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Abstract
Autophagy has been strongly linked with hormesis, however, it is only relatively recently that the mechanistic basis underlying this
association has begun to emerge. Lysosomal autophagy is a group of processes that degrade proteins, protein aggregates,
membranes, organelles, segregated regions of cytoplasm, and even parts of the nucleus in eukaryotic cells. These degradative
processes are evolutionarily very ancient and provide a survival capability for cells that are stressed or injured. Autophagy and
autophagic dysfunction have been linked with many aspects of cell physiology and pathology in disease processes; and there is now
intense interest in identifying various therapeutic strategies involving its regulation. The main regulatory pathway for augmented
autophagy is the mechanistic target of rapamycin (mTOR) cell signaling, although other pathways can be involved, such as 50-
adenosine monophosphate-activated protein kinase. Mechanistic target of rapamycin is a key player in the many highly inter-
connected intracellular signaling pathways and is responsible for the control of cell growth among other processes. Inhibition of
mTOR (specifically dephosphorylation of mTOR complex 1) triggers augmented autophagy and the search is on the find inhibitors
that can induce hormetic responses that may be suitable for treating many diseases, including many cancers, type 2 diabetes, and
age-related neurodegenerative conditions.
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Introduction

Hormesis is a biphasic dose–response to an environmental

agent or condition characterized by low dose stimulation with

beneficial effect and a high dose inhibitory with harmful

effect.1,2 Hormesis is induced by mild physiological stress

caused by a variety of stressors including toxic metals, organic

xenobiotics, phytochemicals, drugs, ionizing radiation, nutrient

deprivation (ie, fasting and caloric restriction [CR]), hypoxia,

and oxidative stress (Figure 1).3 This type of functional

response seems to occur in all eukaryotic organisms, which

include yeasts and fungi, protozoans, plants, and metazoan

animals. Lysosomal autophagy (self-eating) appears to be

strongly associated with the mechanism underlying horm-

esis4-8; and Blagosklonny9 has proposed that the mechanistic

target of rapamycin (mTOR) cell signaling system is a crucial

feature of hormetic responses, particularly due to its relation-

ship with lysosomal autophagy (Figure 2).

Lysosomes have been linked to hormetic responses for over

40 years.13 Low level toxic metal stress induced changes in the

lysosomal–vacuolar system of a marine coelenterate

(Campanularia flexuosa), at concentrations of the metals that

were an order of magnitude less than that required for the

induction of growth hormesis. This finding was interpreted at

the time as a precursor to the stimulation of growth by the

metals (copper, cadmium, and mercury) that may have been

associated with the augmentation of lysosomal autophagy as a

survival strategy.13-15 Lysosomes are also notable for their
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ability to sequester and accumulate many metals, organic xeno-

biotics (including drugs such as chloroquine), radionuclides,

microplastics, and nanomaterials.16-23 This sequestration proba-

bly has a protective function by compartmentalizing harmful

materials from the rest of the cell; although it can result in

lysosomal membrane destabilization (ie, permeablization) and

release of intralysosomal iron with subsequent generation of

reactive oxygen species (ROS) and cell injury.22,24 Furthermore,

it is now apparent that autophagy is triggered by the inhibition of

the mechanistic target for rapamycin complex 1 (mTORC1) cell

signaling system (Figure 2).25 Mechanistic target for rapamycin

complex 1 is a central focus for regulation of cell function: it acts

as a nutrient sensor and is switched off by nutrient deprivation;

and it is also inhibited by ROS (Figure 2).11 Hormesis now

appears to be inextricably interconnected with mTORC1 and

autophagic turnover of damaged cellular components including

proteins and organelles.9,15,26-28

Hormesis has been simulated in a cell physiological model

using a network modeling method.29 In this model, health sta-

tus or homeostasis is represented by connectance: This is essen-

tially the degree of system complexity or connectivity within

the interconnected nodes representing the various molecular

and cellular processes that constitute a living cell. Mild stress,

such as nutritional deprivation, induced an increase in

connectance, indicating an increase in health status that is con-

sistent with hormesis. Increasing stress resulted in a decline in

connectance, indicative of a loss of complexity and increasing

cell injury.21,29,30 Connectivity associated with autophagy was

a significant factor in the increase in connectance induced by

mild stress. The outputs from this simulation have since been

validated in experimental studies with molluscan hepatopan-

creas or digestive gland.10,21,30,31

Role of Autophagy in the Economy of the Cell

Autophagy is a cellular “garbage removal” process that is

activated in response to various types of metabolic stress,

including nutrient deprivation, generation of ROS, growth fac-

tor depletion, and hypoxia (Figure 1).14,15,32 Molecular studies

involving targeted mutations resulting in deletions of

autophagy-related genes, in organisms as varied as yeast, slime

molds, plants, and mice, have shown that autophagy is essential

for eukaryotic life.33

As well as providing an evolutionarily primitive survival

mechanism against starvation and other environmental stressors,

such as toxic chemicals, lysosomally mediated autophagic pro-

cesses are crucial for the normal (basal) degradation and turnover

of cellular components in autolysosomes.14,15 Lysosomal
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Figure 1. Simplified conceptual mechanistic model showing the interactions of reactive oxygen species (ROS) with cellular components,
lysosomal and autophagic processes, that can lead to oxidative stress, cell injury, and pathology. It is hypothesized that repeated stimulation
of augmented autophagy (large red arrow circled) by various environmental factors such as fasting and exercise, or low concentrations of toxic
chemicals that induce mild stress, will result in a more effective recycling of damaged cellular proteins and organelles; and before major oxidative
damage occurs. This will consequently reduce lipofuscin formation that will otherwise accelerate ROS generation and cell injury and thus
protect the cell from further oxidative injury. See more detailed diagram in Moore et al.10
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autophagy is also implicated in many disease processes, cell

injury, cell death, and adaptive responses.10,14,15,17,18,21,22,31,34-

39 Autophagy comprises at least 3 related cellular processes (ie,

macroautophagy, microautophagy, and chaperone-mediated

autophagy [CMA]); and it is essential for maintenance of cell

homeostasis.14,15,40 Furthermore, cell morphological evidence

has long indicated that lysosomal autophagy is a highly conserved

mechanism evolutionarily.14,33 Damaged cellular constituents

and redundant products are removed by lysosomal autophagy,

but it is also critically involved, along with other proteolytic sys-

tems (eg, proteasomes), in the continuous turnover of intracellular

components.41 Autophagy is upregulated in times of stress or

physiological change: by breaking down longer-lived proteins

and organelles and recycling the products into protein-synthesis

and energy-production pathways, the process allows cells to be

temporarily self-sustaining during periods when nutrients are

restricted (Figure 1).14,40

Autophagic lysosomal degradation is the principal route for

intracellular protein turnover and clearance.42 Proteins and lipids

targeted for degradation enter the lysosomes via macroauto-

phagy, microautophagy, and CMA.14,15 Once transported to the

autolysosomes, these materials are split into their component

molecules. Macroautophagy and microautophagy nonselectively

remove entire portions of cytosolic regions and whole
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Figure 2. Abbreviated diagrammatic representation of the PI3K, Akt, mTOR cell signaling pathway, and associated pathways, as a major
regulator of cell function (see Laplante and Sabatini11 for a more extensive chart of mTOR-related cell signaling). The mTOR is an atypical serine/
threonine kinase that is present in 2 distinct complexes. The first, mTORC1, is highlighted and is composed of mTOR, Raptor, GbL, and
DEPTOR and is inhibited by rapamycin. It is a master growth regulator that senses and integrates diverse nutritional and environmental cues,
including growth factors, energy levels, cellular stress, and amino acids. It couples these signals to the promotion of cellular growth by
phosphorylating substrates that potentiate anabolic processes such as mRNA translation and lipid synthesis or limit catabolic processes such
as autophagy. The pathways from mTORC1 leading to activation of autophagy (highlighted) are indicated in red (heavy arrows). Interactions with
AMPK (circled) are also shown. Overactivity of mTORC1 is believed to trigger inflammatory processes which can result in pathological injury
and processes leading to many cancers and degenerative diseases; and aberrant mTOR signaling is involved in many disease states including
cancer, cardiovascular disease, and diabetes. Adapted from Moore12 and with permission from Cell Signaling Technology, mTOR Signaling
Interactive Pathway: https:// www.cellsignal.com/contents/science-cst-pathways-pi3k-akt-signaling-resources/mtor-signaling-interactive-path-
way/pathways-mtor-signaling. Key to major constituents and symbols: Akt indicates serine/threonine kinase or protein kinase B; AMPK, 50-
adenosine monophosphate-activated protein kinase; mRNA, messenger RNA; mTOR, mechanistic target of rapamycin; mTORC1, mammalian
target of rapamycin complex 1; PI3K, phosphatidylinositol-3 kinase; PIP3, phosphatidylinositol 3,4,5 trisphosphate; PTEN, phosphatase and tensin
homolog; ROS, reactive oxygen species; activation, "; inhibition, T.
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organelles, whereas CMA solely targets specific cytosolic pro-

teins. While macroautophagy is induced close to the onset of

fasting conditions, evidence suggests that this nonselective

degradation can only be maintained for a short period of time

in mammalian cells (ca 10 hours43). After this, CMA is the main

form of autophagy. This is thought to allow the concurrent

degradation of proteins and lipids into the amino acids required

for cell survival, while preventing the degradation of molecules

critical for basic cell function. Thus, CMA can be designated a

stress-induced pathway that is activated not only by nutrient

deprivation but also by mild oxidative stress44 and exposure to

toxic compounds.14,21,31 This was clearly demonstrated by Mas-

sey et al45 who impaired CMA in mouse cells. The survival rates

of these cells were unaffected when maintained under optimum

conditions and it was hypothesized that the cells were able to

upregulate macro- and microautophagic pathways to sustain pro-

tein turnover homeostasis. However, these non-CMA autopha-

gic pathways were unable to compensate for the elevated levels

of protein damage resulting from exposure to pro-oxidants and

ultraviolet as evidenced by an exponential decrease in cell via-

bility, increase in apoptosis, and cell death.45

Role of Autophagy and Hormesis in Disease
and Aging

In addition to low nutrient scenarios where the autophagic pro-

cesses break down macromolecules to their constituents, which

may be used for energy and growth; autophagy plays a much more

important role in the overall homeostasis of the cell.14,15,29,32,33

The principal intracellular roles of autophagy are:

� removal of unfolded and defective proteins and cellular

organelles, as in mitophagy of mitochondria14,33;

� prevention of abnormal protein aggregate accumula-

tion15 and;

� removal of intracellular bacterial and viral pathogens by

xenophagy.46,47

These 3 mechanisms are implicated in many bacterial, viral,

heritable, and aging-related diseases, including atherosclerosis

and various cancers, as well as neurodegenerative diseases (eg,

Alzheimer disease, Huntington chorea, Motor neuron disease,

bovine spongiform encephalopathy (BSE), Creutzfeldt-Jakob

disease, and Parkinson disease.39,48-53 (Cuervo, 2008). There is

also a related autophagic process called mitophagy to cull dys-

functional mitochondria, such as occurs in fibromyalgia.54,55

With some cancers, it is generally accepted that autophagy

can suppress tumor initiation and cancer growth; and since

autophagy blocks growth and increases breakdown of proteins,

this is quite logical.56,57 (Cuervo, 2004, 2008). Cancer cells

often have much lower levels of basal autophagy than normal

cells. Additionally, many oncogenes and tumor-suppressor

genes are intimately associated with cellular autophagy (Figure

2).11 An example of these includes the phosphatase and tensin

homolog (PTEN) tumor-suppressor gene, which blocks the

phosphatidylinositol-3 kinase (PI3K)/ protein kinase B (Akt)/

mTORC1 cell signaling pathway, thus activating an autophagic

response in cells (Figure 2).11 However, mutations to PTEN,

which are known to be very common in many cancers, can lead

to lower levels of autophagy, with the subsequent elevated risk of

cancer. However, there is also a downside, and the relationship

between autophagy and cancer appears to be a double-edged

sword,58 since as some cancers progress, autophagy may actually

facilitate tumor survival, just as autophagy appears to help the

survival of all cells subjected to a stressful environment.14 Some

cancers, which may grow so quickly as to outstrip their own blood

supply, may thus be aided by increased autophagy, as this would

supply much needed energy and deal with stress.48 Consequently,

autophagy can have both prometastatic and antimetastatic roles

and interacts with the other programmed cell death pathways (ie,

apoptosis and necroptosis) in tumor progression.59

The other area of intense research interest in hormesis and

inducible autophagic processes is in the investigation of age-

related neurodegenerative diseases including Alzheimer disease,

Parkinson disease, and Huntington chorea.32,39,51,60-63 While all

of these pathological conditions manifest differently, they all

share one pathological similarity. All of these neurodegenerative

diseases are characterized by excessive buildup of proteins and

protein aggregates inside neurons leading to cell dysfunction and

ultimately disease.51 Consequently, the failure of protein degra-

dation pathways by autophagy may play a very important role in

the etiology of these diseases. However, the exact role of autop-

hagy in these diseases is still uncertain. Further, growing

research also implicates mitochondrial dysfunction and associ-

ated oxidative stress as a key pathway in the development of

neurodegenerative diseases, as mentioned above for fibromyal-

gia.54,55 Furthermore, Matai et al64 have shown that endoplasmic

reticulum hormesis improves proteostasis and viability in a

mammalian cellular model of neurodegenerative disease.

Mitophagy is the selective autophagic targeting of defective

or dysfunctional mitochondria. If the mitochondria are not

working effectively, then the process of mitophagy targets

them for lysosomal degradation.54,55 The key regulators of this

process include the tumor suppressor gene PTEN.11 50-Adeno-

sine monophosphate-activated protein kinase (AMPK), for

example, will also stimulate mitophagy, as well as new mito-

chondrial growth, essentially replacing old mitochondria with

new ones in a subcellular renewal process (Figure 2).11,65 Con-

sequently, this is one of the reasons that metformin is often

proposed as an antiaging compound, not so much for its anti-

diabetic blood-sugar level effects; but instead, because of its

effect on AMPK and augmented autophagy (Figure 2).11,25,65

As already mentioned, many antiaging interventions

may show hormetic features, suggesting that preconditioning

might have a preventive medical character (Figure 3 and

Table 1).8,34,66-72 Hence, mild dietary stress (ie, CR without

malnutrition or glucose restriction) achieved through various

fasting regimes may exert its beneficial effects on life- and

health span, at least in part, through hormetic mechan-

isms.10,30,34,73,74 Glucose restriction has been shown to cause

an increase in mitochondrial generation of ROS in a nematode

model.74 This mitochondrial ROS may in turn trigger an

4 Dose-Response: An International Journal



autophagic response via inhibition of mTORC1 (Figure 2).75-78

Furthermore, various repurposed approved drugs have been

found to increase life span and health span in rotifers (Table

1).71 Similarly, physical exercise may counteract aging by vir-

tue of a hormetic dose–response relationship. Consequently,

both lack of physical activity and overexercise are harmful,

while regular but moderate exercise is beneficial, probably

mediated by exercise generated ROS inducing mild oxidative

stress leading to preconditioning (Figure 3).8,66-68

Hormesis appears to be executed by a variety of physiolo-

gical cellular processes, including autophagy that coopera-

tively interact and converge on enhanced stress resistance

and longevity (Figure 3).8,32,69,81,82 Calabrese et al68 and Zim-

mermann et al8 have postulated that cells and organisms, pre-

conditioned by exposure to mild stress, are protected against

more harmful levels of stress and that the relevance of hormesis

for both human pathophysiology and specific disease treatment

is being increasingly recognized.83 These authors have argued

that this evolutionarily conserved process, hormesis, is directly

linked to the capability to cope with pathological conditions,

including aging and age-related diseases. They have also iden-

tified lysosomally mediated autophagy as a key component of

this cytoprotective process.8

Central Role of mTORC1 and Related Cell
Signaling Pathways

The mTORC1 cell signaling system is primarily a nutrient sen-

sor, however, it also interacts with ROS (Figure 2). The PI3K/

Akt/mTORC1-related intracellular signaling pathways are

essential for eukaryotic cells, since they are the link between

nutrient status and growth (Figure 2). Mechanistic target for

rapamycin complex 1 is the major cellular nutrient sensor to

influence autophagic processes14 and is inhibited by depho-

sphorylation.11 Mechanistic target for rapamycin integrates sig-

nals from insulin, nutrients (amino acids or dietary protein), and

the fuel gauge of the cell AMPK (all energy including fats) to

determine whether the cell should divide and grow or become

dormant.11,65 Excess nutrients may stimulate the mTORC1 sys-

tem, turning off autophagy and putting the body into a growth

mode. This encourages growth of cells, which is generally not

beneficial in most adult higher animals.15 The mTORC1 path-

way is also inhibited by ROS and vitamin D (Figure 2).11,84

Diseases such as obesity, type 2 diabetes, Alzheimer dis-

ease, many cancers, atherosclerosis (heart attacks and strokes),

polycystic ovarian syndrome, polycystic kidney disease, and

fatty liver disease, among others, may be amenable to dietary

intervention and mTORC1 inhibitors.85,86 When the nutrient

sensing systems detect low nutrient availability, they signal

cells to stop growing and start breaking down unnecessary

parts—this is the “self-cleansing” pathway of autophagy.15,87

Consequently, diseases that involve excessive growth may be

countered by reducing positive growth signaling through

blocking these nutrient sensors.

Investigations of growth inhibition in humans are problematical

because of the multiple interacting cell signaling pathways

(Figure 2; Laplante and Sabatini, 2012).88 However, the clearest

evidence usually comes from drugs that target single pathways that

can be altered one at a time. The mTORC1 inhibitors (eg, rapamy-

cin, everolimus, various phytochemicals) activate autophagy by

blocking mTORC1 (Table 1).89 Some of these drugs are mainly

used for their immune-suppressing effects in organ transplant med-

icine. However, most immune suppressants increase the risk of

cancer, whereas rapamycin does not. In certain cancers, mTORC1

inhibitors have demonstrated anticancer effects (Table 1).56

Metformin, a drug widely used in type 2 diabetes, also acti-

vates autophagy but not directly through the mTORC1 system

(Table 1).72 This drug increases AMPK, a protein molecule that

signals the energy status of the cell (Figure 2).90 High AMPK

signals that the cell has insufficient energy and consequently

augments basal autophagy.65 The AMPK senses the ADP/ATP

ratio, thus determining the cellular energy status. High AMPK

levels directly activate augmented autophagy but also indir-

ectly activate mitochondrial production.65

Dephosphorylation of mTOR (inhibitory) and the conse-

quent enhancement of autophagic activity are not per se suffi-

cient to explain positive reactions, such as increased growth of

the organism, to stressors. However, inhibition of mTOR (spe-

cifically mTORC1) does seem to represent a necessary step in

order to eliminate the negative effects (ie, molecular and cell
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Unfolded protein response
Heatshock proteins ↑

↑
↑

↑
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State

Stress resistance &
Cell survival

Cell injury &
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Figure 3. When exposed to mild stress, cells/organisms respond by a
variety of pleiotropic adaptive cellular programs that procure a pre-
conditioned state.66,67 When an severe stress is applied subsequently,
preconditioned but not naive cells/organisms exhibit stress resistance,
hormesis, and eventually improved survival. mtROS indicates mito-
chondrial reactive oxygen species. Adapted from Zimmermann et al.8
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Table 1. Summary List of Chemical Compounds With Life-Span and Health-Span Extending Properties.a

Compound (chemical class)
Medication/supple-
ment name(s) Effects on organism Cell targets

Aspirin (NSAID) Ecotrin
Aspir 81
Aspir-low
Aspirin low strength

Anti-inflammation
Anticancer
Antistress

COX-1, COX-2, PTGS2, AMPK, NF-kB pathway, PI3/Akt/
mTOR pathway

Capecitabine (fluoropyrimidine) Xeloda Antimetabolite Thymidylate synthase
Curcumin (polyphenol) Theracurmin

Meriva
Longvida
BCM-95

Anti-inflammation
Anticancer
Antiatherogenic
Antidiabetic
Antidepressant
Neuroprotective
Antistress

NF-kB, COX-1, COX-2, TNF-a, p53, PPARg, TR, Nrf2,
FAK, PI3K/AKT/mTOR pathway, LOX, AMPK, Src,
GSK3, AP1,

Dihydroresveratrol
(dihydrostilbenoid)

Dihydroresveratrol Resveralogue
Antifibrotic
Anti-inflammation

Moderation of splicing factor levels, PI3K/AKT/mTOR
pathway, NF-kB pathway

Epigallocatechin gallate (catechin) Green tea extract Anti-inflammation
Anticancer
Antiamyloid
Antiatherogenic
Antiobesity
Antidiabetic
Neuroprotective
Antistress

Bcl2, NOS2, LamR, EGFR, telomerase, topoisomerase II,
DNMT1, PI3K/Akt/mTOR pathway

Erythromycin (antibiotic) Erythrocin
Ery-Tab
EryPed
E-Mycin

Antibacterial
Gastroparetic

Aminoacyl translocation

Fisetin (flavonoid) Fisetin Anti-inflammation
Anticancer
Antiatherogenic
Antiobesity
Antidiabetic
Antioxidant
CR mimetic
Antistress

Akt, Cdk6, mTOR, ERK, PI3K/Akt/mTOR pathway

Ivermectin (macrocyclic lactone) Heartgard
Sklice
Stromectol
Ivomec
Mectizan
Ivexterm

Antiparasitic Glutamate-gated chloride channels

Melatonin (biogenic amine) Melatonin
Circadin
Clocktonin

Neuroprotective
Antistress
Antimigraine
Sedation
Sleep quality
Antidepressive
Antistress

MT1, MT2, MT3, GPR50

Metformin (biguanide) Act Metformin
Bio-metformin
Fortamet
Glucophage
Glumetza
Metformin
Riomet

Anti-inflammation
Anticancer
Antiatherogenic
Antidiabetic
Antidepressant
Neuroprotective
Cardioprotective
CR mimetic

AMPK, PI3K/Akt/mTOR pathway

(continued)
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injury) of the stressor but the partial dephosphorylation of

mTOR must in some way be coupled with a second reaction,

perhaps involving AMPK and mitochondrial function, that is

able to positively stimulate cell metabolism and physiology.91

Mitochondrial hormesis (ie, mitohormesis) involving restora-

tion of mitochondrial function and superoxide production via

activation of AMPK has now been associated with improve-

ment in markers of renal, cardiovascular, and neuronal dys-

function with diabetes. Consequently, approaches that

stimulate AMPK and peroxisome proliferator-activated recep-

tor-g coactivator-1a (PGC1a) via exercise, CR, and medica-

tions result in stimulation of mitochondrial oxidative

phosphorylation activity, restore physiological mitochondrial

superoxide production, and promote organ healing.91 The

expression of PGC1a is highly inducible by physiological

stressors, including exercise, cold, and fasting92; and a central

function of PGC1a is its intimate link to mitochondrial biogen-

esis and the detoxification of ROS.93

Hormesis and Autophagy in Animal
and Human Evolution

Over the geological time course of biological evolution, expo-

sures to low concentrations of foreign or xenobiotic chemicals,

both natural and pyrogenic (eg, from forest fires, volcanism,

and cooked food), will have undoubtedly acted as selective

pressures on the cytoprotective defences of biological systems

(see review by Moore).12 It is probably not unreasonable to

propose that hormesis arose as a result of these selective pres-

sures on the cellular interactions of toxic chemicals, their meta-

bolites, and frequently generated reactive oxygen and nitrogen

species with cell constituents. Such interactions will have

included cell signaling networks that regulate xenobiotic bio-

transformation (phase I and II, esterases, etc) mitochondrial

and lysosomal function, autophagy, and programmed cell death

(see review by Moore).29 Consequently, these interactions have

resulted in the integrated toolbox of evolutionarily highly

Table 1. (continued)

Compound (chemical class)
Medication/supple-
ment name(s) Effects on organism Cell targets

Quercetin (flavonoid) Quercetin
Rutin

Antiatherogenic
Anti-inflammation
Cardioprotective
Antioxidant

SIRT1, PLA2, PI3K, pp60src
Phosphotransferase
Protein kinases
Cyclic GMP phospho-diesterases, PI3K/Akt/mTOR pathway

Rapamycin (antibiotic) Rapamycin
Sirolimus
Rapamun

Anti-inflammation
Anticancer
Antiamyloid
Antiatherogenic
Neuroprotective
Cardioprotective
CR mimetic
Antistress

mTOR

Resveratrol (stilbenoid) Resveratrol Anti-inflammation
Anticancer
Antiatherogenic
Antiobesity
Neuroprotective
Cardioprotective
CR mimetic
Antistress

Sirt2, p53 AMPK, PGC1-a, PI3K/Akt/mTOR pathway, ERK
pathway

Statins Atorvastatin
Fluvastatin
Lovastatin
Pitavastatin
Pravastatin
Rosuvastatin
Simvastatin

Antihyperlipidemic
Cardioprotective
Antidiabetic
Antiatherogenic
Anti-inflammation
Anti-Alzheimer

Hydroxy-methyl-glutaryl-CoA reductase

Abbreviations: Akt, serine/threonine kinase or protein kinase B; AMPK, 50-adenosine monophosphate-activated protein kinase; AP1, activation protein 1; COX-1,
cyclooxygenase 1; DNMT1, DNA methyltransferase 1; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; FAK, focal adhesion
kinase; GMP, guanosine monophosphate; GSK3, glycogen synthase kinase-3; LOX, lysyl oxidase; mTOR, mammalian target of rapamycin; NF-kB, nuclear factor kB;
NOS, nitric oxide synthase; Nrf2, nuclear factor E2-related factor 2; PGC1-a, peroxisome proliferator-activated receptor-g coactivator 1-a; PI3,
phosphatidylinositol-3 kinase; PLA2, phospholipases A2; PPARg, peroxisome proliferator-activated receptor g; PTGS-2, prostaglandin-endoperoxide synthase
2; Scr, homeotic gene sex combs reduced; SIRT1, NAD-dependent deacetylase sirtuin-1; Sirt2, gene coding for SIRT2 - an NAD-dependent deacetylase sirtuin-2;
TR, thioredoxin reductase TNF-a, tumor necrosis factor a
aData from Latorre et al,79 Snell et al,71 Tsang et al,80 and Vaiserman and Lushchak.72 This not intended to be a comprehensive list and only identifies the more
prominent compounds currently being investigated.
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conserved physiological responses that is now recognized as

comprising the phenomenon of hormesis.

Natural products can have both harmful and beneficial

effects; and many of our dietary constituents contain micronu-

trients, some of which are considered to be nutraceuticals, such

as many phenolic, polyphenolic, and isothiocyanate phyto-

chemicals, which are also often biogenic pesticides (see

reviews by Moore).12,94 Many phenolic and polyphenolic phy-

tochemicals and their metabolic derivatives, such as curcumin,

resveratrol, dihydroresveratrol, and quercetin, are potent inhi-

bitors of the PI3K/AKT/mTORC1 signaling pathway and indu-

cers of autophagy (Table 1 and Figure 2).12,80,94-98

Modification of splicing factor expression by resveralogues

(analogues of resveratrol), including dihydroresveratrol, a

major gut microbiome metabolite of resveratrol that is readily

absorbed,99 was associated with the rescue of multiple features

of senescence, making senescent cells not only look physically

younger but start to behave more like young cells and start

dividing (Table 1).79 This hormetic antiaging effect is the first

demonstration that moderation of splicing factor levels is asso-

ciated with reversal of cellular senescence in human fibroblasts

and suggests that small molecule modifiers of splicing factor

expression could represent promising novel antidegenerative

therapies.

Moore94 hypothesized that inhalation and ingestion (with

upper respiratory tract mucus) of certain natural products, such

as aerosolized harmful algal toxins (phycotoxins), may have

direct effects on the body’s molecular regulatory systems

resulting in health benefits (eg, anti-inflammatory, anticancer,

antiaging).100 Recent support for this phytohormetic hypothesis

has come from work by Asselman et al,101 demonstrating that

some phycotoxins in natural marine aerosols can inhibit mTOR

and induce autophagy in cultured lung cells. Growth inhibition

and apoptosis, both linked to mTOR pathway activity, may

explain these effects, as yessotoxins were shown to downregu-

late this pathway.102 Fungal toxins, such as aflatoxins and

ochratoxins, can also induce autophagy and apoptosis and

interact via cell signaling pathways; and there appears to be

some evidence for hormetic effects.103

Evidently, hormesis and phytohormesis resulting from

exposure to small amounts of toxic pollutants or some naturally

occurring biogenic chemicals (ie, from both prokaryotes and

eukaryotes) can have a stimulatory effect on the various

cellular or cytoprotective processes including autophagy

(Table 1).81,94,104-107 Currently, this is an area of very active

research, particularly in the context of the therapeutic potential

for phytochemicals to behave as nutraceuticals and have anti-

inflammatory, antidementias, antiaging, and anticancer proper-

ties (see reviews by Moore).12,94

Many toxic materials are natural components of the envi-

ronment and will have interacted with human biological sys-

tems over the time span of human and hominid evolution.

Human hormetic cytoprotective systems will probably have

benefitted from evolutionary changes in the longer term from

exposure to toxic metals, organic xenobiotics, and toxic bio-

genic products. As mentioned previously, many metals and

organic xenobiotics accumulate within lysosomes, where they

can cause permeabilization of the lysosomal membrane result-

ing in the release of intralysosomal iron into the cyto-

plasm.17,22,24,26,108 This released lysosomal iron generates

ROS that can cause oxidative damage to cellular compo-

nents22,24,108; however, the ROS will also inhibit the PI3K/

AKT/mTORC1 pathway thus inducing augmented autop-

hagy.21,31 Many of the phytochemicals that are considered to

be potentially beneficial at low concentrations are in fact toxic

at high concentrations: They are chemical defensive products

of the evolution of protective mechanisms in plants to counter

pathogens, parasites, and consumption by herbivores.109-112

Exposure to these biogenic products, particularly in foodstuffs,

will probably have beneficially influenced the evolution of

human cellular processes, particularly anti-inflammatory cell

signaling mechanisms.12,25

Exposure to toxins and natural biogenic products, such as

phytochemicals, phycotoxins, mycotoxins, and bacterial tox-

ins, has probably had a beneficial role as an evolutionary driver

for cellular hormetic cytoprotective systems in humans and

many other species (Table 1).107,112-117 The phase I and phase

II drug metabolizing enzymes that biotransform many of the

organic xenobiotics that enter the body, either by ingestion in

food and cooked and burnt food (eg, pyrogenic generation of

polycyclic aromatic hydrocarbons and arylamines) or by inha-

lation, have been selected over the course of hominid evolu-

tion.112-114,117-119 These selective processes will probably have

driven the human capability to detoxify many of the organic

chemical pollutants (xenobiotics) encountered during recent

industrial history as well as conferring the ability to activate

the vast majority of pharmaceuticals used in current therapeutic

applications. Antioxidant protection against reactive deriva-

tives of toxic metal and xenobiotic exposure has also been

subject to the same type of evolutionary pressures; and this has

endowed humans with the remarkable defensive capacity that

is a necessary requirement for surviving in a “sea of

poisons.”107,120,121 Perhaps low-level hormesis is actually the

real physiological status of most organisms that live in the real

environment, including humans and, consequently, are exposed

to low levels of a myriad of stressors, rather than under labora-

tory controlled conditions.2,94

Novel industrial chemical and nanomaterial products are

being produced constantly, and some of these will undoubtedly

present hazards for human and animal health, as the drug meta-

bolizing system and other cytoprotective processes, such as

autophagy and hormesis, will be confronted with completely

new molecular and supramolecular structures, not previously

encountered during the course of human and earlier evolu-

tion.16,122-124 However, recent research has indicated that

metalliferous nanoparticles can be generated naturally in deep

groundwater from geological metal ore deposits,125 so natural

exposure to these types of materials has probably been a factor

in the evolution of cytoprotection. Risks to health as a result

of exposure to nanomaterials, other than combustion particu-

lates, are still largely unknown, although considerable con-

cern has been expressed as to the safety of engineered

8 Dose-Response: An International Journal



nanomaterials.31,39,83,126 Furthermore, there is now some evi-

dence that engineered nanoparticles (eg, C60 fullerene and

glass nanofibres) can inhibit mTORC1, induce augmented

autophagy, and some may even induce pathological dysfunc-

tional autophagy21,24,31,108; and these materials are finding

their way into the environment and may impact on animal

and human food networks and possibly on human health.127

Finally, breakdown of various plastic products can produce

both nanoplastic and microplastic contamination of the natural

environment; and there are increasing environmental health

concerns regarding these materials.128-130 Microplastics have

been shown to cause cell injury to the lysosomal system in

marine animals (mussels) and also can bind potentially harmful

persistent organic pollutants that will enter the human food

chain with the microplastic.23

Conclusion

Hormesis is intimately linked with autophagic responses as part

of the overall repertoire of lysosomal function. Initiation of

augmented autophagy via mTORC1 inhibition or AMPK pro-

vides the cell with essential nutrients in stressful scenarios; and

these recycled nutrients facilitate survival and growth by sup-

plying energy and building blocks for cellular repair during

mild stress. Autophagic removal of unwanted damaged or mis-

folded proteins, harmful protein aggregates, damaged mem-

branes, and even damaged parts of the genome will protect

the cell and/or organism from further damage and aid recovery

from environmental insults.14,15,33,40,131

Autophagy and its regulation by mTOR cell signaling is

evolutionarily very ancient and the genes involved are highly

conserved from yeasts to humans.33 This indicates that the

interconnectivity between autophagy and hormesis probably

emerged very early in the evolution of the eukaryotic

lineages.

Finally, agents that can induce autophagy and hormetic type

responses, such as fasting, exercise, aspirin, metformin, and

phytochemicals as well as mimetics of metformin and rapamy-

cin (rapalogs and CR-mimetics),65,90,132,133 have considerable

potential for significant impact in antiaging, cancer and neuro-

degenerative disease therapeutics.
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