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Summary 29 

1 An image can encode date-time, location and camera information as metadata and 30 

implicitly encodes species information and data on human activity, e.g. the size 31 

distribution of fish removals. Accurate length estimates can be made from images 32 

using a fiducial marker however, their manual extraction is time consuming and 33 

estimates are inaccurate without control over the imaging system. This article 34 

presents a methodology which uses machine vision to estimate the total length (TL) 35 

of a fusiform fish (European sea bass). 36 

2 Three regional convolutional neural networks (R-CNN) were trained from public 37 

images. Images of European sea bass were captured with a fiducial marker with 3 38 

non-specialist cameras. Images were undistorted using the intrinsic lens properties 39 

calculated for the camera in OpenCV, then TL was estimated using machine vision 40 

(MV) to detect both marker and subject. MV performance was evaluated for the three 41 

R-CNNs under downsampling and rotation of the captured images. 42 

3 Each R-CNN accurately predicted the location of fish in test images (mean 43 

intersection over union, 93%) and estimates of TL were accurate, with percent mean 44 

bias error (%MBE [95% CIs]) = 2.2% [2.0, 2.4]). Detections were robust to 45 

horizontal flipping and downsampling. TL estimates at absolute image rotations > 20̊ 46 

became increasingly inaccurate but %MBE [95% CIs] was reduced to -0.1% [-0.2, 47 

0.1] using machine learning to remove outliers and model bias. 48 

4 Machine vision can classify and derive measurements of species from images 49 

without specialist equipment. It is anticipated that ecological researchers and 50 

managers will make increasing use of MV where image data is collected (e.g. in 51 

remote electronic monitoring, virtual observations, wildlife surveys and 52 
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morphometrics) and MV will be of particular utility where large volumes of image 53 

data are gathered. 54 

1 Introduction 55 

Only a small proportion of the world’s marine stocks are sufficiently data rich for formal 56 

stock assessments to be performed, hence most marine fisheries are data poor (Costello et al., 57 

2012; Ricard et al., 2012). This is in spite of legislation (e.g. European Commission Decision 58 

2008/56/EC) which requires marine stocks to be exploited sustainably and managed with 59 

consideration of their associated ecosystems. The potential for commercial fisheries to 60 

negatively impact stocks and ecosystems is accepted, but recreational fishing can also 61 

negatively impact fisheries and their associated ecosystem effects (reviews Lewin et al., 2006; 62 

Radford et al., 2018). Marine recreational fisheries in particular can lack current and historical 63 

data even in developed countries and monitoring of the sector is poor (ICES, 2017; Hyder et 64 

al., 2018). 65 

Fisheries assessments have survey phases in which a metrological measurement of the target 66 

species occurs (National Research Council, 2006; ICES, 2012). In commercial and recreational 67 

fisheries, measurement has traditionally involved observations by researchers, fisheries 68 

managers or the fishers themselves. Observer costs are high in commercial monitoring (e.g. 69 

Needle et al., 2015) and in the assessment of recreational fisheries (pers. observ. KH). Hence, 70 

there has been an increasing interest in remote electronic monitoring (REM) (e.g. White et al., 71 

2006, Chang et al., 2010, Hold et al., 2015, Bartholomew et al., 2018). Videogrammetry and 72 

photogrammetry (hereafter, photogrammetry) are becoming commonplace in non-destructive 73 

observational marine research (e.g. Dunbrack, 2006, Deakos, 2010). 74 

The use of REM and related approaches is likely to increase as camera technology improves 75 

and equipment costs fall (reviews c et al., 2015, Bicknell et al., 2016). Photogrammetry can 76 

provide considerable savings when compared to observers (Chang et al., 2010; National 77 
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Oceanic and Atmospheric Administration, 2015). Capturing images produces vast volumes of 78 

data which is time consuming to process (e.g. Needle et al., 2015, van Helmond et al., 2017). 79 

This problem can be alleviated by using motion detection algorithm(s) to extract salient frames 80 

from videos (e.g. Weinstein, 2015), but the extracted frames still require manual processing. 81 

Object detection with machine vision (MV) could be used to automate the extraction of data 82 

from images. Historically, MV has been used to analyse images which have been captured 83 

under controlled conditions (e.g. fixed cameras, backgrounds and lighting). This control makes 84 

the isolation of the subject from the background (segmentation) much easier, allowing 85 

computationally inexpensive techniques to be applied, e.g. using optical flow (Zion et al., 2007; 86 

Spampinato et al., 2010; Hsiao et al., 2014) and segmentation by pixel properties (e.g. White 87 

et al., 2006, Jeong et al., 2013). 88 

To date, photogrammetry has typically used multi-laser (e.g. Deakos, 2010, Bartholomew et 89 

al., 2018) or multi-camera systems (e.g. Dunbrack, 2006, Rosen et al., 2013, Neuswanger et 90 

al., 2016), but the equipment is comparatively bulky and expensive. Single camera systems and 91 

a fiducial marker (i.e. an object of known scale placed in the camera’s field of view) have been 92 

used (Hold et al., 2015; van Helmond et al., 2017) but control of the camera model or the 93 

framing of the fiducial marker and subject is usually required (e.g. Rogers, Cambiè, & Kaiser, 94 

2017). Without this control, length estimates are subject to an unknown error because lenses 95 

have different optical properties. The additional challenges in extracting quantitative data from 96 

images taken by volunteers—or other scenarios where expensive or less portable equipment is 97 

unsuitable—may explain the almost complete lack of a suitable solution. Convolutional neural 98 

networks (CNN) outperform other methods at object detection and CNN application 99 

programming interfaces (API) are now mature enough to be viable for (merely) competent 100 

programmers to use regional CNNs (R-CNN) for object detection. 101 
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This article explores the feasibility of using MV to automate the identification and size 102 

estimation of an important species from images. The objectives are to (i) introduce the software 103 

and methods to achieve length estimation with a cheap and portable fiducial marker; (ii) to 104 

show that length estimates can be made with no control over the image background, lighting 105 

or specialist cameras using a foreground fiducial marker; (iii) provide region of interest (RoI) 106 

labelled images of the European sea bass, Dicentrarchus labrax (see Appendix S2 Supporting 107 

Information); (iv) to compare the speed and performance of three state-of-the-art R-CNN 108 

networks. 109 

2 Methods1 110 

2.1 Ethics 111 

European sea bass captures were made by recreational fishers and a commercial vessel as 112 

part of their day-to-day activity. All reasonable measures were taken to minimise air exposure 113 

time to the fish while photographs were taken. Ethical approval was granted by the Animal 114 

Welfare and Ethical Review Board of Bangor University, Wales, UK. 115 

2.2 Training and validation image acquisition 116 

Training (n = 734) and validation (n = 184) images were obtained from online public sources. 117 

The RoI for each image was drawn tight to the fish body, to the limits of the caudal fin tips and 118 

the snout vertex (Fig. 1a). Training and inference were carried out in Tensorflow (Google, 119 

2018) using transfer learning with the following pretrained R-CNNs; (i) ResNet-101 (He et al., 120 

2016), (ii) Single shot MobileNet detector (Howard et al., 2017) and (iii) NASNet (Zoph & Le, 121 

2017), abbrevs. ResNet, MobileNet and NASNet respectively. 122 

                                                 
1 Appendix S1 Supporting Information contains additional methodological detail. 
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2.3 Fiducial marker selection and image acquisition 123 

Three ArUco fiducial markers (Garrido-Jurado et al., 2014) of side lengths 25 mm, 30 mm 124 

and 50 mm were mounted on polypropylene sheets (Fig. 1b). Photographs of European sea 125 

bass were taken on the shore and afloat, with the informed consent of fishers and with 3 126 

different non-specialist cameras (henceforth marker images). Fish were posed to minimise 127 

body distortion and occlusion. Fish total length (TL) was measured and recorded. The marker 128 

was placed on the fish (Fig. 1c) and then photographed. 129 

2.4 Undistorting marker images 130 

Images from each camera were corrected for radial and tangential distortion with the 131 

OpenCV API (OpenCV team, 2018). Lens calibration profiles were created in OpenCV for 132 

each camera at each supported field of view and focal length (henceforth undistorted images).  133 

2.5 Length estimation 134 

An R-CNN predicts the rectangle which most accurately bounds the subject within the image 135 

and then defines the detection as a rectangle with four vertices. Intersection over Union (IoU) 136 

measures the accuracy of object localisation by comparing the area of a manually defined 137 

ground truth rectangle which bounds the subject with the bounding rectangle predicted by the 138 

R-CNN. Each model outputs an objectness score (score) which is interpreted as the probability 139 

that the proposed region contains the predicted class (Ren et al., 2017). 140 

When estimating TL, the pixel length of the long side of the detection rectangle approximates 141 

to the TL (pixels) of the fish. The real-world length per pixel, l̅ was estimated from the four 142 

sides of the detected ArUco marker according to, 𝑙 ̅ =
1

𝑛
∙ ∑ 𝑙/𝑝𝑖

𝑛
1  where pi is the ith side length 143 

in pixels, and l is the real-world side length (e.g. 50 mm). The accuracy of 𝑙 ̅was validated 144 

manually (Linear Regression, b = 1.003, R2 = 0.999) using ImageJ (Schneider et al., 2012). 145 

Mean absolute error (MAE) and mean bias error (MBE) are reported and are calculated as 146 
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follows, 𝑀𝐴𝐸 =
1

𝑛
∙ ∑ |𝑙𝑖 − 𝑙�̂�

𝑛
𝑖=1 | and 𝑀𝐵𝐸 =

1

𝑛
∙ ∑ 𝑙𝑖 − 𝑙�̂�

𝑛
𝑖=1  where li is the ith estimate of TL 147 

and ŷi is the expected (i.e. actual) TL of the ith element. Hence a negative bias represents an 148 

underestimate of TL. 149 

2.6 Detection and length estimation with rotation, flipping and downsampling 150 

The accuracy of TL estimates under three translations were checked, these were; (i) image 151 

rotation between -30 ̊ and 30 ̊ in increments of 1 ̊; (ii) horizontal flipping of the image by the 152 

x-axis, i.e. the line 𝑥 = 0.5 ∙ 𝑤𝑖𝑑𝑡ℎ; and (iii) image downsampling by a factor of 1.5, to a 153 

minimum image height or width of 50 pixels. TL estimates for rotated images were corrected 154 

based on the geometry of the detection box under increasing rotation in relation to the snout 155 

and caudal vertices of the subject. 156 

2.7 Removing outliers and modelling bias 157 

NASNet R-CNN detections were split into training and test data. Training data were used to 158 

identify biased outliers using an isolation forest (Liu et al., 2008; Pedregosa et al., 2011) with 159 

the variables; (i) ratio of height to width of the detection, (ii) objectness score and (iii) % MBE. 160 

Outliers were then removed from the training set and a gradient boost regressor (Friedman, 161 

2002; Pedregosa et al., 2011) trained on the predictors (i) and (ii) above. Outliers were removed 162 

from the test dataset and the gradient boost regressor model used to correct bias. Further 163 

methodological details are given in Appendix S3 Supporting Information. 164 

Several estimates of length measurements are reported and are listed in Table 1. Means 165 

followed by square brackets or the ± notation indicate 95% confidence intervals or standard 166 

deviation respectively. 167 

3 Results 168 

For every non-transformed European sea bass image, each CNN generated region proposals 169 

with objectness scores > 0.5 (with the exception of a single MobileNet score of 0.01). All 170 
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regional proposals were at least partially coincident with ground truth, with a minimum IoU of 171 

45% (45% IoU detection shown in Fig. 1b). Negative images had no false detections under any 172 

network (score mean of 0.005 ±0.008, n = 30, max = 0.04). 173 

Detection performance between networks was practically indistinguishable on 174 

untransformed and horizontally flipped images (Table 2), hence detections were invariant to 175 

horizontal flipping (IoU mean; horizontal flip, 93.2% [93.0, 93.4]; untransformed, 92.8% [92.5, 176 

93.0]). This equivalence is despite the large differences in mean detection times (Table 2). 177 

Nonetheless, when visualised it is apparent that the NASNet network delivered more consistent 178 

object detections with no IoU outliers (Fig. 2). All single MobileNet detections had IoUs > 179 

75% however, ResNet had 7 detections < 75% IoU (1.1% of all detections). 180 

3.1 Length estimates 181 

ArUco markers were consistently recognised using the OpenCV API under natural 182 

conditions, with the marker successfully localised in 99.3% of untransformed images. Two 183 

detection failures occurred because of over-exposure (Fig. 1e). Corrected MV-TL estimates had 184 

a MBE of 5.9 mm ±20, compared with MBE derived from corrected manual-TL estimation of 185 

-0.5 mm ±14.8. Corrected MV-TL estimates showed consistent variance in bias across physical 186 

TL (Fig. 3). On excluding TL estimates made under the noisier ResNet and MobileNet 187 

networks, MBE for corrected MV-TL estimates was increased by 2 mm to 7.9 mm nevertheless, 188 

S.D. decreased to 14.7 mm, matching the precision of manual estimates of TL (corrected 189 

manual-TL). 190 

Corrected manual-TL and MV-TL estimation errors tended to be less accurate and precise 191 

(mean squared error, MSE) when made on the shore rather than afloat (Fig. 4, MSE; Afloat, 192 

7.9; Shore, 25.9), and there was no apparent systematic bias in length estimation introduced by 193 

the camera model when comparing corrected manual-TL estimates (which have lower variance 194 

than MV-TL length estimates) with platform as a covariate (ANCOVA, F(2, 1787), p = 0.15). 195 
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Mean %MBE for corrected manual-TL estimates were 0.7% ±4.6, 1.1% ±4.0 and 0.7% ±4.1 196 

for the GoPro Hero 5 action camera, Samsung s5690 smartphone and Fujifilm XP30 camera 197 

respectively. 198 

The increased %IoU outliers observed during detection with ResNet and—to a lesser 199 

degree—the MobileNet single shot detector manifest as the %MBE outliers in Fig. 4. The 200 

ResNet detector produced 9 of the top 10 MV associated underestimates (fully corrected 201 

percent errors of -16.4% to -38.0%). These errors arose because detections followed the 202 

approximate pattern observed in (Fig. 1d), with the ResNet detector occasionally truncating the 203 

detection. This behaviour was not observed in the other detectors on untransformed images 204 

(i.e. an image which has not been flipped, downsampled or rotated). 205 

3.2 Scale 206 

ArUco marker detection was robust to downsampling to approximately 30% of the original 207 

image size (original image size, mean = 1355 by 1029 pixels, or 1.5M pixels2). ArUco markers 208 

were approximately 18 pixels2 at 30% of original image size and images were approximately 209 

400 by 300 pixels (120k pixels2). At 30% image size the marker detection rate was 93% 210 

however, this dropped to 53% at the next scaling factor of 20% (Table 3). The networks on 211 

average, maintained objectiveness scores of ~98% at the 20% scaling factor, where the mean 212 

image size was 41.4k pixels2 (i.e. ~203 pixels2). At this image size, the average ground truth 213 

RoI was 158 by 23 pixels. NASNet produced marginally more accurate TL estimates under 214 

downsampling. For each network %MAE increased in increments of between 1% and 2% until 215 

the downsampling factor exceeded ~30% (mean ground truth width = 238 pixels), after which 216 

%MAE began to increase in larger increments. Each network responded similarly to 217 

downsampling (Fig. 5), at 20% image size, %MAE = 9.9% ±7.8 which increased markedly to 218 

15.9% ±8.4 at 13% of the original image size at ~153 pixels2. 219 
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3.3 Rotation 220 

The NASNet and ResNet networks behaved similarly under image rotation (Fig. 6) and 221 

detection was robust to small rotations, with over 90% of objectiveness scores greater than 222 

50% at absolute rotation ≤ 20% for the NASNet and ResNet networks. At 20̊ absolute rotation 223 

the MobileNet network had 67% of objectiveness scores below 50%. As the absolute rotation 224 

angle increased beyond ~15 ̊, NASNet and ResNet predictions of corrected MV-TL exceeded 225 

5% %MBE however, %MBE was 2.5% for the MobileNet network (Fig. 6, absolute rotation = 226 

15̊, %MBE; NASNet, -5.0% [-5.3, -4.6]; ResNet, -5.3% [-5.9, -4.7]; MobileNet, 2.7% [2.2, 227 

3.3]). This apparently good performance of the MobileNet CNN masks the greatly decreased 228 

confidence in regional proposals under this network (score series, Fig. 6) and a corresponding 229 

loss of valid detections. 230 

The geometric rotation correction (variable rotation corrected MV-TL) did not consistently 231 

decrease bias for all rotations (see Appendix S1 Supporting Information) and bias reduction 232 

was only marginally improved for the NASNet and ResNet networks (1.2% and 0.5% 233 

respectively) however, bias was increased for the MobileNet network (1.0%). The NASNet 234 

and ResNet networks displayed a consistent hyperbolic pattern in TL estimation bias through 235 

the rotation range and prediction error was consistent across rotations (Fig. 6). 236 

Combining outlier removal and adjusting rotation corrected MV-TL per sample with the 237 

trained gradient descent regressor model produced a marked reduction in %MBE across 238 

rotations. This correction centred bias at ~0% for absolute rotations ≤ 20 ̊ (Fig. 7; Table 4). The 239 

overall improvement on applying all corrections to MV estimates following lens correction 240 

only are unambiguous, with unadjusted MV-TL estimates of %MBE = -11.4% [-11.6, -11.2]. 241 

4 Discussion 242 

This study introduced a methodology to estimate fish TL using state-of-the-art open-source 243 

R-CNNs and associated software applications (e.g. Abadi et al., 2015, OpenCV, 2018). It was 244 
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shown that the position of an organism in an image could be accurately predicted without strict 245 

control over lighting conditions or subject background. The high degree of accuracy of the 246 

predicted RoI (> 90% IoU) enabled the accurate estimation of TL. Estimation was achieved 247 

without reliance on specialist cameras, multi-camera systems (e.g. Dunbrack, 2006; Rosen et 248 

al., 2013) or paired lasers (e.g. Deakos, 2010, Rogers et al., 2017). 249 

Photographing a well-posed subject with a foreground fiducial marker is faster and more 250 

convenient than manually measuring and recording the subject length (pers. observ.). 251 

Possessing photographs of subjects provides a persistent record which can be used to derive 252 

additional measurements, to cross check data and for validation by third parties. In volunteer 253 

based research additional data are typically required (e.g. GPS position, date/time, species) and 254 

these data can be automatically captured at image acquisition. The potential for automatic 255 

recording of much of the required data—including the onerous task of physically recording a 256 

dimension—reduces the recording burden on volunteers which can improve participant 257 

retention, the volume of data submissions and data quality as observed in surveys (Galesic, 258 

2006; Hoerger, 2010). 259 

4.1 Networks 260 

Of the three networks, NASNet outperformed the ResNet-101 and MobileNet networks. 261 

NASNet was particularly effective at limiting outlier detections. However, the NASNet 262 

network had the slowest detection speeds of the three and was the most resource intensive. 263 

During learning, NASNet had to be limited to a batch size of 1 to fit within the 6 Gb of memory 264 

of the NVIDIA 1060 GTX card (configuration files are available in the Supporting 265 

Information). This is unsurprising as the NASNet has many more parameters than ResNet 266 

(Zoph & Le, 2017). 267 

Neither ResNet nor NASNet are currently capable of performing real-time detections 268 

however, MobileNet can be deployed on mobile devices. The performance of MobileNet in 269 
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this task was arguably better than ResNet and real time detection would be of particular benefit 270 

in volunteer based data collection applications where users could be given immediate feedback 271 

on the success or failure of a particular recognition task (Fishbrain, 2018; International Game 272 

Fish Association, 2018). 273 

4.2 Length estimation 274 

Fish length measurements (TL, fork length FL and standard length SL) are particularly suited 275 

to estimation by R-CNN based networks because the longitudinal dimension of an ideal 276 

detection corresponds with the distal extremes of the morphological features which delineate 277 

these lengths. In this manuscript, TL was used to demonstrate the methodology, but other 278 

measurements (including FL and SL) may be estimated by changing the RoIs defined in the 279 

training and test images or using previously determined morphometric relationships (e.g. 280 

Needle et al., 2015). To date, rectangular ROIs have no history of providing length data in 281 

fisheries assessments because R-CNNs are a recent development in MV. However, our results 282 

demonstrate the accuracy which can be achieved where body distortion can be limited. Where 283 

curvature cannot be controlled, lengths can be estimated by identifying depth midpoints and 284 

calculating the line bisecting these midpoints (Strachan, 1993; White et al., 2006) or line fitting 285 

to subject contours (Miranda & Romero, 2017), which requires segmentation of the subject 286 

from the background. Tensorflow supports this (He et al., 2017; Google, 2018) but further work 287 

would be required to validate. 288 

The fiducial marker deployed was particularly easy to identify in fully automated MV 289 

processing pipelines and performed well as evidenced by the low bias and high detection rates. 290 

Length was more accurately estimated on afloat platforms than on the shore, because a flat 291 

surface was available to measure and photograph the subject. Across both platforms and all 292 

camera models there was a small but consistent overestimate of size (mean bias error, 1.6%; 6 293 

mm). Possible explanations include an underestimate of lens-subject distance during camera 294 
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calibration which did not account for the internal distance between the lens and the glass cover 295 

of the cameras, or incorrect estimation of the parameters (e.g. mean profile height) used in the 296 

length correction calculation. 297 

Bias magnitude was consistent across the range of fish lengths measured (25 cm to 65 cm) 298 

hence a correction could be estimated empirically during training. The model used for rotation 299 

correction was successful in eliminating bias (%MBE = -0.1% ̊), which brought the error 300 

magnitude in line with methods which control the imaging conditions (Hold et al. 2015, 0.6% 301 

in lobster; White et al. 2006, 0.3%, in halibut), use paired lasers (Deakos 2010, 0.4% in manta 302 

rays) or multiple cameras (Rosen et al. 2013 1.0% across 3 fusiform fish species). 303 

Despite bias being largely eliminated, outliers in TL estimates were observed (minimised 304 

under NASNet). Without rotation, this error was largely attributable to errors arising from the 305 

subject pose in the image. Parallax errors arising through depth differences across the fiducial 306 

marker and the subject will be a major source of error which are typically dealt with by 307 

excluding images following manual review (e.g. Deakos, 2010, Rogers et al., 2017). Correction 308 

for tangential deflection of MV designed fiducial markers is generally supported (Garrido-309 

Jurado et al., 2014), but this is unlikely to be a consistent correction for foreground fiducial 310 

markers because the tangential displacement of the marker can differ from that of the subject. 311 

4.3 Transformations 312 

Detections and length estimations were robust to flipping and downsampling. Under 313 

decreasing image size the fiducial marker was found to be the limiting factor for the automatic 314 

extraction of TL. This is an intrinsic limitation of using a foreground fiducial marker where 315 

increasing marker size could obscure salient features. The lowest IoU was observed on the 316 

smallest fish sampled, where the marker occluded a comparatively large proportion of the 317 

subject (Fig. 1d). The effectiveness of the CNN under substantial downsampling indicates that 318 
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image sizes can be significantly reduced prior to inference to improve speed and reduce 319 

memory requirements. 320 

Length estimates were unbiased and acceptably precise at small degrees of rotation. The 321 

bounding box under rotation predicted the x-coordinates of the snout and caudal vertices 322 

reasonably well, particularly under the NASNet network (see Supporting Information S4). 323 

However, the geometric model (Appendix S1 Supporting Information, 1.4.3) largely failed to 324 

improve length estimates under rotation. This failure is attributable to the divergence of the 325 

geometric model (detailed in Appendix S1 Additional Methods) from the bounding features of 326 

the subject. The CNN detections cannot be represented by the geometry of a rotating rectangle 327 

(Appendix S4 Supporting Information). Development of a more accurate geometric correction 328 

model would be possible should the use case demand it. 329 

Failure to generalise through all rotations poses a serious limitation in some deployment 330 

scenarios. Under volunteer image collection, a significant proportion of subject rotations could 331 

exceed the experimental rotation limits. A trivially implemented approach to achieve rotation 332 

invariance is the brute force repetition of detection through incremental rotations. The optimal 333 

detection among all rotations is then determined by some combination of metrics, e.g. height 334 

to width maxima. In this article accurate detections were achieved at absolute rotations to ~15 ̊ 335 

which suggests that 15̊ steps could be used to reduce the search space. However, it may be 336 

more efficient to train the network on incrementally rotated images. This training is relatively 337 

trivial and is supported in most CNN APIs. Nonetheless, data on rotation invariance under 338 

rotated training images was not published by Zoph and Le, (2017) and R-CNNs are not 339 

intrinsically rotation invariant. 340 

4.4 Applications 341 

A foreground marker is cheap and portable, and volunteers cannot inflate size estimates by 342 

moving the marker further away from the subject as possible with a background marker. The 343 
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methodology applies to many visual markers and to multicamera systems, and to any organism 344 

for which morphological estimates are made. Difficulties will arise in unconstrained camera 345 

systems where the scale indicator is difficult to distinguish in the image, (e.g. lasers in intense 346 

light). None specialist markers can be segmented and length estimated using machine vision, 347 

such as a standard ruler (Konovalov et al., 2017). Opportunistic fiducial markers could also be 348 

segmented (e.g. human face) and used to produce estimates of fish size from historical images 349 

as has been done manually to provide ecological data on some species (McClenachan, 2009; 350 

Rizgalla et al., 2017). 351 

Correction for lens distortion is critical for accurate photogrammetry as show in this article, 352 

particularly with increased use of robust and waterproof action cameras (Struthers et al., 2015; 353 

Schmid et al., 2017) which have significant radial distortion. In small scale projects or where 354 

the camera model can be restricted then it may be practical for images to be undistorted on an 355 

ad hoc basis. However, to deploy large scale volunteer based metrological data gathering it will 356 

be necessary to build a repository of lens correction profiles for each camera model. If a camera 357 

supports multiple focal lengths and field of views then each unique combination requires a 358 

separate profile. Fortunately cameras typically embed state data (e.g. focal length) and camera 359 

model in image metadata which can be used to retrieve the correct profile to remove radial 360 

distortion. Profile creation can be embedded in an application and requires the capture of 361 

multiple images of a regular pattern (e.g. a chessboard). OpenCV (OpenCV team, 2018) 362 

provides the open-source code to undistort images. 363 

This article presents a closed problem with a priori knowledge that only a single class would 364 

occur in the image, this may not be unusual where interest is in a single species. CNNs are 365 

adept at discriminating between object classes (e.g. IMAGENET, 2018) and improved 366 

predictive models are frequently released (Google, 2018). The task of generalizing to additional 367 

species using R-CNN detectors and the combination of approaches outlined is eminently 368 
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achievable for many species and CNNs have been used in fine grained species classification 369 

(e.g. Sun et al., 2016). 370 

Good results were obtained with fewer than 1000 training images and this may be sufficient 371 

for fine grained species classification. CNNs have performed well in classifying images 372 

according to bird species with fewer than 100 examples per class (Lin et al., 2015). 373 

Nonetheless, data augmentation can be employed to improve the models (Perez & Wang, 374 

2017). Augmentation transforms training images as part of the training pipeline to artificially 375 

boost the number of training images. Common transformations include rotation, blurring and 376 

elastic transformations, and CNN APIs usually have native support for augmentation. 377 

Alternatively augmentation can be managed prior to use in a preferred image processing API 378 

(e.g. Jung, 2018). It will be extremely difficult to use MV to discriminate between some species 379 

without large numbers of high resolution images. For example, identifying the flatfishes 380 

Pleuronectes platessa, Limanda limanda and Platichtys flesus is challenging even for 381 

postgraduate marine biologists (pers. observ.). 382 

It will be impossible to obtain perfect object detections and length estimations, particularly 383 

in diary like volunteer applications. Pragmatically, users could be prompted to provide “hints” 384 

to any application to improve detection. For example, the IGFA fish catch log smartphone 385 

application (International Game Fish Association, 2018) prompts users to identify the snout 386 

and tail of the fish in an image to improve detection. This process could be used to determine 387 

subject rotation. Users could also be prompted to identify species where there may be 388 

uncertainty and these images can contribute to the training image set. Another smartphone 389 

application has used user contributed images to train a species classifier from submitted images 390 

(Fishbrain, 2018). Uncertain classifications and length estimations could be clarified by the 391 

general public by crowd sourcing as in other successful citizen science projects (e.g. Joly et al., 392 
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2014, Silvertown et al., 2015, Zooniverse, 2017) or by using paid-for crowdsourcing services 393 

(e.g. Amazon, 2017). 394 

4.5 Conclusion 395 

Automatically extracting metrological data from images provides opportunities to greatly 396 

increase the volume and type of data that can be collected in citizen science programmes, 397 

directed surveys, remote electronic monitoring, virtual observers and other applications. 398 

Further research is needed to reduce the potential bias and increase precision in extracted data 399 

in machine vision (MV) systems to achieve mainstream adoption, but continued technological 400 

advances will make automated data processing using machine vision in ecology an increasingly 401 

viable option without needing a computer science expert to develop bespoke MV solutions. 402 
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9 Tables 601 

Table 1. Description of variables used in this article. 

Variable Derived 

From 

Comment 

Physical TL N/A The direct measurement of the physical fish with a measure. 

Corrected 

manual-TL 

Undistorted 

image 

Manual estimation of the marker and fish length from the 

undistorted image with ImageJ. Parallax corrections applied 

(Appendix S1 Supporting Information, 1.4.1 & 1.4.2). 

MV-TL Undistorted 

image 

Machine vision estimates of TL from undistorted images with no 

other corrections. 

Corrected 

MV-TL 

MV-TL MV TL, corrected for parallax errors (Appendix S1 Supporting 

Information, 1.4.1 & 1.4.2). 

Rotation 

corrected 

MV-TL 

MV-TL Corrected MV TL plus a geometric correction based on the height 

and width of the detected region (Appendix S1 Supporting 

Information, 1.4.3) to adjust for detections under rotation. 

Model 

corrected 

MV-TL 

MV-TL Rotation corrected MV TL plus correction with machine learnt 

models generated from training data to remove outliers and 

correct bias in test data (Appendix S1 Supporting Information, 

1.6). Only test data reported. 

 602 

Table 2. Mean percentage intersection over union (IoU) with 

standard deviation (S.D.) for NASNet (Zoph & Le, 2017), 

ResNet-101 (He et al., 2016) and single shot MobileNet 

detector (Howard et al., 2017). Relative detection time (Rel. 

Det. Time) compares the relative detection speeds where raw 

detection speeds were calculated per 1000 pixels2. 
 Untransformed Flipped Rel. 

Det. 

Time 
 Mean 

IoU 
S.D. 

Mean 

IoU 
S.D. 

NASNet 93.5 2.5 93.3 2.2 1.00 

ResNet 92.5 6.2 93.4 5.1 0.36 

MobileNet 92.2 3.5 92.8 3.0 0.10 

 603 
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Table 3. ArUco fiducial marker (Garrido-Jurado et al., 2014) detection rates under image scaling 

(factor = 1.5) with width and height minimum limit of 50 pixels. Marker size is the average side 

length of the marker in the image. G.T. width is the ground truth horizontal length. Columns are 

means ±S.D. Obj. score is the mean objectness score across all networks. ND = no detections, px = 

pixels. % Det. is percentage of markers detected. Scale factor is the proportion by which an image 

was reduced in size. 

Scale 

factor 

N Width 

(px) 

Height 

(px) 

Marker 

size (px) 

G.T. width 

(px) 

Obj. score % Det. 

1 921 1,355 1,029 63 ±15 874 ±132 1.00 ±0.04 100.0 

0.67 921 903 685 42 ±10 536 ±79 1.00 ±0.02 99.3 

0.44 921 601 456 28 ±6 357 ±53 1.00 ±0.04 98.7 

0.30 921 400 303 18 ±4 238 ±35 0.99 ±0.04 92.8 

0.20 921 266 201 13 ±3 158 ±23 0.98 ±0.10 52.8 

0.13 921 177 133 10 ±3 105 ±15 0.91 ±0.21 13.0 

0.09 921 118 88 7 ±1 70 ±10 0.77 ±0.34 1.3 

0.06 918 78 58 ND 47 ±7 0.55 ±0.39 ND 

0.04 3 62 50 ND 26 ±0 0.005 ±0.007 ND 

 604 

Table 4. Mean bias error percentage with 95% confidence 

intervals (CIs) for fish total length estimates made under 

NASNet (Zoph & Le, 2017) after corrections for lens 

distortion only (lens only), parallax and geometric 

correction (corrected) and application of machine learning 

to remove outliers and model errors (model corrected). 

The || notation is the modulus function.   
All rotations |Rotation| ≤ 20̊ 

Mean 95% CIs Mean 95% CIs 

Lens only -11.4 -11.6, -11.2 -9.3 -9.4, -9.1 

Corrected -4.1 -4.3, -3.9 -0.2 -2.2, -1.9 

Model 

Corrected 
-0.5 -0.6, -0.3 -0.1 -0.2, 0.1 
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