(6.1) (14.1) (7.1) (1.6) (0.2) (0.0)

PO-CRM
14.1 50.7 22.4 8.7 0.9 0.0 3.2 32.0 35.6
(5.7) (13.1) (6.8) (3.0) (0.5) (0.0)

mTPI
50.1 26.0 18.8 3.4 0.1 0.0 1.7 22.3 26.1
(6.8) (15.1) (6.2) (1.4) (0.1) (0.0)

BOIN
18.7 52.8 21.5 4.3 0.1 0.0 2.5 26.0 31.1
(5.6) (14.7) (7.1) (1.8) (0.2) (0.0)

NMA
26.1 41.1 18.7 11.0 2.7 0.0 0.4 32.4 41.5
(6.7) (10.9) (4.6) (4.7) (3.1) (0.1)

Scenario 3.1 0.05 0.10 0.20 0.30 0.45 0.70
Benchmark 0.0 1.4 27.9 55.7 15.1 0.0

CRM
0.0 2.4 27.6 52.8 16.9 0.2 0.1 17.1 16.1

(0.3) (5.4) (9.6) (9.8) (4.3) (0.6)

PO-CRM
0.0 2.4 33.9 40.7 22.4 0.7 0.0 23.0 19.1

(0.3) (5.0) (10.0) (9.0) (5.2) (0.6)

mTPI
2.7 12.4 33.0 38.4 13.1 0.4 0.0 13.5 12.0

(0.7) (7.0) (10.2) (8.5) (3.2) (0.4)

BOIN
0.3 4.4 29.9 47.0 17.8 0.5 0.0 18.4 15.6

(0.3) (5.8) (9.8) (9.4) (4.1) (0.5)

NMA
2.5 7.1 27.5 40.0 21.5 1.3 0.0 22.8 26.3

(1.7) (5.5) (6.3) (8.6) (6.7) (1.2)
Scenario 3.2 0.05 0.10 0.30 0.20 0.45 0.70

CRM
0.0 8.1 33.5 35.7 22.3 0.3 0.1 22.6 15.9

(0.5) (7.2) (10.7) (6.8) (4.3) (0.5)

PO-CRM
0.0 3.2 44.7 34.1 17.3 0.5 0.1 17.8 15.4

(0.4) (5.3) (11.6) (8.0) (4.1) (0.5)

mTPI
2.8 28.4 23.7 31.6 13.0 0.4 0.0 13.4 12.1

(0.7) (10.1) (9.3) (6.2) (3.3) (0.4)

BOIN
0.3 17.3 27.0 33.8 21.0 0.6 0.0 21.5 16.2

(0.3) (8.8) (9.6) (6.5) (4.3) (0.6)

NMA
2.7 7.6 38.5 32.0 17.5 1.7 0.0 19.2 25.3

(2.0) (5.9) (7.4) (7.1) (6.3) (1.3)
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Table 2: Operating characteristics in scenarios 3.3-6: proportions of selections at each dose
level and respective average number of patients assigned (in brackets). The proportion of the
true MTD selection is in bold. The proportion of early stopping for safety is given in column
”Stop”, the probability of selecting toxic doses as the MTD in ”SelTox” and the percentage
of patients assigned to the toxic doses in ”%Tox”. Results are based on 104 replications.
CRM: Continual Reassessment Method; PO-CRM: Partial Ordering Continual Reassessment
Method; mTPI: modified Toxicity Probability Interval design; BOIN: Bayesian Optimal
Interval design; NMA: No Monotonicity Assumption design.

d1 d2 d3 d4 d5 d6 Stop SelTox %Tox
Scenario 3.3 0.05 0.10 0.20 0.45 0.30 0.70

CRM
0.0 3.0 47.9 34.0 13.5 1.4 0.1 35.4 29.2
(0.3) (5.6) (12.1) (8.1) (3.1) (0.7)

PO-CRM
0.0 3.3 32.4 27.8 35.6 0.9 0.1 28.6 28.4
(0.3) (5.3) (10.0) (8.0) (5.8) (0.5)

mTPI
2.7 12.5 59.0 14.0 11.4 0.4 0.0 14.4 20.8
(0.7) (7.0) (14.1) (5.9) (2.0) (0.4)

BOIN
0.3 4.5 59.4 20.6 14.5 0.7 0.0 21.3 26.6
(0.3) (5.9) (13.6) (7.4) (2.3) (0.6)

NMA
2.7 8.0 24.2 23.7 40.2 1.2 0.0 24.9 30.9
(1.6) (5.5) (5.9) (7.6) (7.8) (1.7)

Scenario 4 0.01 0.05 0.10 0.15 0.20 0.30
Benchmark 0.0 0.0 0.8 6.5 24.0 68.8

CRM
0.0 0.0 1.2 10.4 35.2 53.2 0.0 0.0 0.0
(0.1) (3.7) (4.7) (5.8) (7.4) (8.4)

PO-CRM
0.0 0.0 2.8 15.2 27.6 54.4 0.0 0.0 0.0
(0.1) (3.5) (5.0) (6.5) (6.6) (8.4)

mTPI
0.7 2.9 7.6 16.9 29.6 42.3 0.0 0.0 0.0
(0.2) (4.3) (5.6) (6.6) (6.6) (6.7)

BOIN
0.1 0.3 2.2 11.0 30.6 55.8 0.0 0.0 0.0
(0.0) (3.7) (4.9) (6.2) (7.0) (8.1)

NMA
0.1 1.0 7.5 17.4 23.5 50.5 0.0 0.0 0.0
(0.5) (4.0) (3.8) (6.2) (7.3) (8.2)

Scenario 5 0.001 0.01 0.05 0.07 0.10 0.15
Benchmark 0.8 0.3 3.2 4.0 13.6 78.2

CRM
0.0 0.0 0.0 0.3 4.6 95.0 0.0 0.0 0.0
(0.0) (3.1) (3.5) (3.5) (4.5) (15.4)

PO-CRM
0.0 0.0 0.1 1.1 3.3 95.4 0.0 0.0 0.0
(0.0) (3.1) (3.6) (4.1) (4.1) (15.2)

mTPI
0.0 0.8 1.5 3.6 9.2 84.9 0.0 0.0 0.0
(0.0) (3.3) (3.8) (4.3) (5.0) (13.6)

BOIN
0.0 0.0 0.1 0.8 4.5 94.6 0.0 0.0 0.0
(0.0) (3.1) (3.6) (4.0) (4.7) (14.6)

NMA
0.0 0.0 1.5 3.4 7.0 88.1 0.0 0.0 0.0
(0.3) (3.3) (2.3) (4.4) (5.5) (14.2)

Scenario 6 0.50 0.70 0.80 0.90 0.95 0.95
Benchmark 99.9 0.1 0.00 0.00 0.00 0.00

CRM
7.0 0.0 0.0 0.0 0.0 0.0 93.0 7.0 100.0
(7.6) (3.9) (0.1) (0.0) (0.0) (0.0)

PO-CRM
7.5 0.1 0.0 0.0 0.0 0.0 92.4 7.6 100.0
(7.7) (3.9) (0.1) (0.0) (0.0) (0.0)

mTPI
9.9 0.0 0.0 0.0 0.0 0.0 90.1 9.9 100.0
(9.2) (4.4) (0.1) (0.0) (0.0) (0.0)

BOIN
9.4 0.0 0.0 0.0 0 0.0 90.6 9.4 100.0
(9.1) (4.3) (0.1) (0.0) (0.0) (0.0)

NMA
13.1 0.2 0.0 0.0 0.0 0.0 86.7 13.3 100.0
(10.5) (2.9) (0.1) (0.1) (0.1) (0.0)
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Table 3: Operating characteristics in scenarios 7-8.2: proportions of selections at each dose
level and respective average number of patients assigned (in brackets). The proportion of
correct MTD selection is in bold. The proportion of early stopping for safety is given in
column ”Stop”, the probability of selecting toxic doses as the MTD in ”SelTox” and the
percentage of patients assigned to the toxic doses in ”%Tox”. Results are based on 104

replications. CRM: Continual Reassessment Method; PO-CRM: Partial Ordering Continual
Reassessment Method; mTPI: modified Toxicity Probability Interval design; BOIN: Bayesian
Optimal Interval design; NMA: No Monotonicity Assumption design.

d1 d2 d3 d4 d5 d6 Stop SelTox %Tox
Scenario 7.1 0.01 0.05 0.20 0.50 0.60 0.70
Benchmark 0.0 0.2 77.8 21.6 0.4 0.0

CRM
0.0 2.1 61.9 35.0 1.0 0.0 0.0 36.0 35.6
(0.1) (4.8) (14.4) (9.1) (1.5) (0.1)

PO-CRM
0.0 2.6 58.2 26.7 12.4 0.0 0.0 39.1 39.4
(0.1) (4.8) (13.3) (8.0) (3.7) (0.1)

mTPI
0.7 11.9 71.4 15.0 1.1 0.0 0.0 16.1 24.0
(0.2) (6.2) (16.4) (6.4) (0.8) (0.0)

BOIN
0.1 3.9 73.1 21.6 1.3 0.0 0.0 22.9 29.9
(0.0) (5.1) (15.9) (8.0) (0.9) (0.1)

NMA
0.7 4.8 52.9 23.9 17.2 0.4 0.0 41.5 48.0
(1.9) (5.5) (8.2) (8.6) (5.5) (0.3)

Scenario 7.2 0.01 0.05 0.50 0.20 0.60 0.70

CRM
0.0 33.2 47.5 14.3 5.0 0.0 0.0 52.5 49.5
(0.8) (11.4) (13.5) (2.9) (1.3) (0.1)

PO-CRM
0.0 7.2 35.8 55.4 1.6 0.0 0.0 37.4 43.0
(0.4) (6.3) (11.7) (10.4) (1.1) (0.1)

mTPI
0.7 76.1 8.2 14.0 1.0 0.0 0.0 9.2 26.8
(0.2) (19.1) (7.3) (2.7) (0.7) (0.0)

BOIN
0.1 63.9 19.2 14.7 2.1 0.1 0.0 21.3 34.5
(0.0) (17.0) (9.2) (2.6) (1.1) (0.1)

NMA
0.6 3.5 25.9 65.0 3.9 1.0 0.0 30.9 43.5
(2.5) (6.2) (8.0) (8.3) (4.5) (0.6)

Scenario 8.1 0.01 0.05 0.10 0.25 0.45 0.60
Benchmark 0.0 0.0 2.8 72.8 24.1 0.3

CRM
0.0 0.0 6.8 61.0 30.6 1.4 0.0 32.1 28.5
(0.1) (3.7) (6.0) (11.7) (7.2) (1.4)

PO-CRM
0.0 0.0 17.7 47.6 32.8 1.9 0.0 34.7 29.6
(0.1) (3.6) (7.1) (10.3) (7.5) (1.4)

mTPI
0.7 2.9 19.7 55.2 20.1 1.4 0.0 21.5 20.1
(0.2) (4.3) (7.7) (11.9) (5.3) (0.8)

BOIN
0.1 0.3 10.1 61.1 26.4 2.0 0.0 28.4 24.6
(0.0) (3.7) (6.7) (12.1) (6.3) (1.0)

NMA
0.5 2.4 20.3 46.5 25.9 4.3 0.0 30.2 31.6
(1.3) (4.8) (5.1) (9.4) (7.6) (1.9)

Scenario 8.2 0.01 0.05 0.25 0.10 0.45 0.60

CRM
0.0 1.8 16.2 36.6 43.9 1.4 0.0 45.4 28.8
(0.1) (5.0) (8.6) (7.6) (7.4) (1.2)

PO-CRM
0.0 0.2 44.2 22.0 31.5 2.0 0.0 33.6 26.1
(0.1) (3.8) (11.3) (7.0) (6.5) (1.3)

mTPI
0.7 19.2 18.2 40.1 20.3 1.6 0.0 21.9 19.9
(0.2) (7.8) (8.5) (7.6) (5.2) (0.8)

BOIN
0.1 7.9 17.4 38.9 33.6 2.1 0.0 35.7 25.4
(0.0) (6.3) (8.3) (7.8) (6.6) (1.0)

NMA
0.6 2.1 48.0 21.0 23.8 4.5 0.0 28.2 31.3
(1.5) (5.1) (8.3) (5.7) (7.3) (2.1)
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Table 4: Operating characteristics in scenarios 8.3-9: proportions of selections at each dose
level and respective average number of patients assigned (in brackets). The proportion of
correct MTD selection is in bold. The proportion of early stopping for safety is given in
column ”Stop”, the probability of selecting toxic doses as the MTD in ”SelTox” and the
percentage of patients assigned to the toxic doses in ”%Tox”. Results are based on 104

replications. CRM: Continual Reassessment Method; PO-CRM: Partial Ordering Continual
Reassessment Method; mTPI: modified Toxicity Probability Interval design; BOIN: Bayesian
Optimal Interval design; NMA: No Monotonicity Assumption design.

d1 d2 d3 d4 d5 d6 Stop SelTox %.Tox
Scenario 8.3 0.01 0.05 0.10 0.45 0.25 0.60

CRM
0.0 0.1 28.5 43.1 22.4 5.9 0.0 49.0 39.2
(0.1) (3.8) (9.4) (10.1) (4.9) (1.7)

PO-CRM
0.0 0.1 11.9 35.1 50.3 2.5 0.0 37.6 36.8
(0.1) (3.7) (7.0) (9.9) (8.2) (1.2)

mTPI
0.7 2.9 62.6 15.9 16.4 1.5 0.0 17.3 27.7
(0.2) (4.3) (14.5) (7.6) (2.8) (0.8)

BOIN
0.1 0.3 51.8 26.7 18.1 3.0 0.0 29.7 33.9
(0.0) (3.7) (13.2) (9.0) (2.8) (1.2)

NMA
0.5 2.8 10.0 28.7 53.9 4.1 0.0 32.9 37.3
(1.1) (4.6) (4.5) (8.6) (8.6) (2.6)

Scenario 9.1 0.01 0.05 0.08 0.10 0.25 0.45
Benchmark 0.0 0.0 0.5 2.3 73.0 24.2

CRM
0.0 0.0 0.3 9.6 60.5 29.5 0.0 29.5 21.4
(0.1) (3.6) (4.2) (5.5) (10.2) (6.4)

PO-CRM
0.0 0.0 3.8 15.8 49.8 30.6 0.0 30.6 22.3
(0.1) (3.5) (4.8) (6.1) (8.8) (6.7)

mTPI
0.7 1.9 3.7 20.6 52.2 20.9 0.0 20.9 16.1
(0.2) (4.0) (4.6) (6.8) (9.6) (4.8)

BOIN
0.1 0.2 0.7 11.1 60.8 27.2 0.0 27.2 19.7
(0.0) (3.7) (4.1) (6.2) (10.1) (5.9)

NMA
0.2 1.5 9.0 22.9 40.1 26.4 0.0 26.4 20.4
(0.7) (4.2) (4.2) (5.7) (9.0) (6.1)

Scenario 9.2 0.01 0.05 0.08 0.25 0.10 0.45

CRM
0.0 0.0 3.0 18.1 36.3 42.6 0.0 42.6 24.3
(0.1) (3.6) (5.0) (6.9) (7.2) (7.3)

PO-CRM
0.0 0.0 1.2 41.7 24.5 32.6 0.0 32.6 20.9
(0.0) (3.5) (4.5) (9.6) (6.0) (6.3)

mTPI
0.7 1.9 18.7 18.2 38.3 22.1 0.0 22.1 16.3
(0.2) (4.0) (7.3) (7.4) (6.2) (4.9)

BOIN
0.1 0.2 8.5 19.6 37.6 34.0 0.0 34.0 20.3
(0.0) (3.7) (6.2) (7.7) (6.3) (6.1)

NMA
0.2 1.3 5.3 48.6 16.3 28.3 0.0 28.3 21.3
(0.6) (4.1) (3.9) (9.1) (5.9) (6.4)
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