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Abstract
Fractional flow reserve (FFR) is the current reference standard in the assessment of the functional impact of a stenosis
in coronary heart disease. In this study, three models of artificial intelligence of varying degrees of complexity were
compared to fractional flow reserve measurements. The three models are: the multivariate polynomial regression
(MPR), which is a statistical method used primarily for correlation; the feed-forward neural network (FFNN); and the
long short-term memory (LSTM), which is a type of recurrent neural network that is suited to modelling sequences. The
models were initially trained using a virtual patient database that was generated from a validated 1D physics-based
model. The FFNN performed the best for all test cases considered, which were a single vessel case from a virtual
patient database, a multi vessel network from a virtual patient database, and 25 clinically invasive FFR measurements
from real patients. The FFNN model achieved around 99% diagnostic accuracy in both tests involving virtual patients,
and a respectable 72% diagnostic accuracy when compared to the invasive FFR measurements. The MPR model
performed well in the single vessel case, but struggled on network cases as the variation of input features was much
larger. The LSTM performed well for the single vessel cases, but tended to have a bias towards a positive FFR prediction
for the virtual multi-vessel case, and for the patient cases. Overall the FFNN shows promise in successfully predicting
FFR in real patients, and could be a viable option if trained using a large enough data set of real patients.
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Introduction

Cardiovascular diseases (CVD) are the world’s major cause
of mortality, being responsible for approximately 31% of
deaths worldwide1. Coronary heart disease (CHD) is the
biggest sub-category of CVD2, and is most commonly
caused by atherosclerosis build-up on the inner layer of a
coronary artery, which narrows the vessel lumen area. The
current gold standard diagnostic tool for estimating CHD
severity is the fractional flow reserve (FFR)3, although other
diagnosis measures such as the instantaneous wave-free ratio
(iFR) have been proposed4,5. FFR is performed invasively
during cardiac catheterisation. A pressure sensitive wire
measures the pressure at the aorta and at a point distal to a
stenosis simultaneously. The pressure ratio of pressure distal
to stenosis divided by aortic pressure is used to determine
if the stenosis is flow limiting. If the pressure decrease is
greater than 20 %, which corresponds with a FFR value
below 0.8, the patient will normally be required to undergo
further surgical treatment such as an angioplasty. As the FFR
procedure is invasive and expensive, there have recently been
attempts at determining the FFR non-invasively through the
use of coronary computed tomography angiography (CCTA)
and physics-based computational fluid dynamic models6–8.
These models have been shown to give respectable
agreement with the invasive clinical measures.

In recent years there has been renewed interest in artificial
intelligence (AI) with many areas now focusing on data
science techniques to find correlations and predictions using

data. This is partly due to two main developments: 1)
the accessibility to much greater computational resources,
and 2) the wider availability of large amounts of data
that are required for training AI models. Some of these
techniques are making significant inroads into medical
research. Examples include AI algorithms being developed
to detect cancer and determine a prognosis9, and to manage
and support treatment of diabetes10. An AI model has even
been shown to be more reliable at detecting brain tumours
than the current techniques used in radiography11. Now
AI models are being applied to FFR, which ranges from
replacing 1D models with machine learning (ML) models12,
to using the CCTA images and deep learning models to
estimate the FFR directly from the CT images13,14. While AI
offers an excellent opportunity to compute FFR faster than
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the majority of physics-based models, assessing the accuracy
and robustness remains a real challenge.

In the present work we compare three ML models of
varying degrees of complexity to further understand the
applicability of AI in the FFR calculations. They are: 1)
multivariate polynomial regression, 2) feed-forward neural
network, and 3) a long short-term memory model. The ML
models are first trained using a virtual patient database
created using a validated 1D physics-based model15, then
the ML models are compared with clinically invasive FFR
measurements on a small cohort of 25 patients.

Machine learning and deep learning
The foundation of current machine learning and deep
learning algorithms originated from work in 1943 by Pitts
and McCulloch16. They proposed the idea and theory of a
neuron, what it is and how it works, and created an electrical
circuit of the model, thus creating the first neural network.
In 1950, Turing published the seminal paper ‘Computing
Machinery and Intelligence’17 that discussed the theoretical
and philosophical ideas of artificial intelligence (AI). From
this work the Turing test was born. The normal interpretation
of the Turing test is to have an interrogator attempting to
distinguish between two ‘players’, one of which is human
and the other is a computer. The development of machine
learning and deep learning algorithms merely use the human
nervous system, and in particular the brain, as a reference for
inspiration in the development of these algorithms.

There has been a recent resurgence in the use of neural
networks, primarily due to large amounts of data, and
easier access to powerful computational resources. However
some of the fundamental mathematics used in AI are well
established. For example the gradient descent optimisation
method, which forms the foundation of the back propagation
step while training the model for many projects, was
originally proposed by Cauchy in 184718. Although at this
stage gradient descent was used for minimisation problems
on a system of simultaneous equations, it was not until the
1960’s that gradient descent was used in the context of multi-
stage, non-linear systems19,20. In 1982, P. Werbos described
the use of gradient descent in a neural network21. The
original gradient descent method is rarely used nowadays,
but the improved optimisation methods of momentum22 and
ADAM23, essentially extend the gradient descent method
and are widely used.

Methodology

Virtual patient generation and feature extraction
from CT data
It is difficult to obtain a significant number of clinical patient
data for training a machine learning model and hence we
created virtual patients. There are two different types of
virtual patient generation. The first considers a patient as a
single vessel and randomises the vessel area profile, length,
and flow rate through the vessel. These single vessel cases
are used to train the machine learning models. The second
case involves creating a network of the left coronary artery
branch that consists of nine main vessels.

Single vessel patient generation The single vessel cases
are generated by first randomising the proximal and distal
area of the vessel independently in the range 0.0059 cm2

to 0.8131 cm2. The vessel length is also chosen at random
with the range 0.0957 cm to 11.1475 cm. These ranges for
the vessel area and length were chosen as they represent
the spread of areas and lengths observed in the real patient
cohort. Initially the area profile is constructed by linearly
tapering between the proximal and distal areas. A mesh is
then created with an element size of ∆x = 0.01 cm, however
this is adapted by adding more randomisation into the area
profile after the creation of the stenosis. This forms the
foundation of the vessel geometry that is then adapted to
include a stenosis.

The characteristics of the stenosis are also partially
randomised. The stenosis is assumed to be located in
the middle of the vessel. The severity of the stenosis is
randomised between a 0% decrease in diameter (no stenosis),
to a 80% decrease in vessel diameter. The largest decrease
in vessel radius is chosen as 80% as clinicians generally do
not perform the invasive FFR measurement for any blockage
worse than this as the risk of perforating an artery would
increase. In the clinic it is assumed these patients would need
surgical intervention. The length of the stenosis is assumed
to vary as a ratio of between 0% (no stenosis) and 60% of the
total length of that vessel. This will cover the cases were no
stenosis is present through to more diffuse stenosis.

The stenosis is the constructed by using the following
equation

D = D0 +
(DA −D0)

2

(
1− cos

(
x

2πLa

))
(1)

whereD0 is the reference diameter across the entire stenosis,
DA is the stenosed area, x is the axial coordinate along the
stenosis, and La is the length of the stenosis. The stenosis is
then inserted into the middle of the vessel.

At this stage the stenosed vessel undergoes an additional
randomisation procedure to ensure that the vessel geometry
is not too smooth. Across the length of the vessel, the first
and last 10% will remain unchanged in the randomisation
procedure, only the internal 80% is affected. This internal
region is further split by choosing specific nodes using the
equation

Nc = max(5,floor(N/20)) (2)

where N is the number of nodes in the stenosed region
and Nc is the number of nodes that are to be adapted.
The minimum number of area nodes chosen to perturb is
5. At these chosen Nc nodes the areas are then randomly
varied between a 20% decrease and a 40% increase. Then
a shape-preserving piecewise cubic Hermite interpolating
polynomial is utilised to interpolate all areas at the nodal
points located between the Nc nodes. This generates an
area profile across the vessel with similar attributes to those
seen in real patients as shown in Figure 1. This procedure
will influence the severity of the stenosis and hence the
stenosis area and mean vessel area are extracted from the
new area profile. The final feature that is required for the
machine learning models is the volumetric flow rate through
the vessel. The volumetric flow was randomised in the
range 0.3896 cm3/s and 11.1475 cm3/s. All randomisation
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(a) Virtual patient area profile
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(b) Real patient area profile

Figure 1. Normalized area profile of a generated patient and a
normalized area profile of the left anterior descending artery
extracted from a patient CT scan

procedures for all parameters were performed using a
uniform distribution within their respective ranges.

Virtual patient network generation The virtual patient
network uses the left coronary network branch consisting
of nine vessels, presented in Mynard and Smolich30, as
the foundation for which vessel area and length adaptations
are performed. On top of this foundation, a similar
randomisation procedure is performed to that of the single
vessel case. First in the procedure is that the length, and the
area at the start and end of every vessel are all randomly
adapted by increasing or decreasing around their reference
state by up to 70%. In the network the vessel in which
the stenosis is to be located is also chosen at random. At
this stage the stenosed vessel undergoes the same procedure
as that described for the single vessel case. The remaining
vessels do not have a stenosis added, however the remaining
parts of the area randomisation procedure are still performed.

Feature extraction from CT images In order to extract the
features from the patient CT images, the images first need to
be segmented. The segmentation and extraction of centreline
information is performed using the image segmentation
software VMTKLab (Orobix, Italy). The area profile and
vessel length information can then be extracted and can be
used to find the input features for two of the ML models,
which include the area at the start and end of each vessel,
the mean vessel area, and the vessel length. The volumetric

flow rate at the inlet of the left coronary artery is assumed
to be 425 ml/min and the flow distribution in the network is
calculated via a power law which uses Murray’s law with an
exponent of 2.788.

Machine learning
Many of the concepts and theory used in machine learning
were previously developed in other areas of mathematical
sciences, such as using statistics to find the likelihood of
an event occurring or finding relationships and correlations
in various types of data. One such method is multivariate
polynomial regression (MPR), which is a generalised form
of linear regression.

Multivariate polynomial regression MPR is the least
complex model implemented in this work and utilises linear
regression with a high-order polynomial feature space on
multiple variables. Although polynomial regression is quite
simple it can still provide useful and powerful predictions.
However one must be careful when creating the training
and test data for these models as polynomial regression
tends to perform reliably well when used to interpolate
data, but can produce erroneous predictions when attempting
to extrapolate data. This issue is often exacerbated when
higher-order polynomials are used for the feature space. In
order to describe this method, it is advantageous to first
describe univariate polynomial regression, and then discuss
its extension to the multivariate case.

Univariate polynomial regression for a dependant variable
y and an independent variable x, the ith example while using
a nth-order polynomial feature space can be written in the
form:

yi = b+ w1xi + w2x
2
i + w3x

3
i + · · ·+ wnx

n
i , (3)

where b is referred to as the bias, and wj (for j = 1 : n)
are referred to as the weights. Using enough training cases
of known outputs yi for some given input features xi, the
system of equations can be solved to find the optimum values
of the bias and weights to best fit the data. These bias and
weights can then be used for future predictions. This forms
the foundation of polynomial regression and its extension to
the multivariate case is relatively straightforward. The main
change from the univariate to multivariate case is that there
are now more possible combinations of polynomial terms for
the feature space, for example in a case with two independent
variables (x1 and x2) up to a 2nd-order polynomial feature
space, the general form will be:

yi = b+ w1x1,i + w2x
2
1,i + w3x2,i + w4x

2
2,i + w5x1,i · x2,i,

(4)
which contains the multiplication of the two independent
variables to create the new feature x1,i · x2,i. The general
matrix form of multivariate polynomial regression can be
expressed as:

Y = XW , (5)

where Y is the column vector

Y =
[
Y1 Y2 · · · Ym

]T
, (6)

containing all outputs/predictions, where m is the number of
examples, X is a matrix containing all input features that
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includes different combinations of the independent variables
and has the form

X =


1 X1,1 X1,2 · · · X1,n

1 X2,1 X2,2 · · · X2,n

...
...

...
...

...
1 Xm,1 Xm,2 · · · Xm,n

 , (7)

where n is the number of possible feature combinations, and
W is a vector that contains all of the bias and weight terms

W =
[
b W1 · · · Wn

]T
. (8)

In the present paper the least-squares method is used to solve
for the bias and weight terms for polynomial regression. Six
input features are used which includes the area at the start
and end of a vessel, the minimum area in the vessel, the mean
area of the vessel, the estimated flow rate in the vessel, and
the length of the vessel.

Deep learning
In biomedical engineering the more basic statistical
techniques such as polynomial regression have generally
fallen out of favour. These have largely been replaced
by artificial neural networks (ANN), which are considered
as more powerful alternatives when it comes to finding
correlations in complex real world data. The term ANN
was used as they are inspired by, and try to resemble the
human nervous system, and particularly the human brain.
The human brain is composed of many interconnected
neurons which transmit information in the form of electrical
impulses. Analogously, ANNs are composed of layers of
interconnected ‘neurons’ which pass information to and from
other neurons.

The ‘depth’ of a neural network generally refers to the
number of hidden layers that are present in an ANN, and
in general increasing the number layers in an ANN allows a
greater degree of non-linear features to be captured. There
are many types of deep learning architectures, each with
different strengths and weaknesses. In addition, there are
three main paradigms of deep learning which are: supervised
learning algorithms, which seek to find a relationship
between input features of training data to their known
outputs; unsupervised deep learning algorithms, which seek
to find patterns in data without knowing any result or
outputs; and reinforcement learning, which is a goal-oriented
algorithm that seeks to learn the best possible action to
maximise its ’rewards’ for a particular situation, and thus
learns from its experience.

The two types of supervised deep learning models utilised
in the present paper are a feed-forward neural network
(FFNN), and a long short-term memory (LSTM) model
which is a type of recurrent neural network.

Non-linear activation functions The activation functions
utilised in this paper (including those used in the LSTM)
are shown in Fig. 4 and are: the rectified linear unit (relu)
function which is given by

A(z) = max(0, z), (9)

and is most often used for regression problems, has an output
range of [0∞], and is shown in Fig. 4a; the logistic (sigmoid)

function has the output range of [0 1], is shown in Fig. 4b and
can be expressed as

A(z) =
1

1 + exp (−z)
. (10)

The logistic function is more often used in classification
problems; the final activation function used in this paper is
tanh which also tends to be used in classification problems,
has an output in the range [−1 1], is shown in Fig. 4c and can
be written as

A(z) =
exp (z)− exp (−z)
exp (z) + exp (−z)

. (11)

Feed-forward neural network Feed-forward neural net-
works consist of an input layer, and output layer, and at least
one hidden layer. FFNN is a supervised learning technique
that utilise non-linear activation functions at each layer (with
the exception of the input layer), in order to capture non-
linear relationships in the data. FFNNs are referred to as
vanilla neural networks when they have only one hidden
layer. A diagram of a FFNN network is shown in Fig. 2,
where each arrow shown in the diagram represents a linear
mapping, followed by a non-linear activation function as
indicated in Fig. 3. Training an FFNN typically involves
four main steps (steps are expanded upon in the next three
paragraphs): 1) forward propagation which computes the
predicted output value from an initial estimation of weights
and biases. The direction of computation is from the input
layer through to the output layer (hence it travels forward);
2) computing the cost function (error) of the predicted output
to the expected output; 3) backward propagation which
computes the derivatives of the cost function with respect
to the weights and biases. The direction of computation is
from the output layer through towards the input layer (hence
it travels backward); 4) finally the derivatives that were
calculated from backward propagation are used to update the
bias and weight values.

FFNN training The FFNN training process begins with the
initialisation stage which includes randomising the weights
and biases, and giving the algorithm the training set of
input features. The next step is forward propagation which
involves a linear mapping for outputs from neurons in the
previous layer to neurons in the next layer as

zi,j = wi,kAk,j + bi, (12)

where A is a matrix containing all values from the neurons
in the previous layer, i = 1 : nl where nl is the number
of neurons in the next layer, j = 1 : n where n is the
number of training examples, and k = 1 : m where m is
the number of features in the previous layer. The linear
mapping is then followed by a non-linear activation function
A(z) as shown in Fig. 3. In an FFNN the use of non-linear
activation functions allows the network to capture more
complex relationships in the data, in fact FFNNs are regarded
as universal function approximators as, in theory, they can
represent every possible computable function, although the
number of neurons and layers required to do this are
generally not known. The output of these activation functions
are then used as the input for the next layer in the neural
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Figure 2. Example of a FFNN with an input layer of 3 features,
two hidden layers of five and four neurons respectively, and an
output layer with a single neuron. Bias terms are neglected in
this diagram to reduce complexity

network. This essentially means that every additional hidden
layer folds additional non-linearities into the prediction.

The general initialisation and forward propagation
algorithm for the FFNN utilised in the present work is as
follows:

1. define input features and select the training set,
2. initialise weights and biases for each layer,
3. linear mapping from input features to hidden layer 1,
4. non-linear activation function (relu),
5. linear mapping from hidden layer 1 to hidden layer 2,
6. non-linear activation function (tanh),
7. linear mapping from hidden layer 2 to hidden layer 3,
8. non-linear activation function (relu),
9. linear mapping from hidden layer 3 to the output layer,

10. non-linear activation function (relu) for FFR predic-
tion,

Figure 3. Example of an input and output of a single neuron
during forward propagation, where Ai−1 is a matrix of all
outputs aj from the previous layer

After the forward propagation is complete, a cost function
is used to calculate the error in the prediction compared to
the actual values. The most common type of cost function
for regression problems is the mean square error

Costmse =
1

n

n∑
j=1

( ˆffr − ffr)2, (13)

where ˆffr is the FFR predicted by the FFNN algorithm and
ffr is the real FFR value (physics-based model).

The next step is to perform backward propagation, the
first part requires the calculation of the derivative of the

cost function with respect to the predicted values ˆffr.
Differentiation and the chain rule is then used to find the
derivatives of the cost function with respect to all weight and
bias terms for each layer of the network. For example the
derivative of the cost function with respect to a weight in the
last hidden layer can be calculated as

∂Cost
∂w

=
∂Cost
∂A

∂A

∂z

∂z

∂w
. (14)

The general implementation of the backward propagation
algorithm for the FFNN is as follows:

1. calculate the derivatives of the cost function w.r.t. the
weights and biases for the output layer,

2. calculate the derivatives of the cost function w.r.t. the
weights and biases for hidden layer 3,

3. calculate the derivatives of the cost function w.r.t. the
weights and biases for hidden layer 2,

4. calculate the derivatives of the cost function w.r.t. the
weights and biases for hidden layer 1,

The weights and biases can then be updated for all layers
via an optimisation algorithm such as gradient descent or
ADAMs optimisation. For the FFNN model the ADAMs
optimisation23 was used to find a local minima.

In order to predict FFR values from new input features,
forward propagation can be performed with the final
converged weights and biases.

FFNN model description The FFNN model implemented
in the present paper uses: an input layer of six features
that includes the area at the start and end of the vessel, the
minimum area in a vessel, the mean area of a vessel, the
estimated flow rate in the vessel, and the length of the vessel.
There are three hidden layers, the first hidden layer contains
64 neurons and uses the relu function, the second hidden
layer contains 32 neurons and uses the tanh function, and
the third hidden layer also uses 32 neurons but uses the relu
function; the output layer gives a single FFR output value
for the end of the vessel and uses the relu function. The
architecture was chosen from iteratively trialling different
combinations of the number of neurons in a layer, the number
of layers, and the type of activation function used, all using
grid searching. It is known that for many problems the relu
function increases the speed of convergence, however it was
observed that model training performed better with at least
one layer of the tanh function. The model did not require
any additional techniques to prevent over-fitting to the data
as the training and test accuracy were both close to 99%.
The ADAMs optimisation algorithm is used to update the
model weights and biases. The learning rate used was α =
1× 10−4 for the first 1000 iterations of ADAMs optimiser,
and then the learning rate was reduced to α = 1× 10−6. The
parameters of the ADAMs optimiser were the commonly
used β1 = 0.9, β2 = 0.999, and ε = 1× 108.

Long short-term memory (LSTM) In the medical arena
there are many diagnostic and monitoring systems that
take time dependant measurements and can be viewed
as sequence data. Recurrent neural networks (RNNs) are
particularly convenient for these problems as they can exhibit
dynamic temporal behaviour and can have sequence data as
a model input and as an output. An RNN cell contains a
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Figure 4. Comparison of the most common non-linear activation functions for FFNN networks

closed-loop which allows the output of the current step to
be influenced by the output of the previous step. In theory
RNNs are able to use previous values in the sequence to
aid in predicting a future value (time dependencies) and they
tend to perform quite well when the distance between a point
and a dependent value is quite small, however in practice
they often struggle with longer-term dependencies24,25. This
shortcoming was resolved with the development of the long
short-term memory (LSTM) algorithm26. LSTMs have a
different structure for a module, which instead of having a
single layer that contains a loop, the module now contains
4 structured layers with a loop, although several LSTM
variations exist. Fundamental to the structure of an LSTM
model is the idea of gates, which includes an input gate, a
forget gate, and an output gate. An important characteristic of
LSTM is in its ability to add or remove information from the
sequential inputs given to it, which allows it to retain useful
information and remove inessential parts automatically. Each
LSTM ‘cell’ contains two states in parallel, an internal cell
state Ci that is not seen, and an output cell state Outi which
is the output value seen. There are different types of LSTM
architectures, thus the one described here is the version
implemented in the present work. The general forward pass
of an LSTM module is shown in Fig 5 and is as follows:
i) initialise weights, biases, cell states and output states,
ii) forget gate has inputsOutn−1 and Inn, and utilises a hard
sigmoid function (output of sigmoidh is either 0 or 1),

F n = sigmoidh(W f,O ·Outn−1 + W f,I · Inn−1 + bf ),
(15)

iii) input gate and cell state update:

In = sigmoid(W i,O ·Outn−1 + W i,I · Inn−1 + bi),

Ĉn = tanh(W u,O ·Outn−1 + W u,I · Inn−1 + bu),

Cn = F n ·Cn−1 + In · Ĉn, (16)

iv) output gate and output vector

On = sigmoid(W o,O ·Outn−1 + W o,I · Inn−1 + bo),

T n = tanh(Cn),

Outn = On · T n, (17)

The output state and cell state at step n are then inputs to step
n− 1. For a more exhaustive explanation of the LSTM, the
reader is referred to26.

In this paper the stacked LSTM model is made up of five
LSTM layers all with 32 modules, followed by five fully

Figure 5. Overview of an LSTM module

connected (dense) layers with 32, 32, 16, 8, and 1 neurons
respectively. The learning rate used was α = 1× 10−4 and
ADAMs optimiser was used with β1 = 0.9, β2 = 0.999,
and ε = 1× 108. A dropout rate of 0.4 was utilised in the
dense layers to prevent the model from overfitting the data.
As with the FFNN, the LSTM model used grid searching
when deciding upon the type of architecture, and the hyper-
parameters used. The input features for the LSTM model is
the entire vessel area profile with a length step size of 0.01
cm between area positions. As coronary vessel lengths will
vary, the input vector that describes the vessel area profile
would also vary in size. Thus in order to train the LSTM,
which requires the model input to be of the same length,
zero-padding was applied at the end of the input vector for
model training.

Computational mechanics
One of the main limitations that can hinder machine learning
and deep learning model development, is the ability to collect
an adequate amount of real world data for training the model.
This is particularly the case in biomedical engineering where
there are many issues that impact the ability to collect real
patient data, such as the number of patients that have a
particular health problem, the type of data that is collected
in the medical clinic may not be exactly what is needed
to correctly model the problem, some data may be missing
(some patients may not have pressures recorded while others
do), and the quality of the data itself is affected by the
accuracy of the measurement device or the quality of the
imaging data. Thus in the present paper we utilise a one-
dimensional haemodynamic model that has been previously
validated against invasive FFR measurements8,15 in order to
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generate virtual FFR patients. These virtual patients are then
used to train the three AI models.

The 1D model of blood flow utilised in the present paper
is described in15,27 and contains two tiers: 1) the closed-
loop model that is described in27,28 is used to generate the
flow rate waveforms for the inlet of the left coronary and
right coronary arteries; 2) an open-loop coronary network
(the coronary network in29,30) is then used, where the vessel
length and areas are adapted at random to produce similar
vessel area variations to what is seen in real patient data,
in addition a stenosis is added to one of the vessels in
the network using a random blockage percentage, stenosis
length, and stenosis location.

The one-dimensional model of blood flow in a compliant
vessel is governed by the continuity equation

C
∂P

∂t
+
∂Q

∂x
= 0, (18)

where C = ∂A
∂P is the vessel compliance, P is the hydrostatic

pressure, t is the time, Q is the volumetric flow rate, and
x is the axial coordinate; and the conservation of linear
momentum

ρ

A

∂Q

∂t
+
ρ

A

∂
(

Q2

A

)
∂t

+
∂P

∂x
+
ξµπQ

A2
= 0, (19)

where A is the area, ξ = −22 is a viscous friction coefficient
that corresponds to a relatively blunt velocity profile, µ =
0.04 P is the blood viscosity, and ρ = 1.06 g/cm is the blood
density. A visco-elastic constitutive law is chosen for the
vessel lumen area to blood pressure relationship and consists
of a power law model for the elastic term and a Voigt model
for the viscous term8 and has the form

P − P0 =
2ρc20
b

((
A

A0

)b/2

− 1

)
+

Γ

A0

√
A0

∂A

∂t
, (20)

b =
2ρc20

P0 − Pcollapse
,

where P0 = 80 mmHg is the reference pressure, Pcollapse =
10 mmHg is a collapsing pressure, A0 is the cross-sectional
area at the reference pressure,and c0 is the reference wave
speed that is determined to be

c0 =

√
2

3ρ
(k1 exp(k2r0) + k3), (21)

where k1 = 2.00× 107 g2/cm/s, k2 = −22.53 cm−1, k3 =
8.65× 105 g2/cm/s, and r0 is the radius of the vessel. The
viscous wall coefficient can be expressed as

Γ =
100

2r0
+ 100. (22)

. To be consistent with the machine learning models,
conservation of static pressure is assumed at the junction of
vessels. The system of non-linear equations are solved using
an implicit sub-domain collocation scheme31.

Constructing a machine learning model of FFR
on a coronary network

In the present work two separate model constructions are
proposed, respectively using the pressure drop and the FFR
value. The multivariate polynomial regression (MPR) and
feed-forward neural network (FFNN) are trained using a
single vessel model for the pressure drop (rather than FFR
value), and the recurrent neural network (long-short term
memory) model is trained on a single vessel model for the
FFR value. This is performed for two reasons:

• There are large variations in patient coronary network
geometry that includes: different vessel sizes (lengths
and areas), different vessel connectivities, and the
inclusion or exclusion of certain vessels. The MPR
and FFNN models only use 6 input features, thus all
variations in patient geometry need to be covered by
these 6 features. Through tests on the 1D model15,
the pressure drop across the stenosis is invariant to
the aortic pressure, while the FFR value intimately
depends on the aortic pressure. This means that the
pressure drop is more reliable and easier to utilise for
training these models, as the number of input features
is low.

• the long short-term memory model is ideal for
sequences and thus it is a natural choice for a network
in which the solution in the next vessel will depend
on the solution of the previous vessel. However, as all
input sequences (vectors) must have the same length,
post sequence zero-padding is performed for the area
profile.

In order to describe the construction of the FFR solution
in a network for the MPR and FFNN models, we first
make the assumption (validated through numerical tests)
that the pressure drop in a vessel is not influenced by the
hydrostatic pressure at the start of the vessel. Secondly,
we assume continuity of static pressure at vessel junctions
(although a machine learning model could also be used to
estimate the change in pressure between vessels). These
two assumptions allow the use of a simple reconstruction
technique to determine the FFR value from the aorta to the
location of FFR measurements downstream of a stenosis.
Thus the MPR and FFNN models estimate the pressure drop
over each vessel in a network which is reconstructed in the
following way: Consider a bifurcation of the left coronary
artery (LCA), left anterior descending artery (LAD), and left
circumflex artery (LCX) as shown in Fig. 6.

There are 6 pressure ’nodes’ representing the pressure at
the start and end of the three vessels. For continuity of static
pressure at vessel junctions, the pressure at the end of the
LCA will be equal to the pressure at the start of both the
LAD and LCX vessels. Thus the FFR value at the end of the
LAD and LCX can be reconstructed from the pressure drops
(∆P ) of each of the three vessels (provided the mean aortic
pressure is known, which can be measured and estimated
non-invasively using the brachial artery cuff pressure) in the
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Figure 6. Three vessel configuration consisting of an LCA,
LAD, and LCX. For the MPR and FFNN models, the pressure
drop is calculated across each vessel separately and then the
FFR values are reconstructed afterwards

following way:

∆PLCA = P1 − P2, ∆PLAD = P3 − P4,

∆PLCX = P5 − P6, P2 = P3 = P5,

FFRLAD =
P1 −∆PLCA −∆PLAD

P1
,

FFRLCX =
P1 −∆PLCA −∆PLCX

P1
. (23)

This technique can be extended in a straightforward way to
any size of vessel network, provided a good estimation of
the mean aortic pressure is known. In the present work we
estimate that the mean aortic pressure is 93.333 mmHg, as
we do not have pressure measurements from any patients.
This is also the mean pressure of the computational model.

Results
In order to test and compare the proposed methodologies,
three test cases are constructed. The first test case uses a
virtual patient database of single vessels. In reality the FFR
measurement does not take place at points just either side of
the stenosis, but instead the proximal pressure measurement
occurs in the aorta near where the coronary arteries branch
out from, while the measurement point distal occurs after a
stenosis, thus the full FFR ratio is affected by what happens
over a vessel network and not over a single vessel. Thus we
test our reconstruction methodology on the second test case,
which consists of a network of virtual patients where the FFR
solution is determined by the 1D CFD model, and in the third
test we evaluate the methodology on a small cohort of real
patients where the FFR has been measured invasively during
coronary catheterisation. In our results the mean absolute
error that is calculated as

MAE =

∑n
i=1 |FFRpred,i − FFRtrue,i|

n
, (24)

where n is the number of cases, i is the current sample item,
FFRpred is the model predictions, and FFRtrue are the true
values that are either computational model, or invasive FFR
value, respectively. The standard deviation is calculated as

STD =

√√√√ 1

n− 1

n∑
i=1

(FFRi − ¯FFR)2, (25)

where FFR is either from the ML predicted models, CFD
model, or invasive FFR measurements respectively, and ¯FFR
is the mean of these samples. The bias is calculated as

Bias =

∑n
i=1 FFRtrue,i − FFRpred,i

n
. (26)

Results from single vessel
The first test case uses a virtual patient database of single
vessels using the 1D blood flow model where the virtual
patients were created by randomising the vessel area profile,
stenosis location, stenosis length, stenosis severity, and the
mean inflow rate. 10000 single vessel ’virtual patients’ were
generated with 70% used for model training and 30% used
for testing. Fig. 7 shows the results of the test set for
all proposed methodologies and Table 1 shows the overall
performance of each methodology. The diagnostic accuracy
is consistent between all of the models where they all achieve
just under 99% accuracy. The sensitivity and specificity are
closer in value for the MPR. For the FFNN model the
specificity is higher than the sensitivity, while for the LSTM
model this is exacerbated further with the sensitivity 95.76%
while the specificity is 100 %. All methodologies show a
very high linear correlation value and p-value of 0. Although
the results are very consistent between the three models, the
FFNN performs the best on this test case as it has the equal
highest diagnostic accuracy with the lowest mean absolute
error when compared to the 1D physics-based model. The
standard deviation of the test set used in this example was
0.1365, which is quite consistent with the standard deviations
observed of the predictive models from Table 1.

Multi-vessel FFR
The second test case utilises a virtual patient database of
left coronary artery vessel networks. The left side of the
coronary network proposed by30 is used as a basis, while
the area profiles, vessel lengths, stenosis location, length,
and severity, and flow rate distribution are varied randomly.
A cohort of 10,000 virtual patient coronary artery networks
were generated, each network contained 9 vessels, with 70
% used for model training and 30 % used for testing for all
machine learning models. As shown in Table 2 and Fig. 8, the
FFNN model performs the best with a diagnostic accuracy of
over 99% and also had the lowest mean absolute difference
and highest linear correlation value. The LSTM, which is
the most complex model implemented in this work, had the
lowest diagnostic accuracy, however it still had a lower mean
absolute difference from the 1D physics-based model than
the MPR model. The standard deviation of the underlying
data in synthetic multi-vessel case was 0.1408, which is
consistent with the values seen for the FFNN and LSTM in
Table 2.

Comparison with invasive FFR
The final test case compares the proposed methodologies
and the 1D physics-based model to clinical invasive
FFR measurements that were performed under coronary
angiography for a cohort of 25 patients15. The results are
shown in Fig. 9. It is important to highlight that although
25 FFR values are compared, only 23 cases had the exact
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Method Diagnostic Accuracy Sensitivity Specificity p-value ρ MAE STD bias
(%) (%) (%)

MPR 98.71 98.06 98.95 0 0.9984 0.0048 0.1360 0.0001
FFNN 98.88 97.57 99.36 0 0.9986 0.0042 0.1361 0.0000
LSTM 98.88 95.76 100.00 0 0.9993 0.0055 0.1330 -0.0038

Table 1. Overview of the test set for each machine learning model compared to the 1D physics-based model on a single vessel
model. Diagnostic measures include the percentages of the diagnostic accuracy, sensitivity, and specificity, the linear correlation ρ,
p-value, the mean absolute error (MAE), standard deviation (STD), and the bias (4dp)
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Figure 7. Comparison of machine learning/deep learning methods against the cfd model results on a single vessel

Method Diagnostic Accuracy Sensitivity Specificity p-value ρ MAE STD bias
(%) (%) (%)

MPR 97.57 96.86 97.76 0 0.2430 0.0312 0.5406 0.0057
FFNN 99.08 97.92 99.39 0 0.9959 0.0050 0.1402 0.0000
LSTM 96.48 92.61 97.52 0 0.9793 0.0213 0.1456 0.0072

Table 2. Comparison of the MPR, FFNN, LSTM models with the 1D physics-based model on a 9 vessel network. Diagnostic
measures include the percentages of the diagnostic accuracy, sensitivity, and specificity, the linear correlation ρ, p-value,the mean
absolute error (MAE), standard deviation (STD), and bias (4dp)
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Figure 8. Comparison of machine learning/deep learning methods against the cfd model results on coronary artery vessel
networks

FFR value from the clinic. For two of the cases the FFR was
only recorded as positive (FFR<0.8) or negative (FFR≥0.8)
respectively. These two cases are shown in Figure 9 as
FFR = 0 for the positive case, and FFR = 1 for the
negative case to distinguish these two cases from those
that have the FFR values recorded. The MPR, FFNN,
and 1D physics-based methods have the same diagnostic
performance, sensitivity, and specificity as shown in Table
3. All 25 cases were used to determine the diagnostic
accuracy, sensitivity, and specificity; but only the 23 cases
that had the exact clinical FFR recorded were used in the
calculation of the remaining performance indices. However
the 1D physics-based model has the lowest mean absolute

error, while the MPR which is the least complex model
implemented in this work has the largest MAE. The most
complex AI model implemented, the LSTM, shows the
lowest diagnostic accuracy as it has the lowest sensitivity
and tends to overestimate the pressure drop, thus leading
to predict a positive FFR value (FFR<0.8) for cases where
the invasive FFR is just above 0.8. Table 4 compares the
mean absolute error, standard deviation, and bias of the three
machine learning models with that of the 1d physics-based
model. The FFNN model consistently gave solutions closer
to the physics-based model and had a smaller bias than the
other two models. The LSTM performed significantly better
than the MPR, however the bias values were similar. The
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Figure 9. Comparison of the 1D physics-based model and the
three machine learning/deep learning methods against the
invasive clinical measurements on the coronary artery vessel
network of 25 patients

standard deviation of the invasive FFR measurements was
0.0940.

Discussion
For the single vessel case in Fig. 7, the LSTM showed the
least spread of FFR prediction and highest linear correlation,
although there is no significant difference between the
diagnostic performance of the methods employed. Generally
the LSTM model showed bias towards the specificity
implying that it is biased towards a positive FFR prediction
(FFR>0.8). Interestingly the LSTM method gave the largest
MAE which is mainly due to the bias as discussed above.
All three of the machine learning based methods were shown
to give respectable FFR predictions when compared to the
1D physics-based model on single vessels, although the
FFNN was shown to have the lowest MAE. However, in the
clinic the FFR measurement takes place between the aortic
pressure to a point distal to a stenosis, and therefore it is very
rare for only a single vessel to be considered.

In the multi-vessel case in Fig. 8, there is a more noticeable
difference in the quality of the results between the methods.
This case is more challenging than the single vessel case as
there is significantly more variation in the flow rates, vessel
lengths and area profiles. The MPR struggles to account for
this variation. The training set and test set come from the
same distribution of input features as required to create a well
defined ML model. However, some of the test set contained
input feature variations that were not observed in the training
set and thus the models needed to extrapolate the data to
give predictions. As a result the MPR model has the largest
MAE and by far the lowest linear correlation value. MPR
gives several erroneous predictions (not seen in Fig. 9 as
these values are extreme), for example the maximum FFR
predicted by the MPR is FFR= 1500, and the lowest value
is FFR=−500, which are both physiologically impossible.
This issue is a well known problem in polynomial fitting32,
however other deep learning models can also give erroneous
solutions, but in this case the FFNN and LSTM generally
handle these extrapolated cases without difficulty. The use of
regularisation for the MPR case was attempted, but this did
not lead to an increase in performance on these extrapolated
values. This is potentially an issue for AI models, as they

can give non-physical predictions. However there has been
work to address such issues by adding constraints to the
AI model33, which could be used to impose conservation
of mass and/or momentum. The FFNN model achieves a
very high level of diagnostic accuracy and by far the lowest
MAE. It is not too surprising that the FFNN works well as
it is a universal approximator so it can be used to model any
continuous function34.

When comparing the ML models and the 1D physics-
based model from which they where originally trained with
the invasive clinical measurements, the FFNN again shows
the best predictive power of the AI models. Again the MPR
has the highest MAE, however the diagnostic accuracy,
sensitivity, and specificity are the same for the FFNN, MPR,
and 1D model. The LSTM performs worse than the other
methods in terms of diagnostic accuracy, and is generally
biased to predict a positive FFR. This may be due to the
LSTM using zero-padding, which although required, can
influence the accuracy of the model36, and there is more
network variation in the patient data compared with the
training cases (patient cases range from 3 vessel networks
to 12 vessels in the network). The LSTM model is the most
complex of the two deep learning approaches and may have
been expected to outperform the FFNN model. However,
the input for the LSTM model is the entire area profile of
each vessel in the coronary network, while the FFNN only
considers six input features as it is not considered effective
at handling sequence data. This essentially means that the
LSTM had to learn more complex relationships. In addition,
gives a more informative output prediction for other regions
in the coronary vessel as the output of the LSTM is the
FFR values across the entire length of the network, while
the FFNN model only gives a single FFR value at the end of
a vessel.

It is observed that the standard deviation of the synthetic
data is significantly higher than that in the real patient data.
Due to the small patient cohort in this work, and that the
majority of the cohort had an FFR measurement in the
range 0.75-0.9, the standard deviation of the real patient
cohort was relatively small. In order to successfully train a
machine learning model that can generalise to predict FFR,
it was deemed necessary to have a greater spread, and thus
larger standard deviation, in the synthetic patient cases. This
lowers the likelihood of over-fitting the ML models, and can
help generalise it for any future patient cases tested that are
outside the range observed in the current real patient cohort
utilised in this study.

Although ML models can effectively be used to replace
aspects of physics-based models, there are several aspects
that need to be addressed before AI can be used in medicine
for direct diagnostic and treatment decision making. There
have been several AI based models for FFR that have
been proposed, ranging from replacing the physics based
models12, predicting FFR from the segmented vessels37,
to making the prediction directly via the CT scans13,14.
However, utilisation of these AI predictions in the clinic
raises ethical and validity issues, which still need to be
appropriately addressed38. Another issue involved in non-
invasive FFR is the extraction of the coronary geometry
from the CT data. This is a particular stumbling block for
both physics based models and machine learning techniques.
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Method Diagnostic Accuracy Sensitivity Specificity p-value ρ MAE STD bias
(%) (%) (%)

MPR 72.00 90.00 60.00 5.4 ×10−3 0.5605 0.1363 0.1836 0.1026
FFNN 72.00 90.00 60.00 3.7 ×10−6 0.8048 0.0855 0.1165 0.0623
LSTM 64.00 100.00 40.00 3.8 ×10−2 0.4349 0.1132 0.1212 0.1020
CFD 72.00 90.00 60.00 2.5 ×10−4 0.6929 0.0677 0.1079 0.0559

Table 3. Comparison of the MPR, FFNN, LSTM, and 1D physics-based model with invasive clinical measurements in the
patient-specific networks. Diagnostic measures include the percentages of the diagnostic accuracy, sensitivity, and specificity; and
the linear correlation ρ, p-value, the mean absolute error (MAE), standard deviation (STD), and bias

Method MAE STD bias

MPR 0.0863 0.0974 0.466
FFNN 0.0341 0.0484 0.0063
LSTM 0.0596 0.0640 0.4600

Table 4. Comparison of the MPR, FFNN, LSTM, with the 1D
physics-based model. The measures investigated are the mean
absolute error (MAE), standard deviation (STD), and bias

However, deep learning techniques and computer vision
can be effective at identifying objects in images. It is not
beyond the power of a deep learning algorithm to be used
to extract the required coronary vessel features directly from
the CT images. Although this would also require a significant
number of CT images to train any model.

Although AI models could be utilised to replace the well
established physics-based models in areas such as medical
research, there is an argument that AI could supplement
existing physics-based modelling, and rather be focused on
replacing or improving the bottlenecks in this area of medical
research, which is segmentation of the CT scans. This is in
part due to the fact that that the well established reduced-
order models are already very fast, and have been shown
to give good accuracy; while segmentation is the slowest
part of the non-invasive FFR prediction process15, and is
often the most variable aspect of the prediction process
with significant differences in segmented geometry observed
between experienced users39, and even between different
CT scanners40. AI could be used to reduce the amount of
segmentation required, or even replace it entirely, which has
been achieved for good quality CT images41.

Limitations
In this work, only a small cohort of real patient
measurements were suitable for FFR prediction using
machine learning. This needs to be increased significantly in-
order to train the ML models using real patient data, rather
than on a validated 1D physics-based model that is used as a
surrogate.

Conclusions
In this study, three AI models of varying degrees of
complexity were compared to invasive FFR measurements.
The AI models were initially trained using a 1D physics-
based model on a virtual patient database. The AI models, in
order of least complex to most complex, are the multivariate
polynomial regression, the feed-forward neural network,
and the long short-term memory model. The models were

compared to single vessel, and multi vessel network cases
from the virtual patient database, and also on clinically
invasive FFR measurements. The least complex model, the
MPR, struggled with the significant variation of area profiles,
lengths, and flow rate estimations in the data, and produced
some erroneous predictions. The most complex model, the
LSTM performed well for the single vessel cases, but did
not perform as well for the multi vessel network and patient
cases. The FFNN performed well for all cases.
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