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ABSTRACT 

When exploring the topic of overheating in buildings, the notion is commonly applied to 

future overheating, as a consequence of climate change. By contrast, this thesis is 

concerned with present-day overheating, as it is experienced in highly insulated houses. 

This can be claimed to be an unintended consequence of decarbonising the built 

environment, which has led to high levels of insulation and airtightness in the design of 

new homes in the UK.  

However, evidence of overheating in such homes point at possible inadequacies in the 

design and regulatory processes leading to highly insulated homes. Such design and 

processes have tended to focus only on winter comfort and carbon reduction from space 

heating demand.  

With a view of addressing the design problems leading to uncomfortably warm homes, 

this project is devoted to finding evidence of present-day overheating in highly insulated 

houses. This is pursued by an in-depth, multi case study, in which a mixed method 

approach to research is carried out in four (different typologies of) English houses -one 

of which is retrofitted while the other three were built as new. In this research, these 

houses have undergone longitudinal environmental monitoring and user perspective 

data gathering, across the four seasons of the year. In addition, in-depth semi-structured 

interviews with architects and designers of such houses were also carried out.  

A number of design factors have been found to lead to overheating, mostly resulting 

from a design process in which the main (physical) factors, such as control of solar gain 

and provision of adequate ventilation, are largely overlooked. This overlooking has, in 

turn, originated a potential demand for cooling, especially when no other forms of 

adaption are provided within the houses. 

Monitoring has shown that HIHs can be warmer environments: overheating was found in 

some instances and with different degrees of severity. However, it was also found that 

assessments may underestimate overheating (no consideration of vulnerable occupants 

throughout building lifespan). In some cases, it was found that occupants were adopting 

adaptive behaviour. 

The interview with designers revealed a generalised limitation in knowledge, where the 

fabric first approach adopted in low-carbon design focused on winter comfort mostly. 

For, the role of thermal comfort (the means to deliver it through design, as well as to 

achieve it by the occupants) was found to be central in HIHs, as comfort is (ought to be) 

delivered entirely by design. 

In summary, then, the research findings presented in this thesis indicate that today 

overheating in HIHs is the result of innovation in architecture, which requires immediate 

feedback from real-world research to guide regulatory bodies and designers.  
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CHAPTER 1: INTRODUCTION   1 

CHAPTER 1: INTRODUCTION 

1.1 THE NEED OF THIS RESEARCH 

Today’s concern about climate change and its consequent humanitarian impact has 

led to government strategies aimed at reducing greenhouse gases emissions - the so-

called mitigation agenda [Crown, 2008; HM Government, 2011]. In an attempt to 

reduce energy consumption and associated carbon emissions from the residential 

sector, substantial changes have recently been made to UK building regulations. 

Those regulations are conducive to building houses with significantly improved 

standards of thermal insulation and much higher levels of ‘airtightness’ [Killip, 2005; 

HM Government, 2006, 2013c].  

However, there is growing evidence of uncomfortably warm temperatures in such 

highly insulated houses (which will henceforth be referred to as HIHs) [DCLG, 2012; 

Dengel and Swainson, 2012; NHBC, 2012b]. These cases of overheating may be a 

symptom of a gap between the intention to design HIHs and their real-world thermal 

performance. In other words, there seems to be a growing problem of overheating 

HIHs, and this problem may be understood as an unintended consequence of the UK 

CO2 mitigation agenda [Davies and Oreszczyn, 2012; Dengel and Swainson, 2012; 

Shrubsole et al., 2014]. In fact, one might even contend that the low-carbon agenda is 

working against thermal comfort, since it has become increasingly evident that the 

delivery of sustainability (in this case, in the form of designing HIHs) has become 

characterised by a dichotomy between thermally efficient houses and summer 

thermal comfort.  

The primary purpose of all domestic buildings is to provide their occupants with a 

stable indoor environment. However, cumulative effects of heat gain and insufficient 

ventilation have often resulted in an increased risk of overheating in HIHs. It is 

important, therefore, to ensure that in practice houses designed to comply with 

improved standards of energy efficiency are not subject to overheating so that they 

are able to provide appropriate levels of indoor air quality, and that the anticipated 

energy reductions are achieved. While it is difficult to identify a single, main reason for 

the gap between HIHs and thermally comfortable houses [NHBC, 2012a, 2012b], 
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design practice needs to respond quickly to the growing evidence of overheating 

[DCLG, 2012; Garrett, 2014; Mavrogianni et al., 2014; Sharpe et al., 2016; McGill et al., 

2017] without sacrificing the objective of reducing carbon emissions associated with 

the residential sector. 

This research is intended to contribute to a better understanding of the overheating 

risk in HIHs and so to increase our wealth of knowledge about how HIHs function in 

practice, especially when external temperatures raise.  

1.2 ORIGINALITY 

In order to improve the design of HIHs and to reduce their risks of overheating, it is 

essential to study how the conflicting requirements for thermal comfort, indoor air 

quality and energy efficiency are reconciled in current architectural practice, which is 

here understood as a form of practical, vis-à-vis purely theoretical, knowledge.  

This research project aims to link the thermal performance of HIHs with the design 

thinking and the design process behind those houses. Likewise, this project is 

intended to identify and highlight the most significant factors that could contribute to 

an increase in the risk of overheating in HIHs at the design stage.  

These objectives will be pursued by linking the practice of HIHs design to their actual 

performance. The methodology used to do so is based on a comprehensive mixed 

methods approach combining data collection (physical assessments, interviews, 

opinions, and observations) with appropriate tools for mapping the process in which 

overheating may occur. Accordingly, this work can be expected to contribute to filling 

the current gap in the knowledge of comfortable HIHs design by integrating 

information about the physical reality with the design intentions (or strategy) behind 

HIHs. In sum, this work is intended to nuance the processes leading to uncomfortably 

warm temperatures (which henceforth will be referred to as production of overheating) 

in HIHs and thus to aid architects and designers in their low-carbon designs. 

The nomenclature ‘production of overheating’ was chosen to carry the specific idea of 

overheating as it been manufactured by design of HIHs, and by so, conveying the idea 

to amend or rectify design in order to avoid it. This provides a marked distinction 

from overheating as a consequence of (‘as produced by”) climate change. In fact, the 
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word ‘production’ refers to something that it is manufactured, and it is the result 

and/or output of a process. Ergo, overheating is here considered as the output of the 

process of designing HIHs. In addition, the word ‘production’ (and with it the word 

‘manufacture’) convey the idea of ‘mass-production’ (like production of car, or 

production of housing). This is relevant to the case of HIHs and low-carbon design in 

general, where overheating has the potential to be a mass-produced widespread 

problem. 

1.3 RESEARCH QUESTIONS AND OBJECTIVES 

This research will examine HIHs and thus attempt to establish if the design process is 

actually delivering comfortable HIHs. Its specific focus will be on investigating the 

design issues that can lead to overheating in England. As a result, this study is 

instrumental to gaining an understanding of the actual performance of HIHs and to 

indicate the factors contributing to the heat excess within such innovative designs. 

These results will be specifically pursued by addressing two research questions, 

namely:  

I. Do HIHs provide an uncomfortable indoor environment for their 

occupants?  

II. If so, how can the process of designing HIHs be improved to reduce the 

risks of overheating? 

The above questions are listed in the order in which they will be addressed in this 

research work, following a progression from (a) houses’ performance, predominantly 

linked to the in-use stage of the building process (b) house design, predominantly 

linked to the design stage of the building process. The findings will be integrated by 

(c) mapping them in the context of the building process (fig. 1.1). While the focus of 

the research questions lies in the design and in-use stages, due to the variegated 

nature of the data collected, the results will include data from all the stages (including 

brief and construction).1 

                                                           
1
 The reader is directed to the ‘overheating maps’ in Chapter 7, sections 7.1 and 7.2 to 

appreciate such interconnectivity. 
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Fig. 1.1 Research questions framed within - a schematic view of - the building process. Such 

framework will be developed in the context of the RIBA Plan of Work, for which the reader is 

directed to Chapter 7, section 7.1.1.2 

The more specific objectives underpinning the two fundamental research questions 

are listed below: 

Obj. 1. To determine if HIHs currently experience overheating and to 

evaluate the thermal experience of their occupants. This issue will be 

dealt with, in particular, in Chapter 5, where data from the longitudinal 

study (post-occupancy evaluation) will be introduced and discussed. 

Obj. 2. To examine the design processes currently employed by architects 

and designers and to evaluate the current knowledge that architects 

and designers have of how design affects thermal comfort. This 

objective will be pursued in Chapter 6 by means of a critical analysis of 

the interviews conducted with architects and designers. 

Obj. 3. To evaluate the tools and verification techniques used by designers to 

assess the ability of energy efficient designs to provide thermal 

comfort. This objective will be pursued in Chapter 5 and Chapter 6. 

Obj. 4. To examine the role that the occupants of HIHs play in relation to 

overheating risks and to evaluate their level of understanding of how 

to achieve and control thermal comfort. This objective will be pursued 

in Chapter 5 by means of a discussion of post-occupancy evaluation. 

Obj. 5. To map findings from the data presented in Chapters 5 and 6, and to 

integrate these findings in a process map. This objective will be 

pursued in Chapter 7, where a specific process-mapping methodology 

will be introduced and subsequently validated by means of a focus 

group. 

BRIEF DESIGN 
CONSTRUC-

TION 
IN-USE 
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1.4 SCOPE OF THE RESEARCH  

This work will adopt a multiple case study approach, which is considered most 

appropriate to the in-depth exploration of the research questions introduced above. 

More specifically, four HIHs whose builds were completed between 2011 and 2013 

were selected.2 These particular houses present substantial differences regarding their 

layouts, materials, and orientation with respect to each other (fig. 1.2). For these 

reasons, they are expected to provide a sufficiently variegated sample of HIHs and so 

a reliable base for arriving at an enriched map of the risk of overheating in HIHs. 

The research will also adopt a mixed methods approach, which will combine 

longitudinal monitoring of environmental parameters, longitudinal post-occupancy 

questionnaires, photographs and notes taken during walkthroughs with occupants in 

their houses, interviews with designers and the focus group with a specialised 

audience. The rationale for the chosen methods will be discussed in Chapter 4, section 

4.2.  

 
Fig. 1.2 Infographic depicting the four case studies central to this research work.  

It is shown some of the main of the characteristics of each house and highlighting (a) the 

different contexts (urban or rural) and by so, any influence of the urban heat island effect;  

 (b) in solar gains exposure from different façades (East, West and South); (c) thermal mass 

exposure in terms of finishing materials (lightweight or heavyweight), (d) the prevailing 

ventilation management (via MVHR, or via natural ventilation, or both concurrently);  

(e) number and type of permanent occupants. 

 

                                                           
2
 The case studies are introduced in some detail in Chapter 5 
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1.5 OUTLINE OF THE THESIS 

This thesis is organised into the chapters detailed below.  

 Chapter 1 introduces the aims of the research and outlines the structure of 

this thesis. 

 Chapters 2 and 3 review the existing literature in order to gain an 

understanding of the nature of overheating as it occurs in English HIHs today. 

In these chapters, the justification for the research will also be outlined by 

means of a review of today’s concepts of overheating, particularly in relation 

to thermal comfort.  

 Chapter 4 outlines the paradigms used in this research and the 

epistemological associations pursued in this work. The fundamental research 

strategies, their value and their limitations, will also be explored. In this 

context, the protocols of data collection will not be presented, since they will 

be introduced in the analysis chapters (namely Chapters 5, 6 and 7). 

 Chapter 5 introduces the results of the data collected from the HIHs 

longitudinal monitoring (post-occupancy evaluation and thermal comfort 

survey). In one respect, this chapter could be qualified as being quantitative in 

nature. However, it also contains responses from the open questions included 

in the questionnaires. From a build process perspective, this chapter will focus 

on the IN-USE (performance) of HIHs (fig. 1.1). 

 Chapter 6 presents the results of the data collected via interviews to architects 

and designers of the case study HIHs. Interviews will be coded, and the main 

themes will be developed and discussed. From a build process perspective, 

this chapter will focus on the DESIGN (prediction) of HIHs (fig. 1.1). 

 Chapter 7 elaborates the results presented in chapter 5 and 6 in order to map 

the process leading to the overheating map of HIHs. In this manner, by means 

of a triangulation exercise. The triangulation critically approaches the findings 

relative to each case study and evidences the most significant issues in the IN-

USE and DESIGN stages. This is achieved by means of a process mapping 

where different sources of data are linked, and focusing on the 

interconnectivity of the problem of overheating within the build process. 
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 Chapter 8 will present the integrated findings of the research. Those findings 

will be elaborated by means of an interrelated, critical reflection on the results 

presented in the previous chapters and on the experience of the methods 

used. Finally, this chapter makes recommendations to designers, and provide 

suggestions as to the directions future research might take. 
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CHAPTER 2: LITERATURE REVIEW 

“Our destiny is frequently met in the very paths we take to avoid it”  

Jean de La Fontaine, 1678 

 

Synopsis 

This chapter is concerned with providing some background information about the 

problem of overheating in HIHs. After presenting a panoramic of the GHGs agenda, a 

description of the residential stock is offered with a view of highlight some central issues 

of overheating in HIHs.  

Then the phenomenon of overheating, as it occurs in UK, is described and subsequently 

a large body of studies depicting the complexity of overheating, as it occurs in the 

residential sector, are reviewed. 
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CHAPTER 2 Literature review 

1. GHGs agenda :energy consumption, 

energy demand and energy from 

renewable 

 2. The context: UK housing stock:, 

descriptives; projections stock 

3. Overheating as new concept?: heat 

stress, defining and assessing 

overheating 

4. Evidence of overheating 

5. Chapter summary 

CHAPTER 3 Dimensions of 

overheating 

CHAPTER 4 Research design 

CHAPTER 5 Post-Occupancy 

Evaluation  

CHAPTER 6 Interviews with 

designers 

CHAPTER 7 Overheating map 

CHAPTER 8 Integrated 

findings and conclusions 
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2.1 GHGS AGENDA 

Climate change is widely recognised as one of the greatest emerging humanitarian 

challenges of our time. It is also demonstrated that urban environments amplify the 

impact of climate change [Henderson, 2010; HM Government, 2011]. The UK Climate 

Projections [Murphy et al., 2009] predict an increase in temperatures that it is likely to 

both generate an alarming enhanced health-related risk for vulnerable groups of people 

[DCLG, 2012; NHBC, 2012a]. This occurrence has the potential to frustrate governmental 

efforts to improve the energy efficiency of the UK building stock as well as to increase 

GHG emissions (this is especially due to the associated risk of increasing the use of 

cooling demand) [Shove, 2012; Loveday et al., 2016]. In fact, the UK climate has warmed 

of 1˚C over the last century in central England [Murphy et al., 2009].  

As a response to climate change and an attempt to reduce its consequences to the built 

environment, a large number of States worldwide have subscribed the Kyoto Protocol, 

which sets ambitious carbon dioxide emissions targets [Crown, 2008; HM Government, 

2011] (those targets are summarised in the table 2.1). The UK government too set up 

emissions reduction binding targets through the Climate Change Act and the so-called 

mitigation agenda [Crown, 2008]. The framework created within the Climate Change Act 

imposes the 2050 Target for buildings, which consists in “reducing emissions by at least 

80% in 2050 from 1990 levels”. 

Table 2.1: long-term climate change targets by European countries beyond the  

EU collective target of -8%, adapted from [Boardman et al. 2005; Crown 2008; UNFCCC 2014] 
 

 
 

In the UK, this attempt to reduce energy consumption and associated carbon emissions 

from the buildings sector has led the UK government to develop strategies to reduce 

greenhouse gases emissions (the so-called mitigation agenda) [Crown, 2008; HM 

Government, 2011]. As a consequence, substantial changes have recently been made to 

UK building regulations, resulting in houses with significantly improved standards of 

thermal insulation and much higher levels of airtightness [Killip, 2005; HM Government, 

2006, 2013c]. These progressive and rapid changes are explored in detail in Chapter 3, 

section 3.2).  

France (limit per capita emissions) to 0.5 tons carbon by 2050

Germany (reduce national CO₂ emissions) by 45-60% compared with 1990 levels by 2050

Sweden (reduce per capita emissions) to below 1.2 tons carbon by 2050

UK (reduce national CO₂ emissions) by 80% compared with 1990 levels by 2050
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There is however an intrinsic link between reducing GHG emissions (mitigation) and 

coping with the consequences of climate change (adaptation). While mitigation actions 

are intended to tackle the causes of climate change by decreasing greenhouse gases in 

the atmosphere or enhancing the sinks of greenhouse gases, adaptation addresses the 

impacts of climate change through an adjustment in natural or human systems in 

response to (actual or expected) climatic stimuli or their effects, which moderate harm or 

exploit beneficial opportunities’ [IPCC, 2001].  

In the context of the built environment, where adaptation refers to “adjusting to 

moderate harm” [UKCIP, no date], the UK government foresees that adaptation will be 

needed to cope with the inevitable climate change consequences such as flooding and 

rise of temperatures [Shaw, 2007; HM Government, 2013d]. Cities are not currently 

designed for climate change, since the majority of houses existing today were designed 

for climatic conditions prevalent at the time they were built [ARUP, 2008] and these 

conditions have changed since (and are expected to continue to change). Accordingly, 

adaptation is considered necessary to provide a more resilient housing stock [ARUP, 

2008], and analysis has to be informed by susceptibility and/or resilience at a local level 

[Dear and Wang, 2015] . 

2.1.1 UK ENERGY CONSUMPTION 

According to the Office for National Statistics [ONS Digital, 2016] the UK is consuming 

less energy3 than it did in 1998. There was a 17% fall of energy used by the UK between 

1998 and 2015 (see fig. 2.1) There is also an increased use of energy generated by 

renewables.. Some of the plausible reasons for those variations lie in an increased use of 

energy efficient technologies by both households and firms and a decline in energy 

intensive manufacturing [ONS Digital, 2016]. An updated released in July 2017 states that 

“the primary energy consumption (primary supply less non-energy use) was down by 1.4 

per cent in 2016. On a temperature corrected basis, primary energy consumption was 

estimated to have fallen by 2.3 per cent” [Office of National Statistics, 2017a].  

 

                                                           
3
 Energy consumption is measured in a million tonnes of oil equivalent (Mtoe) – this is a unit of 

energy defined as the amount of energy released by burning one million tonnes of crude oil [ONS 

Digital, 2016]. 



CHAPTER 2: LITERATURE REVIEW  11 

 
Fig. 2.1 Total energy consumed by the UK, 1998 to 2015 [ONS Digital, 2016] 

 

The effects of household strategies for energy efficiency are deemed to be of great 

impact because of the substantial energy consumption linked to residential (this point is 

addressed in more detail in the next section). Figure 2.2, which shows consumption by 

category, indicates that transport and domestic use account for nearly two thirds of the 

total consumption.  

 
Fig. 2.2 Final energy consumption 2016 by category [Office of National Statistics, 2017a] 

Not only has there been a decrease in energy demand, but also there has been an 

increase of production of renewable energy. The percentage of energy consumed from 

renewable sources has risen from 1% of total UK energy consumption to 9% [ONS 

Digital, 2016] (see fig. 2.3). In 2016, 8.9 per cent of total energy consumption came from 
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renewable sources; this is up from 8.2% in 2015 [Office of National Statistics, 2017b]. 

While renewable electricity represented 24% of total generation, the renewable heat 

accounted for 6.2% of overall heat. 

 
Fig. 2.3 Percentage of total energy consumed in the UK that comes from renewable or waste 

sources, 1998 to 2015 [ONS Digital, 2016] 

Also, of all the energy consumed, a part of it has increasingly been imported. The decline 

in North Sea oil and gas production has meant that the UK has become more and more 

dependent on imports of energy, though with a downward trend since 2013 (see fig 2.4). 

This need to import energy places the UK in line with the neighbourhood European 

countries [ONS Digital, 2016; Office of National Statistics, 2017a]. Nonetheless the UK 

government aims at reducing the energy imports from other countries. 

 
Fig. 2.4 UK energy import dependency: the percentage of UK energy supply made up of net 

imports, 1970 to 2015 [ONS Digital, 2016] 
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2.1.2 UK GREENHOUSE GAS EMISSIONS FROM THE RESIDENTIAL 
SECTOR 

In the latest estimates of 1990-2016 UK greenhouse gas emissions4, the residential sector 

accounted for 18% of all carbon dioxide emissions. In 2016, emissions from residential 

were 15% lower than in 1990. It should be noted that emissions from this sector do not 

include those related to domestic electricity consumption [Department for Business 

Energy and Industrial Strategy (BEIS), 2017]. 

In the residential sector, the main source of emissions is the use of natural gas for both 

heating and cooking. Since 2004 there has been a general downward trend in emissions, 

although 2010 and 2012 were exceptions to this trend due to the particularly cold 

weather experienced in 2010 and the particularly warm weather experienced in 2011 

[Department for Business Energy and Industrial Strategy (BEIS), 2017]. 

The energy demand from the residential sector is reliant on gas, and gas import has 

increased in the recent years. While carbon dioxide emissions from the residential sector 

have decreased since 2004, the residential sector demand remains high. Therefore, 

reducing carbon emissions from the residential sector by reducing the demand for 

energy as a strategy is still considered a priority. 

Importantly, in the study of energy demand from residential, one should acknowledge all 

the sources of carbon emissions linked to the primary social practice of inhabiting, such 

as transport, and limited resources use, such as land. This clarification is necessary if one 

is to look at low-carbon design in a more comprehensive and interconnected way, to 

ultimately avoid generating new sources of energy demand that may result as a 

boomerang effect from energy demand reduction implementation strategies. For 

instance, energy demand for transport is linked to residential; therefore the location of 

new developments has the potential to impact on the energy demand for both 

residential and transport. 

2.1.3 RISK OF INCREASED DEMAND FOR COOLING 

As just stated, efforts put in place to reduce energy demand for heating from dwellings 

might, in the near future, experience a boomerang effect due to an increase in energy 

demand. 

                                                           
4
 UK greenhouse gas emissions are presented in carbon dioxide equivalent units [Department for 

Business Energy and Industrial Strategy (BEIS), 2017]. 
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In social psychology, the boomerang effect refers to the unforeseen consequences of an 

attempt to persuade resulting from purposive action. These unforeseen consequences 

are not necessarily undesirable, though this un-anticipation is mostly obviated by 

limitations in knowledge (inadequate knowledge or lack of knowledge) or by error 

[Merton, 1936].  

Even though this concept was developed in social psychology, it can be applied to the 

implementation of sustainability in the built environment, as it concerns the dynamic of 

social and cultural change [Davies and Oreszczyn, 2012]. This is due to complex 

interactions in society and the ramifications that actions have in an interrelated system 

[Merton, 1936].  

Overheating in HIHs may result in an increased demand from cooling to accommodate 

temperature change. Wright et al. claim that heat waves and internal temperatures could 

lead to a significant market for short-term cooling (such as portable cooling) or that 

comfort cooling and air conditioning could spread in housing, especially in the South of 

England [Wright, Young and Natarajan, 2005]. This has already started to be the case in 

London apartments [Young, 2014]. 

In addition, Peacock et al. used dynamic thermal simulation to investigate internal 

temperatures in the domestic sector and estimated that 18% of householders in the 

south of England would install air conditioning by 2030 if they responded to warm 

temperatures in the same way as US householders. This would equate to 550,000 homes 

equipped with air conditioning in London alone [Peacock, Jenkins and Kane, 2010]. 

Another significant driver for cooling demand seems to derive from poorly applied 

energy efficiency measures [Shrubsole et al., 2014]. While efficiency measures are a 

fundamental way to deliver CO₂ reductions, they also risk producing uncomfortably 

warm temperatures, as current design has not yet transformed into mature low-carbon 

design. So, despite the efforts put in place to reduce energy demand and associated CO₂ 

emissions, there is still room for improvement in order to (a) not depend on energy 

import and also (b) to prevent an unaware rise of demand for cooling [ZCH, 2015b]. 

This section has reviewed the context in which overheating in HIHs may develop as a 

result of a contemporary carbon reduction agenda. In the next section, housing stock 

and projections of future housing development will provide a projected breadth of 

impact. 
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2.2 CONTEXT: THE UK HOUSING STOCK AND TRENDS 

The Department for Communities and Local Government (DCLG) publish yearly reports 

representing changes in the UK housing stock based on a questionnaire sample of 13300 

houses. In addition for a subsample of 6200 houses per year a physical survey is 

performed [GOV.UK, 2016]. For the purpose of understanding the characteristics of the 

UK building stock and within it, the proportion of HIHs, datasets from the English 

Housing Survey (managed by the Department for Communities and Local Government) 

are deployed here5. In this context, the reader should be aware of the fact that in this 

dataset the sample of HIHs should be expected to be small. 

2.2.1 THE ENGLISH HOUSING STOCK  

In 2014 there were about 23.4 million homes in England. In terms of tenure, 63% of these 

homes were owner occupied, 20% were privately rented, 10% were from the housing 

association stock and 7% were owned by local authorities [DCLG, 2016c] (fig. 2.5). 

 
Fig. 2.5 Adapted from the English housing stock descriptive: by tenure [DCLG, 2016c] 

In terms of typology, 42% were semi-detached or detached houses, 29% were terraced 

houses, 16% were purpose built flats, 9% were bungalows, and 4% were converted flats 

[DCLG, 2016c] (fig. 2.6). The present research is based on four case studies, one of which 

come from the first group typology (detached), two from the second group typology 

(terrace) and one bungalow, see Chapter 5 for details. 

                                                           
5
 It seems worth underlying that Census (ONS) will not be used. The main difference between 

Census and the English Housing Survey is in the sampling techniques of these two sources of data 

sets: census and survey. Census collects information about every member of the population, and a 

survey is a data collection activity that selects a sample of the population. For this reason, the 

latter is less onerous and less expensive and can be updated more frequently and focusing on a 

variety of information different than that collected by a census. It is also possible to say that a 

census is a 100% sample survey and Census statistics helps organisations such as DCLG to decide 

how, when and where capturing representative samples [ONS, no date]. 

0% 20% 40% 60% 80% 100%

owner

privately rented

RSL

Local Authority
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Fig. 2.6 Adapted from the English housing stock descriptive: by typology [DCLG, 2016c] 

 

In terms of context, in England the majority of houses are located in suburban areas 

(61%), whereas 22% of homes are in cities or urban centers and 18% are in rural areas 

[DCLG, 2016c]. From the case studies included in this research, three out of four are from 

suburban areas. 

2.2.2 NEW HOMES 

Every year more than 100,000 new houses are built in the UK, of which about 80% in 

England, around 10% in Scotland and around 5% in both Wales and Northern Ireland 

[Beckett, 2014]. This figure varies greatly, as fig. 2.7 shows (for instance the number of 

dwellings built in England has halved compared to the 1980s decade). However the 

proportion in UK remains similar, with a great proportion of dwellings being built in 

England compared to the other UK nations. 

 
Fig. 2.7 UK house building, adapted from DCLG live table 209 [Beckett, 2014] 
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Within the existing stock in the UK, the largest proportion of dwellings is located in 

England (fig. 2.8). Of this large stock of over 23 million of English houses, the 0.5% is 

made of ‘new dwellings’ (fig. 2.9).  

 

 

 

Fig. 2.8 UK dwellings stock (2014), adapted 

from [DCLG, 2016c] 

Fig. 2.9 English new dwellings (2013-14), 

adapted from [GOV.UK, 2016] 

 

It is important to note that in the English housing survey, ‘new homes’ are defined as 

houses built no more than ten years before the year of the survey (in this case 2015); that 

is, houses built in or after 2005 are qualified as new homes [DCLG, 2016c]. HIHs are 

characterized by their ‘ super-insulation’, which is referred as a strategy of insulation to 

the extent that no heating systems are required [Nicholls, 2008]. Super-insulation is not a 

compulsory requirement in the Building regulations. As a consequence, HIHs are a 

subgroup of ‘new homes’ in the English housing survey. 

Of the above mentioned figures, it is not possible to establish how many new homes are 

effectively HIHs, since the year of construction does not necessarily reflect the version of 

buildings regulations applied for approval. In fact, the applicable building regulations are 

set by the year in which the planning application permission is granted [DCLG, 2016b]. 

Even though semi-detached or detached houses are still the most built typology - 

between 1996 and 2014, around 1.3 million (out of 3 million) homes added to the English 

housing stock were either semi-detached or detached houses [DCLG, 2016c] – flats are 

growing in number, as shown in fig. 2.10. 
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Fig. 2.10 Number of house builds completed England by typology across the years [DCLG, 2016b] 

 

In England alone, about 110,000 new homes were built between 2013-14 [Beckett, 2014]. 

Of these new homes a large proportion were flats (44%) [DCLG, 2016c]. Between 2005 

and 2014, around 1.3 million new homes were built in England with a higher prevalence 

of flats in all tenure types [DCLG, 2016c]. When looking at it in the perspective of 

overheating, this high density may aggravate the risks of overheating because of their 

reduced external wall area to volume ration [Beizaee, Lomas and Firth, 2013], and also in 

consideration of the fact that in most purpose-built flats are single aspects and so cross 

ventilation is not an option available there [Swainson M, 2014; ZCH, 2015b].  

In 2014, dwellings had an average usable floor space of 94m², whereas the average sized 

flat was 61m², which is slightly lower than the average for small terraced houses [DCLG, 

2016c]. The changing characteristics of new homes depict a built environment 

increasingly fragile to high internal temperatures. This is further exacerbated in the case 

of increasingly overcrowded social housing homes. So, it can be said that as 

development advances, the risk of overheating tends to increase. This is summarised in 

fig. 2.11. 
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Fig. 2.11 The UK housing stock.  

This figure shows the proportion of English homes over the UK stock, and the proportion of ‘new 

homes’ out of the English stock. Followed by the proportion of flats built during 2013-14. Diagram 

based on Beckett and DCLG [Beckett, 2014; DCLG, 2016c] 

 

This section has reviewed the statistical data released by the government to locate the 

weight of overheating in the current stock and the trend might take in future 

developments, and this information has been summarised in fig. 2.11. Focused the scope 

of overheating risk within the housing stock, the next section review will elaborate the 

concept of overheating and why is an issue in the HIHs stock. 
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2.3 OVERHEATING AS A NEW CONCEPT? 

Overheating in buildings in the UK can be perceived as an issue emerging from HIHs. In 

the growing body of literature devoted to overheating one cannot find a unitary 

definition of the phenomenon, as it is attested by the following quotation: 

“Overheating is generally understood to be the accumulation of warmth within a 

building to an extent where it causes discomfort to the occupants. There is no clear 

definition of the term ‘overheating’ or the specific conditions under which this can 

be said to occur. Nor is there any statutory maximum internal temperature in UK 

Building Regulations or current health and safety guidance” [NHBC, 2012b]. 

Still in the literature a clear connection is established between overheating, climate 

change, and, as a sort of paradox, HIHs design efforts to reduce energy demand [Energy 

Saving Trust, 2005].  

The problem of overheating in buildings can be considered – at least in countries with 

mild climate like the UK - as a relatively modern problem, which has been discussed in 

the literature only from the second part of the 20th century. Those researching in the field 

of architecture actually mentioned cases of overheating in buildings also in the 1960s, 

when overheating was related to excessive heat gains due to the use of large glass areas 

in modern buildings [Loudon and Danter, 1965; Burberry, 1966]. In fact, in those 

buildings, when overheating was a problem, it was mainly due to excessive heat gains 

from the sun (radiation on the roof and sunshine through unshaded, single glazed 

windows) penetrating the building [Energy Saving Trust, 2005]. 

Likewise, the problems related to excessive heat have also been of concern to those 

researching in engineering. In the UK, studies conducted at the Building Research 

Establishment (BRE) in the 1960’s look at the effect of excess-solar-gains through over-

glazed modern buildings in summertime [Loudon and Danter, 1965; Loudon, 1968]. In 

these studies, overheating in buildings was already considered a problem especially for 

modern post-war schools and buildings. This means that already then design procedures 

for the new architecture were acknowledged to have the tendency to overlook non-

apparent problems emerging in designs that move away from the traditional massive 

walls and small windows, to large proportion of window to surface area derived from the 

introduction of steel and structural engineering, replacing solid walls. 
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In addition, when high levels of insulation started to be applied, the length of the heating 

season was reduced, and internal temperatures were more easily maintained, however, 

the increasing insulation had the implication that internal temperatures were more 

sensitive to changes in heat input. In other words, the same heat gains put into a HIH is 

recognised to cause a much greater change in temperature than in an uninsulated house, 

to the extent that "if heat gains are significantly greater than the losses then overheating 

can occur” [Energy Saving Trust, 2005]. 

In this context, design procedures not only have to take into account the use of high 

levels of insulation but also the additional extensive use of lightweight cladding and, 

more recently, the increasing tendency to airtightness [NHBC Foundation, 2009]. The use 

of an airtight fabric was first recorded in the literature only in the 1980’s in Sweden, 

whilst academic contributions in the UK appeared only in the late 1990’s.  

2.3.1 HIGH TEMPERATURES AND HEALTH: THERMAL COMFORT VS. 
HEAT STRESS 

As temperatures rise, thermal stress increases. Whilst for most of the population 

overheating is just a matter of thermal comfort — a condition of satisfaction with the 

thermal environment—excess heat can have significant health implications. In fact, the 

actual implications of overheating on human health may take different forms, which 

range from loss of concentration and reduction of productivity to more severe 

consequences, such as heat strokes. Importantly, these consequences can be suffered 

not only by vulnerable groups (such as elderly, obese, and urban dwellers) but can also 

affect anyone whose body thermoregulation (i.e. sweating) is inhibited by diverse factors, 

such as the use of medication, or living in a humid environment [DCLG, 2012; Dengel and 

Swainson, 2012; NHBC, 2012b]. 

The UK Government introduced the Housing Health and Safety Rating System (HHSRS) 

as an approach for the evaluation of the potential risks to health and safety from any 

deficiencies in dwellings. Such assessments are based on an evaluation of both the 

likelihood of an occurrence that could cause harm and the probable severity of the 

outcomes of such an occurrence [Dengel and Swainson, 2012]. 

In the HHSRS, overheating in dwellings is expressed as ‘excess heat’, and it is included as 

one of the defined hazards from excessively high indoor air temperatures:  
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“As temperatures rise, thermal stress increases, initially triggering the body’s 

defence mechanisms such as sweating. High temperatures can increase 

cardiovascular strain and trauma, and where temperatures exceed 25°C, mortality 

increases and there is an increase in strokes. Dehydration is a problem primarily for 

the elderly and the very young.” [ODPM, 2006, p.64]. 

In addition the importance of night-time temperatures has been recognised, since the 

lack of nocturnal recovery may lead to high rates of mortality, especially in vulnerable 

groups of people. In fact the existing literature suggests that a change of as little as 1°C 

in skin temperature can affect the overall quality of sleep [Dengel and Swainson, 2012]. 

While HHSRS recognises that overheating in UK dwellings is unusual, it recognises the 

effect of heat waves6 as an imminent treat: “heat waves are forecast to become more 

common. It is possible, therefore, that there will be an increase in mortality and morbidity 

rates from excess heat associated with the inability to maintain a healthy temperature 

within dwellings” [ODPM, 2006, p.64]. 

The HHSRS explicates the main factors that affect overheating in buildings and reduce 

them to the following three: (a) thermal insulation (but only in terms of inadequate or 

lack of provision, such as attic flats); (b) orientation of glazing (large areas of south facing 

glazing in inappropriately designed dwellings) an (c) ventilation provision (inadequate or 

inappropriate provision and inadequate means of controlling it) [ODPM, 2006, p.65]. 

Accordingly, there is no recognition of a likelihood of harm from HIHs. This is due to the 

fact that energy efficiency, or better the lack of it, has been linked to poor indoor 

environmental quality.  

2.3.2 DEFINITION OF OVERHEATING 

As indicated above, there is no universal definition of what constitute overheating. 

However, the Department for Communities and Local Government’s (DCLG) Investigation 

into overheating in homes [DCLG, 2012] claims that overheating in buildings can be 

defined by its epidemiological evidence and by its physiological evidence7. 

                                                           
6
 A definition of heat waves is provided in Chapter 5, section 5.2.3. 

7
 Epidemiological relates to the occurrence of a disease, whereas physiologically relates to normal, 

healthful functioning; not pathological [Collins, no date]. 
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An epidemiologically defined heat threshold does not point out at which temperatures 

individuals begin to succumb to the heat. Instead, it uses evidence showing the link 

between temperatures and health-related effects (such as hospital admission, excess heat 

death, etc.). Therefore, this evidence can only make reasonable assumptions of, for 

instance, the effect of a heat wave on population. For London, epidemiological studies 

have shown that mortality begins to rise above a threshold of 24.7°C maximum daily 

temperature. However, the relationship between mortality/morbidity with outdoor 

temperature cannot accurately describe the causal connection to high indoor 

temperature [DCLG, 2012]. 

Overheating has also been defined on the basis of its physiological evidence, which 

provides indication of responses to specified temperatures. However, this alternative 

approach can be claimed to be too simplistic to define overheating by temperature 

alone, because the relationship between physiological response and adverse health is 

often unclear. For instance, it is not clear whether is the indoor or outdoor temperature 

exposure that carries the greatest health-related risk [DCLG, 2012]. Nonetheless, 

temperature has been recognised as the most important parameter in comfort, even 

though several respondents reported that humidity and ventilation may play as similarly 

significant role in the perception of overheating [DCLG, 2012]. 

An alternative definition of overheating can be found in CIBSE 2006, where overheating is 

defined as "the temperature that limits the ability to carry out pre-specified levels of 

physical activity” [CIBSE, 2006, p.323]. 

The Zero Carbon Hub has adopted a further definition of overheating in new homes. 

Such definition, which considers the effects on (a) thermal comfort, (b) health and (c) 

productivity reads as follows: overheating is “the phenomenon of a person experiencing 

excessive or prolonged high temperatures within their homes, resulting from internal 

and/or external heat gains, and which leads to adverse effects on their comfort, health and 

productivity” [ZCH, 2015a, p. 3]. 

2.3.3 DESIGN GUIDANCE 

Design guidance aim at minimising heat discomfort in buildings set out temperatures 

thresholds according to building type. While there is no absolute temperature threshold 

for thermal comfort, there is documented evidence of internal temperatures harmful for 
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occupant’s health and wellbeing [Dengel and Swainson, 2012]. For this reason, 

overheating is also measured against a benchmark operative temperature8 (related to the 

likelihood of discomfort) that should not be exceeded for a defined number of hours. As 

a result, a building is considered to ‘overheat' whenever the benchmark operative 

temperature is exceeded for an established amount of time. The guidance available to 

overheating is listed below. 

2.3.3.1 CIBSE GUIDE A - 2006 

CIBSE Guide A [CIBSE, 2006a] sets design targets to define whether cooling is required in 

buildings. Guidance on operative temperatures threshold based on studies shows that 

sleep might be compromised above 24°C when all bedclothes except the sheet are 

removed and no further adaptation is possible. For this assessment, CIBSE recommended 

to use the CIBSE Design Summer Years (DSYs) in order to assess the overheating risk as 

these provide a more stringent test of overheating risk than do the CIBSE Test Reference 

Years (TRYs).  

Table 2.2: CIBSE 2006 threshold of operative temperatures for overheating [CIBSE, 2006a] 

Operative temperature 

for indoor comfort in 

summer 

Living areas 25°C 

 

 

 

bedrooms 23°C  

 

Benchmark (threshold) 

summer peak 

temperature 

Living areas 28°C 

 

 

1% annual occupied hours 

over operative temp. of 28°C 

bedrooms 26°C 1% annual occupied hours 

over operative temp. of 26°C 

 

2.3.3.2 CIBSE TM52 

CIBSE TM52 The limits of thermal comfort: avoiding overheating in European buildings 

claims that the advice on overheating in CIBSE Guide A 2006 is very limited and should 

                                                           
8
 Operative temperature is often referred as the ‘temperature of a space’: it is a theoretical 

measure (not an empirical measure) that combines the ait temperature and the mean radiant 

temperature into a single value to express their join effect. It is a weighted average of the two, the 

weights depending on the heat transfers coefficients by convection and radiation at the clothed 

surface of the occupant. In highly insulated homes and away from direct radiation from the sun or 

from temperatures (and hence between the air and operative temperatures) is small.  

For indoor air speeds below 0.1 m/s, the equation for operative temperature is: 

Top = ½ Ta + ½ Tr 

(where Ta is air temperature and Tr is the mean radiant temperature). 
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be changed from a fixed indoor temperature (regardless of outdoor conditions) to an 

adaptive approach, especially valid in free running buildings9. The rationale is that a fixed 

maximum temperature is not appropriate for all climates and, in order to achieve thermal 

comfort, people adapt10 to the outdoor temperature at the time.  

CIBSE TM52 does not provide any precise definition of overheating, as it indicates that 

“all comfort standards have problems because they try to give precise definitions when the 

phenomenon they are describing is inherently imprecise” [CIBSE, 2013]. On the other hand, 

it highlights the usefulness of adaptive comfort models as they are related to outdoor 

temperatures11. 

To some extent, CIBSE TM52 highlights the importance of buildings being designed to 

allow occupants to control their indoor conditions and hence to adapt to their 

environment. In this way a standard can act as a guide rather that a prescriptive 

restriction on indoor temperatures [CIBSE, 2013]. CIBSE TM52 also recommends that new 

buildings and major refurbishments should conform to Category II as set in BS EN 

1525112. This category sets a maximum acceptable temperature of 3°C above the comfort 

temperature for buildings in free-running mode.  

                                                           
9
 Also known as naturally ventilated buildings. 

10
 There are three categories of thermal adaptation (a) behavioural, (b) physiological, and (c) 

psychological. Psychological adaptation refers to an altered thermal perception and reaction due 

to past experiences and expectations, and is an important factor in explaining the difference 

between field observations and PMV predictions (based on the static model) in naturally 

ventilated buildings [de Dear and Brager, 1998]. 
11

 The adaptive models of thermal comfort are implemented in some standards such as 

ANSI/ASHRAE Standard 55, European standard BS EN 15251 and ISO 7730 standard. Even though 

the exact derivation methods and results of the last two are slightly different from the 

ANSI/ASHRAE Standard 55, they are in substance the same. However, ANSI/ASHRAE Standard 55 

only applies to buildings without mechanical cooling installed, while BS EN 15251 can be applied 

to mixed mode buildings provided the system is not turned off [BSI, 2007]. 
12

 The European Standard EN 15251 was developed in response to the Energy Performance of 

Buildings Directive (EPBD), and addresses considerations of the indoor thermal environment as 

well as indoor air quality, lighting and acoustics.  

The EN 15251 follows the general building categorisation of ASHRAE, i.e. (a) mechanically cooled 

buildings assessed with PMV model and (b) free-running buildings assessed with the adaptive 

model. In addition, the EN 15251 uses a ‘category description’ for such buildings according to a 

level of expectation of comfort: 

 Category I – For high level of expectation (fragile handicapped, sick, very young, elderly) 

 Category II - For a normal level of expectation (for new buildings and renovation) 

 Category III - For acceptable-moderate levels of expectation (existing buildings). 
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According to CIBSE TM52, overheating occurs when a room or a building fails any two of 

the three criteria below listed. The most recent version of CIBSE Guide A [CIBSE, 2015] 

embeds the CIBSE TM52. 

Table 2.3: CIBSE TM52 conditions to overheating [CIBSE, 2013] 

Criterion 1 –  

Hours of exceedance 

(He) 

It sets a limit on the number of hours that the operative 

temperature can exceed the threshold comfort temperature 

(i.e. the upper limit of the range of comfort temperature) by 1 

K or more during the occupied hours of a typical non-heating 

season (1 May to 30 September). 

The number of hours (He) during which ∆T is greater than or 

equal to one degree (K) during the period May to September 

inclusive should not be more than 3% of occupied hours
13

. 

Criterion 2 –  

Daily weighted 

exceedance (We) 

It deals with the severity of overheating within any one day, the 

level of which is a function of both the rise of temperature and 

its duration. This criterion sets a daily limit of acceptability. To 

allow for the severity of overheating, the weighted exceedance 

(We) must be less than or equal to 6 on any one day where: 

We      = (Σ he) × WF 

           = (he0 × 0) + (he1 × 1) + (he2 × 2) + (he3 × 3) 

where the weighting factor WF = 0 if ∆T ≤ 0, otherwise WF = 

∆T, and he is the time (h) when WF = y 
14

. 

Criterion 3 –  

Upper limit 

temperature (Tupp) 

It sets an absolute maximum daily temperature for a room, 

beyond which the level of overheating is deemed 

unacceptable. The recommended definitions for the criteria set 

that the absolute maximum value for an indoor operative 

temperature is set as follows: the value ∆T shall not exceed 4 K. 

This absolute maximum temperature is one in which adaptive 

actions are inadequate and cannot restore occupant comfort. 

2.3.3.3 CIBSE TM59 

CIBSE Technical Memorandum 59: Design methodology for the assessment of overheating 

risk in homes has been developed recently to address a new awareness of overheating 

risks in the residential sector. It consists of a standardised methodology to assess the risk 

of overheating in dwellings, care homes and student residences; further, it incorporates 

aspects of the “threshold” approach as well as the “adaptive” approach. The 

methodology is based on data from the UK domestic sector and has been tested on 

major risk projects, such as flats [CIBSE, 2017]. Its main purposes consisted in solving the 

tensions between winter comfort from building regulations requirements and summer 

                                                           
13

 If data are not available for the whole period (or if occupancy is only for a part of the period) 

then 3 per cent of available hours should be used. 
14

 “Thus suppose we have a room where the temperature is simulated or monitored at half-hourly 

intervals over 8 occupied hours, so we have 16 readings, ten of them where ∆T is zero or negative (wf 

= 0), three readings where ∆T = 1 (wf = 1), two where ∆T = 2 (wf = 2) and one where ∆T = 3 (wf = 3) 

then: We = ½ [(10 × 0) + (3 × 1) + (2 × 2) + (1 × 3)] = 5 (i.e. the criterion is fulfilled)” [CIBSE, 2013]. 
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comfort, on the one hand, and in limiting the overheating risk, which is thus recognised 

to be a challenge in low-carbon housing on the other hand [CIBSE, 2017].  

In accordance with the standard set by CIBSE TM59, houses that are (predominantly) 

naturally ventilated, including those with MVHR (mechanical ventilation with heat 

recovery), are required to pass two criteria: 

Table 2.4: CIBSE TM59 conditions to overheating [CIBSE, 2017] 

Criterion 1 Living areas 

Kitchens and 

bedrooms 

CIBSE TM52  

criterion 1 (hours of 

exceedance) 

 

 

The number of hours (He) 

during which ∆T is greater 

than or equal to one degree 

(K) during the period May to 

September inclusive should 

not be more than 3% of 

occupied hours. 

Criterion 2 Bedrooms 

from  

22:00-07:00 

26°C No more than 1% of annual 

occupied hours shall exceed 

operative temperature of 

26°C  
 

(1% of annual hour between 

22:00 and 07:00 for 

bedrooms is 32 hours, so 33 

or more hours above 26°C 

will be recorded as fail). 

 

2.3.3.4 PASSIVHAUS 

Another definition of overheating is provided by the Passivhaus Standard15. Due to the 

increasing number of homes been designed to this standard, the definition has become 

of wide use within the sector. In order to evaluate the risk of overheating in a building, 

the Passivhaus standard uses a fixed threshold temperature that remains the same 

irrespective of the external conditions and occupants' vulnerabilities. The standard 

established that it is not acceptable for living areas to exceed an operative temperature 

of 25°C for more than 10% of the total occupied hours. The standard also recommends 

that this threshold is not exceeded for 5% of the time. [BRE Trust, no date; Passivhaus 

Institut, 2015].  

Unlike the other definitions, the Passivhaus calculation is tailored for an energy efficient 

building, and the overheating criteria check refers to the whole building. For this reason, 

                                                           
15

 For the definition of the Passivhaus Standard, please refer to Chapter 3, section 3.2. 
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in the process of designing a Passivhaus, the designer deals with calculations of the 

building as a whole; and this facilitates the process of judgement. Such judgement of the 

thermal performance is intended to constitute a starting point enabling one to design 

more resilient buildings to cope with overheating and climate change in general. 

2.3.3.5 OTHER ASSESSMENTS AND DEFINITIONS 

Another definition is provided by ARUP Beating the heat: keeping UK buildings cool in a 

warming climate, where it is advised not to exceed 28°C (living rooms) and 25°C 

(bedrooms) for more than 1% of the time. Also, this document reports a heat stress risk 

at 35°C (50% relative humidity) [Hacker, Belcher and Connell, 2005].  

Other definitions are provided in table 2.5. In this context, it is worth noting that there 

are no statutory maximum internal temperatures in the Building Regulations [Young, 

2014].  
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Table 2.5: Overheating and comfort thresholds for temperatures relevant to UK based on [CIBSE 

2002; CIBSE 2006a; Armstrong et al. 2011; CIBSE 2013; CIBSE 2015; Office of the Deputy Prime 

2006; Passivhaus Institut n.d.; JN Hacker et al. 2005] 

 

 Temperature Description (assumes appropriate clothing) Source 

32˚C 

 Threshold maximum outdoor daytime 

temperature defined by the Met Office for 

London 

 Public health 

England (2013) 

 

30˚C 

 Threshold maximum outdoor daytime 

temperature defined by the Met Office for East 

Midlands 

 Public health 

England (2013) 

 

28˚C 
 Overheating threshold for 1% annual occupied 

hours over operative temperature 

 CIBSE A (2002 & 

2006), ARUP (2005) 

27˚C  Maximum acceptable (cat II)*, sedentary  CIBSE A (2015) 

26˚C 

 

 Maximum acceptable (cat III)*, sedentary (living 

rooms) 

 Upper 'desirable' limit without air movement 

(living rooms) 

 Overheating threshold for 1% annual occupied 

hours over operative temp. in bedrooms 

 Increased discomfort above this temperature in 

living rooms 

 CIBSE A (2015) 

 

 CIBSE A (2015) 

 

 CIBSE A (2006), 

ARUP (2005) 

 CIBSE A (2015) 

25˚C 

 Comfort temp. in living rooms  CIBSE A (2006) 

 Threshold Passivhaus standard for 10% annual   Passivhaus Institute 

 Threshold as a treat of health hazard  HHSRS (2006) 

24.7˚C 
 External temperature threshold London (mortality 

begins to rise) 

 Armstrong et al. 

(2011) 

24˚C 

 Sleep may be impaired in bedrooms 

 Increased discomfort above this temperature in 

bedrooms 

 CIBSE A (2006 & 

2015) 

23˚C  Comfort temp. in bedrooms  CIBSE A (2006) 

20.9˚C 
 External temperature threshold North East of 

England (mortality begins to rise) 

 Armstrong et al. 

(2011) 

18˚C 

 Threshold maximum outdoor night time 

temperature defined by the Met Office for 

London 

 Public health 

England (2013) 

15˚C 

 Threshold maximum outdoor night time 

temperature defined by the Met Office for East 

Midlands 

 Public health 

England (2013) 
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2.3.4 ASSESSING OVERHEATING: STATIC OR ADAPTIVE CRITERIA? 

As mentioned in the earlier paragraphs, the thermal comfort evaluation can be assessed 

through two alternative approaches: (a) static overheating criteria and (b) adaptive 

overheating criteria. 

The static criteria, such as CIBSE 2006 or Passivhaus, have been used as a guide for 

thermal design [CIBSE, 2002, 2006a; Feist et al., 2007] to assess or predict annual 

overheating risk related to a threshold temperature. The same threshold approach has 

been used to evaluate indoor temperatures during the 2003 heat wave [Wright, Young 

and Natarajan, 2005; Peacock, Jenkins and Kane, 2010; Porritt et al., 2012].  

As reported in a study conducted by Lomas, static criteria are helpful for rapidly 

comparing temperatures in different homes. However in real life, individuals adapt to the 

changing environment by changing clothes, by changing activity and by interacting with 

such environment (e.g. by opening/closing windows and shutters.) [Lomas and Kane, 

2012]. For this reason, the adaptive approach of overheating seems to be more 

appropriate.  

It should also be added, though, that there exists a discrepancy between both methods, 

especially when comparing the results of overheating assessment with both approaches. 

For many studies have reported different results depending on whether temperatures are 

analysed with one or the other approach [Beizaee, Lomas and Firth, 2013; Lomas and 

Kane, 2013; Mavrogianni et al., 2016]. 

Between the two approaches, Lomas found that many houses in Leicester overheated 

despite the cold summer when temperatures were assessed with the static criteria, 

whereas the same homes were found to be generally cool when using an adaptive 

approach [Lomas and Kane, 2012]. Also, Beizaee et al. raise questions on the reliability of 

BS EN 15251, because it does not differentiate geographical regions [Beizaee, Lomas and 

Firth, 2013]. 

Moreover, on an assessment of overheating of 25 dwelling monitored homes during 

three summers (2011, 2012, 2013), Tabatabaei Sameni et al. found that criterion 2 of the 

CIBSE TM52 (daily limit for severity of overheating to 6 hours) does not reflect the actual 

occupancy (which could be more or less than 6 hours). As a result, this assessment may 

ultimately overestimate or underestimate overheating [Tabatabaei Sameni et al., 2015].  
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Recently, CIBSE TM59 combines aspects of the static and the adaptive assessment for 

overheating, but no studies have published up to date to establish the effectiveness of 

the suggested criteria in predicting overheating. This assessment will be performed in 

Chapter 5 of this thesis. 

Overall, and for the reasons just exposed, rather than quantitatively determining 

overheating, this study will focus on the evaluation of the design performance, and what 

the sources of such failure in delivering comfort, if any. 

This section has described overheating as a potential health issue, and the fine line that 

exists between comfort problem and heat stress problem. A review of temperatures 

thresholds as well as design guidance and assessment were presented, which created the 

preamble for evidence of overheating in the next section.  
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2.4 EVIDENCE OF OVERHEATING IN HOMES 

The emerging problem of overheating has been substantiated by anecdotal and, 

recently, by scientific evidence. Among the academic evidence, a comprehensive review 

of the evidence of overheating in new UK houses conducted indicate that new HIHs (i.e. 

super-insulated, airtight dwellings) do indeed suffer from overheating and can result in 

adverse health effects for its occupants [Dengel and Swainson, 2012; Tabatabaei Sameni 

et al., 2015]. Overheating in HIHs was also reported by a meta-study of 60 low-energy UK 

houses, with occurrence of overheating during February and April, indicating that the 

problem is not entirely due to external temperature and solar gains, but also an alarming 

and emerging problem of internal gains and insufficient ventilation [McGill et al., 2017]. 

2.4.1 MONITORED STUDIES 

Monitoring studies of dwellings with perceived overheating have often collected 

information about both the use and construction of the building. 

When looking at typologies, in a national representative study of English homes, 

purpose built flats and end of terraces were found to have consistently high overheating 

compared to other built form types [Firth and Wright, 2008]. Interestingly, purpose built 

flats were found to be the best performing typology when it comes to Building 

Regulations’ compliance calculation. Another finding in this study is that temporary 

dwellings (with low thermal mass) showed both very low and very high temperatures 

[Firth and Wright, 2008].  

Lomas and Kane monitored 282 representative Leicester homes during summer 2009 and 

found that households with people over 70 years old are more likely to heat their homes 

during summer. Moreover, 30% of those households exhibited occurrences of extreme 

overheating (when assessed against static criteria and no occurrence of overheating 

when assessed with methods referring to the adaptive thermal comfort [Lomas and 

Kane, 2012]. 

During the same summer, in a study of 101 representative dwellings in London, 

Mavrogianni et al. found that: 

 42% of bedrooms fail CIBSE 2006 (especially purpose built flats), and sleep 

impairment might have occurred in 86% of bedrooms; 
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 An understanding of the causes and effects of indoor overheating was found to 

be a challenge, since it is not clear if the higher temperatures in these bedrooms 

led occupants to open windows or if the provision of ventilation effectively 

provided cooling benefits (in consideration of the fact that at the time external 

air temperatures were high; 

 The building operation of the residents in urban dwellings might differ markedly 

from standard behaviour assumptions (often used in modelling studies) and 

best-practice public-health recommendations (for instance, occupants may not 

open windows for security reasons or external noise levels and windows are kept 

close during daytime) [Mavrogianni et al., 2016]. 

In a survey of 207 statistically representative samples of English homes that Beizaee et al. 

performed during one of the coldest summers (August 2007), overheating was regarded 

as constituting a risk for comfort and health [Beizaee, Lomas and Firth, 2013]. It was 

found that: 

 Purpose built flats presented consistently high temperatures and detached 

homes recorded the lowest temperatures. This was considered to be the result of 

the fact that flats often have a reduced external wall area to volume ratio 

(whereas, for instance, in detached homes this ratio is high), and so cooling may 

be delayed; 

 bedrooms tend to exceed static threshold; 

 The instances of bedrooms that exceeded static threshold were more frequent in 

post-1990 buildings; 

 Even though the survey was performed during a cold summer, a large proportion 

of bedrooms and living rooms had more than 5% of occupied hours above the 

CIBSE recommended temperature of 24˚C & 25˚C. This observation was more 

evident when considering post-1990 buildings and flats [Beizaee, Lomas and 

Firth, 2013]. 

In a monitored study of 36 London dwellings (not a representative sample), Mavrogianni 

et al. found that 42% of bedrooms fail CIBSE static criteria, especially in purpose built 

flats. In the same study, it is claimed that sleep impairment might have been caused in 
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86% of the bedrooms on a five-day hot spell of Summer 200916 [Mavrogianni et al., 

2010]. 

In a study monitoring 25 Passivhaus flats during three summers (2011, 2012, 2013), 

Tabatabaei Sameni at al. compared averages of (external) environmental factors and 

internal averages above the overheating static threshold and found no direct relationship 

between such factors and indoor overheating. More specifically, in this study: 

  a regression analysis demonstrated that occupant behaviour (window patterns, 

the use of curtains, and internal gains due to appliances) had a significant impact 

on temperature variation and overheating; 

 Questions arose as to whether it is possible not to rely on occupants to 

open/close the curtains are valid, since developers seem reluctant to incorporate 

external shading in designs due to a substantial increase in construction costs 

[Tabatabaei Sameni et al., 2015]. 

In another study, two side-by-side Passivhaus dwellings were monitored for over two 

years. The dwellings have the same building specifications, similar building layout. The 

main difference consist in the window-to-wall ratio (WWR): in dwelling 1 the windows 

occupy 55% of the south elevation and in dwelling 2 the glazed area is 20% of the 

elevation. Whereas in dwelling 1 the design's intention was to maximise the potential for 

solar gains and the vision area, in dwelling 2 the intention was to reduce the 

constructions costs associated with large windows and blinds [Ridley et al., 2014]. 

The most significant results of that study can be summarised as follows: 

 Monitored temperatures of both homes failed the CIBSE static summer 

overheating criteria [CIBSE, 2006a] in the bedrooms. When using the BS EN 

15251 adaptive criteria [BSI, 2007], dwelling 1 showed a high risk of overheating 

due to its solar gains through windows, whereas dwelling 2 was found to be at 

low risk, and anyway at a risk significantly lower than dwelling 1. To confirm that 

the risk of overheating is predominantly due to solar gains, the study carried a 

multiple regression analysis. Such analysis confirmed that while dwelling 2 is 

more dependent on external temperatures than dwelling 1, dwelling 1 had 

temperatures more dependent on solar gains; 

 Interestingly, dwelling 1 was fitted with external blinds but the interviews with the 

occupants revealed that the occupants did not fully understand how to operate 
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 Summer 2009 has been categorised as a cold summer. 

http://www.commercialwindows.org/wwr.php
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them and that they were reluctant to open the windows during summer to 

prevent insects from entering the house [Ridley et al., 2014]. This fact highlights 

the contrasts between innovative design and occupants’ behaviour [Ridley et al., 

2014]. 

A study monitored two Passivhaus flats in Cardiff (one above the other) over two years. 

One of them has turned the MVHR off and hence was operated as a naturally ventilated 

dwelling. The management of the free-running apartment was conducted by maintaining 

the MVHR off, opening the windows to refresh the air and using an electrical panel 

heater mainly in the living room and bedroom. Internal temperatures were lower in the 

free running flat, with averages temperatures in the bedroom between 16-17°C and 

between 17-20°C in the living space. So, it seems that by allowing for natural ventilation, 

and hence adaptive behaviour, the range of comfort is widened and, therefore, the risk of 

overheating can be reduced [Sassi, 2013]. On the basis of these findings, Sassi questions 

whether naturally ventilated HIHs are more appropriate in mild maritime climates, such 

as the southern UK, by so avoiding the heat recovery when not needed. As this case 

suggests, a naturally ventilated HIH can perform well with no MVHR but, importantly, 

only in terms of energy consumption, because the indoor air quality was not assessed in 

this study. 

In 60 low-energy homes across UK, differences in internal temperatures were evident 

from houses with and without MVHR. Interestingly, it was found that during winter, 

houses with MVHR reported greater temperature stability and better levels of ventilation 

compared to houses without MVHR. During summer however instances of overheating 

were reported in houses equipped with MVHR. This study recognises the importance to 

adequate summertime ventilation provision in airtight houses and the need to develop a 

know-how aimed at effective implementation of ventilation strategies to avoid 

overheating [McGill et al., 2017]. 

A recent report presented by Innovate UK [Palmer et al., 2016] and based on the largest 

building performance evaluation programme of energy efficient housing across UK - 76 

homes were chosen from 59 monitoring projects that Innovate UK funded through its £8 

million Building Performance Evaluation programme over the years 2010-2014 - present 

a number of findings, which are listed below: 

 Developers and housing associations are often keen to reduce the energy 

demand of their buildings; 
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 During the first year of inhabiting low-carbon houses can sometimes increase 

quite considerably the energy demand and related CO₂ emissions. The report 

also highlights that these adjustment issues might not be spotted and fixed 

unless there is in place performance evaluation; 

 Changes in the designs (such as changing a cladding or changes to account for 

fire regulation compliance) during the construction phase were shown to worsen 

the building fabric performance and in some cases causing overheating; 

 The provision of air gaps at the bottom of doors was not always implemented’ as 

a result cross ventilation was compromised; 

 Heat recovery ventilation was installed with flexible ductwork with unnecessary 

bends. This caused the system's air flow to underperform and increase noise (an 

example of wrong installation of ductwork can be seen in figure 3.8 in Chapter 3); 

 When low-carbon energy systems were installed (MVHR, biomass boilers, etc.), 

their operation were not fully understood, and/or controls were complex to use. 

Not only residents needed clear explanations, but also automatic controls were 

found to be problematic and by so they be avoided; 

 The report also questions whether low-carbon technologies are appropriate due 

to their unclear benefits and unfamiliarity in design, installation, and use; 

 There were found gaps in responsibilities and weak communication in the 

procurement contract, between designers and contractors; 

  Loggers recorded temperatures above 28°C in half of the properties, but only for 

a short amount of time (less than 0.6% between May and August); 

 One Passivhaus exceeded 28°C for 9% of the summer and exceeded 25°C for 

one-fifth of the summer. The report suggests that this may have been caused by 

the fact that the residents left the windows closed for much of the time. However, 

leaving the windows closed and letting the MVHR "do the job" is the instruction 

provided to the residents. So clarity is missing in the ventilation strategy; 

 The report also suggests that window-opening routines might be a factor more 

important in influencing overheating than insulation and air tightness itself; 

 Another main finding is that air tightness deteriorates over time. This issue could 

be of relevance to the study of overheating in rural contexts and an aggravator in 

UHI contexts. 
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OTHER INTERNATIONAL PROJECTS 

Other international projects have instead shown the suitability of highly insulated houses. 

The European funded research project CEPHEUS project (1998-2001) provides findings 

from a number of monitored Passivhaus houses in Germany, Sweden, Austria, 

Switzerland, and France. This study comprises a total of 221 housing units in 14 building 

projects. Here, houses were monitored also from the point of view of the acceptability of 

Passivhaus dwellings by its inhabitants [Feist, Peper and Görg, 2001]. These surveys 

showed a generalised high level of acceptance (fig. 2.12): 

 The substantial majority of occupants found the winter indoor climate as good to 

very good. In addition the higher surface temperatures and the even temperature 

distribution throughout the space was experienced as highly pleasant. 

 During summer, occupants expressed to be satisfied or very satisfied with the 

indoor climate, especially thanks to the cooler environment when windows were 

closed (most households apply night time ventilation). 

 

 

Fig. 2.12 Evaluation of comfort in the CEPHEUS project [Schnieders and Hermelink, 2006] 

2.4.2 MODELLING STUDIES 

Thermal modelling offers a powerful tool to predicting the possibility or probability of 

overheating and can be used to test the consequences of changes in specific parameters, 

such as orientation, house types, house layout, climate change, etc. under well-defined 

conditions.  
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Dynamic thermal modelling (DTM) offers a powerful tool to evaluate the design choices 

and to assess the different zone’s temperatures by so informing the decision making of 

designers. As a result, valuable lessons can be learned from academic modelling studies. 

However modelling studies, like DTM, may be unreliable in assessing the overheating 

risks, because they are not able to reliably model human behaviour and their thermal 

interaction with their environment [Beizaee, Lomas and Firth, 2013].  

A low energy steel frame house in Nottingham was modelled with a base case-current 

weather data and future climate scenarios. In this study, the current base case presented 

acceptable levels of overheating only when external solar shading was applied to the 

model. In the future weather scenarios, the house was found to be likely to overheat 

even with shading, ventilation and earth-to-air heat exchangers [Rodrigues, Gillott and 

Tetlow, 2013]. The study also recognises the implications of high temperatures in one 

room having an effect on other rooms’ temperatures. In fact, the use of solar shading 

that has greatly reduced the percentage of high temperatures in the living room has had 

an effect on the temperatures of the adjacent areas, even though those areas are not 

directly affected by solar gain. Likewise – the high temperatures in the sunspace affected 

the overall temperatures in the house. The sunspace presented a particularly high risk of 

overheating as the incorporation of phase changing materials in the ceiling showed to be 

not sufficient at mitigating peak temperatures [Rodrigues, Gillott and Tetlow, 2013].  

A larger modelling study was performed on a stock representative of London. 

Mavrogianni et al. performed a DTM of a combination of 3456 virtual dwelling types in 

order to test current and future weather scenarios over a warm continuous 5-day period 

of modelling [Mavrogianni et al., 2012]. The results of this study can be summarised as 

follows: 

 Flats and bungalows are at most risk, and in flats the overheating risk increases 

as floor level rise; 

 A strong relationship was found to exist between insulation levels and internal 

temperatures. In general, insulation appears to reduce overheating, but in some 

cases, overheating increases (it was modelled as internally insulated). This shows 

an initial indication of the intrinsically different indoor environments resulting 

from the use of insulation; 

 There was a greater variation of living rooms internal temperatures within 

housing types than within rooms of the same dwelling; 
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 Interestingly, this study acknowledges its limits by not having taken into account 

of location specific (microclimate) factors to correctly map overheating risks 

[Mavrogianni et al., 2012]. 

A recent simulation study finds that buildings with thermal mass are at less risk of 

overheating and that thermal mass becomes more important as insulation levels increase 

[Mulville and Stravoravdis, 2016]. 

2.4.3 OTHER EVIDENCE 

The non-academic evidence relates to the bulk of reports conducted by knowledge 

platforms, such and Good Homes Alliance (GHA) or Zero Carbon Hub (ZCH) – and at the 

time the present research was undergoing - in the attempt to feed information quickly to 

professional bodies.  

GHA has conducted an exploratory study to call for evidence of overheating and to get a 

grasp of the extent of the problem of overheating in UK. GHA conducted a consultation 

with environmental health officers, housing providers, consultants, etc. and also two 

online surveys. Within this, 185 instances of overheating where found, shown in fig. 2.13. 

It should be noted that fig. 2.13 does is not a representative sample.  

 
Fig. 2.13 Instances of overheating according to typology [Taylor, 2014] 
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In this investigation, most observed causes of overheating are related to large glazing 

areas to the south and insufficient or flawed ventilation [Taylor, 2014]. In this respect, 

purpose built flats are at major risk, because dwelling units layouts often do not 

incorporate the possibility of cross ventilation. In addition, the main internal corridor is 

generally not ventilated and so it builds up the heat (and pollutants), which is then 

distributed to the dwellings units [Taylor, 2014]. 

Purpose built flats, present a number of intrinsic ‘defects’ or ’risk’ in terms of overheating 

due to a number of factors such as: 

 are mostly built in already high-density locations, such as urban contexts and 

therefore exposed to UHI effect;  

 are characterised by single-aspects layout, probably due to financial 

considerations;  

 for marketing purposes purpose flats have floor-to-ceiling glazing (and no solar 

shading); 

 the dwelling units are affected by heat gains from the corridors; 

 windows have very limited opening (according to GHA often only the 10%). 

All these factors could be summarised into no solar control, no proper ventilation and 

extra heat gain encountered (from UHI, corridors, inefficient appliances) [Taylor, 2014]. 
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2.5 CHAPTER SUMMARY 

It was found that there is no universal agreement on what constitutes overheating and 

that imposing a temperature limit would require many different thresholds (depending 

on age group, user-type, season, adaptability, type of house design). In addition, when 

assessing overheating, many studies agree that the static and the adaptive criteria 

analyses differ significantly in their assessment of overheating. 

The review of literature shows that despite the effort of the UK government to reduce 

energy demand for heating from the buildings stock, there is an increased demand for 

cooling of poorly designed in HIHs.  

Monitoring studies representative of the highly insulated building stock have shown that 

there is no direct relationship between averages of external temperatures and internal 

ones, as the occupants’ behaviour is one of the most influential factors in determining 

the occurrence of overheating. In this context, the reliance on the occupants’ behaviour 

for solar shading or ventilation constitutes one of the main causes of indoor thermal 

performance and might be at the origins of high indoor temperatures in some cases. 

Evidence of overheating has been identified in the generic UK stock. Studies surveying 

the monitored temperatures of representative building stock indicate that bedrooms 

experience higher temperatures. Moreover, purpose built flats have been found to be the 

typology at most risk of overheating, probably due to their incapability to incorporate 

cross ventilation. This risk factor is aggravated by the fact that a significant proportion of 

new dwellings are flats.  

Modelling studies of HIHs have shown that high temperatures in one room have an 

effect in the adjacent areas. So the problem of overheating is not limited to individual 

rooms. Also in addition, passive design implementations, such as sun spaces, can 

exacerbate internal temperatures. Dynamic simulation has also demonstrated that – even 

in the case of a perfectly balance MVHR system (well designed, installed and used) - 

MVHR systems are not able to mitigate excess temperatures in buildings with high 

thermal mass, because they are not able to remove sufficient heat to prevent 

overheating. 

Large monitoring studies representing the highly insulated building stock collected by 

Innovate UK (prior known as Technology Strategy Board) have showed that HIHs are 
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particularly vulnerable to a number of issues. Those issues include communications 

during the built process, in-construction changes affecting the thermal performance and 

lack of knowledge in implementing and operating low-carbon technologies.  

The studies introduced in this chapter indicate the main physical causes producing 

uncomfortably warm temperatures can be related to the following factors:  

 occupant behaviour; 

 house typology and type of rooms; 

 ventilation strategy; 

 lack of solar control strategy; 

 absence of thermal mass; 

 Insulation as a condition that can both attenuate as well as exacerbate 

overheating. 

This provides an initial indication that innovation linked with HIHs may not have yet 

developed the necessary know-how in the construction industry. For instance, the 

advantages of mechanical ventilation may well not yet compensate the shortcomings 

associated with designing, installing, and operating it. For thermal efficiencies have been 

found to be lower than predicted, energy consumption slightly higher than predicted or 

calculated. Proper ventilation strategy for excess heat removal was also found to be 

almost inexistent.  

In conclusion, the treatment offered in this chapter justifies the statement that the 

current understanding of overheating in HIHs in the UK is limited. The next chapter will 

hence explore the dimensions of overheating in HIHs in relation to both thermal factors 

and design.  
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CHAPTER 3: DIMENSION S OF OVERHEATING 

"The whole is something else than the sum of its parts"  

Kurt Koffka, 1935 

 

Synopsis 

This chapter is concerned with providing background information to conceptualise the 

most important dimensions of the problem of overheating. The two dimensions 

specifically engaged in this chapter are the factors relating to the building physics and to 

the practice of design. 

The recognition of those different dimensions of overheating is part of a broader 

methodological approach that is best characterised as a form of interpretivism (which will 

be introduced later in this thesis).  

The first part of this chapter elaborates on the physical factors leading to overheating in 

dwellings and how they are informed by the factors influencing the thermal performance 

of HIHs. The second part revisits the meaning of design as a practice, its basic traits and 

moves to the specific traits of the design of HIHs.  
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CHAPTER 3 Dimensions of 

overheating 
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microclimate effect, 
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3. Design of HIHs and 
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4. Chapter summary 
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designers 

CHAPTER 7 Overheating map 

CHAPTER 8 Integrated 
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3.1 THE REALM OF BUILDING PHYSICS 

The thermal performance of a dwelling – and with it, the potential occurrence of 

overheating - is a complex phenomenon with multiple factors. Therefore, it is not 

possible to account for the phenomenon of overheating without reconstructing all the 

factors that influence the thermal performance of buildings. Literature has shown that in 

the UK overheating in homes is associated to three main compound factors, which are: 

(a) external heat gains (sun, UHI), (b) internal heat gains (occupancy, appliances) and (c) 

inadequate ventilation [Dengel and Swainson, 2012; NHBC, 2012b]. Further elements, 

such as climate, urbanization, dwelling characteristics and others, etc., can play an 

important role in more than one of those areas.  

Careful attention to the implication of each element in the three core areas of 

overheating is required when designing HIHs, since studies presented in the previous 

chapter have reported that the role of such elements are exacerbated in the context of 

HIHs [Orme, Palmer and Irving, 2003].  

The three core areas of overheating can be affected by different elements, which from 

the designers’ point of view can be qualified as unmodifiable or modifiable. A tentative 

categorisation is provided in the illustrated figure 3.117, conceptualised after [Lewis, 1999; 

Dengel and Swainson, 2012; NHBC, 2012b]. Each element impacting on overheating will 

be described in the following pages, where its relationship to overheating in HIHs will 

also be explicated18.  
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 The categorisation is considered as tentative because depends on the context and also on the 

actual scope for design that each specific project allows. 
18

 According to The Energy Saving Trust, the factors concurring to overheating are these plus 

thermal mass [Energy Saving Trust, 2005].  
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Fig. 3.1 Diagram of factors concurring in the thermal performance of buildings (left side) and their 

possible relationship with the main compound problems concurring in overheating (right side)  

 

It should be noted that, in the setting of this research, HIHs (and, with it, super-insulation 

and airtightness) are considered the context where overheating develops, on the basis 

that, the compound factors leading to overheating (namely, external heat gains, internal 

heat gains, and inadequate ventilation) manifest differently than in a non-highly 

insulated (traditional housing stock)19. To restate this point, in this research, HIH is the 

context where gains and ventilation act differently than in a non-HIH, and therefore 

insulation is not considered a reason per se. This statement is supported also by the 

evidence provided by building simulation studies [Orme and Palmer, 2003]. 

In the following paragraphs, it will be developed the factors concurring in the thermal 

performance of buildings and their relationship to the occurrence of overheating in HIHs. 

3.1.1 CLIMATE 

As reported by the Met Office, under a global perspective, the climate of the Earth 

depends on how much of the sun's energy is retained by the land, sea, and air, and on 

how the climate system responds to changes [Met Office, 2013]. Under a regional scale, 

climate depends on several other factors, of which the latitude (or distance from the 
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 This contextual aspect will be developed in section 3.2, the realm of building design. 
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Equator) is one of the most important factors20. The actual weather in an area may vary 

considerably from what is typical of that region's climate [Met Office, 2013]. In fact, the 

very broad climate zones can be further refined at a local scale according to the (1) 

altitude, (2) prevailing wind, (3) distance from the sea, (4) ocean currents, (5) topography, 

(6) vegetation, and (7) urban/rural context of the location at stake [Met Office, 2014]. 

However reported climate observations of global and UK climate trends make evident 

that the climate is warming has risen by nearly 0.8C since the late 19th century, and 

rising at about 0.2C /decade over the past 25 years due to man-made GHG emissions 

(>90% probability) [Jenkins, G.J., Perry, M.C., and Prior, 2008], see figure 3.2. 

 
Fig. 3.2 Observations of summer mean temperature change [Jenkins, G.J., Perry, M.C., and Prior, 

2008] 

3.1.2 HEAT WAVES 

Since 2003 when an excess of heat-related deaths was recorded across Europe, the heat 

wave status shifted from unperceived risk to an instance of dangerous climate. This idea 

was reinforced after the Intergovernmental Panel on Climate Change (IPCC) claimed that 

more frequent and severe heat waves are likely to occur. The peak temperatures 

experienced in England and Wales in August 2003 reached 38.5 ˚C, and they are believed 

to have caused a 16% excess in mortality during the relevant period. This means that 
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 The most used description of climate zones - the Köppen system – divides the world in six 

(macro) climate zones: Equatorial, Arid, Mediterranean, Snow, Polar, and Temperate [Met Office, 

2015a]. Temperate climate covers a range of climates from near-Mediterranean and humid, sub-

tropical zones to maritime climate (influenced by the oceans). The latter refers to the UK [Met 

Office, 2015a]. 
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heat waves should be considered a major mortal risk and in fact the number one risk 

among the natural hazards of post-industrial societies [Poumadère et al., 2005]. 

By investigating the relationship between heat and mortality in London in a 21 year 

period, Hajat et al. concluded that an increase of heat-related deaths in hot days starts 

being registered at an outdoor daily average temperature of 19˚C. The duration of 

exposure to high temperatures was also found to be an important factor in determining 

the increased rate of mortality [Hajat et al. 2002, as cited by Beizaee, Lomas and Firth, 

2013]. 

Another study claims that mortality across population begins at a (93rd centile threshold) 

outdoor daily maximum temperature of (to name few): 

 24.7°C in London 

 23°C in the Midlands 

 22.2°C in Yorkshire and Humberside 21 [Armstrong et al., 2011]. 

Naturally there is a link between internal and external temperatures (at least in the 

absence of mechanical cooling). However, this link is not well understood due to lack of 

data on internal temperatures [Dengel and Swainson, 2012]. One of the reasons may be 

because in buildings, internal conditions vary considerably with building type, layout and 

age but also between individuals and households in their behavioural and physiological 

responses to their temperatures. For example HIHs are meant for comfortable stable 

indoor conditions, but the effects of orientation and occupancy may alter completely 

comfort.  

During heat waves, people directly experience both external and internal temperatures, 

but people are likely to spend most of their time indoors though (particularly if it is very 

hot outside). Furthermore, it is well documented that the majority of excess deaths 

during a heat wave occur amongst the elderly [Poumadère et al., 2005], who are known 

to spend an even higher proportion of time at home indoors than the general 

population. As a result, indoor temperatures are particularly important in this context.  
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 Most of the analysis and projections available for heat waves about deaths uses only external 

temperatures, simply because this is readily available with a long historical record, and applies to 

the whole population in a given location. For details on this study see [Armstrong et al., 2011]. 
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Relationship to overheating 

When looking at indoor temperatures during heat waves, alarming results were found. A 

study monitoring 9 dwellings between Manchester and London during the August 2003 

heat wave, when the daily averages of external temperatures were exceptionally high for 

the UK (20°C), recorded the occurrence of remarkably high temperatures in the London 

dwellings, with several room averages exceeding 27°C, and room temperatures above 

25°C for the entire 7 days of hot spell [Wright, Young and Natarajan, 2005]. 

In addition, careful considerations are to be taken when thermal insulation is installed. In 

a simulation-based study of a terrace house during the 2003 heat wave, Porritt et al. 

found that retrofitting via internal wall insulation produced an increase in overheating on 

an end of terrace for some future climate scenarios. However, if such internal wall 

insulation is fitted in combination with other solar control measures, overheating can be 

effectively be reduced, whilst also reducing annual space heating demand [Porritt et al., 

2012]. 

The above paragraphs suggest that there is a risk that HIHs can become uncomfortably 

warm, and especially at evenings when they are occupied. The lack of thermal mass and 

solar protection can exacerbate internal temperatures, and there is no guarantee that 

effective ventilation through the windows may be achieved. For MVHR is not designed to 

cover this role: MVHR systems are often being installed with no summer bypass22 [Sharpe 

et al., 2016], and even in the case summer bypass is available, summer bypass may leak 

some heat23). As a result, removal of excess heat is made slow, and night cooling 

(essential to lower indoor temperatures) would not be possible with the 1.5ACH offered 

by an MVHR (at least 10ACH are required to provide night ventilation) [Orme and 

Palmer, 2003]. 

3.1.3 URBAN HEAT ISLAND EFFECT AND MICROCLIMATE 

The urban heat island (UHI) is a phenomenon known for about a century and has 

attracted much attention in the last 10 years (see figure 2.12 in Chapter 2). The urban 
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 Summer bypass is a feature of MVHR systems to exclude heat gains when heat inputs are not 

required (such as summer). See Section 3.1.5.2 for an extensive treatment of the summer bypass. 
23

 This is based on anecdotal evidence, from ‘corridor’ conversations with BRE-MVHR specialist in 

one of the attended overheating events (Workshop: Overheating and Indoor Air Quality in new 

homes - Peterborough - 23 June 2015, organised by Homes and Communities Agency). 
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heat island (UHI) refers to the different temperature between urban areas and their 

surroundings , and it is responsible for a summer temperature increase of at least 1-4.5°C 

and possibly 8-10°C in cities as well as for [Givoni, 1998; Santamouris, M., 

Asimakopoulos, 2013]. 

Suburban areas are characterised by a higher proportion of green space, mainly gardens. 

These green areas have a high solar absorptivity (around 80%) and through 

evapotranspiration of the plants, temperature is lowered. Also evaporation keeps 

surfaces and air in contact at moderate temperatures [Santamouris, M., Asimakopoulos, 

2013]. By contrast, the artificial materials urban areas are made of (such as asphalt) have 

low solar reflectance (low albedo). Therefore, they absorb almost all the solar radiation 

falling on it, store it and radiate it back to their surroundings after late afternoon. 

Moreover, if the buildings have different heights, the higher buildings slower the 

radiative cooling rate of the lower buildings. Tall buildings can also reduce wind speed, 

which can be up to 25% lower than the wind speed recorded in open areas. Finally, in 

cities the air pollution blocks the night heat radiation to the sky dome [Givoni, 1998; 

Mumovic and Santamouris, 2013].  

The UHI effect is more intense during the night. As a result occupied dwellings are 

characterised by reduced relative humidity due to high air temperatures and lack of 

sources of humidity [Santamouris, M., Asimakopoulos, 2013]. This has the potential to 

cause thermal stress to people.  

The factors determining UHI have been categorised by Givoni as:  

 meteorological (i.e. non subject to human interventions, such as cloudiness and 

regional wind speed;  

 manageable, affected by the design of the buildings, such as the colour of 

buildings (which determines the fraction of solar radiation reflected away), the 

amount and distribution of urban vegetation, the energy use for building and air 

conditioning, the density of the built-up areas and types of buildings (which 

affects the amount of solar radiation reaching the ground levels and the 

nocturnal radiant loss), and the orientation of streets with respect to the 

predominant winds (affecting the wind speed near the ground) [Givoni, 1998]. 

In respect to the manageable component of UHI, and with the generic increase of 

urbanisation globally, inevitably, UHI is likely to be exacerbate overheating, and more 
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dwellings will be interested. There is also a meteorological unavoidable risk, the 

occurrence of a heat wave, which can exacerbate the UHI intensity. In London 2003, the 

average night time UHI, around 3-4C, escalated to 6-9C thus increasing the 

vulnerability of London’s population to heat-related health risks Hajat el al. 2007, cited by 

[Mavrogianni et al., 2012]. So some strategies for mitigating its effects are expected to be 

a necessary component of any urban planning [GLA, 2016], while some new 

developments in London are opting to incorporate some form of active cooling despite 

the buildings’ natural shading and ventilation [Swainson M, 2014]. 

Microclimate 

The microclimate is intrinsically linked to the UHI effect. The microclimate refers to “the 

condition of the solar and terrestrial radiation, wind, air temperature, humidity, and 

precipitation in a small outdoor space” [Brown and Gillespie, 1995]. This definition 

indicates that the microclimate is a result of landscape elements as well as building 

features.  

In fact, the urban space bounded by buildings is called the urban canopy layer. 

Santamouris [2001] sustains that the urban canopy layer includes an unlimited number of 

microclimates generated by different configurations of urban spaces or forms. Within 

these configurations there are varied micro conditions (such as vegetation, albedo or 

surface materials), which in their combination contribute to determine the microclimate 

of a city [Taylor et al., 2008]. Taylor claims that improving the comfort of unconditioned 

and external places can also reduce the overall energy consumption of cities. 

Microclimate design has then the capacity of minimising the amount of energy for 

heating and cooling in buildings [Brown and Gillespie, 1995]. 

Most of research focusing in the microclimate is aimed at attenuating the UHI effect and 

hence is intended for a city-wide strategy scale [Virk et al., 2014]. In the study of Virk et 

al. the effectiveness of green roofs and cool roofs in terms of reduction of overheating in 

a modelled building was assessed. The types of impact of the roofing strategies were 

split into direct and indirect effects. The effects of the roofs were modelled using 

microclimatic modelling software. The results showed that among the direct effects, a 

non-insulated green and cool roof were more effective than insulated roofs at reducing 

levels of overheating. The study also found that green and cool roofs are appropriate to 

mitigate the UHI effect, as they decrease the amount of heat absorbed into the fabric of 

the building and cool the surroundings [Virk et al., 2014].  
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Indirect effects of roofing were analysed by considering how the perturbed weather files 

impact on the indoor temperatures. On the one hand, the study found that green roofs 

temperature perturbations are greatest in the evening and cool roofs in the morning. On 

the other hand, it found that, when compared to direct effects, the indirect cooling has 

little impact on reducing overheating, mostly because – in current climates - the 

temperature and humidity perturbations have no significant effect on the internal 

temperatures. However, in 2050 the indirect effects are expected to have a slightly 

greater impact on the reduction of overheating [Virk et al., 2014]. 

Relationship to overheating 

If UHI is not taken into consideration in the design of HIHs – where much attention is 

given from the exterior to the interior – HIHs may ultimately be affected by excessively 

high temperatures and so constitute a health risk. As a boomerang effect, these 

dwellings may necessitate air conditioning, which then increases the anthropogenic heat 

and the overall UHI effect. So HIHs could potentially be affected by overheating and at 

the same time cause overheating. 

Mavrogianni et al. claim that UHI might not be a dominant factor in the phenomena of 

overheating in dwellings. In a study monitoring 36 London dwellings during Summer 

2009, no correlation was established between overheating and distance from the London 

UHI thermal centre [Mavrogianni et al., 2010]. In this study, the average indoor air 

temperatures were related to the London UHI thermal centre. This comparison revealed 

an increase scattering in indoor temperatures as the centre is approached from the 

outskirts. This could be an indication of the heterogeneity of urban microclimates, 

potentially overriding the UHI effect [Kolokotroni and Giridharan, 2008; Mavrogianni et 

al., 2010]. All this suggests that although UHI effect may constitute one factor in the 

cumulative effect characterising overheating, it may not necessarily be the dominant 

factor. Related, construction type and microclimate may be more decisive determinants 

of overhearing, when compared to the UHI effect. 

The influence of the location-specific site characteristics (microclimate) has shown to 

have a marked effect on UHI intensity [Kolokotroni and Giridharan, 2008]. However, there 

are not sufficient works to include the physical site characteristics into a predictive model 

[Kolokotroni and Giridharan, 2008].  
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3.1.4 BUILDING CHARACTERISTICS 

Within the building scale, there are some factors that are linked to their thermal 

performance, and, as a consequence, to the possible incurrence of overheating. The 

performance of buildings depends on a number of characteristics that (positively or 

negatively) affect the equation of thermal comfort as well as ultimately energy demand 

of building. A non-exhaustive list of building characteristics can be listed as follows: 

1. Building typology 

2. Building layout 

3. Building orientation 

4. Building materials 

5. Building services (HVAC) 

3.1.4.1 BUILDING TYPOLOGY 

A study using a database from the Ministry of Housing in the Netherlands found that 

even though occupant characteristic and behaviour significantly affect energy use in 

dwellings (4.2%), building characteristics are responsible for a larger part of energy use in 

dwellings (42%). Hence, when considering the energy use of dwellings, the actual 

building characteristics have 10 times greater impact on the energy use [Guerra Santin, 

Itard and Visscher, 2009]. It is therefore justified to look at building typology as a 

potential source of overheating, not only because of the implications a typology may 

have in consideration of solar gain, ventilation, etc. but also because the building 

typology partially determines the behaviour of those who live in a building. 

With regards to the overheating risk that different typologies pose, monitored studies 

offered evidence that compact dwellings and purpose built flats are at most risk of 

overheating. This is due to their reduced external surface areas (which are prone to have 

lower heat losses in winter) resulting of reduced external heat loss through surfaces and 

ventilation openings [Gupta and Gregg, 2012].  

Even though in the UK purpose built flats as typology does not constitute the vast 

majority of the building stock, purpose built flats are still the 32% of all new housing 

[NHBC, 2014]. And this trend should be expected to increase. In addition, the expected 

performance of flats, even if properly designed for cross ventilation, flats might 

encounter shortfalls [Palmer et al., 2016]. Tabatabaei Sameni et al. claim that it is 

advisable to determine which flats –within a building or development- are at higher risk 
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and accordingly to prioritise accommodation of vulnerable groups, since currently these 

are assign randomly, in overheating risk terms [Tabatabaei Sameni et al., 2015]. 

3.1.4.2 BUILDING LAYOUT 

Closely related to typology we found building internal layout. The arrangement of a plan 

(and sections) of a building is one the main activities of architectural design and it has 

great impact on the thermal performance. For instance, having an open kitchen 

decreases energy use, probably because of the heat generated by cooking and the use of 

household appliances [Guerra Santin, Itard and Visscher, 2009]. Likewise, it has been 

found that open kitchens in HIHs with no windows can increase the instances of 

uncomfortably warm temperatures [Nooraei, Littlewood and Evans, 2013].  

In relation to overheating, its risk is higher in new and refurbished properties, small 

dwellings and flats, and predominantly single- sided properties where cross ventilation is 

not possible [Dengel and Swainson, 2012]. For instance, the London Plan acknowledges 

the influence of layout in reducing or managing noise surrounding the development 

(which can also be related to good opportunities for natural ventilation) and in improving 

natural ventilation (by encouraging new dwellings to adopt minimum ceiling height of 

2.5m) [GLA, 2016], while in other countries this figure is higher. 

3.1.4.3 BUILDING ORIENTATION 

Site planning in the UK has traditionally been characterised by the distribution of an 

archetype (or typology) throughout the development. In a large study of traditional 

English dwelling, it is claimed that the fact that internal temperatures showed to be 

consistent across all building forms and ages, explains why traditionally no consideration 

is paid to the orientation of the English stock [Firth and Wright, 2008]. This tradition may 

also explain why attitudes of developers and behaviour of occupants may not have 

changed in respect to solar gain. 

In the UK the effects of the excessive solar heat gains were widely known in the early 

sixties, when studies revealed compared radiation intensities on vertical surfaces higher 

than those in tropical areas “…and if admitted through the large windows which are a 

feature of recent trends in building design, are sufficient to cause overheating in spite of the 

relatively low external air temperatures” [Loudon and Danter, 1965].  

Studies confirm the potentially undesired effects of solar gains. Porritt et al. also showed 

that orientation have a substantial; impact on overheating exposure, with reported 
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variations by almost 100% between different orientations in modelled house types 

[Porritt et al., 2012]. 

In a large survey, 2011 Energy Follow-Up Survey (EFUS), 2,616 households representative 

of the English housing stock were interviewed. While the majority of households (80%) 

did not report any difficulty in keeping rooms cool during the summer; 20% of 

households reported that at least 1 room in their dwelling was too hot during summer. 

This 20% of households were asked to provide a reason for this and were asked to 

choose from a set list of options, with the possibility to provide multiple responses (see 

fig. 3.3) [BRE, 2013]. The most common reason given relates to the orientation of the 

dwelling (householders reported problems with ‘sunlight’). Other reasons for overheating 

were high and low levels of insulations, or because householders had to keep their 

windows closed to reduce noise or to keep their dwelling secure [BRE, 2013]. In this study 

one can appreciate the emergence of orientation and insulation levels as a context where 

overheating occurs. 

 
Fig. 3.3 Householders’ reasons for overheating in their dwellings [BRE, 2013] 

 

3.1.4.4 BUILDING MATERIALS 

The importance of materials in relation to overheating in HIHs was emphasised early in 

2003 by Orme & Palmer, who stated that “as house become more highly insulated the 

fabric loss potential is reduced and the balance of heat flows becomes very finely balanced. 

Only a small excess of heat gain over loss will cause overheating. When this is 
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considered, controlling heat gains, and the use of thermal mass and ventilation, becomes 

more important as means of moderating the temperature rise” [Orme and Palmer, 2003].  

The Reducing Overheating – a designer’s guide published by the Energy Saving Trust - is 

recommended by SAP24 assessment to avoid overheating. Among the findings from a 

simulation study that had a 1940’s dwelling as its object, the effect of materials on the 

summer performance of that dwelling can be noted (fig. 3.4).  

 
Fig. 3.4 Overheating risk for different design options [Energy Saving Trust, 2005] 

 

Roaf et al. argued that limited attention is paid to traditional means of reducing 

overheating, such as the inclusion of thermal mass and openable windows for natural 

ventilation in buildings constructed with the Passivhaus standard [Roaf, Crichton and 

Nicol, 2009] as cited in Tabatabaei Sameni et al., 2015]. 

Moreover, the short time constant of a lightweight building should be expected to allow 

for a quick dissipation of internal temperatures through purge ventilation. However, no 

studies have been found on whether this is an appropriate strategy for night cooling. In a 

simulation study by Orme, night cooling is indicated as the most effective strategy to 

preventing overheating in super-insulated houses, for both thermally heavyweight and 

lightweight housing. However, the different nature in time constant of the two types of 

dwellings might justify the suspect that a dwelling with no thermal mass might allow 

purging heat to allow for a full night sleep in HIHs [Orme, Palmer and Irving, 2003]. 

                                                           
24

 SAP or Standard Assessment Procedure will be developed in section 3.2. 



CHAPTER 3: DIMENSIONS OF OVERHEATING   56 

Wright et al. found that, during the August 2003 heat wave, when the daily averages of 

external temperatures were exceptionally high for the UK (20°C), the high thermal mass 

in some monitored dwellings had the effect that internal temperatures both in 

Manchester and in London were up to 5K higher than the (night) outdoor air 

temperature. This suggests that the thermal capacity may restrict the effectiveness of 

night ventilation to provide comfort at night (even though to a different degree within 

homes and rooms within a dwelling). This study calls into question the use of high 

thermal mass in construction [Wright, Young and Natarajan, 2005], especially in contexts 

in which the UHI occurs.  

When questioning the appropriateness of high thermal mass due to mass saturation of 

high temperatures during a heat wave, it is worth underlining that in the UK heat waves 

are normally reduced in number and short in time, even though they are predicted to 

increase in the future [Shaw, 2007]. 

3.1.4.5 BUILDING SERVICES (HVAC) 

Services in buildings have proved to be a source of heat because they are installed within 

the building envelop [NHBC, 2012b]. Whether that extra gain is desired or not, evidence 

has shown that poorly executed systems (uninsulated tanks and pipes) may cause all-

year-around heat gains [Stevenson, Carmona-Andreu and Hancock, 2013].  

The national housing survey shows that the domestic hot water is provided via central 

heating (not from a heated tank). However, in HIHs (with its little space heating), there 

may be a trend to reincorporate hot water tanks for domestic hot water. This is due the 

fact that in HIHs there is no traditional central heating (for instance, Passivhaus-like 

homes rely on MVHR and perhaps few electric radiators) but they might incorporate a 

tank for solar panels. These tanks are built inside the thermal envelope contributing to 

heat gains. Even though the use of photovoltaic (traditionally with no hot water tank) in 

houses is more popular, when compared to solar hot water, new technology, such as 

Photovoltaic-Thermal (PV-T), requires a water tank [DCLG, 2016a]. Figure 3.6 shows an 

increase in photovoltaic systems installed which may require water tanks which are 

source of potential internal heat gain. 
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Fig. 3.5 Homes with solar hot water heating and photovoltaic panels (2010-2014) [DCLG, 2016a] 

3.1.5 VENTILATION 

The Building regulation Part F defines ventilation as the “supply and removal or air (by 

natural and/or mechanical means) to and from a space or spaces in a building. It normally 

comprises a combination of purpose-provided ventilation and infiltration” 25 [HM 

Government, 2013a, p.8]. Such definition provides a distinction between types of 

ventilation (purpose-provided ventilation and ventilation by infiltration). Ventilation is 

achieved in a very different way in traditional English houses and in HIHs. In fact, 

traditional houses are very leaky (see figure 3.6) and so infiltration is central to their 

ventilation. HIHs are, by contrast, extremely airtight and so heavily rely on purpose-

provided ventilation, which is instrumental to secure both air hygiene and thermal 

comfort. 

 

                                                           
25

 “Infiltration is the uncontrolled exchange of air between inside a building and outside through 

cracks, porosity, and other unintentional openings in a building, caused by pressure difference effects 

of the wind and/or stack effect” [HM Government, 2013a, p.8]. Occurs when there is a 

corresponding exfiltration. 
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Fig. 3.6 Relationship between dwellings age and air leakage [Johnston et al., 2004 after Stephen 

2000; HM Government, 2013b; Toledo, Cropper and Wright, 2016]. 

 

The forms of purpose-provided ventilation in HIHs are two: natural (such as opening 

windows) and mechanical (such as MVHR). 

3.1.5.1 NATURAL VENTILATION  

The implementation of progressive airtightness in dwellings has the consequence of 

reducing infiltration. So reliance on natural ventilation to provide summer comfort is 

reasonably expected to increase. Natural ventilation consists in air driven in and out of a 

building as a result of pressure differences across the openings (such as windows and 

doors). Therefore, it depends on the air flow patterns around buildings (resulting from 

outdoor climate, microclimate and nearby buildings) [Santamouris, M., Asimakopoulos, 

2013].  

In outdoor areas, ventilation is affected by the regional climate and by the local climate. 

At a regional level, ventilation is characterised by the prevailing winds. At the level of 

local climate, vegetation can disrupt or block low-level air-flow. In urban contexts, the 

presence of populations, housing, transport and industry generates warmer temperatures 

and a scarcely windy, noisy and polluted environment [Met Office, 2014]. In urban areas 

and dense social housing, flats in particular, the opportunities for ventilating through 

windows may be limited [McLeod, Hopfe and Kwan, 2013]. This may affect purge 

ventilation (i.e. quick dissipation of air). As such, ventilation can be seen as a contributing 

factor to overheating. It should also be seen as an unpractical means for cooling. 
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Relying on natural ventilation has some shortcomings. For instance, while windows 

operation does not require special training, a BRE study found that occupants were not 

aware of the need of trickle vents [Dimitroulopoulou, 2012]. In addition, the Royal Society 

for the Prevention of Accidents (RoSPA) notes that the windows of new build social 

housing limits the opening to less than 100mm for child safety [RoSPA, 2002]. This can 

reduce opportunities for natural ventilation, notably in HIHs [Tabatabaei Sameni et al., 

2015].  

In a survey on 101 homes, Mavrogianni reported on occupants’ ventilation habit in both 

typical days and warm days. Respondents claimed that opening windows is mostly 

functional to obtain fresh air rather than control high indoor temperatures. In addition, 

more than half of the respondents stated that they do not open the windows due to their 

concerns over security, while more than one third of them do not open the windows due 

to high external noise levels. The study also found that even on an average hot day, a 

number of the respondents (20%) tended not to open windows at night. [Mavrogianni et 

al., 2016]. 

There is also anecdotal evidence of the inability of some windows to being able to 

perform night ventilation due to opening limitation as well as to security and noise 

concerns [Crump, Dengel and Swainson, 2009].  

3.1.5.2 MVHR 

While MVHR systems can be considered a HVAC system, they are dealt with in this 

section because they should be considered as a means of purpose provided ventilation. 

MVHR is a growing zero carbon technology responsible for the provision of fresh air 

while recovering heat. In terms of ventilation strategy, MVHR is a whole dwelling 

ventilation by a continuous air exchange: it then provides fresh air and dilutes water 

vapour and pollutants not dealt with by extract ventilation [HM Government, 2013a]. Its 

use is mostly linked with Passivhaus homes and HIHs.  

However, there is a substantial amount of evidence of poor installation and 

commissioning, ignorance of occupants (turn off, run on boost at all times, etc.). 

[Stevenson, Carmona-Andreu and Hancock, 2013; Sharpe et al., 2016; CIBSE, 2018]. In 

addition, the average energy consumption of MVHR units was found to be slightly higher 

than expected [Ridley et al., 2013]. The average ventilation rate depends on the MVHR 

unit and also on the duct system and how this has been designed and installed, see 
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figure 3.7 [CIBSE, 2018]. Monitored studies found that the average thermal efficiencies on 

the MVHR units were lower that the manufacturers quoted values, despite the fact that 

they are still above the PH minimum requirements of 75% [Ridley et al., 2013]. 

 
Fig. 3.7 MVHR systems: design and installation of ductwork. Poor practice (top) good practice 

(bottom) [CIBSE, 2018] 

Even in the case of a perfectly balanced system (well designed, properly installed and 

correctly used) simulation studies have found that MVHR systems are not able to 

mitigate excess temperatures in buildings with high thermal mass, because they cannot 

remove sufficient heat to prevent overheating [Orme, Palmer and Irving, 2003].  

The presence of MVHR in HIHs is particularly important to preserve a desired level of 

background ventilation, especially in consideration to the fact that infiltration is 

dramatically reduced in this type of houses. Within large housing survey of 60 low-

carbon homes, McGill et al. found that outside the summer season houses with no MVHR 

reported significantly higher average and peak temperatures than those with MVHR. 

However during summer, mean temperatures were significantly higher in homes with 

MVHR, and this was attributed to lack or summer bypass or complete switch off of the 

systems with no provision of background ventilation (therefore relying uniquely on 

intermittent window opening) [McGill et al., 2017]. 
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Sassi [2013] reports that MVHR installers tend to install hard wire MVHR so that the 

MVHR devices cannot be switched off. This is meant to avoid that occupants forget to 

switch it back on. Sassi claims that in southern England this means that the MVHR 

systems operate seven to nine months unnecessary. As a strategy to deal with the 

possibility that occupiers forget to turn MVHR on, in the Slateford Green housing project 

in Edinburgh, passive vents rather than mechanically driven ventilation have been 

installed [Sassi, 2013]. 

Summer bypass 

To prevent uncomfortably warm temperatures, the MVHR system may include a summer 

bypass. However, finding a shared definition of summer bypass has not been possible. 

The MVHR industry has been developed in recent years and is constantly adjusting to the 

requirements of the local market. As such, a unique definition of summer bypass has not 

found to be available at the time when this thesis has been written (2018) [Zehnder 

Group UK Ltd, no date; Behar, 2016; Figueiredo et al., 2016]. The researcher has 

experienced a lack of understanding of this feature by some of the market operators 

found at the commercial stands in a Passivhaus conference in the UK. In addition, there is 

currently no reference to summer bypass in Buildings Regulations, specifically in the 

Approved Document Part F – Ventilation [HM Government, 2013a]. 

Summer bypass can generally be intended as a method to exclude heat recovery when 

heat inputs are not required (such as summer). This can be achieved by:  

(a) limiting airflow rather than stopping heat recovery: by lowering the MVHR 

ventilation rates and by so, reducing the (preheated) air supply. It can be 

activated automatically based on external temperatures set point. 

(b) physically bypassing the heat exchanger with the inclusion of a physical bypass of 

the majority of the airflow volume. It can be activated automatically based on 

external temperatures set point. 

(c) adding a supply air boost feature to be manually activated when outside air 

temperature can contribute to reducing internal temperature and adjusting 

humidity levels.  on this respect, the Passivhaus institute warns that such method 

may incur into added electricity demand and that whenever possible the air 

supply boost should be provided by opening the windows [Passipedia, no date 

b]. 



CHAPTER 3: DIMENSIONS OF OVERHEATING   62 

The paragraphs above enable one to get a sense of the complex and ever changing link 

between ventilation and energy efficiency. This is also reflected in the building 

regulations: Part F deals with providing means hygiene air (ventilation) and Part L deals 

with limiting air leakage (via airtightness). These are two explicitly different requirements. 

But their changes cannot be treated in isolation without incurring in an unbalanced 

indoor environment, as conceptually represented in figure 3.8.  

Fig. 3.8 Conceptualisation of ventilation changes in residential leading to overheating 

3.1.6 OCCUPANT BEHAVIOUR  

Despite the fact that, when it comes to overheating, considerations have been given to 

occupancy, many studies show that overheating should be assessed during occupied 

hours. For instance, Firth and Wright found that, on a traditional sample surveyed, during 

occupied hours, living rooms tend to overheat more than bedrooms [Firth and Wright, 

2008]. It has also been found that the duration of window opening appears to be 

positively correlated with occupancy times [Dubrul as reported by Mavrogianni et al., 

2014]. 

Moreover it has been found that the social housing sector has a higher proportion of 

dense, purpose-built flats, and instances of high rates of overcrowding (see figure 3.9). 

Therefore, the impact of internal gains is likely to be higher than in other kinds of 

housing. In fact, in 2016-17, 7% of households of the social rented sector and 5% of 

households in the private rented sector lived in overcrowded accommodation [MHCLG, 

2017]. 
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Fig. 3.9 Overcrowding by tenure, 1995-2015, English Housing Survey, Headline Report 2014-15 

[DCLG, 2016b] 

 

For the purpose of overheating, this section is mostly interested in focusing on how 

people relate to building in order to reject excess heat and to dissipate warm 

temperatures, since this provides a measurable impact on thermal discomfort and health 

risks associated with their exposure to high indoor temperatures [Mavrogianni et al., 

2014]. 

In Germany, Schnieders & Hermelink (2006) have explored the sensitivity of the energy 

performance of occupant behaviour and have found that passive houses are less 

sensitive to occupant behaviour. In the Nederlands, Guerra Santin et al. [2009] have 

shown that some occupant behaviour is determined by dwelling type or HVAC systems. 

The effects of occupancy has been modelled by Mavrogianni et al, who showed the 

importance of window opening behaviour for indoor thermal performance on the UK 

stock. In this study, the effects of housing retrofit showed indoor overheating risk as a 

function of occupancy and behaviour (window opening): temperatures lie within a wider 

and higher range when windows remain closed and when bedroom windows can be 

adequately opened, the bedrooms experience lower temperatures than the living rooms 

[Mavrogianni et al., 2016]. 
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3.1.7 SECTION SUMMARY 

This section has shown that overheating can be potentially caused by all the factors 

concurring in the design of buildings. So, no one single factor can be blamed: remedial 

actions for overheating involve redressing the balance between heat gains and heat 

losses, by reducing heat gains or increasing the heat losses or both, as well as the use of 

thermal mass to act as heat sink to control temperatures swings and avoid sudden 

changes in the rooms. 

In fact, the problem of overheating, as it is presented in HIHs, has emerged as a result of 

a lack of cooling possibilities (lack of ventilation due to improper use of windows or 

improper design of windows, no form of solar control, etc.). It should be noted that these 

"lacking" factors can be seen as the natural consequence of sudden changes in homes 

design at a time in which users and designers have not yet embedded respectively the 

tacit and the explicit knowledge of those environments and related design practice.  

The problem to redress the balance between heat gains and heat losses in a HIHs starts 

with buildings design. For this reason, in the following section, the architectural design is 

explored, with a view of understanding how overheating is a product of contemporary 

design, the mechanisms in which this happens and the areas of possible change.  
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3.2 THE REALM OF BUILDING DESIGN  

While it is difficult to identify one main reason for the gap between energy efficient and 

thermally comfortable dwellings [NHBC, 2012a, 2012b], it is clear that design practice 

needs to respond quickly to the growing evidence of overheating [DCLG, 2012; Garrett, 

2014; Sharpe et al., 2014; Taylor, 2014; Morgan et al., 2015; McGill et al., 2017]. The next 

paragraphs will explore the definition of design, both in general (fig. 3.10) and in the 

context of low-carbon design, its methods and its challenges, as a part of a process 

instrumental to best framing the problem of overheating in HIHs and an attempt to draw 

some links within the design of HIHs’ as a practice and overheating in HIHs. 

 
 

Fig. 3.10 Schematic ideogram of this section 

3.2.1 DESIGN 

Among some of the different definitions of design listed by Jones [1992], the one that is 

found more appropriate to define design in the context of the present research is: 

 “the optimum solution to the sum of the true needs of particular set of 

circumstances” [Matchett 1968, as cited by Jones, 1992] 

The above definition focuses on the requirements (or ingredients or inputs) used in the 

process of designing, and it implies no specific procedure. It is possible to say that, in the 

design of buildings, traditionally the requirements are linked to climate, law 
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requirements, etc. But in the case of today's aspiration of low-carbon design of buildings, 

design requires to embed passive design principles (optimised orientation, fabric energy 

efficiency, low-carbon technologies, etc.) which have brought a high level of complexity 

for designers (architects). Here, this complexity seems not be fully managed. 

The long-time practice of building design may be displaced when new requirements are 

in place. For instance, until recently (in the UK planning has placed an archetype 

indiscriminately on a site (see, for instance, the Victorian housing stock) [Olsen, 1964]. 

While for most experts in HIHs design this archetype is obsolete, since it does not 

account for the different solar gains in any orientation, relying on such archetype is a 

well-established practice in the development of British towns.  

The scope of design cannot be restricted to requirements only. Another definition of 

design embraced by Jones focuses on the effect of design. At the end of his analysis 

Jones concludes that “designing is to initiate change in man-made things” [Jones, 1992, 

p.4]. This definition enables one to think prospectively and to recognise the influence of 

design beyond its production (in buildings, the hand over, etc.). By endorsing this 

prospective thinking in the case of HIHs, it is possible to recognise the changes that 

come from the climate, the occupancy, and extreme weather events. It can thus be 

recognised that prospective design may be in contrast with compliance design. 

Once all these definitions of design are considered, it seems that for the purpose of this 

research, design is best accounted as: 

the act that (intentionally or unintentionally) initiates change in man-made things 

to deliver the optimum solution to the sum of the true needs of particular set of 

circumstances. 

In this study, by optimum solution it is meant a HIH; by true needs is meant comfort, and 

by circumstances it is meant a context (in both terms of climate and societal 

expectations). 

3.2.1.1 METHODS 

Jones identifies two generic methods of design: traditional and design-by-drawing 

[Jones, 1992]. Traditional design was performed as a trial and error process: the 

designer (‘craftsman’ for Jones) reproduced and modified the object by relying on its 

empirical acquaintance of the object itself. In this process the whole body of knowledge 

can be related to folk knowledge, which is both collective and tacit. According to Jones, 
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“the craftsman’s blend of know-how 

and ignorance can produce works that 

a scientist would find hard to explain 

and in which the artistic eye can 

perceive a high level of formal 

organisation” [Jones, 1992, p.19]. This 

method is characterised by the fact 

that the product is modified 

countlessly after failures and 

successes with the modifications 

happening one at the time. 

By contrast to traditional design, design-by-drawing separates the trial and error 

process from production by using scale drawings. This method is characterised by (a) the 

specification of dimensions in advance (b) the possibility of splitting up the production 

and (c) the manageability of something too big for a craftsman to make on its own, (d) 

scale drawings as a whole of a product of isolated parts and (e) a division of labour that 

allows for an increased size and rate of the product. With specific reference to this last 

point, Jones [1992] highlights that this method need to establish the dimensions of the 

parts in advance - dimensions that a craftsman would leave undecided by so allowing 

for, room for manoeuvre later in the process. According to Jones, here is where the 

division of labour may cause loss of quality and leads to the belief that craft products 

belong to the ‘good old days'. It is true that, when coming to buildings, old buildings 

tend to be characterised by a generosity of space, of light, of materials properties. A 

good example of this is provided by lightweight new HIHs, which have lost some of 

those good days qualities , such as the thermal storage from bricks. 

When comparing this ‘craftsman dimension’ to the design of houses, it is possible to 

draw a direct relation between (a) traditional design of trial-and-error and vernacular 

architecture where thermal considerations relied on traditional tacit knowledge. Likewise, 

there is a direct relation between design-by-drawing and HIHs, where thermal calculation 

is derived from a drawing. 

For Jones it is critical that a “drawing can be made only by one person at a time and that 

the situation in which it is to fit must be envisaged in a single mind” [Jones, 1992, p.23] 

and that only when the critical sub problems have been identified and solved by that one 

BOX 3.1  – HIHs design  in Spa in  

In the case of Passivhaus in Spain, after 

getting to talk to few architects in the 

Passivhaus Conference in Barcelona in 2015, it 

was noted that Spanish designers did not have 

problems of overheating (they were focused in 

the IAQ and in preventing mould growth). 

After visiting one Passivhaus in the outskirts of 

Barcelona it emerged that both designers and 

occupants had a high sensitivity for summer 

comfort to avoid heat gains and to adapt to 

their environments, in both design and use. 
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person, the work can be split up between others again. This may seem incompatible with 

the contemporary practice of building design, which can often result in multidisciplinary 

teams. Traditionally, in building design, the form of the whole comes before details have 

been explored. But for Jones, this principle does not work in novel situations for which 

the necessary experience cannot be contained in one person [Jones, 1992, p.27]. This is 

also the case with HIHs in which design-by-drawing is actually too simple for the 

growing complexity of design, where there is a high risk of losing control of the design 

situation once this is embedded into a systematic procedure. 

3.2.1.2 NEW METHODS WHEN DEALING WITH COMPLEXITY 

Traditional designers cope with complicated problems by transforming them into simple 

ones. This break down depends on two things: (a) immediate knowledge of the 

sensitivity of the problem situation to major change in design and (b) freedom from 

either personal or social constrains upon alternative thought or action (unconventional 

thought). In relation to this last point, Jones infers that the directions a designer will take 

are closely related to his moral and value opinions. Accordingly, the reduction of the 

complicated design problem is an expression of awareness of the external realities 

involved and requires a preconception of what is good or bad [1992]. 

In the case of HIHs, it seems that designers do not possess that experience or 

imagination; instead they rely upon calculations. But, these calculations may be in a 

format not yet ready to inform design, and designers may not have the skills to 

recompose such information in the whole.  

3.2.2 DESIGN OF HIHS 

Architects can be considered as designers of the built environment and today they are 

called to design HIHs in accordance to a set of requirements. This forces them to cope 

with a new level of complexity in which he/she is not necessarily trained.  

The mandatory EU energy efficient requirements have increased the complexity of the 

design of HIHs as a result of the fact that they introduce a new type of design (for which 

no vernacular folk knowledge is available), force one to face unknown thermal effects 

(such as summer discomfort), introduce new technologies (such as MVHR) that are not 

fully mastered, etc. [Palmer et al., 2016]. The complexity also leads to the fact that some 

actors are involved in a scattered process in which decisions are taken at different stages. 

This process occasionally conflicts with the conceptual design (if any). 
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3.2.2.1 CHANGES IN BUILDING REGULATIONS 

Building Regulations are statutory instruments, firstly introduced in 1965, aimed at 

ensuring that policies are carried out in most of the building work in the UK [Tricker, R., 

Alford, S. & Algar, 2011]. Building Regulations are “minimum standards for design, 

construction and alterations to virtually every building” [Planning Portal, no date].  

The Buildings Regulations 

in the UK have a 

fascinating story that 

goes hand in hand with 

important historic events. 

In fact, one may sustain 

that the remote origins of 

Building Regulation's can 

be traced back to the 

London Building Act 

(1667), drawn after the 

Great Fire in order to achieve fire resistance in buildings. More directly, the Building 

Regulations are rooted in the Building Act 1984 (fig. 3.11), which in turn derives from the 

Public Health Act (1936) – one of the many Public Health Acts provided as a response to 

the unsanitary housing conditions following dense urbanisation after the industrial 

revolution. And the Public Health Act (1936) was hardly the first of its genre, as the first 

Public Health Act dates back to 1848 and was intended to improve the quality of the 

water, to regulate the provision of sewage and drains as well as other sanitary 

dispositions in order to stop the spread of cholera, typhoid, tuberculosis and preventing 

the infections among the population. However, the first mandatory Building Regulation 

was introduced in 1966 [Killip, 2005; Tricker, R., Alford, S. & Algar, 2011]. 

Buildings regulations intended to reduce energy consumption can instead be dated back 

to 1965. At that time, regulations were prescriptive: a certain U-value was achieved for 

individual building components. Buildings regulations evolved by tightening up over the 

years, by thus increasing insulation thickness and limiting glazed areas over facades 

[Hamza and Greenwood, 2009]. 

 
 

Fig. 3.11 The scope of the Building Regulations in the UK as stated 

in the Building Act (1984) 
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The Ministry of Housing, Communities and Local Government (formerly the Department 

for Communities and Local Government) has focused on the reduction of energy 

demand for heating buildings. In order to achieve this objective, the Building Regulation 

requires for buildings not to exceed a target CO₂ emissions rate. The government has 

produced guidance on energy efficiency requirement via the approve Document Part L, 

dedicated to Conservation of fuel and power [legislation.gov.uk, no date]. 

In order to achieve energy demand reduction as set in target, the Department for 

Communities and Local Government (DCLG) publishes guidances called ‘Approved 

Documents' to set energy efficient requirements (among other issues) to comply with the 

building regulations [GOV.UK, no date a]. Among these documents, the Approved 

Document L1A: Conservation of fuel and power in new dwellings concerns directly with 

emission reductions from dwellings [HM Government, 2013b]. It is worth noticing 

however that the Approved Document F: Ventilation is inevitably linked to energy 

conservation.  

Compliance with the current Building Regulations Part L 2010 edition 2013 requires one 

to meet five criteria.  

1. Criterion 1 requires that ”the calculated rate of CO₂ emissions from the dwelling 

(the Dwelling CO₂ Emission Rate, DER) must not be greater than the Target CO₂ 

Emission Rate (TER).” In addition, there is a provision that requires new dwellings 

to achieve a fabric energy efficiency target in addition to the carbon dioxide 

target: “the calculated Dwelling Fabric Energy Efficiency (DFEE) rate must not be 

greater than the Target Fabric Energy Efficiency (TFEE) rate."26 TER and DER are 

calculated using SAP [HM Government, 2013b, p.12]. 

2. Criterion 2 requires that “the performance of the individual fabric elements and the 

fixed building services of the building should achieve reasonable overall standards 

of energy efficiency, following the procedure set out in the documents.” This 

criterion is intended to limit design flexibility, to discourage excessive and 

inappropriate trade-offs that can occur when, for example, individual building 

fabric elements with poor insulation standards are offset by renewable energy 

systems with uncertain service lives [HM Government, 2013b, p.14]. 

                                                           
26

 Until 2010, the building regulations Part L used TER and DER only, directing at CO₂ reductions, 

and by fuel carbon intensity considerations (annual Kg of CO₂/m²).  

Since 2013, enforced in 2014, Part L introduced the TFEER and DFEER to tackle the demand of 

energy (minimum energy performance requirement, annual kWh/m²).  

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/468871/ADF_LOCKED.pdf
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3. Criterion 3 requires that “the dwelling should have appropriate passive control 

measures to limit the effect of heat gains on indoor temperatures in summer, 

irrespective of whether the dwelling has mechanical cooling.” The purpose of this 

criterion is to limit solar gains and heat gains from circulation pipes to reasonable 

levels during the summer period, to reduce the need for air-conditioning 

systems. [HM Government, 2013b, p.16]. 

4. Criterion 4 is set out to reinforce the outcome of Criterion 1, as it states that “the 

performance of the dwelling, as built, should be consistent with the DER and DFEE 

rate." It also requires air pressure test results, approved construction details, and 

fixed services commissioning, which serve to demonstrate the consistency of 

performance between the predicted (i.e. as- designed) and as-built dwelling [HM 

Government, 2013b, p.17]. 

5. Criterion 5 aims to provide the occupant/purchaser with the sufficient knowledge 

of operational instructions, for an efficient operation and maintenance of 

services, as it states that “the necessary provisions for enabling energy-efficient 

operation of the dwelling should be put in place” [HM Government, 2013b, p.21]. 

The above five criteria are intrinsically linked with each other. In fact while compliance 

with Criterion 1 facilitates the fulfilment of Criteria 2 and 5, fulfilling Criteria 2 to 5 

facilitates to meet Criterion 1. In turn Criterion 4 reinforces the outcome of Criterion 1, by 

providing a double-check of the data inputted into SAP from the predicted phase to as- 

built [Pan and Garmston, 2012]. 

3.2.2.2 PROBLEMS WITH BUILDING REGULATIONS COMPLIANCE 

The worldwide shift towards the reduction of energy in buildings has resulted in 

demanding requirements. Implementing such changes may be the cause of difficulties.  

First of all, there are difficulties in achieving the many increment governmental 

requirements for which there is not necessarily enough knowledge. A study conducted 

by Pan & Garmston examined the profile of compliance of 404 new dwellings and found 

that only a third of them were compliant with building regulations part L. In addition, 

semi structured interviews with building control officers revealed (a) a lack of training on 

building energy regulations for building control bodies and (b) a lack of knowledge 

attributed to the dramatic reduction of the familiarity period and the transitional period 

from different Part L’s versions [Pan and Garmston, 2012]. This suggests that overheating 

problem solving cannot rely (only) on compliance.  
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Non-compliance in practice, as well as a lack of knowledge in implementation, has also 

been reported internationally. Pan & Garmston refer to cases in the US, Norway, and 

developing countries [2012b]. The table 3.1 shows the evolution of the building fabric 

parameters as requested by the Buildings Regulations Part L. In it, it is possible to 

appreciate that most U-values have been halved in the short span of 10 years. 

Table 3.1: Evolution of building fabric parameters, adapted from Approved documents Part L [HM 

Government, 1995, 2002, 2006, 2013c], In evidence are the values that have change compared to 

the previous version of Building Regulations. 
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3.2.3 SAP 

The Standard Assessment Procedure (SAP) is the UK government’s methodology used to 

(a) calculate predicted energy use and resulting carbon dioxide emissions from a 

dwelling; (b) demonstrate compliance with the Building Regulations Part L1A, with 

specific regards to the satisfaction of Criterion 1, Criterion 2 and Criterion 3; and (c) to 

produce the Energy Performance Certificate (EPC) of a completed dwelling [GOV.UK, no 

date b; ZCH, 2016]. 

Since 1994, SAP has been mentioned in Part L as a way to assess dwelling performance, 

as then energy efficiency was the main focus [GOV.UK, no date b]. In the present edition 

of SAP - SAP 2012 - climatic data have been extended to allow regional calculations. As 

a result, SAP 2012 incorporates an allowance for height above sea level into external 

temperature data. In addition, CO₂ emission factors, fuel price, and primary energy have 

been extensively revised. Finally, the options for heat losses from primary pipework have 

been extended [GOV.UK, 2014]. 

3.2.3.1 SAP METHODOLOGY 

Even though the EPBD instructs measures to ensure energy performance to each 

Member State of EU, the EPBD does not specify a detailed calculation methodology and 

leaves such calculation to each Member State. This overall methodology includes aspects 

concerning the thermal characteristics of buildings (U-values, air tightness), position and 

orientation of buildings, solar protection, heating ventilation (natural and mechanical), air 

conditioning, and indoor climatic conditions [Anderson, 2006]. The UK has already 

incorporated most of that information in SAP assessment, which as a result has become 

quite extensive and detailed. For this reason, the calculation of carbon emissions requires 

a comparison with a ‘notional building' [Davies, 2013]. 

In particular, new buildings need to demonstrate that the annual CO₂ emissions will not 

exceed a target level calculated and established by a notional gas-heated building of 

identic size and shape. For instance, the improvement factor established by Part L-2002 

for dwellings is 20% (see figure 3.12). However, because this target is expressed in terms 

of CO₂ emissions, the choice of fuel is crucial, since electricity can be up to three times as 

much energy-intensive as natural gas [Anderson, 2006; ZCH, 2016]. 
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Fig. 3.12 Timeline of energy-related regulations and emerging standards in the UK, including 

energy-reduction targets [Mulville and Stravoravdis, 2016]. 

 

 

3.2.3.2 SAP OVERHEATING ASSESSMENT 

SAP assessment provides a basic overheating check enabling to assess the risk of 

overheating that a building has (low, medium or high) during summer months. The 

assessment is based on monthly averages and is used to provide evidence of Part L1A 

meeting Criterion 3 "limiting the effects of heat gains in summer" [ZCH, 2016]. 

In SAP, the risk of overheating is calculated through the assessment of internal 

temperatures in summer, and it does not provide an estimate of cooling needs27. This 

procedure is not integral to SAP and it does not affect CO₂ emissions [GOV.UK, 2014].  

Appendix P of SAP 2012 provides a method for assessing the propensity of a house to 

have high internal temperature in hot weather. It is crucial to note that (a) this 

assessment does not provide an estimate of cooling needs and (b) the procedure is not 

integral to SAP and so it does not affect the calculated SAP rating or CO₂ emissions [BRE, 

2014].  

Appendix P requires one to compare mean summer internal temperature with a 

threshold temperature and provides an indication of low, medium and high risk of 

overheating during summer months [BRE, 2014]. The procedure takes into account the 

following months only: June, July, and August [BRE, 2014]. It requires one to take the 

following steps: 

 

                                                           
27

 Differently, Passivhaus Planning Package does provide with an estimate of energy demand for 

cooling. 
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I. Calculation of the SUMMER GAINS/LOSS RATIO28; 

𝑺𝑼𝑴𝑴𝑬𝑹 𝑮𝑨𝑰𝑵/𝑳𝑶𝑺𝑺 𝑹𝑨𝑻𝑰𝑶 =  
𝑮

𝑯
 =  

𝐺𝑖 + 𝐺
𝑠𝑢𝑚𝑚𝑒𝑟

𝑠𝑜𝑙𝑎𝑟

𝐻(𝑠𝑢𝑚𝑚𝑒𝑟)𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 + 𝐻(𝑎𝑙𝑙 𝑦𝑒𝑎𝑟)𝑓𝑎𝑏𝑟𝑖𝑐 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 
 

II. Allocation of a MEAN EXTERNAL TEMPERATURE (for each summer month) 

III. Calculation of the THRESHOLD INTERNAL TEMPERATURE (see table 3.2) which 

will enable to estimate the tendency to high internal temperature in hot weather. 

 

Table 3.2: levels of threshold temperature corresponding to likelihood of high internal 

temperatures during hot weather as indicated in SAP [BRE, 2014] 

 

The points mentioned above lead to some considerations in regards to the risk of 

overheating, as it is calculated in SAP, Appendix P. First, it can be noticed that there are 

some gaps in the SUMMER GAINS section. For the internal gains [𝑮𝒊] do not include the 

heat that is recovered via the MVHR. Even though some MVHR have the summer bypass, 

anecdotal evidence suggest that there is still a leakage for which even in the rare cases 

where summer bypass is installed, there will be some form of heat gains through it, 

unless the system is turned off. So MVHR system becomes a source of heat gain by so 

exacerbating the effect of solar gains and internal gains. 

Secondly, it can be noticed that in the SUMMER HEAT LOSSES section the fabric heat loss 

in the same value is calculated for summer, and it does not have any adjustment 

regarding the speed to which the heat loss occurs (which is presumed to be lower than in 

winter). 

In addition, in the light of the new requirements for energy efficiency, one can argue that 

the ‘overheating check’ as priced in SAP – Appendix P is insufficient to provide a fair 

assessment. In fact, in its report Zero Carbon Hub states that the compliance check is too 

basic, since it is based on monthly averages, and that Building Control uses that 

assessment as evidence of Criterion 3 being met [ZCH, 2016].  

                                                           
28

 The detail of the SUMMER GAINS/LOSS RATIO calculation is shown in Appendix J. 
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Moreover, there a number of reasons supporting the thesis that SAP fails to fully capture 

the potential for overheating. These reasons can be concisely summarised as follows: 

 The scope of SAP applies to self-contained dwellings. Accordingly, SAP includes 

individual flats but it excludes common areas, such as access corridors. Common 

areas are assessed by using procedures for non-domestic buildings. This fact can 

be claimed to be a problem, especially in multi storey residential where corridors 

have been found to overheat by domestic hot water pipes [Compton, 2014]; 

 The overheating check (Appendix P) is not a compulsory assessment of 

overheating risk [BRE, 2014]; 

 SAP refers to another document as guidance for overheating avoidance, 

Reducing Overheating - a design guide, produced by the Energy Saving Trust 

(2005) [BRE, 2014], which is not compulsory and may not be adequate for HIHs. 

Moreover, reducing Overheating does not appear in the SAP software. 

 Lastly, Appendix P is concerned with neither CO₂ emissions nor DER.  

For all these reasons, the compliance with building regulations does not mean that the 

dwelling is safe from overheating risk [BRE, 2014]. 

In consideration of HIHs, it should be noted that SAP is based on BREDEM. Despite the 

fact that it is a reliable and simple energy calculation procedure for dwellings, BREDEM 

refers to energy monitoring of houses in the 70’s and 80’s [GOV.UK, no date b; Reason 

and Clarke, 2008]. It is therefore not specifically conceived for HIHs, as PHPP is. For this 

reason, SAP, which derives from BREDEM, does not fully embed a calibrated calculation 

on HIHs. Moreover, the fact that SAP’s compliance is based on CO₂ emissions, which 

refer to fuel’s carbon intensity, may not be an incentive to low-energy design. As a 

consequence, if a fuel’s carbon intensity estimation changes, so do the overall SAP score. 

This does not account for considerations of long term impact29. 

3.2.4 PHPP 

The Passivhaus Institute is an independent organisation based in Germany that has 

developed a low energy efficiency building standard since the mid '90s and has 

promoted its application not only in Europe but also worldwide. In fact, since the late 

1980s, some 37,000 Passivhaus buildings have been constructed worldwide Dengel & 

                                                           
29

 The emission factors and primary energy factors in Table 12 of SAP2012 are for a 3-year 

projection 2013-2015 [BRE, 2014]. 
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Swainson [Dengel and Swainson, 2012]. Referred as a comfort standard as well as an 

energy standard, Passivhaus has gained 92% positivity rating by occupants in Germany 

[Passivhaus Trust, 2016]. Its adoption in the UK has increased as a means from achieving 

the high UK standards (Code, Zero Carbon House), especially when pursuing a fabric first 

approach. 

The Passivhaus Institute has developed the Passivhaus Planning Package (PHPP), which is 

a software aimed at assisting with the design of low-energy buildings. Like SAP, PHPP is 

used to calculate the annual energy demand of a building. The results include (a) the 

annual heating demand [kWh/(m²year)] and maximum heating load [W/m²], (b) summer 

thermal comfort with active cooling, annual cooling demand [kWh/(m²year)] and 

maximum cooling load [W/m²], (c) summer thermal comfort with passive cooling, 

frequency of overheating events [%], and (d) annual primary energy demand for the 

whole building [kWh/(m²year)] [Passipedia, no date a]. 

In order to comply with the PassivHaus standard, a building must meet the following 

criteria:  

 Space heating demand: it should not exceed 15 kWh per square meter of net 

living space per year or 10 W per square meter peak demand;  

 Space cooling demand: it should not exceed 15 kWh per square meter; 

 Primary energy demand: it should not exceed 120 kWh per square meter of net 

living space per year (heating, cooling, domestic hot water, appliances electricity);  

 Airtightness: a maximum of 0.6 air changes per hour at 50 Pascals pressure 

(ACH50), as verified with an onsite pressure test (in both pressurized state and 

depressurized state).  

 Overheating: thermal comfort must be met for all living areas during winter as 

well as in summer, with not more than 10% of the hours in a given year above 

25°C [Passivhaus Institut, 2015]. 

The calculation of the frequency of overheating has been developed for residential HIHs. 

The software recognises that there could be an underestimation of overheating, 

especially when occur heavy changes in (a) temperature during the day occur [Feist et al., 

2007] (such as a heatwave), in poor heat protection [Feist et al., 2007] (such as the 

absence of solar protection) or high internal loads [Feist et al., 2007] (such as DHW tanks 

within the thermal envelope). 
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A simple summer worksheet contains climate and geometrical information. Similar to 

SAP, PHPP allows for calculation of the heat gains and losses. However, there are major 

differences in the energy calculation. 

Differently than SAP, PHPP encounters for both adjustments in losses and gains via 

MVHR and shading factors from the microclimate (from the surroundings buildings as 

well as vegetation). In addition, the PHPP calculation is verified for overheating against a 

threshold of 25C, if this threshold is exceeded for 10% of the time, the building is not 

compliant with the standard. Moreover, the Passivhaus Institute suggests that the 

temperature of building should not exceed 25C for 5% of the time.  

PHPP is easy to use and it is both a design tool and a compliance tool. Studies have 

found that the overheating criteria of PHPP are more robust that the criteria set out in 

SAP. Accordingly, buildings designed with PHPP have better resilience to overheating 

when compared to buildings designed with other standards in mind. [Mulville and 

Stravoravdis, 2016]. 

It is worth noticing that whereas BREDEM has been developed from some existing and 

traditional monitored UK homes, PHPP is believed by AEBC (Association for Environment 

Conscious Building) to be a better software for energy efficiency compliance, because it 

was made for low-energy buildings [Reason and Clarke, 2008] and because developers 

update PHPP based on the outcome of experience's feedback from monitored real-world 

case studies and building simulation calibration in Germany.  

3.3 HIHS DESIGN AND OVERHEATING 

Design, as a problem-solving activity, is called to respond quickly to the new 

requirements in building design. However, the design of HIHs does not seem to take into 

account all new problems (or unintended consequences) that those changes impose in 

architectural design.  

In terms of passive design, Su [Su, 2011] claims that there is not a universal validity of 

passive design for different locations and climates, and that passive design should be 

related to the major thermal problems of both local climate conditions and local housing 

design. Su’s findings also support the claim that that ignoring one design factor could 

damage the entire passive design (in terms of energy efficiency) by weakening or 

overriding positive impact of changing another design datum: “For example, the negative 
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impact of changing the window wall ratio such as increasing the single-glazed north 

(equator-facing) window area can weaken or override the positive impact of increasing the 

north wall area of a house with good orientation (equator-facing)" [Su, 2011]. 

In terms of summer comfort, designers have an overwhelming large body of literature 

and guidance available [CIBSE, 2002, 2006b, 2006a, 2013, 2018; Energy Saving Trust, 

2005; Hacker et al., 2005; Shaw, 2007; ARUP, 2008; NHBC, 2012b, 2012a; Dengel and 

Swainson, 2012; Jentsch et al., 2013; ZCH, 2015a, 2015b]. At the same time reliance on 

just one compliance tool appears to be insufficient. It should be noticed that the findings 

of a large body of academic literature are at best preliminary or inconclusive. 

As designers face this new complexity, it is no surprise that overheating aspects may be 

overlooked by designers whose focus rests on compliance with the governmental 

targets.  

Only when the feedback loops30 of low-carbon design are known and understood by 

designers, HIHs designs may be better equipped at responding to both governmental 

requirements of CO₂ reductions while providing comfort and by so avoiding the health 

risks and possible increase demand on cooling from the HIHs stock.  

To do so, it is unrealistic to learn project by project in a trial and error process (traditional 

design). Instead, the dimensions of overheating (or ‘scale’ to refer to design-by-drawing 

design) are to be systematically outlined in a (possibly uncompleted) map. 

  

                                                           
30

 In the US in the seventies, half million Americans' left cities to create experimental communities. 

They adopted cybernetic ideas instead of organizing, with no hierarchy or control; instead, the 

central idea is that everyone is part of the system of free individuals giving feedback to the system 

in order to stay balanced. These feedback loops are the basis of a world as a self-regulated system 

[Curtis, 2011]. As such, this thesis seeks to understand the feedback loops of HIHs. 
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3.4 CHAPTER SUMMARY 

In this chapter, it was reported that the factors pertaining to the building physics realm 

that contribute to overheating can be categorised in three main areas. In each area single 

factors, such as climate, urbanization, dwelling characteristics, etc., can play a role. Those 

factors can have an implication in other factors too. It was not possible to define a 

hierarchy of ‘overheating actions’, because neglecting one aspect can have effects on 

other factors.  

The climate was shown to affect the external heat gains. In relation to the design of HIHs, 

contributions from the sun, especially low angled sun reaching indoors have been found 

to be attributable to excess heat gains. It was also noticed that heat waves are 

increasingly an area of concern since 2003, and when room temperatures averages 

(notice not peak) were above 27°C and 25°C for London and Manchester respectively it 

was found to be of concern, especially because people tend to spend more time indoors 

(especially elderly). The potential benefits of thermal mass during heat waves are 

contradicted in the literature.  

 In addition, whereas thermal mass is meant to contain temperature swings in a heat 

wave event the thermal capacity might actually lower the cooling effects from ventilation 

when compared to a lightweight dwelling.  

Even though urbanisation can increase up to 5°C more than its surroundings, simulation 

studies have found that UHI effect may not constitute one of the dominant factors 

causing overheating and that construction type and microclimate (solar gains, 

ventilation) are possible determinant factors which might be greater in magnitude than 

UHI effects. 

It was also found that new flats are at particular risk of overheating, because cross 

ventilation often is not available. This typology is expected to increase in the forthcoming 

years due to dense urbanisation, with an enormous potential for demand for cooling.  

Natural ventilation strategy for cooling in urban areas with warmer temperatures and less 

wind may be an unpractical means for cooling. In addition, Part F and Part L of the 
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building regulations do not control ventilation as means of thermal comfort. However, 

with the increase tendency for airtight buildings, a new requirement for it is emerging31. 

On the other hand, MVHR, which is only aimed at air hygiene, has provided evidence for 

a large number of pitfalls in terms of manufacturing, designing, commissioning, 

installing, using. 

In relation to the building design realm, it was observed that overheating in HIHs is a 

condition brought by a new complexity in architectural design: the design of HIHs. As a 

result, the relationships between factors are not fully captured from the design stage to 

occupancy. Complexity in this case seems dictated by a lack of awareness at the systems 

level of the hierarchy. 

SAP, which is the UK government’s methodology used to predict energy use, to 

demonstrate compliance and to produce EPC, is not a product specifically developed for 

HIHs and it have shown not to be an appropriate tool for predicting overheating in HIHs. 

Moreover it does not provide an estimate of cooling needs and therefore of CO₂ 

emissions in HIHs. 

Even in the case of an adequate tool, studies have shown that both in the UK and 

internationally, there are difficulties in achieving compliance with governmental 

requirements for energy efficiency. 

In conclusion, it seems that in HIHs overheating relates to a deficiency of building 

cooling capacity, whether that is because of lack or insufficient ventilation or because of 

slow dissipation of heat gains. In these terms, a definition of overheating is best 

conceptualised not as an excess of heat (over-heat) but as a deficiency of cooling (under-

cooling32).  

Ultimately, it is possible to claim that overheating is a product of contemporary design in 

UK, and one must understand the mechanisms in which this happens and the areas of 

possible change.  

 

                                                           
31

 With the new requirements of energy efficiency and the current definitions of ventilation in the 

Building Regulations, it appears that a new paradigm of ventilation (and hence a new paradigm of 

requirements) are ought to emerge. 
32

 The word overheating is maintained throughout this thesis in order to keep terminology 

consistency with the published studies. 
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CHAPTER 4: RESEARCH DESIGN 

 

Synopsis 

This chapter sets out the research plan for the study of overheating in HIHs, as it occurs 

in the UK. It also clarifies the philosophical stance underpinning this study.  

The first part of the chapter builds up on the findings from the previous chapters and 

states the methodological principles that guide this research, by also exploring the limits 

of some research methods. 

Coherently with the discipline of architecture, it is claimed that no single method is 

sufficient to deal with the problem of overheating in HIHs. For this reason, a multi-case 

study mixed method approach is proposed.  

Finally, the research methods used to collect and analyse data are introduced and 

dimensions of their validity are discussed. 
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4.1 OVERHEATING AS A TRANSDISCIPLINARY PROBLEM  

The literature review introduced in the previous chapters indicates that overheating in 

HIHs is (also) a product of the contemporary design of newly built HIHs. In the attempt 

to understand how the problem of overheating in HIHs has emerged, it is necessary to 

conceptualise its traits. To do this, it seems relevant to understand the transition of the 

emergence and spread of HIHs.33 

Among the several theories of socio-technical change, one -the multilevel perspective- 

argues that innovations first take place as niches and then proliferate and grow at a 

macro-level scale before beginning to change [Rip and Kemp as cited by Shove, Walker 

and Brown, 2013]. HIHs can be considered as constituting a niche and, as such, they 

correspond to the first stage of an innovation process. 

The problem that will be studied in relation to HIHs –overheating- is experienced in 

particular in heating-intensive countries that apply higher standards of energy efficiency. 

As it was made apparent at the Passivhaus conference in Barcelona (Spain) in 2015, the 

problem of overheating in HIHs does not necessarily have a worldwide diffusion. Hence, 

a nationally/regionally bounded approach seems to be more suitable than a global-scale 

approach to address the problem of overheating. 

For the reasons just introduced, this study accounts not only for the (thermal) physical 

considerations but also for the cultural shortcomings of the transition towards the design 

of HIHs. Related, the findings of this research project are expected to implement the 

designers’ know-how of the environment-behaviour relationship, which is aimed to avoid 

overheating and hence to avoid any for heat stress or increase in energy demands for 

cooling. 

4.1.1 POINTS FROM THE LITERATURE REVIEW (EXISTING RESEARCH) – 
GAPS IN KNOWLEDGE 

The monitoring studies reviewed in the previous chapters provided evidence that the 

highly insulated stock is more vulnerable to overheating. For they showed that a number 

of elements of HIHs increase their vulnerability to overheating. Among those elements 
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 Transition in this context is defined as “long-term change in an encompassing system that serves 

a basic societal function” [Elzen and Wieczorek, 2005]. 



CHAPTER 4: RESEARCH DESIGN   84 

are the unavailability, or nonblack of use, of purge ventilation34, failings of the MVHR 

system and inappropriate (un-contextualised) use of passive design.  

The literature also showed that those elements combine with the main physical causes 

producing uncomfortably warm temperatures, which can be related to the following 

factors:  

 Insulation as a condition that can both attenuate as well as exacerbate 

overheating; 

 lack of solar control strategy; 

 ventilation strategy; 

 absence of thermal mass; 

 house typology and type of rooms. 

The above factors are entangled in the process of design that is increasingly fragmentary. 

In addition, a number of studies have shown that the tools currently used in the design 

process are be insufficient to predict thermal discomfort due to warm temperatures and, 

more generally, inappropriate to cope with the new complexities in design brought by 

the carbon reduction agenda.  

Once all these elements are taken into account, it can be claimed that overheating is 

largely a product of contemporary design and so a symptom of the transition towards 

low-carbon designs. This view relates to the concept of transition in practice perspective 

put forward by Shove, Walker and Brown [Shove, Walker and Brown, 2013] claiming that 

past and localised practices are to be encountered together with aspects that are more 

widely standardised to properly reduce the demand of energy. Accordingly, a way to 

move forward when describing the process in which overheating occurs is to pay 

attention to a set of interrelated elements and design activities. 

One of the main assumptions of this study is that, in order to better understand 

overheating as a complex phenomenon; one should go beyond the disciplinary limits of 

architecture and building science, by thus embracing an interdisciplinary approach. 

This movement towards interdisciplinarity is hardly something new: architecture as a 

discipline has always been linked to other disciplines, such as art, ergonomics and 

                                                           
34

 Purge ventilation is a manually controlled ventilation of rooms or spaces at a relatively high rate 

to rapidly dilute pollutants and/or water vapour. Purge ventilation may be provided by natural 

means (e.g. openable window) or by mechanical means (e.g. fan) [HM Government, 2013a]. 
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structural engineering. However, in different times architecture has worked in synergy 

with different disciplines. So what can be regarded as genuinely new is the fact that 

today the studies of sustainability look into buildings in a more interlinked way. That 

introduces a new kind of complexity that puts architecture in relation to novel disciplines, 

such as systems engineering. Systems engineering is an interdisciplinary field of 

engineering that focuses on complex systems to design, build, operate, and maintain 

such systems. Such approach is significantly different from traditional analysis: whereas 

the traditional analysis focuses on separating the individual pieces of the subject of 

study, systems thinking looks into the interactions of the matter of study (here, 

overheating) with other constituents of the system (such as people, design process, 

government, etc.) [Aronson, no date]35.  

Systems thinking involve the use of various techniques to study systems of many kinds. 

The idea behind systems thinking, formulated by the German philosopher Immanuel 

Kant, is an abstract holistic principle used as a means for understanding ‘the real world’, 

and later formalised as systems consisting of inputs, transformations, outputs, feedback 

loops, goals, stakeholders, and external influences that operate within a system’ [Frank, 

2016]. 

To apply such approach and reconnect the links leading to overheating, a number of 

monitored studies were reviewed in Chapters 2 and 3. The monitored studies presented a 

number of findings: 

 There are nether a universal definition of overheating, nor an objective-value-free 

method for the assessment of overheating. This fact supports the philosophical 

assumption embraced in this study that the phenomenon of overheating in HIHs 

in the UK should be approached from a not purely quantitative approach.  

 Overheating is a problem that cannot be confined to ‘one room.' In order to 

understand the nature of overheating, then, the ‘one-room' approach must be 

substituted with a ‘whole house' diagnosis of overheating. In this context, a 

whole building overheating assessment better allows for judgement about the 

resilience of a HIH to high temperatures.  

 Inevitably, the results of such approach may lead to different conclusions when 

compared to those generated by a more (traditional) deterministic approach, 
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 Systems thinking, which is the approach underpinning this study, has already been applied to 

urban studies. Such application has led some to abandon a fragmentary vision of cities in favour 

of an unbroken understanding [Lefebvre, 1998]. 
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because overheating is intended as a dynamically complex system, which has a 

great deal of feedback and sources. 

One of the conclusions that were drawn on this basis is that the problem of overheating 

in HIHs relates to a deficiency of a HIHs in cooling capacity that may be caused by a lack 

of or insufficient ventilation, a lack of solar control, and related by the slow dissipation of 

heat gains. In these terms, a definition of overheating, as it relates to HIHs, is 

conceptualised not as excess of heat (over-heat), but as a deficiency of cooling (under-

cooling).  

This shift in the conceptualisation allows for a new perspective of problem and new 

strategies of intervention. The understanding of this issue is required to avoid that a 

problem of lack of cooling capacity (apparently inherent to HIHs) becomes a (new) kind 

of demand brought by HIHs design: a demand of cooling, which, at the state of the art of 

the knowledge in this thesis, appears to be the result of unsuccessful HIHs design. 

Therefore, the question arises as to whether the sources of heat gain need to be reduced 

drastically or whether the cooling capacities enhanced in HIHs. 

4.1.2 LIMITATIONS OF SOME METHODS  

Overheating in buildings has been studied in recent years and different approaches have 

been adopted. However, the literature has shown some limitations in those approaches, 

due to the nature of something as innovative as sustainable building design. The 

following sections focus on the limitations of two methods that are particularly important 

in the subject: large surveys and DTM. 

4.1.2.1 LARGE STATISTICAL SURVEYS 

Large statistical surveys are expensive and time-consuming [Beizaee, Lomas and Firth, 

2013]. For this reason, they tend to be used sparingly. This is further complicated by the 

wide range of dwelling types [Beizaee, Lomas and Firth, 2013], a progression of 

refinement of conditions that does not include UHI and microclimatic conditions 

[Mavrogianni et al., 2012] and factors directly influential in the internal thermal variation 

of indoor overheating.  

A large sample of HIHs would undoubtedly contribute to a better knowledge of 

overheating risks in UK. However, for the reasons indicated above, only a collaborative 

project could rely on such sample. Related, relying on that method does not seem to be 
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an option in a PhD study, also in consideration of the fact that conflicts between data 

ownership and the limited availability of resources ordinarily associated with a PhD 

project are likely to arise.  

As a result, despite the fact that it provides a picture of how the phenomena of 

overheating occurs in the UK stock, an approach to the problem of overheating that 

relies on large statistical survey has not been pursued in this work, which could not count 

on a sufficiently enough large sample of HIHs. 

4.1.2.2 DYNAMIC THERMAL MODELLING (DTM) 

The use of DTM (or simulation) when investigating overheating in HIHs is popular among 

researchers, because of the undeniable advantages of the availability of future climate 

scenarios and the complete control over inputs and design parameters. In fact, several 

studies, some of which were presented in Chapter 2, have employed DTM as a method to 

predict overheating, by manipulating different parameters, such as house types, 

constructions, occupant behaviours, and climate change scenarios.  

However, one should acknowledge the limitations DTM has in representing what actually 

occurs in HIHs. In particular, DTM fails to record and account for the actual behaviours of 

occupants and their interaction with the heating and ventilating systems operating in 

HIHs [Beizaee, Lomas and Firth, 2013].  

In addition, a model would represent a purely theoretical reality, which is abstracted from 

the real-world circumstances. These are likely to be different when innovation is in place. 

For instance, MVHR systems may be modelled on the assumption that they are built to 

the best practice. 

In addition, the limitations in predictive ability of such models are usually ignored or at 

least downplayed. For instance, Lomas conducted a modelling study in which the 

variability of the predicted peak temperature was found to have a simulation resolution 

of 3°C36. This is a great limitation, especially in the assessment of the likelihood of 

overheating, because if a DTM predicts a particular peak temperature, for instance 27°C, 

                                                           
36

 The simulation resolution is a term introduced by Lomas to provide detail regarding the 

accuracy of simulation programs, quantifying the variations between different dynamic 

simulations predictions, and by so providing a weight on their accuracy: “Simulation Resolution, 

SR, is the value below which the absolute difference between the predictions of two programs 

(obtained by skilled users, for the same circumstances) may be expected to lie with a specified 

probability” [Lomas, 1996]. 
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another’s program DTM may predict a value anywhere between 24-30°C [Lomas, 1996]. 

Hence, modelling studies may overstate the reliability of their results when ignoring this 

inter-model variability [Beizaee, Lomas and Firth, 2013]. 

For this reason, the use of building simulation modelling to predict the inherent 

uncertainty of the design performance cannot be considered an appropriate method for 

addressing the research questions this work set out to address.  

4.1.2.3 NON-HIH COMPARATORS 

The literature review provides that overheating is found not only in HIHs. In such cases, 

the absence of insulation and fabric design makes homes vulnerable to excess heat. The 

case of HIHs has a different nature: the super insulated fabric and remarkably low levels 

of infiltration present an internal environment that could not be comparable with non-

HIHs. In HIHs excess heat seems retained within such an efficient thermal envelope. 

In other words, non-HIHs are vulnerable to overheating (climate change, UHI, heat 

waves) while HIHs present a different ‘physiology’ where overheating appears produced 

or retained within the fabric. As such, non-HIHs would not constitute a viable 

comparator. 

To stress this point, overheating is not categorised as a feature of non-HIH nor of HIHs. It 

is recognised that overheating in HIHs occurs in a different way, with the thermal 

dynamic responding differently to heat gains. This is why overheating in HIHs have been 

conceptualised as an under-cooling issue (for instance the un-controlled cooling 

happening via infiltration). 

4.2. ARRAY OF RESEARCH PARADIGMS 

One of the challenges that this study and its interdisciplinary nature poses lies in the 

different perspectives that diverse disciplines (such as architecture, social science, 

building physics science) have on paradigms37. In addition to that, following Groat & 

Wang’s statement that “any research design is necessarily framed by the researcher’s 

assumption about the nature of reality and how one can come to apprehend it” (Groat & 
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 Kuhn defines paradigm as “the entire constellation of beliefs, values, techniques, and so on shared 

by the members of a given community” (Kuhn as cited by Maxwell n.d., p.42). At the most abstract 

level instead, Maxwell exemplifies such paradigms as philosophical positions, like positivism, 

constructivism, realism, pragmatism, and postmodernism, each embodying very different ideas 

about reality (ontology) and how we can gain knowledge of it (epistemology) [Maxwell, 2005]. 
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Wang 2002, p.21), this study will take the researcher’s style38 to be a factor that 

influences the way a research question is answered [Canter, 2000]. Such own constructed 

formulation is combined with other components, such as the researcher’s experience, the 

researcher’s speculative thinking, the current non-academic debate, and unpublished 

papers [Maxwell, 2005], as per figure 4.1.  

 

Fig. 4.1 Contextual factors influencing a research design [Maxwell, 2005] 

In the field of architecture, ontological assumptions, or paradigms, are numerous, 

because the practice of architecture requires knowledge of a vast array of phenomena 

and their sub-disciplines within the social sciences, natural sciences, and humanities 

[Groat and Wang, 2002]. The following paragraphs list some of those paradigms. 

1. The most commonly understood research framework is the dichotomous 

quantitative/qualitative framework (that in turn replicates the division between 

science and myth). In this framework, quantitative methods and qualitative 

methods are the opposite ends of an objective vs. subjective reality. This 

dichotomous framework can often be misleading, since it places the emphasis at 

the level of tactics employed in the research enquiry (such as laboratory 

experiment vs. semi structured interviews) [Creswell, 1994; Maxwell, 2005; Groat 

and Wang, 2013]. Also, such a framework assumes that each paradigm engages 
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 Canter uses the analogy of a jazz improvisation, where a repertoire of techniques is used for 

developing an original tune [Canter, 2000]. 
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with particular research approach. For instance the quantitative approach would 

require a deductive – cause and effect / hypothesis testing– reasoning. On the 

other hand, a qualitative approach aims to generate meanings from the data set 

collected in order to identify patterns and relationships to build a theory, via 

inductive reasoning [Dudovskiy, no date]. 

2. A second research framework is theorised by Joroff & Morse, who see 

architectural research as a continuum of research paradigms 

[Joroff and Morse 1984, cited in Groat and Wang, 2002, p.29]. This framework 

consists in a much more fine-grained conceptual framework than the 

dichotomous quantitative/qualitative distinction. In this alternative framework, 

research areas are organised in a scale order with different ‘degrees of 

systematisation’. As shown in fig. 4.2, the left side of the model represents a more 

subjective paradigm, whereas on the right hand side sits a more objective 

paradigm. In this framework, research is clearly distinguished from other activities 

in which architects or designers might engage [Joroff and Morse 1984, cited in 

Groat and Wang, 2002, p.29]. 

 
Fig. 4.2 Scalar conceptual framework for architectural research,  

adapted from Joroff and Morse in [Groat and Wang, 2002] 

  

3. Research can also be framed in terms of a tripartite framework consisting in the 

triadic division of postpositivism-naturalism-emancipatory. Postpositivism is 

characterised by a nuanced belief in an ‘out there’ reality that can be known with 

some level of probability. It also assumes that objectivity is a legitimate goal that 

can be imperfectly realised. Naturalism, also known as constructivist, is instead 

based on the premise that there are multiple socially constructed realities and, 

hence, it is neither possible nor necessary to establish a value-free objectivity. On 
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this basis, naturalism acknowledges the role of interpretation and creation in 

reporting findings [Groat and Wang, 2002]. Finally, emancipatory research 

recognises multiple realities, and it stresses the unconscious role of race, ethnic, 

gender issues in the social construction of reality. 

4. Paradigms that are relevant to qualitative research include interpretivism, critical 

theory, feminism, queer theory, and phenomenology [Maxwell, 2005]. Of these, 

Maxwell embraces critical realism, which is an approach that has gained broad 

acceptance in the philosophy of science. It consists in combining two 

perspectives that were earlier indicated as fundamentally incompatible: 

ontological realism and epistemological constructivism39. In Maxwell’s terms, 

“every theory, model, or conclusion is necessarily a simplified and incomplete 

attempt to grasp something about a complex reality” [Maxwell, 2005, p.43]. Today 

critical realism is widely embraced both in science [Shadish, Cook, & Campbell, 

2002, p. 29] and in everyday lives. 

4.2.1 ONTOLOGICAL ASSUMPTION 

The present work partly incorporates elements of all the research paradigms just 

introduced. It presents a component of the dichotomous framework because of the 

nature of the data used (qualitative and quantitative) to gain knowledge from the real-

world (continuum research paradigm) in a specific context (interpretivism). 

The combination of such distinct philosophical positions results in a dialogue between 

different perspectives. Such dialogue is also referred by some authors as a dialectical 

approach, because it combines divergent models to expand and deepen, rather than 

simply confirm, our understanding. In this scenario, paradigms that reflect different ways 

of knowing the world are acknowledged without making a systematic attempt to 

reconcile them [Maxwell, 2005]. The bubble diagram (or circle relationship diagram) is 

used in figure 4.4 to show this dialogue of paradigms: figure 4.3 shows the relationship 

to or from a central idea (in this case the inquiry of overheating of HIHs). The medium-

sized circles represent the different kinds of paradigms to disentangle such enquiry, as 

they have been acknowledged in this chapter. The smaller (void) circles are there to 
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 Ontological realism is the belief that there is a real world that exists independently of our 

perceptions and theories and this world doesn’t accommodate the researcher’s beliefs. On the 

other hand, epistemological constructivism claims that our understanding of the world is inevitably 

our construction no such construction can claim absolute truth [Maxwell, 2005]. 
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acknowledge that these may not well be the only paradigms, though trusted to be the 

most used, considering the reviewed literature. The distance from the central circle has 

no specific meaning, and the overall picture aims to represent the researcher foundation 

for the research design, in the acknowledgment that some interpretivism and an inherent 

‘imprecision’ is embraced. 

 
Fig. 4.3 Research paradigm(s) underpinning the present risk of overheating in HIHs 

 

Consequently, this study relies on a mixed-methods approach of data collection (see 

section 4.2.3). Nonetheless, it seems crucial to remark that the mixed-methods approach, 

as it is understood and practiced in this study, is not reducible to the juxtaposition of a 

variety of diverse and possibly fundamentally heterogeneous methods - each informed 

to some different rationale and to possibly less than immediately coherent general 

principles. By contrast, in this study those different methods are contextualised in a 

broader and overarching framework – reality mapping (developed later in section 4.3.3) – 

that allows and contributes to the interaction, or dialogic exchange, between those 

different methods. As a result, the different methods relied on have been used in such a 

way that they can feed one into another in an articulated and integrated way.  

This integration is achieved via a dialogue of paradigms. In this perspective, contributions 

from each method connect with the others. As a result, the conclusions of this study will 

be the output of a process of communication and mutual interchange between different 
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methodologies, which are in turn understood as forming an integrated whole, as 

opposed to a mere bulk of different inputs.  

4.2.2 EPISTEMOLOGICAL ASSUMPTION 

Because the main purpose of the built environment is to enhance human lives, by its own 

nature the study of energy efficiency and thermal comfort in HIHs lies at the intersection 

of building physics and social science.  

This inherent crossing of disciplinary 

boundaries is at the very basis of 

architecture, as Vitruvius noted in 15 B.C.. 

In Vitruvius’s view, a building must 

embed three fundamental qualities: (a) 

firmitas, (b) utilitas, (c) venustas, that is, 

(a) stability, (b) ergonomic and (c) beauty 

[Morgan, 1960]. As such, the study of 

HIHs cannot just take into consideration 

the energy efficiency component of 

those building and so neglect the 

interaction between HIHs and their 

occupants (ergonomic aspect). Figure 4.4 

depicts the just acknowledged crossing-

between-disciplines; here, the shaded area represents the ideal approach to research in 

order to favour advancement of knowledge in architecture. 

This research project is characterised by an interpretivist perspective that explicitly 

acknowledges, and takes into account, the intrinsic uncertainties in understanding 

occurrences of overheating in HIHs. Accordingly, the results this study arrives at should 

be considered a reasoned prediction of how the different involved factors contribute to 

impact on the overall phenomenon of overheating and how the process of design of 

HIHs can be informed by the new knowledge acquired from this study case studies.  

It should be noted that in adopting the interpretivist perspective this research moves 

from a “problem-solving” process of research to a “problem-finding” process of research, 

also known as sympathetic method of design [Takahashi, 2000]. This method understands 

 

Fig. 4.4  Ideogram of research in architecture. 

Shaded, the ideal approach to research in 

architecture. 
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the relationship environment-behaviour as a transactional relationship, where person and 

environment are united as whole in an ever changing reality40. In this research the belief 

is also embraced that it is never possible to experience the same situation twice [Morgan, 

2014]. As a consequence, any belief is provisional and knowledge is acquired.  

4.2.3 A CASE-STUDY MIXED METHODS APPROACH OF DATA SOURCING 

As suggested by Groat & Wang [2002], an increasing proportion of architectural practice 

involves dealing with unfamiliar circumstances beyond the expertise of individual 

practitioners and beyond the conventional wisdom of the profession as a whole. This is 

the case with HIHs, whose history is recent and design is adjusting to the new 

government requirements for energy efficiency. 

From a pragmatist point of view, a research is a form of action aimed to meet the goals 

structured by its main questions [Morgan, 2014, p.43]. This dimension links the approach 

endorsed in this study to the design practice itself. In fact, here architectural research is 

conceived as an aid of systematic inquiry directed towards the creation of knowledge, 

which in turn may ultimately form an integral component of the design process. Groat & 

Wang claim that architectural research is extremely important to the success and viability 

of the architectural profession [2002]. Likewise, some architects embed research in their 

profession. All in all, there seems to be an intrinsic complementary nature of research 

and design. Such complementarity indicates an internal connections between the two 

activities [Groat and Wang, 2002], as reported in fig. 4.5. 

 
Fig. 4.5 The complementary nature of research and design, after [Groat and Wang, 2002] 

                                                           
40

 Post-occupancy evaluation records the environment-behaviour situation and it observes the 

environment-behaviour relationships changes over time. See devoted section, later in this chapter 

(section 4.3) for details on planned observations. 
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To contribute to this body of knowledge, the present study engages with a case study 

research because it is meant to produce real-world knowledge. More specifically, the 

research can be categorised, in Yin’s terms, as a descriptive and explanatory case 

study, in which the thermal behaviour of HIHs is described and on this basis an 

explanation of the overheating of HIHs will be attempted [Yin, 1993]. In addition, in this 

study multiple cases are selected in such a way to grant some degree of replicability, 

and so predictability. This is why in this study only HIHs are taken in consideration, and 

the phenomenon of overheating is then described as it unravels in each case.  

This study also incorporates some aspects of ethnography and participant observation, 

because it is largely immersed in a group of people (people who live in HIHs) for a long 

period of time interviewing, listening, etc. (longitudinal study). However, the present 

study has not been defined in such terms, because it is not dominated by participant 

observation. Rather, it is a form of observation aimed at aiding the interpretation of the 

monitored data. 

There is a tendency of associating case studies with qualitative research. But from the 

perspective taken in this study this tendency is misleading, or even altogether incorrect 

[Bryman, 2015]. In fact, the present study deploys a variety of data sources within the 

same cases. For this reason as well as because of the way the data are treated, this study 

too qualifies as a mixed method research. In mixed method research, “the researcher 

bases the inquiry on the assumption that collecting diverse types of data is the best to 

provide an understanding of a research problem” [Creswell, 2003, p.21]. 

The argument against mixed method research tends to be based on two types of 

arguments (a) the belief that a research method carries an epistemological commitment 

and (b) the idea that quantitative and qualitative research are two separate paradigms. 

To deal with this twofold criticism, this study will rely on pragmatism (as theorised by 

Creswell & Plano) and so will make use of diverse approaches that value both objective 

and subjective knowledge. This way, not only the research question becomes central 

(more than the philosophical worldview and method used), but also it abandons the 

dichotomy between post-positivism and constructivism [Creswell and Plano Clark, 2007] 

as well as the reliance on metaphysical concepts, such as truth and reality.  

To sum up, the present study can be characterised as indicated in table 4.1: 
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Table 4.1 Study typology 

(Pragmatic) critical realism A dialogue of divergent mental models to 

expand, deepen and reflect on the nature 

of overheating in HIHs 

Mixed methods Integration of data of different sources 

type: POE, interviews, process mapping, 

focus group 

Multiple case study In-depth study of four HIHs in England 

(descriptive and explanatory multiple case 

studies) 

Longitudinal study Data collected over a period of 11 months, 

to cover four seasons. 

 

4.3 METHODS OF DATA COLLECTION  

As listed in Chapter 1, this research will examine HIHs and try to establish if the design 

process delivers comfortable homes. Its specific focus will be on investigating the design 

issues that can lead to overheating. This study is then instrumental to gain an 

understanding of the actual performance of HIHs and to identify any risk that could lead 

to overheating. This will be achieved by linking the thermal performance of HIHs with the 

design thinking and process behind HIHs, and by clarifying how they interact in the 

context of design. 

The two basic research questions orienting this study listed in Chapter 1 (namely I. Do 

HIHs provide an uncomfortable indoor environment for their occupants?, and II. If so, how 

can the process of designing HIHs be improved to reduce the risks of overheating?) can be 

related to the real-world performance (see fig. 4.6).  

 
 

Fig. 4.6 Overview of proposed methodology of research with main areas of enquiry 
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The several objectives identified in Chapter 1 as building blocks of the two fundamental 

research questions (and replicated in figure 4.7) will be addressed by working from two 

main areas of enquiry: (a) the thermal performance of real-world HIHs case studies, 

through some post-built measurements (i.e. post-occupancy evaluation) and (b) a deep 

insight into the prediction informing the design of monitored HIHs (i.e. interviews with 

designers). This dualism is embedded in each objective. 

Here, post-occupancy evaluation (POE) is employed to evaluate the capacity of HIHs to 

deliver comfort (cf. obj. 1, obj. 3 and obj. 4). The deliverables related to this area of 

study are (a) overheating assessment, (b) summer temperatures analysis, and (c) analysis 

of occupants’ questionnaires. In addition, in this research POE contributes to provide an 

understanding of the role that occupancy plays in the thermal performance and 

exacerbation of overheating (cf. obj. 4). Ultimately, these elements contributes to map 

the occurrence of overheating, as it related to the physical factors - introduced in 

Chapter 3- which then fed into the interpretative map of the risks factors of overheating 

in HIHs in the overall process of design (cf. obj. 5). 

The interviews with designers are aimed at examining the design process that delivered 

the case study houses. The interviews are also aimed at evaluating architects’ and 

designers’ current knowledge (explicit or tacit) of how their HIHs designs affect thermal 

comfort (cf. obj. 2).  

In addition, interviews provide information regarding the tools and verification 

techniques used by designers (cf. obj. 3). Eventually, the interviews will contribute to map 

the occurrence of overheating, as it relates to the design factors introduced in Chapter 2. 

Those factors then fed into the interpretative map of the risks factors of overheating in 

HIHs in the overall process of design (cf. obj. 5). 

Data collected in the previous stages will be broken down via interpretative analysis into 

a process map. The compilation of this overheating map (cf. obj. 1) will show if and when 

HIHs are more prone to overheat, and where overheating occurs in the built process. In 

order to translate this map into a simplified model for designers, and so to evaluate the 

usefulness of this overheating map, a focus group was organised The focus group is also 

functional to test the validity and usability of the proposed map.  
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Fig 4.7 Overview of research activities in relation to research objectives,  

evidencing the type of mixed methods design  

The above areas of enquiry are of a mixed methods nature, and the combination of such 

data can be categorised as embedded design. Embedded design mixed methods are 

aimed at enhancing either the quantitative or the qualitative research with the other 

approach [Bryman, 2015]. In the present project, data collection is instrumental to 

understand the phenomenon of overheating. 

The methodology of the proposed research relies on a mixed methods research design 

with four main stages, as shown in figure 4.8 (and developed in detail in sections 4.3.1, 

4.3.2, 4.3.3, and 4.3.4). The first stage consists of a longitudinal study. The longitudinal 

study involves repeated surveys over a period of just about one year in order to assess 

the thermal performance of four case-study houses. The longitudinal study is a type of 

quantitative research approach, based on post-occupancy evaluation (POE), thermal 

comfort survey, and questionnaires to the occupants.  
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The second stage of this research is based on qualitative data sourcing via semi-

structured interviews to members of the design teams of the selected case study houses. 

This qualitative compound of the research is, paraphrasing Groat and Wang, 2002, aimed 

at studying overheating in its natural setting, by thus attempting to make sense and to 

interpret overheating in terms of the meanings for the designers [Groat and Wang, 

2002]. 

The third stage consists in triangulating data from POE (buildings in-use) and the 

interviews (design of buildings) by means of a process modelling methodology. The 

outcome of the triangulation is an ‘overheating map’ aimed at providing and bringing 

together aspects of the design and of the performance of the case studies, by so 

providing a map of overheating production in contemporary HIHs. 

Finally, during the fourth stage, the ‘map of overheating’ is presented to an audience via 

a focus group in order to gain feedback on its usability.  

Each stage (fig. 4.8) and corresponding techniques is elaborated in the following 

paragraphs. 

 
Fig. 4.8 Four stages of the research methodology of this study 

BOX 4 .1  – Tempera tures mon i tor ing  p i lo t  

The use of questionnaires, in addition to environmental monitoring, was also 

recommended by personal experience. During the doctoral programme, there 

was an opportunity to respond to a real-world problem, which was a primary 

school in Leicester where some rooms reported ‘overheating’ by its occupants. 

The rooms in question were monitored during July 2014 by means of 

recording air temperatures for a period of two weeks. The analysis of each 

room’s temperatures showed not to fully explain the mechanisms behind 

uncomfortably warm temperatures or perceived overheating, as experienced 

by the building’s occupants.  



CHAPTER 4: RESEARCH DESIGN   100 

4.3.1 STAGE 1: POST OCCUPANCY EVALUATION (POE) 

CIBSE defines POE as a tool to investigate how and why buildings may fall short of the 

designer’s aspirations. POE’s aim is not confined to understand the energy consumption 

of HIHs, as it POE also assesses comfort and so establishes how well the building 

functions from the occupants’ point of view [CIBSE, 2013]. For Stevenson, POE constitutes 

an essential part of improving sustainable design because it lies on evidence-based 

assessment [Stevenson, 2008] POE provides a complete picture of how the building 

performs in terms of perception compared to physical performance and how it does so 

in multiple seasons. So, for Stevenson POE is an essential part of the total design process. 

In addition, by relating physical monitoring and occupancy feedback, POE spans across 

the disciplines of building science and social science [Stevenson and Leaman, 2010]. 

Recently, Göçer et al. have used the feedback from POE to close what they call “the 

building performance feedback loop” by means of a spatial mapping based on POE 

results. In this way, they link existing POE methods to the visualisation of information that 

can be used in building information modelling (BIM) at different stages of the design and 

construction processes [Göçer, Hua and Göçer, 2015]. This way, Göçer et al. outline an 

approach that includes “POE as a self-evident part of the architectural design process” 

[2015]. 

In the specific case of investigating overheating, the approach of POE consists in asking 

occupants questions, such as “Does the building overheat in summer/winter?” That is, 

survey participants are asked about the building in general and not just the current state 

of the indoor environment.  

CIBSE claims that the best way to identify overheating is by asking its occupants 

questions about overheating. Even though CIBSE recognises that such an assessment is 

subjective, the responses of a sufficiently high number of building users can indicate 

whether occupants perceive internal temperatures as uncomfortably warm and, if so, 

when this is the case [CIBSE, 2013]41.  

Preiser classifies POE studies as (a) indicative, (b) investigative, and (c) diagnostic. In a 

nutshell, (a) indicative POEs are based in quick walkthrough evaluations involving 

interviews with key stakeholders; (b) investigative POEs employ questionnaires in 

                                                           
41

 However it is clear that there is a difference between saying that a building is too hot 

(instantaneous assessment) and saying that the building overheats over a period [CIBSE, 2013]. 
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addition to photos (or videos) and physical measurements; lastly, (c) diagnostic POEs are 

based on long term data gathering aimed at providing a wide range of performance 

evaluations [Preiser, 1995]. 

Because diagnostic POE relates to in-depth research in a focused topic area, this study 

undertakes diagnostic POE by deploying techniques of inquiry to map areas of concern 

between dwellings and their relation to the problem of overheating in HIHs. Those 

techniques are purported to:  

 Examine how HIHs are actually performing thermally. This requires one to 

evaluate the physical environmental measurements and the occupants’ opinions 

on how comfortable their houses are. 

 Examine the role occupants play in the thermal performance of their houses. This 

requires one to study how houses are used and managed. That way it is possible 

to evaluate the occupants’ level of understanding on how to maximise thermal 

comfort. 

 Investigate how the design and the use of HIHs can be improved to reduce 

uncomfortably warm temperatures. 

In this study, POE is performed by means of physical environmental monitoring, 

occupant questionnaires and a thermal comfort survey. These means are described in 

some detail in the following paragraphs. 

4.3.1.1 PHYSICAL ENVIRONMENTAL MONITORING 

In this research, longitudinal physical environmental monitoring has been performed in 

two ways: (a) continuous measurements and (b) spot measurements.  

(a) Continuous measurements have been recorded via calibrated42 HOBO sensors (see 

table 4.2). The HOBO sensors that were used are self-contained data loggers positioned 

and left in households for the duration of the study. Those sensors have thus recorded 

the key environmental parameters in each room of the homes. Two types of sensor were 

used: (a) HOBO UA pendant sensors for recording internal temperatures (˚C); and (b) 

HOBO U12 for recording internal temperatures (˚C), Relative Humidity (%) and in some 

cases CO2 (ppm)43. The sensors recorded the relevant variables at 10 min intervals from 

                                                           
42

 Calibration was performed after the environmental monitoring on some of the temperatures 

sensors via a controlled water bath calibrator. 
43

 The measurement of the CO2 levels is intended as an indicator of poor ventilation. This 

measurement was not intended to evaluate the indoor air quality (IAQ) since in the latter case, a 

number of added parameters should have been recorded, such as volatile organic compounds, 
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summer 2015 until spring 2016. This recording interval was selected in order to have a 

high resolution measurement and so to capture the short term temperatures 

fluctuations.  

The loggers were installed by the researcher, with the permission of the occupants, and 

were located within the house carefully avoiding heat sources or direct sunlight. Careful 

attention has been placed to ensure that the loggers would not interfere with the 

occupants’ daily life (such as, cleaning) and so to ensure that they would not disrupt 

normal living activities. For instance, loggers have been attached with blue tack on the 

back side of furniture. In addition black tape was used to cover the intermittent light 

from loggers that may disrupt bedroom darkness at night. 

Due to the limited internal memory of the recording devices, data from the loggers had 

to be downloaded regularly. This resulted in a close control of both placement and 

reliability of the sensors. 

(b) Spot measurements were collected just once, during the second survey in August 

2015 (see data collection timeline in fig. 4.7, later in this chapter).  

The spot measurements formed part of a full thermal comfort survey, which included a 

thermal comfort sensation questionnaire, Q2 (see section 4.3.1.3 below). The 

environmental parameters have been measured using a Dantec Dynamics ‘ComfortSense’ 

system, which is compliant with EN13182, ISO7726 and 7730, and ASHRAE Standards 55 

and 113 [ISO, 1998; BSI, 2002, 2005, ASHRAE, 2013a, 2013b] (see table 4.3). The recorded 

environmental parameters were (a) air temperature ˚C; (b) operative temperature ˚C; (c) 

relative humidity % and (d) air velocity (m/s) at three different heights (foot, core and 

head).  

  

                                                                                                                                                                     

 

formaldehyde, carbon monoxide, nitrogen dioxide, particles, mites, bacteria, fungi, radon, ozone, 

semi-volatile organic compounds in dust, carbon dioxide and air exchange rate. Protocols for data 

cleaning and preparation for analysis is been detailed in Chapter 5. 
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Table 4.2 Technical specifications of the HOBO sensors [ONSET, no date a, no date b] 

 

(a) (b) 

HOBO 64K Pendant Temperature Data 

Logger 

UA-001-64 

HOBO Temperature/Relative Humidity/2 

External Channel Data Logger 

U12-013 

 

 

Measurement range 
Temperature: -20° to 70°C 

 

Measurement Range 
Temperature: -20° to 70°C 

RH: 5% to 95% RH 

Accuracy 
a
 

Temperature: ± 0.53°C 

 

Accuracy
 a 

Temperature: ±0.35°C 

RH: ±2.5% from 10% to 90% RH (typical), to 

a maximum of ±3.5% 

External input channel: ± 2 mV ± 2.5% of 

absolute reading 

Resolution:  

Temperature: 0.14°C at 25°C 

Resolution 
Temperature: 0.03°C at 25°C  

RH: 0.05% RH 

Response time in airflow of 2 m/s  
Temperature: 10 minutes, typical to 90% 

 

Response time in airflow of 1 m/s 
Temperature: 6 minutes, typical to 90% 

RH: 1 minute, typical to 90% 

Time accuracy 
b
 

± 1 minute 

Time accuracy 
b 

± 1 minute  

Operating Range 

(in air) -20° to 70°C  

Operating Range 

-20° to 70°C; 0 to 95% RH (non-

condensing) 

Weight: 15 g 

Dimensions: 58 x 33 x 23 mm 

Weight: 46 g 

Dimensions: 58 x 74 x 22 mm 
a 
For the temperature range of 0-50 °C 

b
 At 25 °C 
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Table 4.3 Technical specifications of the Dantec Dynamics ‘ComfortSense’ system [Dantec-

Dynamics, no date a, no date b] 

 

ComfortSense main frame 

 
Anemometer channels up to 16 Output channels 2 (monitoring 

channel 1 & 2)  

Interface USB 2.0 Built-in A/D converter, 16 bit, 250 kS/s 

Probes 

 
 

Robust Velocity and Temperature onmidirectional probe 

Velocity range: 0.1 - 30 m/s  

Accuracy: 0.2 - 20 m/s: ± 2% - 20 - 30 m/s: ± 5% 

Time constant – velocity: Typically 2-3 sec.  

Time constant - temperature Typically 4-5 sec. 

Temperature compensation error on velocity, in the temperature 

range 0ºC to 45ºC: less than 0.2% of reading per 1°C change in 

air temperature  

Temperature reading range: -20ºC to +80°C  

Accuracy at velocities above 0.5 m/s, radiation excluded: ± 0.5K 

Humidity onmidirectional probe  

Humidity range 0 - 100% RH (Relative Humidity)  

Accuracy From 0 to +10°C: +2% RH From 10 to 30°C: +1.5% RH 

From 30 to 45°C: +2% RH  

Dynamic response Time constant 10 minutes. 90% response: 30 

minutes (when air velocity less 0.1 m/s)  

Stability. Typical values in normal air. Drift less than 1% RH per 

year and 0.1 K per year 

Operative temperature onmidirectional probe 

Temperature range 0 to 45°C  

Accuracy From 0 to 10°C: ±0.5 K From 10 to 40°C: ±0.2 K From 

40 to 45°C: ±0.5 K 

Dynamic response Time constant 2 minutes 90% response: 7 

minutes (All values established in environment with air velocity 

less than 0.1 m/s) 
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4.3.1.2 OCCUPANT QUESTIONNAIRES 

Occupancy feedback is central to this study and instrumental to better understanding the 

actual building performance in relation to the designer’s intentions and the user’s 

response to the house design and equipment. The occupants’ questionnaires used are of 

three types:  

 Q1a, administered on the first home survey;  

 Q1b, submitted at every seasonal home visit; and  

 Thermal comfort sensation questionnaire Q2, submitted multiple times. 

 

Questionnaire (Q1a) 

During the first visit of each case study house, a questionnaire (Q1a) was submitted (see 

table 4.4 for rationale; complete questionnaire is in Appendix C). This questionnaire was 

aimed at collecting the background information of the dwellings and its tenancy. In 

particular, the questionnaire was meant to collect the following sets of information: (a) 

information about the dwellings and its tenancy (such as, tenure, occupancy, etc.); and (b) 

information about the physical environment (such as, microclimate, physical dimensions, 

etc.). This questionnaire was performed only once. 
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Table 4.4 Questionnaire Q1a rationale 
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This questionnaire included some open questions in order (a) to enable participants to 

provide more detailed and insightful answers by thus providing a richer picture of a topic 

[Bryman, 2015]; and, (b) to enable the researcher to spot unforeseen issues in the 

building performance [Stevenson, 2008]. Box 4.2 above referred to a personal experience 

in which open questions enabled the identification of an unanticipated problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Questionnaire (Q1b) 

In addition, during the first visit a second questionnaire (Q1b) was submitted (see table 

4.5 for rationale; complete questionnaire is in Appendix C). The same questionnaire was 

then repeated seasonally. This questionnaire was aimed at collecting overall seasonal 

information, relating to (a) what occupants thought of their thermal environment and (b) 

how occupants adapted/interacted with their thermal environment (CLO, controls, 

technology, etc.).  

The purpose of repeating this questionnaire seasonally was to check whether the 

opinions of those living in the case study HIHs changed over time. This way it was also 

checked whether there was any problem in the design and whether or not the occupants’ 

response accounted for the ‘forgiveness’ factor, namely, for the fact that “occupants 

tolerate less than perfect conditions because they like the overall feel and design quality of 

a building” [Nicholls, 2008, p.282]. 

  

BOX 4 .2-  The va lue  of  open quest ions  in  occupant ’s  quest ionnai re  

When performing post occupancy evaluation in a multi-storey residential 

building in Wales, prior to commencing the doctoral programme, the 

researcher realised that the deployment of open-ended questions revealed that 

occupants were unable to store chocolate in their kitchen cabinets all year 

around due to excessively high temperatures inside the building in some 

periods of time. Likewise, the rubbish had to be cleared one or twice a day due 

to bad odour. After further inspection, it was clear that the (whole building) 

domestic hot water pipes distribution (running all year and located in the main 

building corridor, nearby the apartments' kitchens) was transferring heat to the 

adjacent kitchen flats. 
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Table 4.5 Questionnaire Q1b rationale 
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4.3.1.3 THERMAL COMFORT SURVEY 

The approach adopted in this research project also combined detailed subjective data 

gathering with objective environmental monitoring of indoor and outdoor thermal 

conditions in people’s homes.  

Occupant’s questionnaire (Q2) 

The subjective monitoring was conducted through the thermal comfort questionnaire 

(Q2) (see table 4.6 for rationale; complete questionnaire is in Appendix C). This 

questionnaire asked information about activities and behaviours immediately prior to, as 

well as at the time of, completion. This enabled the researcher to estimate the closeness 

to steady state conditions. In addition, this questionnaire was instrumental to gather 

information about the use of air motion devices (inclusive of windows, doors and 

equipment) and the proximity (distance and direction) of the participant to those devices. 

Moreover, the questionnaire collected information about the presence or absence of any 

solar radiation incidence upon parts of the participant’s body.  

 

 

 

 

 

 

 

The questionnaire was designed to be submitted remotely and at multiple times during 

the study. Paper-based versions were provided to two case study HIHs where online 

questionnaire submission was not a viable solution for the occupants. 

  

BOX 4 .3  – Thermal  comfor t  p i lo t  in  Brazi l   

Prior to commencing the longitudinal monitoring, the researcher took part in 

an academic exchange in Brazil. There, access to a rural development provided 

an opportunity to test Q2 in a hot-climate context. When the residents were 

asked to rate their comfort feeling in a 1 to 7 scale (ASHRAE thermal comfort 

scale), a resident had difficulty translating their comfort ‘state’ into a numerical 

scale. The only response obtained was “feliz da vida” (literal translation: “happy 

about life”), which reflected a general feeling of satisfaction. While bringing up 

questions about the global applicability of a comfort scale (especially with 

regards to the cultural obstacle to numerically ‘rate’ things, this response gave 

an insight into the psychological component of satisfaction.  
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Table 4.6 Questionnaire Q2 rationale 
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4.3.2 STAGE 2: INTERVIEWS WITH ARCHITECTS AND DESIGNERS 

This activity was intended to investigate the contribution of the design process of the 

case studies in their thermal performance and in their contribution to overheating. This 

investigation was performed by interviewing the designers involved in the case studies of 

the present research. Typically, two designers two for each case study were interviewed. 

The interviews were carried out face-to-face for just over one hour. 

Due to the nature of the design process, qualitative research, in the form of semi-

structured interviews to architects and designers, was used in order to complement the 

data derived from POE. The interview guide44 was formulated by considering literature 

regarding guidance on sustainable buildings design [Lewis, 1999]  and the available 

literature on overheating avoidance guidance [Dengel and Swainson, 2012; NHBC, 

2012b] 

The interviews to the designers and architects took the form of semi-structured 

interviews. A semi structured interview consists in a list of questions relating to specific 

subject to be covered. The questions may not follow an exact structure (like 

questionnaires). This way, the responses result from a less constrained structure [Bryman, 

2015].  

The objectives behind semi structured interviews are to gain knowledge on: 

 How architects and designers assume their designs to perform once built? What 

do they know? 

 What do architects and designers assume occupants to do to achieve and control 

thermal comfort? 

 Do architects and designers have the knowledge to avoid overheating? 

 How architects and designers relate to the standards and regulations of energy 

efficient design? 

In order to obtain responses concerning the issues of whether overheating (a) is the 

result of lack of knowledge, a fragmentary process of design or of construction etc., (b) 

or it is a problem of decision-making and control over the project, or (c) it is a problem 

                                                           
44

 In a semi-structured interview, the researcher has a list of topics to be covered - this is often 

referred as interview guide since questions might not follow an outlined schedule in order to allow 

flexibility within a fixed framework [Bryman, 2015]. 
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of occupant behaviour, it was necessary to develop a framework that could sustain and 

guide the questions to the designers. 

In creating the framework that directed the questions, they were considered both the 

factors influencing the thermal performance of buildings in general and the dynamics in 

which overheating occurs. Such dynamics was attributed in previous chapters to (a) 

external heat gains (sun, UHI), (b) internal heat gains (occupancy, appliances) and (c) 

inadequate ventilation [Dengel and Swainson, 2012]. The resulting framework developed 

in detail in Chapter 6, channelled the formulation of the interview guide. 

The rationale of the questions structuring the semi-structured interviews was that of 

looking at how overheating in the design phase can be prevented and what can be 

improved. The questions were presented in a generic fashion, by so allowing the 

interviewee to the chance to elaborate on their views and express themselves freely. The 

questions contained a number of prompts, though. Those prompts were purported to 

direct the conversation with the interviewees and so to ensure that the information 

needed could be obtained (see table 4.7).  
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Table 4.7 Semi structured interview questions to architects and designers 
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4.3.3 STAGE 3: REALITY MODELLING: PROCESS MAPPING  

In order to describe the reality in which overheating occurs, it was considered necessary 

to adopt a model system that reflected both (a) the complexity of building thermal 

performance (as a result of materials, layout, user behaviour, microclimate, and urban 

considerations) and (b) the information and knowledge to date about that reality and the 

flow of information from the initial requirements and the concept design of such 

dwelling until its delivery to residents. 

In order to model such a complex system, the discipline of systems engineering provided 

the methodologies able to model organisms, organisations and structures. Some of 

these methodologies rely on traditional methods, such as data flow diagrams; other 

methodologies instead rely on methods specifically developed in recent years for 

manufacturing. The method chosen - IDEFØ (Integrated computer-aided manufacturing 

definition methodology) - belongs to the latter category: IDEFØ is a functional modelling 

language addressing information models and database design issues [Ang et al., 1997]. 

So far IDEFØ has successfully been used to assess post occupancy in schools [Hassanain 

and Iftikhar, 2015], with the intention to represent the sequential processes (or steps) 

conducted in post-occupancy evaluation and enabling to identify defects and remedial 

actions, comprehension of consequences of decisions made during the design, and 

operation of school facilities. In the context of this work, IDEFØ is used to facilitate the 

legibility of the POE conducted, as it illustrates the interactions between activities in 

terms of inputs and outputs. 

For the purpose of the present study, IDEFØ provides a structured analysis methodology 

that is capable to graphically represent the functional relationships in the different stages 

of the building process45. In this study, IDEFØ enabled the researcher to triangulate data 

about the physical reality (from POE, with data of both quantitative and qualitative 

nature) and the outputs of the interviews with designers, by so linking prediction and 

performance.  

                                                           
45

 However, other means of structured analysis, such as IDEF3, were also considered. Whereas 

IDEFØ is a methodology for function modelling, IDEF3 is developed for process description 

capture. IDEF3 was considered because it provides a temporal perspective of a process, allowing 

implementing a solution. IDEFØ, by contrast, focuses on the output of a process to ensure the 

design is purposive. 
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4.3.4 STAGE 4: FOCUS GROUP 

The previous paragraphs illustrated how the problem of overheating46 in HIHs in the UK 

is explored in this research, i.e. by monitoring four HIHs across England (stage 1) and by 

interviewing members of the design teams of those homes (stage 2) in the attempt to 

look how the design process of HIHs could be improved to avoid overheating. Especially 

in consideration of the fact that this problem has often been analysed by looking at the 

factors contributing to overheating, thereby isolating the parts of the problem, this study 

has attempted to reconnect the missing links of the processes leading to overheating 

(stage 3). This objective has been pursued by making use of a process mapping tool 

(IDEFØ). The conviction behind this choice is that the main physical factors contributing 

to overheating may be overlooked at the design stage. The assembled output 

corresponded to an ‘overheating map’. 

So, in order to validate this attempt to reassemble a hitherto scattered process of 

housing design, stage 4 has been implemented. Through this stage, feedback has been 

gained about the usability of the ‘overheating map’ through a focus group. 

The focus group is a specific interviewing technique, with at least four participants, in 

which a specific theme is explored in depth [Bryman, 2015]. The most important feature 

of a focus group is that, in contrast to the process of one to one interview, in a focus 

group an individual has the opportunity to answer in a certain way but at the same time 

to listen to other people responses. As a result, a participant may change their view 

during the focus group. This means that focus groups allow for a joined construction of 

meaning [Bryman, 2015]. 

During the focus group carried out as part of this research, a brief background of the 

process mapping methodology was presented by the researcher. Then, the audience, 

divided into 5 groups of two people each, was invited to reflect and elaborate on the 

map presented in order to propose a more generic ‘overheating map’. After that stage, 

the audience commented on their maps as well as on the usability and appropriateness 

                                                           
46

 The conceptualisation of overheating in HIHs as an issue of “under-cooling” (as shown in the 

conclusions of Chapter 3 – Dimensions of Overheating served the purpose of provide a nature (or 

dimension) of this problem and hence disconnect it with an issue of possible future climate 

change overheating. Then, throughout the thesis the term overheating has been kept to provide 

consistency with academic publishing. The word overheating is maintained throughout this thesis 

in order to keep terminology consistency with the published studies. 
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of the chosen process map methodology (IDEFØ map). Finally, the findings of the 

discussion were analysed and the feedback obtained provided suggestions for 

improvement of a possible ‘overheating aiding tool’. 

 

4.4 RESEARCH PLAN 

4.4.1 SAMPLE 

The type of sampling used for the HIHs surveyed in this study has been variegated and 

representative of the British housing stock. Academic contacts have been used to identify 

recently completed HIHs. In particular, the researcher has relied on the connections the 

housing industry that the Institute of Energy and Sustainable Development (De Montfort 

University) has in the Midlands and in Yorkshire. 

This capitalisation of opportunities, which is referred by Bryman [2015] as opportunistic 

sample, has also been facilitated by the IESD connections with social housing providers 

and housing trusts, which have granted access to the case studies.  

The fact that among all the housing association’s houses only highly insulated buildings 

have been included in the study defines the sampling used in this research project as a 

purposive sampling. Purposive sampling is a non-probabilistic form of sampling [Bryman, 

2015]. 

The sample size has been determined in light of the availability of time and resources for 

a longitudinal study. In that respect four case studies should be considered a 

manageable quantity. The four case study HIHs are located in England and are of 

different typology, orientation, design strategy). As a result, they have provided as much 

diversity as possible within a HIHs group.  

Likewise, each HIH formed part of a longitudinal study in which the houses were visited 

five times. The number of visits is justified by the need to download data from the 

recording loggers and to submit a questionnaire to the occupants in each season of the 

year (in addition to the first visit questionnaire). See table 4.8., where it can be noticed 

that a house UK53 is missing (because the residents dropped out of the study just prior 

to the first visit). 
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Table 4.8 Case studies composition

 

As to the interviews of designers, the sample size has been directly related to the number 

of houses. Members of the design team of the Yorkshire development did not respond 

to the requests to interview them, though. By contrast, an architect from a Passivhaus 

development in Leicester accepted to give an interview (see table 4.9). This last 

interviewee was suggested by one of the previous interviewees (snowball sampling). The 

sampling is then composed as follows: 

Table 4.9 Interviewees list 

 
 

As to the focus group, its aim consisted in gaining feedback from a specialised audience. 

For this reason, the group size had to be controlled. The typical size of a focus group is 

six to ten members [Bryman, 2015]. In this case, to control both participation and 

management of responses, ten participants (from a specialised audience of designers, 

both engineers and architects) were invited (see table 4.10).  

Table 4.10 Specialised audience designers, academics and industry participants. 

 

Coded name house type location

Case study 1 House UK51 Retrofit Victorian terrace Leicester (UK)

Case study 2 House UK52 New Passivhaus-like bungalow Sandiacre (UK)

Case study 3 House UK54 New highly insulated end of terrace York (UK)

Case study 4 House UK55 New highly insulated detached York (UK)

Coded name role in case study  background

From case study 1 D1-UK51 Project initiator designer and planner

From case study 1 D2-UK51 Specification consultatnt building surveyor

From case study 2 D3-UK52 Passivhaus consultant physicist

From case study 2 D4-UK52 Design architect architect

Linked to case study 2 D5 Project manager architect

Coded name architecture engineering
Housing 

association

FGP1 designer academia and industry 1

FGP2 architect industry 1

FGP3 engineer academia 1

FGP4 engineer industry 1

FGP5 housing provider industry 1

FGP6 engineer academia 1

FGP7 engineer academia 1

background
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4.4.2 ETHICAL CONSENT AND RISK ASSESSMENT 

The research obtained ethical approval as requested by the internal regulations at De 

Montfort University. In addition, written consent has been obtained from all the 

participants involved in the study prior to data collection. The information letter and 

consent forms can be found in Appendix B. 

 

 

 

 

 

 

 

4.4.3 PROJECT MANAGEMENT 

The table below summarises the study timeline, evidencing both (a) the period of data 

collection and (b) the events that have influenced the study design. Note that the period 

of POE has been zoomed to show details of activities within it (fig. 4.9). 

 
Fig. 4.9 Study timeline 

Oct-13 Oct-17

Jan-14 Jan-15 Jan-16 Jan-17

Jun-15 May-16

Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16

May-15 - May-16

data collection: stage 1 (POE)

Apr-15 - Apr-15

Brazilian exchange
(pilot thermal comfort)

Jul-14 - Jul-14

School consultancy 
(pilot overheating assessment)

Apr-16 - Jul-17

Stages 2-4 (interviews, focus group)

Feb-16 - Feb-16

Peruvian exchange
(pilot IDEF mapping & 

pilot focus group)

Jan-16

 Q1b submitted
 Loggers download & launch

Apr-16

 Q1b submitted
 decommissioning

Oct-15

 Q1b submitted
 Loggers download & launch

Aug-15

 2nd visit – summer
 Q1b and Q2 submitted 
 Thermal comfort survey
 Loggers download & launch

Jun-15

 1st visit – set up
 Walk through, 
 Q1a and Q1b submitted
 Loggers download & launch

POE
INTERVIEWS
FOCUS GROUP

BOX 4 .4  – Eth ica l  consent ,  the South Amer ican exper ience  

During the doctoral programme, the researcher conducted two distinct sets of 

interviews in South America: one in Brazil (2015) and one in Perú (2016). In 

both cases, ethical consent was required by the De Montfort University’s 

protocols to ensure transparency and information to the respondents. In 

Brazil, the host professor introducing to the case study suggested that the 

researcher should not ask for signed consent, because this fact alone would 

have generated suspicion in the respondents. In lieu of the respondents’ 

signed consent the researcher obtained of the Brazilian professor who took 

the time to explain the respondents what the research was about. In Perú the 

same problem was experienced.. But in this case, the interviews were preceded 

by a recorded audio consent. 



CHAPTER 4: RESEARCH DESIGN   119 

4.5 VALIDITY 

As stated earlier in this chapter, the present research embraces a pragmatic philosophy 

that combines diverse approaches that proved to be effective in similar contexts. Such 

approaches value both objective and subjective knowledge from the natural sciences, 

social sciences and humanities realms. As such, the quality standards relate to each 

method and approach used.  

4.5.1 OBJECTIVITY (QUANTITATIVE APPROACH RELATED) 

The quality standards of a post-positivist system of inquiry are listed by Groat & Wang. 

The validity of the post-positivistic paradigm is based on the truthful representation of 

the object of study (objectivity) and its applicability to a larger world. In this process, bias 

can be avoided by the use of standardised/calibrated equipment [Groat and Wang, 

2002].  

In the present study, the quantitative aspects related to the environmental monitoring 

involved in the post-occupancy evaluation have been calibrated and the thermal comfort 

survey have been performed according to the ASHRAE Standard 55 [ASHRAE, 2013a]. 

4.5.2 TRIANGULATION AND REFLEXIVITY (NATURALISTIC APPROACH) 

From the standpoint of a naturalistic paradigm (in accordance to which there is “no 

value-free objectivity”) data and its interpretation should be confirmable rather than 

objective. Confirmability is achievable through a combination of triangulation and 

reflexivity. While triangulation is achieved by the use of multiple methods and sources, 

reflexivity requires the investigators to reveal their epistemological assumptions, their 

influence on the framing of the research questions and any changes in perspective that 

might emerge during the study [Groat and Wang, 2002].  

In the present study, the method itself is treated as a tool for triangulating results and, 

hence, for showing that sets of information acquired from different sources (interviews, 

documents, observations, etc.) point in the same direction [Yin, 1993, p.69].  

4.5.3 CONSTRUCT VALIDITY (CASE STUDY RELATED) 

A test of validity and reliability of the case study research design lies in its construct 

validity, which deals with the use of “measures that accurately operationalize the 
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constructs of interest in a study” [Yin, 1993, p.39]. Construct validity is achieved through a 

strategy of multiple measures of the same construct.  

In this study, a variety of measures have been taken into consideration to construct the 

problem of overheating. The study has also relied on a valid parallel with the continuum 

of research paradigms theorised by Joroff & Morse (see paragraph on architectural 

research paradigms at the beginning of this chapter). On such view, different degrees of 

systematisation characterise the different research methods and consequently the 

research construct [Joroff and Morse 1984, cited in Groat and Wang, 2002, p. 29].  

The present study, in sum, deploys different methods depending on whether the realm 

of systematisation is social or physical. 
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4.6 CHAPTER SUMMARY 

This chapter has characterised the thesis as a transdisciplinary study carried out within 

the research paradigm of pragmatic critical realism. On this basis it has been concluded 

that a descriptive and explanatory multiple case study mixed methods approach to 

research and data collection best suits the exploration of the risk of overheating in HIHs 

and enables one to gain an understanding that other methods cannot secure. 

In the context of this work, the reliance on a mixed-methods approach of data collection 

is not understood as a mere combination of a variety of diverse methods - each 

informed to a different rationale. By contrast, those different methods are contextualised 

in a broader and overarching framework, via the implementation of a four stage-method 

of collection (described in section 4.3) Finally, sections 4.4 and 4.5 have listed the details 

of the research plan and the validity of the paradigms adopted. 

Based on the methodological premises set out here, the next three chapters will present 

analysis and findings of this research. Chapter 5 will deal with the physical arrangement 

of the case study HIHs, Chapter 6 will discuss the findings of the interviews to designers, 

and Chapter 7 will triangulate those findings by breaking them into a process map, then 

validated via a focus group. 
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CHAPTER 5: POST-OCCUPANCY EVALUATION  

 

Synopsis 

This chapter is predominantly concerned with the real-world component of the present 

research and, especially, with the overheating-related the performance of HIHs.  

The chapter begins with the detailed presentation of the four case studies. It then moves 

to introduce the data collected by means of longitudinal temperature recordings, 

questionnaires, and the thermal comfort survey.  

The chapter then provides evidence of overheating, and a tentative explanatory reason 

for this, by looking at the temperature recordings in different ways, by applying standard 

methodologies for overheating assessment, and by asking questions to the occupants of 

these HIHs. This combination of both objective and subjective measurements is aimed at 

determining the likelihood of overheating and the sources of overheating risk.  

The findings will support the conclusion that overheating occurring in some of the 

houses. Accordingly, the first research question, namely Do HIHs provide a comfortable 

indoor environment for their occupants?, finds an at least partially negative answer. In this 
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CHAPTER 2 Literature 
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CHAPTER 3 Factors  

CHAPTER 4 Research design 
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1. Houses presentation 

 house UK51 

 house UK52 

 house UK54 

 house UK55 

2. Environmental 

monitoring 

 Summer performance 

 Overheating 

assessment 

 Heat wave 

vulnerability 

 Year overview 

 Discussion 
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context, it was found that HIHs in this study are characterised by a number of factors 

increasing the risk of overheating. Likewise importantly, the outcomes of this chapter will 

contribute to the overheating map, as developed later in Chapter 7. 

5.1 CASE-STUDY HOUSES PRESENTATION 

As stated in Chapter 4, this research is based on a multi-case study research aimed at 

gaining real-world knowledge. The quality of the research is both descriptive and 

explanatory, since this work both describes the thermal behaviour of HIHs and provides a 

tentative explanation of the occurrence of overheating in HIHs.  

In this study, four English super-insulated houses are taken into consideration as cases 

study (see fig. 5.1). The houses selected for this study present substantial differences (in 

terms of context, typology, layout, orientation, materials). As a result, the research has 

the potential to examine the phenomenon of overheating in HIHs in different contexts. 

 
 

Fig. 5.1 Location of case study houses across England 
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5.1.1 HOUSE UK51 

The first case study – House UK51 

- is a Victorian terrace house from 

the late 19th century located in 

Leicester. This typology of house 

constitutes one of the most 

widespread archetypical houses in 

urban areas of the UK. Its layout is 

organised in terms of a front 

room and a rear room over two 

floors. Traditionally, it is built on 

solid brick walls with a narrow 

front and deep layout, a relatively 

large space standard, no 

insulation, and high levels of air 

leakage.  

Terrace house rows are part of the 

characteristic UK urbanscape, with 

its externally rendered brick walls. 

 
Fig. 5.3 Aerial view of house UK51 location in the urban context of Leicester 

 

 
Fig. 5.2 East façade view of the Victorian terrace (late 19

th
 

century) retrofitted to Passivhaus-like standards UK51 
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This east-facing pre-1919 property was completed with a rear addition for the kitchen 

and bathroom. It is constructed with 230 mm solid brick walls and has a traditional cut 

rafter roof with a slate covering. The right-hand ground floor wall is exposed to a 

passageway shared with the neighbouring property. The ground floor throughout the 

property has been upgraded to concrete and insulation, with the first floor being of 

suspended timber. This house is owned and managed by a registered social landlord in 

the Midlands47. 

 
Fig. 5.4 Plans UK51 

 

Pre-1919 dwellings adds up to 21% of the English dwelling stock [MHCLG, 2015c]. On the 

assumption that new housing in the UK will supplement, and not replace, the old stock, 

refurbishing such houses is a reasonable and straightforward way to reduce the overall 

CO₂ emissions from buildings.  

                                                           
47

 It is known that around 20% of the UK housing stock is social housing, and within this, around 

350,000 properties are pre-1919 (as of this terrace age band) [MHCLG, 2015c] 
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In 2010, this terrace house underwent an extensive refurbishment [Crilly et al., 2012], 

which was aimed to meet the requirement of 80% reduction in carbon emissions and was 

focussed on a fabric first approach.  

This project is retrofitted to near Passivhaus standards, following Passivhaus principles 

and using PHPP as a tool for the calculation of the energy performance. In this project, 

walls are internally insulated (U=0.12 W/m2K). On the front side, new high-performing 

wood-framed sash windows are used to guarantee reduced energy dispersion, security 

and effective summer ventilation. In addition, to reduce infiltration, a vapour barrier to 

well below new build Part L maxima has been implemented. 

The PHPP verification document retrieved shows that the Passivhaus standard is not met. 

It seems worth noting that at the time of the retrofit was undergoing EnerPHit was not 

available (fig. 5.5). 

 
Fig. 5.5 PHPP verification sheet of UK51 

There is a distinctive part of this project that consists in the off-site manufactured roof 

pod (see figg. 5.6 and 5.7). The roof pod provides an additional room in the roof. The 

proposal reads “an internal insulation solution was chosen, and the consequent loss of 

floor space compensated for by adding an attic pod manufactured off-site. The pod 

provides a second-floor bedroom with warm roof, and whole-house ventilation services 

preinstalled. This is both an innovative solution to replacing floor space lost due to internal 

insulation and (by providing an extra bedroom) enables an additional sitting room on the 

first floor to meet local cultural needs” [Project Cottesmore, 2009]. The attic pod, 

manufactured off-site, has a pre-installed MVHR unit in the roof space. The idea behind 
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the prefabricated roof pod is to manufacture -in a controlled environment- a custom unit 

that uses the latest technology and low energy envelope with a warm roof with no 

thermal bridges. 

 

 
Fig. 5.6 Roof pod early sketches. Fig. 5.7 Roof pod installation on-site 

 

BUILDING SYSTEMS 

The provision of fresh air is achieved via MVHR. In this case, no provision for summer 

bypass is in place. Each inhabitable room has a supply air valve for fresh air provision and 

each wet room and kitchen is provided with an air extraction valve. Air extraction valves 

are located on the ground floor kitchen and the first-floor bathroom. There is a boost 

ventilation switch located in the kitchen. Energy demand for heating (which was 

substantially reduced after refurbishment) is met via a condensing gas boiler system with 

traditional piped radiators.  
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Fig. 5.8 UK51 solar thermal: rear (left) and detail (right) 

OCCUPANCY 

Family members comprise a female adult, her brother with his wife, and their new-born 

child. The arrival of the baby occurred during the monitoring period and meant that the 

house was occupied at all times in at least one bedroom. Responses to questionnaires, as 

well as house details, were provided by the male occupant. 
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5.1.2 HOUSE UK52 

The second case study – House UK52 - is a bungalow, built in 2013 and part of a 

redevelopment in Sandiacre, near Nottingham (see fig. 5.9). This house typology (see fig. 

5.10) is less common than traditional terraces; in fact it constitutes about 9% of all 

dwelling types in the UK [MHCLG, 2015c]. The layout is developed on one floor. The 

whole development is built to Passivhaus standards; however, as it is commonly the case 

due to financial reasons, only a few houses in that development are Passivhaus certified. 

Built to Passivhaus standards, the bungalow is not a certified Passivhaus. 

 
Fig. 5.9 Aerial view of development where house UK52 is located in Sandiacre 

 

 
Fig. 5.10 View of the uncertified Passivhaus bungalow UK52 (shaded the entrance facing west) 
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Fig. 5.11 Passivhaus development where UK52 is located 

 

 
 

Fig. 5.12 Plans of UK52 

 

This house is part of a large Passivhaus development owed by a housing association in 

the Midlands. The development aimed at achieving the Code for Sustainable Homes 4. 

This objective was pursued through a fabric-first approach. House UK52 is characterised 

by the use of lightweight materials, while external bricks and other features (such as the 

fake chimneys) were intended to adhere to the traditional idea of housing in the UK 

[interview with designer D3-UK52, 2015]. 
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The PHPP verification document retrieved shows that the Passivhaus standard is not met. 

The achieving of the Passivhaus standard is here penalised by the typology (bungalow) 

and its high surface to volume ratio (fig. 5.13). 

 
Fig. 5.13 PHPP verification sheet of UK52 

 

BUILDING SYSTEMS 

The provision of fresh air is operated via MVHR. In this case, no summer bypass provision 

is in place. Each inhabitable room has a supply air valve and the bathroom and kitchen 

are provided with extract air valves. There is a boost ventilation switch located in the 

kitchen. In addition, there is a heat-boost located in the living room to provide an extra 

level of comfort from the air supply valve. 

OCCUPANCY 

This house is occupied at all times by a couple of retired residents. The second bedroom 

is occasionally used by the couples’ son. Responses to questionnaires as well as house 

details were provided by the female occupant. 
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5.1.3 HOUSE UK54 

The third case study – House UK54 - is an end of terrace house, built in 2013 as part of 

an exemplar development in a suburban area in York. In that development high 

standards of fabric efficiency are combined with other aspects of sustainable community. 

The development is characterised by a modern design, which integrates non-traditional 

and passive architectural features such as balconies, loggias and sunspaces. This house 

combines the use of external bricks and an exposed internal thermal mass. 

Fig. 5.14 Aerial view of development where house UK54 is located in York 

 

 
Fig. 5.15 South street façade view of UK54  
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Fig. 5.16 Plans for house UK54 

BUILDING SYSTEMS 

In this house, the provision of fresh air is achieved via mechanical ventilation extract (no 

heat recovery) and so by extracting air from each room. Interestingly, the house’s 

mechanical extract has been turned off by the occupants, who preferred to manually 

manage the provision of fresh air through the windows. In this house background 

ventilation is also provided in each window by trickle vents. This house has a traditional 

radiator system connected to the district heating in the development. 

 
Fig. 5.17 UK54’s mechanical ventilation system MEV (no heat recovery) 
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OCCUPANCY 

This house is occupied at all times by a couple of retired residents. The second bedroom 

is occasionally used by the couples’ daughter. Responses to questionnaires as well as 

house details were provided by both the male occupant and female occupant. 
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5.1.4 HOUSE UK55 

The fourth case study – House UK55 - is a detached house, built in 2013 as part of an 

exemplar development in York, whose high standards of fabric efficiency are combined 

with other aspects of sustainable community. House UK55 is located in the same 

development as house UK54 and has the same fabric characteristics as house UK54.  

House UK55 is characterised by its modern design, which integrates non-traditional and 

passive architectural features, such as balconies, loggias and sunspaces. This house 

combines the use of external bricks and an exposed internal thermal mass. 

 
Fig. 5.18 Aerial view of development where house UK55 is located in York 

 

 
Fig. 5.19 East street façade view of UK55  
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Fig. 5.20 Plans for house UK55 

 

BUILDING SYSTEMS 

The provision of fresh air is achieved via mechanical ventilation with heat recovery. In this 

case, no summer bypass provision is in place. Each inhabitable room has a supply air 

valve and each wet room and kitchen is provided with an extract air valve. Extract air 

valves are located in the ground-floor kitchen and the first-floor bathroom. This house 
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has a traditional heating system connected to the district heating in the development. 

Unlike house UK54, house UK55 incorporates a sunspace (marketed as a “winter garden”) 

 
Fig. 5.21 Sunspace: view from first floor living room  

OCCUPANCY 

This house is occupied at all times by a couple of retired residents. The second bedroom 

is occasionally used by the couples’ daughter. Responses to questionnaires as well as 

house details were provided by the male occupant, who happened to be an air flow 

engineer and, unsurprisingly, was engaged with the system (air flow control, filters 

maintenance, etc.). The occupancy in this house could be considered as vulnerable, 

because one of its occupants suffers from a neurological condition that may affect the 

perception of heat. 
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Fig. 5.22 Occupant showing to the researcher the filter component of the MVHR system 

5.1.5 SUMMARY OF HOUSES 

The houses are of different types, as presented in Table 5.1. None of the houses made 

use of any cooling devices such as fans or air conditioning units. It is worth noting that 

UK51 was the only house refurbished to a near-Passivhaus standard thermally.  

Table 5.1 – Overview of case studies houses with main construction characteristics 

 
 

 

Table 5.2 – Overview of energy efficiency related measures. Notably, the very low DER of UK55, 

largely due to fuel type 

 

House 

code 

House type 

 & 

 location 

U-value 

ext. walls 

(W/m2.K) 

Internal 

floor area / 

floor to 

ceiling high  

Thermal  

mass 

exposed 

Prevailing 

orientation 

(solar gains) 

Ventilation 

type 

Cross 

ventilati

on  

Solar control 

UK51 Refurbished 

terrace 

Leicester (UK) 

 

0.12 91 m² 

/ 

2.5 m 

NO E-W MVHR (no 

summer by-

pass) 

YES internal blinds 

on Velux 

windows 

UK52 New detached 

bungalow 

Sandiacre (UK) 

 

0.09 59 m² 

/ 

2.5 m 

NO N-S MVHR (no 

summer by-

pass) 

YES NO 

UK54 New end of 

terrace 

York (UK) 

0.19 141 m² 

/ 

2.5 m 

YES N-S MV on wet 

rooms 

(turned off) 

YES internal blinds 

on Velux and 

some external 

overhangs  

UK55 New detached 

York (UK) 

0.19 167 m² 

/ 

2.5 m 

YES E-W MVHR (no 

summer by-

pass) 

YES internal blinds 

on Velux and 

some external 

overhangs  

 

  

UK51 UK52 UK54 UK55 

Tfa Area (m2)   
91 64   185 

Storey height (m)   
3 2   3 

Volume (m3)   
230 157   496 

SAP rating / EPC rating   
87 B / 68 D 84 B / 84 B not retrieved / 84 B 81 B / 81 B 

SAP Target CO2 Emission Rate   
21.34 22.81   91 

SAP Dwelling CO2 Emission Rate   
n/a (SAP 2005) 15.17 (PASS) gas   8.35 (PASS) biomass 

SAP MEAN TEMPERATURE   
18.23 (1 value) 22.2-22.3   17.8 

AIR PERMEABILITY   
4.6 (h-1)   not retrieved (assumed 3) 3 
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5.2 ENVIRONMENTAL MONITORING (OBJECTIVE MEASUREMENTS) 

As anticipated in Chapter 4, this stage of the research methodology engages with 

diagnostic POE [Preiser, 1995]. As such, this section looks into the quantitative part of the 

longitudinal study, in order to examine how HIHs perform thermally. The chosen 

methodology requires one to evaluate the physical environmental measurements and 

then investigate how the design and the use of HIHs can be improved to reduce 

uncomfortably warm temperatures. 

The physical environmental monitoring was conducted both by means of high-resolution 

interval measurements and by means of spot measurements. The interval measurements 

of air temperature (°C) and relative humidity were recorded every 10 minutes through 

Onset Hobo pendant sensors placed in every room and one outside each house 

monitored during a period of just over 11 months (from June 2015 until May 2016). In 

this research, air temperature (as recorded by the loggers) is used in the various analyses 

that require operative temperature. The reason for such choice lies in the fact that in 

“well-insulated buildings and away from direct radiation from the sun or from other high 

temperatures radiant sources, the difference between the air and the mean radiant 

temperature (and hence between the air, the globe, and the operative temperatures) is 

small” [Nicol, Humphreys and Roaf, 2012, p.95]. This was also confirmed by the visual 

inspection performed on recorded globe and air temperatures in two rooms (one with 

thermal mass exposed and one with no thermal mass exposed).  

For the purpose of analysis data were broken down into three periods (see fig. 5.23): (a) 

the entire year’s performance, in order to provide a panoramic of the temperatures 

distribution across all houses; (b) the summer performance, in order to perform a 

summer analysis and the overheating assessment, and (c) the (short) heat wave 

performance, in order to analyse heat wave vulnerability. 

 
Fig. 5.23 Environmental monitoring timeline. This shows the period in which temperatures have 

been recorded (green shaded), and the three periods of analysis (black brackets) 

June 2015 April 2016
28/06/2015 - 03/07/2015

heat wave analysis

30/06/2015 - 13/08/2015

summer analysis and overheating assessment

Jun-15 - Apr-16

all year analysis
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5.2.1 SUMMER PERFORMANCE 

5.2.1.1 BACKGROUND TO ANALYSIS 

The summer analysis presented here takes into account the loggers’ recordings from 30 

June 2015 until 13 August 2015. A questionnaire was submitted both at the beginning 

and at the end of this period, and temperature results were interpreted in light of the 

questionnaire responses for explanation. In this section, the objective findings are thus 

linked to the opinions (or changes of opinions) expressed by the house occupants over 

this short time span.  

The recorded temperatures have been analysed to map the most problematic areas or 

rooms in the house. This includes a short heat wave that occurred in England (from 30 

June 2015 until 2 July 2015). 

5.2.1.2 RESULTS OF SUMMER PERFORMANCE 

When looking at the internal temperatures (see table 5.3) it can be appreciated that most 

of the high temperatures were located in the bedrooms on the upper floors (this 

tendency was also observed in the heat wave analysis as well as in the year analysis). The 

living rooms performed better in terms of summer comfort. In fact, living rooms in 

houses UK51 and UK52 only exceeded the 28°C threshold during the short heat wave 

experienced in the UK that summer. This is not a surprise, since living rooms tend to be 

bigger, may have crossed ventilation, and may be shielded from solar gains, especially in 

an urban context. 

The temperature-related conditions of bedrooms and living rooms in the houses under 

review have been described in terms of (a) mean temperatures, (b) minimum 

temperatures and (c) maximum temperatures and temperature variation.  

Mean temperatures: in general, the mean temperatures of all rooms in all HIHs are in the 

range 22-25°C. The mean temperatures in the living rooms were lower than those of the 

bedrooms in all houses, mostly under 23°C. In the bedrooms, mean temperatures were 

up to 2°C higher.  

Minimum temperatures: overall, minimum temperatures ranged from 16-21°C. In houses 

UK51 and UK54 minimum temperatures were about 21°C. UK54’s temperatures were 

comfortably maintained with no high peaks in temperature (as opposed to the other 

houses). 
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Both houses UK52 and UK55 showed lower minimum temperatures in the living room 

and kitchen, respectively. This suggests a different ventilation management in such 

rooms, since the dining room is located next to the kitchen and some extra heat gain 

could be expected to contribute to the resulting temperatures. This was later confirmed 

by the occupants. 

Table 5.3 - Descriptive statistics for all houses (beds and living rooms), period summer 2015. 

 

Maximum temperatures and temperature variation: With the exception of house UK54, 

the houses’ maximum temperatures were between 27-34°C. The hottest room, the loft 

bedroom in house UK51, was later confirmed by the occupants as being too hot – 

occupants found this room uninhabitable during the heat wave. At the cooler end, UK54 

presented the lowest maximum temperatures among all houses. 

Another extreme room was found in the house UK55’s sunspace, where temperatures 

swung from a min. of 20°C to a max. of 42°C. This can most likely be attributed to the 

lack of both ventilation and solar control; which can be confirmed by the sunspace’s 

orientation (East), the lack of solar shading and by the fact that the occupants did not 

open the windows. All these elements may have contributed to the heat gains in the 

adjacent rooms. 

Here it seems crucial to note that whilst houses UK52 and UK54 have almost similar 

average temperatures (between 22-23°C) (see fig. 5.24), there is a remarkable difference 

in temperature range and maximum temperatures. These two houses (UK52 and UK54) 

were designed to optimize the use of natural ventilation through windows being opened. 

In addition, both houses’ bedrooms face south. The main difference consists in the fact 

that house UK52 has higher levels of insulation (U-value walls 0.09 W/m2K), has no 
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thermal mass exposed and the bedroom has no external solar shading. On the other 

hand, house UK54 has lower levels of insulation (U-value walls 0.19 W/m2K), has thermal 

mass exposed and external solar shading. The combined effects of solar gains and levels 

of insulation could be a possible cause of the high peaks.  

Hence, it may be noted that an average temperature of, in this case, 23°C can hide 

remarkably variable internal temperatures. This was confirmed by the occupants’ 

questionnaires: whilst the occupants of house UK54 reported that they felt ‘protected’ 

against heat, the occupants of house UK52 said that at times they would go to the living 

room at night to find some heat relief. 

 

Fig. 5.24 Histograms and normal distribution charts of the main bedrooms of houses UK52 and 

UK54. The reference line in red shows the temperature average. The red arrow instead show the 

uncomfortably high temperatures recorded in house UK52. 
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Temperatures distribution 

The former CIBSE Guide A [CIBSE, 2006a] indicates 23°C as the general indoor 

comfortable operative temperature for bedrooms and 26°C as the threshold operative 

temperature. These ranges are used here to describe internal temperatures.  

Although to different degrees, all bedrooms exceeded the 26°C threshold. Houses UK51 

and UK55 recorded the most severe cases of high internal temperatures: in house UK55, 

23% of the monitored hours in bedroom 1 were above 26°C; house UK51 recorded 15% 

of monitored hours above 26°C in bedroom 2 (see figure 5.25). In such figure, only 

bedrooms that were inhabited (and not intermittently used by a visiting relative) are 

shown. Results show temperatures at all times. 

 
Fig. 5.25 Stacked bar charts showing air temperature ranges of bedrooms 

 

Looking at figure 5.25 and the hours in which the temperature was “above 26°C”, one can 

immediately notice that the worst-performing bedroom (in UK55) and the best-

performing bedroom (in UK54) are located in the same development and have the same 

materials and building specifications. The difference in these cases may partly be 

explained by the different orientation, different ventilation system and ventilation 

management of the two houses. In fact, whereas house UK55 delegates the provision of 

thermal comfort to the MVHR system, the occupiers of house UK54 managed ventilation 

manually, by thus keeping the heat out during the day (when windows remained closed) 
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and ventilating during the night (by opening the windows). This suggests that ventilation 

and occupant behaviour may play a crucial role in limiting overheating. 

In a similar vein, the two houses that rely most on natural ventilation (UK52 and UK54) 

had a reduced number of hours above 26°C. By contrast, the houses that manage 

ventilation through MVHR presented the highest number of hours above 26°C in this 

range and, consequently, may be considered to have a greater chance of overheating. 

Another noticeable finding that emerged from this part of the research is the distribution 

of hours in the range “between 23°C and 26°C". This temperature range can be classified 

as the range in which a building is at high risk of overheating, since temperatures can 

quickly increase above the threshold. In this respect, the houses that applied natural 

ventilation (houses UK52 and UK54) recorded the fewest hours between 23°C and 26°C. 

By contrast, houses UK51 and UK55 (MVHR operated) recorded 70% of hours between 

23°C and 26°C in bedrooms.  

 

5.2.1.3 DISCUSSION OF SUMMER PERFORMANCE 

Uninformed and poor design choices 

As far as the maximum temperatures are concerned, house UK51 recorded the highest 

temperatures in bedroom 2, which was the outcome of a loft conversion. Here, at first, 

internal blinds appeared to be insufficient to control effectively solar gains. However, 

after surveying this house and taking into account the responses from the occupants, a 

number of additional factors were deemed to contribute to the excessively high internal 

temperatures. 

It thus became apparent that the design of the house (open stack stairs leading to 

bedroom 2) may well have led to higher temperatures. This hypothesis was confirmed by 

the fact that the occupant complained about kitchen smells in the room. Later, and after 

complaints from the occupant who at times had to open the windows at night to lower 

indoor temperatures, it was found that. even though this room is provided with an air 

valve supply for fresh air (tested to work properly), it suffered from a lack of air flow due 

to the fact that the nearest air valve extract is located in the lower floor bathroom (see 

figure 5.26). 
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It can hence be hypothesised that the reorganisation of the spaces after the retrofit may 

incorporate a number of factors leading to unexpected temperature exacerbation. While 

these factors alone might not seem problematic, bedroom 2 has shown the multiplying 

effects when a real-world scenario is considered. 

 

  
Fig. 5.26 Representation of the stack effect through the stairwell in house UK51 

 

Unmanaged passive architectural elements 

In house UK55, the highest temperatures were recorded in the sunspace (see fig. 5.27). 

The sunspace (or winter garden) is an architectural feature that during summer effectively 

acted as a greenhouse incorporated within the building volume and then as a heat 

collector. However, the occupant did not receive instructions regarding the proper use of 

sunspace, nor he applied the advice provided by the researcher, to the effect that 

temperatures were left to raise (no ventilation or shading were performed). According to 

the inappropriate use (unmanaged) of the sunspace may have led to unwanted heat 

gains and higher temperatures in the main house, which further contribute to 

overheating, as shown in this case study. 

Such a situation opens a question as to whether too much innovation can be easily 

handled by the occupants.  

 



CHAPTER 5: POST-OCCUPANCY EVALUATION   146 

 
Fig. 5.27 Images of sunspace in house UK55 

5.2.2 OVERHEATING ASSESSMENT 

5.2.2.1 BACKGROUND TO ANALYSIS 

For the same summer period (summer 2015), a series of overheating assessments were 

carried out using a set of guidance published by CIBSE and extensively referred to in the 

literature. While this set of guidance is intended for assessment of simulated data, here it 

has been applied to monitored data, using air temperature. The assessments here 

presented, consider the occupancy reported by the occupants in the first visit 

questionnaire (Q1a). 

When considering the thresholds assessments (CIBSE 2006 and 2017) whenever “hours 

above a threshold” are required, interval resolutions of 10 minutes were kept. Namely, 

one hour above a threshold was calculated by adding six-time slots (above such 

threshold); these slots were not necessarily in succession. While this procedure is neither 

explicitly encouraged nor discouraged in the standard, here high-resolution intervals (10 

minutes) were maintained in order to avoid averaging the high-temperature peaks over 

an hour. 

CIBSE Guide A-2006 

CIBSE Guide A: Environmental design provides overheating criteria based on a fixed 

temperature method for overheating assessment—the so-called “threshold approach” 

[CIBSE, 2006a]. For the sake of clarification, it is important to note that the CIBSE Guide 

A-2006 is no longer the current version, as it has been superseded by CIBSE Guide A-

2015. Nonetheless, it is considered in this analysis in light of its wide use in academic 
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papers concerning overheating and because these criteria would have applied at the 

time when the houses were designed. 

CIBSE TM52-2013 

CIBSE Technical Memorandum 52: The Limits of Thermal Comfort: Avoiding Overheating in 

European Buildings is a methodology focussing on the “adaptive approach” to comfort, 

which is informed by the theory that in naturally ventilated buildings people’s thermal 

experience is largely based on recently experienced temperatures [CIBSE, 2013]. This 

second methodology was intended to improve on the threshold approach from CIBSE 

Guide A-2006 [CIBSE, 2013]. CIBSE TM52 has been embedded in the last version of CIBSE 

Guide A-2015. In accordance with the standard set by CIBSE TM52, a naturally ventilated 

building is affected by overheating if that building (or one of its rooms) fails at least two 

of the three criteria provided by CIBSE TM52 [CIBSE, 2015] see table 5.4.  

The CIBSE TM52 methodology for assessment required a number of intermediate steps: 

I. Calculation of the exponentially weighted Running Mean Outdoor Air 

Temperature ( Trm ). This was achieved by using the formula 3 in EN 15251-2007 

[BSI, 2007] 

Trm = (T od-1 + 0.8 T od-2 + 0.6 T od-3 + 0.5 T od-4 + 0.4 T od-5 + 0.3 T od-6 + 0.2 T od-7) / 3.8 

where T od-1 + α T od-2  are the daily mean temperatures for yesterday, da day 

before, and so on. The running mean outdoor air temperature consists of a 

‘weighted' temperature (calculated from the temperatures experienced over the 

previous days of the analysis) and so it accounts for human adaptation.  

II. From this weighted temperature, a Comfort Temperature (T Comf) is derived from 

formula 6 on CIBSE TM52 [CIBSE, 2013] 

Tcomf  =  0.33 Trm + 18.8 

III. At this point, a Maximum Acceptable Temperature (T max) and an Upper 

temperature Limit (T upp) were derived [BSI, 2007]. These temperatures depend on 

the categorisation of the buildings in order to allow consideration of the level of 

comfort expectation. CIBSE TM52 states that careful consideration should be 

taken if the comfort expectations might be higher [CIBSE, 2013].  
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IV. The analysis presented here took into consideration the reality of the case 

studies: buildings were considered in both categories, i.e., category I (“vulnerable 

groups of people”) and category II (“normal expectation of recently built and 

refurbished buildings”). The double standard for buildings was chosen as it was 

found to more accurately reflect the level of comfort expected considering the 

actual occupancy (in the cases at hand, there was a pregnant lady and a new-

born baby among the occupants which will place the building in the building 

category I). CIBSE TM52-2013 also requires consideration of occupied hours, 

which was provided by the questionnaire submitted. Such extra categorisation is 

presented in the results in a shaded area. 

Table 5.4 - CIBSE TM52 conditions to overheating (repeated from Chapter 2) 

Criterion 1 –  

Hours of exceedance 

(He) 

It sets a limit on the number of hours that the operative 

temperature can exceed the threshold comfort temperature 

(i.e. the upper limit of the range of comfort temperature) by 1 

K or more during the occupied hours of a typical non-heating 

season (1 May to 30 September). 

The number of hours (He) during which ∆T is greater than or 

equal to one degree (K) during the period May to September 

inclusive should not be more than 3% of occupied hours
48

. 

Criterion 2 –  

Daily weighted 

exceedance (We) 

It deals with the severity of overheating within any one day, the 

level of which is a function of both the rise of temperature and 

its duration. This criterion sets a daily limit of acceptability. To 

allow for the severity of overheating, the weighted exceedance 

(We) must be less than or equal to 6 on any one day where: 

We     = (Σ he) × WF 

          = (he0 × 0) + (he1 × 1) + (he2 × 2) + (he3 × 3) 

where the weighting factor WF = 0 if ∆T ≤ 0, otherwise WF = 

∆T, and hey is the time (h) when WF = y. 

Criterion 3 –  

Upper limit 

temperature (Tupp) 

It sets an absolute maximum daily temperature for a room, 

beyond which the level of overheating is deemed 

unacceptable. The recommended definitions for the criteria set 

that the absolute maximum value for an indoor operative 

temperature is set as follows: the value ∆T shall not exceed 4 K. 

This absolute maximum temperature is one in which adaptive 

actions are inadequate and cannot restore occupant comfort. 

 

CIBSE TM59-2017 

CIBSE Technical Memorandum 59: Design methodology for the assessment of overheating 

risk in homes consists of a standardised methodology to assess the risk of overheating in 

residential. It incorporates aspects of the “threshold” approach as well as the “adaptive” 

                                                           
48

 If data are not available for the whole period (or if occupancy is only for a part of the period) 

then 3 per cent of available hours should be used. 
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approach. Homes that are (predominantly) naturally ventilated, including those with 

MVHR (as is the case in three of the houses discussed in this study), are required to pass 

two criteria: one using an adaptive threshold for living rooms and the other for 

bedrooms, and a fixed temperature threshold for bedrooms (see table 5.5).  

For the living areas, it is required to follow the steps I and II of the TM52. With regards to 

the occupancy of these bedrooms, the analysis considered both (a) 22:00 until 07:00 for 

bedrooms and (b) the actual occupied hours as reported by the occupants for the living 

rooms. Here a threshold criterion is applied. 

Table 5.5 - CIBSE TM59 conditions to overheating [CIBSE, 2017] [CIBSE, 2013](repeated from 

Chapter 2) 

Criterion 1 Living areas 

Kitchens and 

bedrooms 

CIBSE TM52  

criterion 1 (hours of 

exceedance) 

 

 

The number of hours (He) 

during which ∆T is greater 

than or equal to one degree 

(K) during the period May to 

September inclusive should 

not be more than 3% of 

occupied hours 

 

Criterion 2 Bedrooms 

from  

22:00-07:00 

26°C No more than 1% of annual 

occupied hours shall exceed 

operative temperature of 

26°C  
 

(1% of annual hour between 

22:00 and 07:00 for 

bedrooms is 32 hours, so 33 

or more hours above 26°C 

will be recorded as fail). 

 

5.2.2.2 RESULTS OF THE OVERHEATING ASSESSMENT 

Overheating assessments carried out using the three methods indicated that overheating 

occurred predominantly in bedrooms. The CIBSE 2006 ‘threshold’ assessment and the 

CIBSE TM59-2017 assessment produced similar results. By contrast, it was found that the 

CIBSE TM52-2013 assessment indicated fewer occurrences of overheating. These findings 

are examined in detail in the following sections.  
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House UK51  

In house UK51 (see table 5.6), overheating was found in both bedrooms using both 

CIBSE-2006 and CIBSE TM59-2017 assessments. By contrast, the CIBSE TM52-2013 

assessment indicated that overheating did not occur. In addition, CIBSE TM52-2013 was 

found not to be consistent with the occupants’ responses, who considered bedroom 2 as 

being too hot for most of the summer.  

To reflect on what has been perceived as the actual thermal comfort expectation of this 

building, during the TM52 analysis house UK51 was also considered to be a category I 

building [BSI, 2007], since there was first a pregnant lady and then a new-born baby, 

both of whom could be considered vulnerable occupants. Also, the room (bedroom 2) 

where vulnerable occupants resided was considered to be occupied at all times (that way 

the analysis reflected the actual use of the room). Only in this case, bedroom 2 was found 

to overheat. While no implications are here drawn in order to support a change to the 

building categorisation to achieve a ‘correct’ assessment, it seems of paramount 

importance to recognise the possible differences in thermal perception when real-world 

data is applied to an analysis.  

With regards to the living room, overheating assessment passed according all three 

methods. 

Table 5.6 - House UK51 overheating assessments: note the extra TM52 assessments (in shaded) to 

reflect varying conditions of the house 

 
 

 

 

 

 

 

 

CIBSE A-2006

RESULT C1 C2 C3 RESULT C1 C2 RESULT

bedroom 1 X

bedroom 2 X

livingroom √

PASS PASS PASS √

PASS FAIL PASS √

PASS PASS PASS √

PASS FAIL FAIL X

PASS FAIL FAIL X

PASS 25  hrs √

PASS 59 hrs X

PASS n/a √

TM52-2013 TM59-2017
UK51

bedroom 1 (hours between 22:00-07:00)

bedroom 2 (hours between 22:00-07:00)

livingroom

bedroom 2 (Cat. II - all times occupied)

bedroom 2 (Cat. I)

bedroom 1 (Cat. II)

bedroom 2 (Cat. II)

livingroom (Cat. II)
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House UK52  

Similarly to the previous case study, in UK52 (see table 5.7) overheating was found in 

bedrooms 1 and 2 using both the CIBSE-2006 and the CIBSE TM59-2017 assessments. 

With CIBSE TM52-2013, instead, overheating was not detected in bedroom 1. Also, in this 

case the CIBSE TM52-2013 assessment is not consistent with the responses of the 

occupants, who said that they needed to leave the bedroom during the night to find 

some relief from the heat.  

With regards to the living room, overheating assessment passed using all three methods. 

 Table 5.7 - House UK52 overheating assessments: note the extra TM52 assessments (in shaded) 

to reflect varying conditions of the house 

 
 

 

House UK54 

UK54 was found to be the best-performing house with regards to summer comfort. The 

only room that overheated (and only when assessed against the standard set by CIBSE-

2006 assessment) was the small office on the first floor (see table 5.8). This room is south 

oriented and has two Velux windows, which were kept closed at all times during that 

summer. So, one may well expect to find lower temperatures when natural ventilation 

was restored in this room. This house is N-S oriented and is known to be naturally 

ventilated by its occupants, who reported being cooler indoors during the heat wave. 

Table 5.8 - House UK54 overheating assessments: note the extra TM52 assessments (in shaded) to 

reflect varying conditions of the house 

 
 

CIBSE A-2006

RESULT C1 C2 C3 RESULT C1 C2 RESULT

bedroom 1 X

livingroom √

PASS PASS PASS √

PASS PASS PASS √

PASS FAIL PASS √

PASS 51 hrs X

PASS n/a √

UK52

bedroom 1 (Cat. II)

livingroom (Cat. II)

bedroom 1 (Cat. I)

bedroom 1 (hours between 22:00-07:00)

livingroom

TM52-2013 TM59-2017

CIBSE A-2006

RESULT C1 C2 C3 RESULT C1 C2 RESULT

bedroom 1 √

livingroom √

PASS PASS PASS √

PASS PASS PASS √

PASS PASS PASS √

PASS PASS √

PASS n/a √

UK54

bedroom 1 (Cat. I)

bedroom 1 (Cat. II)

livingroom (Cat. II)

bedroom 1 (hours between 22:00-07:00)

livingroom

TM52-2013 TM59-2017
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House UK55  

UK55 was found to be the worst performing house in terms of summer comfort (see 

table 5.9). This finding was supported by one of the occupant’s responses (the other 

occupant, who suffers from a neurological condition that affects their thermal 

perception, did not report overheating, at least at the beginning of the summer).  

Both bedrooms were found to overheat, though they are located on different floors and 

have different orientations. This suggests that external gains were not the main driver for 

overheating in this case study. To elaborate on this point, bedroom 1 had uncontrolled 

solar gains from the west, whereas bed 2 (east oriented) had incorporated external solar 

shading provided by the external loggias. 

It is known from the occupant's responses that the entire house’s ventilation is managed 

through MVHR and the residents do not open the windows. In fact, in this house MVHR 

is managed in the belief that it provides the necessary purge ventilation by so (perhaps 

wrongly) delegating the provision of summer comfort to the MVHR. 

Table 5.9 - House UK55 overheating assessments: note the extra TM52 assessments (in shaded) to 

reflect varying conditions of the house 

 
 

5.2.2.3 DISCUSSION OF OVERHEATING ASSESSMENT 

Differences between the assessments 

The cases studies UK54 and UK55 in Yorkshire (thermal mass/highly insulated) provided 

results that concur in all three methods: for house UK54, no overheating with all three 

methods; for house UK55, overheating with all three methods. These houses were 

identical in terms of constructive details but different in terms of layout, orientation and 

ventilation management, which are considered to be the main factors in their 

relationship to overheating. 

The case studies UK51 and UK52 (internally insulated retrofit and lightweight bungalow, 

respectively) were shown not to be affected by overheating when assessed with TM52 

CIBSE A-2006

RESULT C1 C2 C3 RESULT C1 C2 RESULT

bedroom 1 X

livingroom X

PASS FAIL FAIL X

PASS FAIL PASS √

FAIL FAIL FAIL X

PASS 75 hrs X

PASS n/a √

UK55

bedroom 1 (Cat. I)

bedroom 1 (Cat. II)

livingroom (Cat. II)

bedroom 1 (hours between 22:00-07:00)

livingroom

TM52-2013 TM59-2017
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and instead to be affected by overheating when assessed with TM59. In detail, in both 

case studies the TM52 upper limit (TM52-criterion-3) passed; by contrast, it did not pass 

the fixed threshold of 26°C in the bedrooms. In other words, the TM52 assessment 

reported an environment that was somehow acceptable, whereas TM59 assessment 

reported the same environment to be unacceptable.  

This difference was further investigated by taking a deeper look into the temperatures, 

and particularly T upp. In house UK51 (taking bed1 as an example), the recorded external 

temperatures were used to calculate a derived indoor comfort temperature of 25.1°C. 

From this value, a derived maximum acceptable temperature (T max) of 28.1°C and a 

derived upper limit temperature (T upp) of 32.1°C were established (see evidence in table 

5.10). It can be argued that T upp, as it was calculated, will hardly be reachable in the 

north of England (in fact, only UK55 failed TM52-criterion-3) and that TM52-criterion-3 

will hardly ever fail. Therefore, the condition of overheating will effectively rely almost 

entirely on the other two criteria (TM52-criterion-1 and TM52-criterion-2). 

 

Table 5.10 - House UK51 bedroom 1: detail of the TM52 overheating assessment evidencing the 

calculated comfort (T comf) and upper limit (T upp) temperatures from TM52 

  
 

From this remark, it can be ascertained that TM52-criterion-2 (weighted exceedance) is 

effectively the only criterion to compare with TM59-criterion-2 (threshold 26°C in 

bedrooms from 22-7). However, the weighted exceedance of TM52-criterion-2 fails when 

a temperature limit is surpassed for a prolonged period during a day, while TM59-

criterion-2 fails with just one instance of reaching this threshold. In this respect, TM59 

can be considered a more restrictive assessment than TM52. 

KEY:

temperature < 23°C

23°C ≤ temperature < 26°C

26°C ≤ temperature < 28°C

temperature ≥ 28°C
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Because in TM52 a pass in two out of three criteria are necessary and TM52-criterion-3 

may be prone to pass easily (see claims in the previous two paragraphs), effectively the 

TM52 overheating assessment depends on just one out of the two remaining criteria. 

From these criteria, if TM52-criterion-3 is overlooked, the remaining two criteria do not 

apply a fixed threshold temperature in a similar manner to the threshold approach. From 

the above, it can be concluded that TM52 is a more relaxed assessment than the other 

two, at least when using monitored data.  

Interpretability of results 

Both assessments CIBSE 2006 and TM59 picked up the occurrence of excessively warm 

temperatures, and this was closely in line with occupants’ perception. These assessments 

can then be claimed to be a quick tool for identifying areas of possible concern in a 

house. 

At first, TM59-criterion-2 (max. temperatures below 26°C, from 22:00-07:00) seemed to 

limit the time-occupancy of a bedroom with no consideration of different sleeping hours 

(like the one of a new born baby) and consequently to consider fewer ‘occupied hours’. 

In fact, things turned out to be different in the presence of new scenarios (for instance, 

illness or the new born-baby). A risk that a different occupancy is underestimated seems 

possible; so designers and researchers should carefully consider the actual occupancy (as 

opposed to assumed occupancy). 

 

Temporary vulnerability 

The applied occupancy was based on to occupants’ questionnaires. However, this 

indication was not necessarily reflective of the occupancy throughout a long period of 

monitoring. For instance, house UK51 had a new-born baby. In addition, its bedroom 2 

(which was already the worst performing) was used most of the time. Not only did the 

occupancy here change, but also the category of the building should have been changed 

(albeit briefly) to consider the needs of a pregnant woman as well as the needs of a new-

born. The implications for design in light of this consideration would affect the maximum 

acceptable temperature (T max) and upper limit temperature (T upp), restricting these 

thresholds. 

Moreover, house UK55 reported a case of vulnerability to high temperatures due to lack 

of thermal sensation, which exposed one of its occupants to a higher risk. In other words, 

the fact that in two out of four houses occupants turned out to be vulnerable, (one 
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temporarily and the other permanently) raises the question of whether the level of 

comfort expectation is an appropriate criterion for assessing British houses. 

Overall, the complex reality of building performance and houses occupancy may mean 

that all the standards of assessments accounted for in this study are too prescriptive and 

so fail to match the reality of the houses to which they apply. On this basis, it can be 

concluded that results require not only judgement but also a revision of building 

categorisation and a flexible occupancy expectancy during the building’s life span.  

Finally, one should explicitly acknowledge the limitations of the overheating analysis, if 

such an analysis is performed using monitored data and for a shorter proportion of time. 

This is the reason why it should be noted that this analysis is not compatible with 

predicted assessments based on standard weather years and annual basis. However, 

within these limits, the conclusion holds that TM59 constitutes an advanced tool by 

which to understand (if not measure) overheating more realistically. 

5.2.3 HEAT WAVE VULNERABILITY 

5.2.3.1 BACKGROUND TO ANALYSIS 

As noted in Chapter 3, heat waves are expected to increase in terms of intensity as well 

as duration in the next decades. Because a heat wave is an extreme environmental 

condition — it can pose heat stress on building occupants — and HIHs are designed to 

protect against external weather, HIHs should be expected to cope (also) with heat waves 

by mitigating their effects, as examples of extreme weather conditions, by virtue of the 

fact that HIHs provide a thermally insulated environment. 

This analysis is an attempt to disentangle areas of potential risk for HIHs in relation to 

heat waves. As a part of this attempt, the current section provides a graphical and 

statistical description of the four case study houses during the 2015 heat wave only. It 

will focus in particular on the analysis of the internal and external temperatures (hourly 

averages) recorded during the brief but sharp heat wave peaking at above 30°C on 1 July 

2015 in England (an occurrence that also coincided with high solar gain). While this 

period corresponds to summer in the UK, it has purposely been kept separate from the 

analysis of the data of the remainder of the summer due to it representing an extreme 

event. 
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Deciding the exact period to consider for the 

heat wave analysis was not a straightforward 

process because there is no one unique 

definition of heat wave. The American 

Meteorological Society defines heat wave 

(also referred as hot wave and warm wave) as 

a period of abnormally and uncomfortably 

hot and usually humid weather. According to 

this definition, a heat wave should last at least 

one day and possibly from several days to 

several weeks, with a maximum 

shade temperature reaching or exceeding 

32.2°C [American Meteorological Society, 

2012].  

In the UK, the Met Office adopts a more relativist definition "a heat wave is an extended 

period of hot weather relative to the expected conditions of the area at that time of 

year…when the daily maximum temperature of more than five consecutive days exceeds 

the average maximum temperature by 5°C, the normal period being 1961-1990" [Met 

Office, 2015b].  

Day and night threshold temperatures have been defined by the Met Office National 

Severe Weather Warning Service (NSWWS) by region, as shown in the figure 5.28. The 

regions where the HIHs considered in the present research are located are East Midlands 

and Yorkshire & Humber. Both of them have external temperatures threshold values of 

15˚C night (min) and 29˚C/30˚C day (max) [Public Health England, 2013]. 

For the present analysis, the chosen period matches the generic definition of heat wave 

as a “period of abnormally and uncomfortably hot and usually humid weather” [American 

Meteorological Society, 2012]. It also satisfies two further conditions that are often 

associated with a heat wave, namely, (a) daily averages of external temperatures were 

above 20°C, and (b) the Met Office National Severe Weather Warning Service NSWWS 

threshold peak temperature was reached [Public Health England, 2013]. The graphical 

representation below is able to best represent this period, which corresponds to 28 June 

- 3 July 2015 (figure 5.29). 

Fig. 5.28 Threshold temperatures across UK 

[Public Health England, 2013] 
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Fig. 5.29 External temperatures recorded in case study houses, evidencing (shaded area) the 

period considered to be a heat wave 

 

5.2.3.2 RESULTS OF HEAT WAVE VULNERABILITY 

Descriptive statistics 

Figure 5.30 shows the median, interquartile range (box) and max/min values over the 

period considered. In general, the internal/external median differences lay between 4 and 

8°C. This fact confirms what was found in the reviewed monitored studies presented in 

Chapter 2 and Chapter 3). Also, the graph signals the extreme values, as circled in red. 

They are: (a) in house UK52, the room containing the water tank for domestic hot water, 

and (b) in house UK55, the east facing sunspace with no solar protection. Both spaces are 

located within the thermal envelope of the houses and could reasonably be expected to 

contribute to overall heat gains. 
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Fig. 5.30 Box and whiskers plots all houses, period from 28 June 2015 to 3 July 2015 
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In house UK51, the highest temperature ranges were found in bedroom 2, located on the 

second floor loft conversion and provided with two windows in the slope of the roof 

facing east and west. Here, temperatures were revealed to be too uncomfortable for 

sleep during the heat wave, to the point that the occupants of this room slept in the 

living room on a lower floor during this period.  

House UK52 bedroom showed less variation compared to the other houses (see table 

5.11). The living room proved to be the coolest space of this house, presumably due to 

the provision of cross ventilation within that room. The bedrooms temperatures, on the 

other hand, were always above 25°C. The occupant reported leaving the windows slightly 

open (in a lockable position) during daytime. However, in consideration of the fact that 

house UK52 is a bungalow of lightweight construction, temperatures were expected to 

fall quickly as the night progressed. This was not the case, though. This different than 

expected performance could be due to the fact that the bungalow had MVHR with no 

summer bypass or due to the fact that windows remained closed during hours of sleep 

(as reported by the occupants). In this case, the performance of the bungalow would 

confirm the hypothesis that small volumes of fresh air do not provide significant night 

cooling, as reported by Orme & Palmer [2003].  

House UK54 performed the best of all the case studies. In contrast with all the other 

houses, this house is the only one managed via natural ventilation (extract mechanical 

ventilation was available but the occupant had turned this off for the summer).  

In house UK55, where most windows were kept close during the heat wave, and MVHR 

was ‘left to do the job’, the biggest internal-external median difference was found. This 

finding provides an initial indication that MVHR system ventilation is an inefficient means 

of purge ventilation. The coldest room was found to be the kitchen, which was managed 

via window opening by the other occupant. Elevated indoor temperatures appeared to 

be exacerbated by the uncontrolled morning solar gains and lack of window opening. 

The east-facing sunspace with no solar control presented the highest peak temperatures, 

with a difference with external temperatures up to 18°C. The high night time 

temperatures in all rooms suggest that no night cooling was applied. It was reported by 

the occupants that at certain times they could only find thermal relief outdoors. 
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Table 5.11 - Descriptive statistics for all houses, period from 28 June 2015 to 3 July 2015 

 

From the above paragraphs, one can draw the conclusion that in the above HIHs, some 

rooms were not only uninhabitable (such as bed 2 in house UK51) but also actively 

collecting unneeded heat, which was then distributed to the rest of those houses (such as 

the water tank room in house UK52 and the sunspace in house UK55). 

Hottest day temperatures 

During 1 July 2015, all room temperatures in house UK51 varied between 25-34°C (most 

rooms between 25-30°C). When external temperatures were at their lowest, around 5:00-

6:00 am, internal temperatures were 3-6°C higher.  

During 1 July 2015, in house UK52, all room temperatures were between 23-31°C. When 

external temperatures were at the lowest, around 5:00 am, internal temperatures were 8-

10°C higher. During the 1 July 2015, in house UK54, all room temperatures were between 

21-30°C (most rooms between 23-26°C). When external temperatures where at the 

lowest, between 4:00-5:00 am, internal temperatures were 5-10°C higher. All the other 

rooms maintained lower temperatures during external peak times. During the 1 July 

2015, in house UK55, with exception of the sunspace, all room temperatures were 

between 25-30°C. When external temperatures where at the lowest, between 4:00-5:00 

am, internal temperatures were 10-15°C higher. This remarkable difference should be 

cause for some concern. 

The findings introduced above are partially evidenced by table 5.12, where a graphical 

inspection shows the high internal temperatures in some rooms and their persistence 

during 1 July 2015. Note that in houses UK51, UK52 and UK55, most bedroom 

temperatures were above 26°C all the time.  
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Table 5.12 - Hourly temperature readings in all houses during 1 July 2015, evidencing hours above 

26C in bedrooms 

 

 

  

°C  UK51 

living

°C UK51 

bed 1

°C UK51 

bed 2

°C UK52 

living

°C UK52 

bed 1

°C UK52 

bed 2

°C UK54 

living

°C UK54 

bed 2

°C UK54 

bed 1

°C UK55 

living

°C UK55 

bed 1

°C UK55 

bed 2

00:00:00 25.6 26.3 28.5 25.5 27.2 28.1 23.4 24.5 24.9 27.4 28.9 27.5

01:00:00 25.5 26.3 28.3 25.8 27.1 28.1 23.3 24.3 24.8 27.3 28.6 27.3

02:00:00 25.5 26.2 27.8 25.9 27.1 28.0 23.2 24.0 24.6 27.1 28.5 27.1

03:00:00 25.4 25.9 27.7 25.9 26.9 27.9 23.1 23.7 24.4 26.9 28.2 26.9

04:00:00 25.4 25.7 27.7 25.7 26.9 27.8 23.0 23.4 24.3 26.8 28.0 26.7

05:00:00 25.4 25.4 27.8 25.7 26.8 27.7 22.9 23.1 24.2 26.7 27.8 26.5

06:00:00 25.4 25.8 27.9 23.1 26.7 27.6 22.9 23.2 24.2 26.8 27.6 26.4

07:00:00 25.6 26.0 28.0 23.1 26.4 26.7 22.2 23.1 24.1 26.9 27.6 26.4

08:00:00 26.3 26.9 27.7 24.6 26.2 26.3 22.5 23.2 24.2 27.1 27.6 26.5

09:00:00 26.9 27.5 28.5 25.6 26.3 26.7 23.0 23.4 24.4 27.4 27.7 26.8

10:00:00 27.1 27.6 29.3 26.1 26.6 27.3 23.7 23.7 24.6 27.7 27.9 27.0

11:00:00 27.0 27.6 30.3 26.4 27.2 28.1 24.3 24.1 25.3 28.0 28.1 27.4

12:00:00 26.9 27.7 30.6 26.7 27.7 28.8 24.8 24.6 25.7 28.3 28.2 27.7

13:00:00 27.0 27.8 32.0 27.0 28.0 29.0 26.2 25.3 26.2 28.6 28.5 28.1

14:00:00 27.1 27.9 32.5 27.4 28.4 29.3 26.5 25.6 26.3 28.7 28.8 28.4

15:00:00 27.5 28.1 33.4 28.0 28.6 29.3 26.3 26.0 26.6 28.9 29.2 28.6

16:00:00 27.5 28.2 33.4 28.6 28.7 29.4 26.2 26.4 27.0 28.9 29.5 28.8

17:00:00 27.6 28.5 33.7 29.5 29.3 29.4 25.9 26.2 27.0 29.0 30.1 29.1

18:00:00 27.8 28.7 33.3 30.0 29.8 29.5 25.6 26.1 26.8 29.1 30.0 29.1

19:00:00 27.9 29.1 33.3 30.3 30.0 30.3 25.4 26.0 26.6 29.0 30.0 29.2

20:00:00 28.1 29.2 33.0 30.0 30.1 30.5 25.2 25.9 26.4 28.9 29.7 29.1

21:00:00 28.4 29.2 32.5 29.5 30.1 30.2 25.0 25.8 26.1 28.9 29.4 29.0

22:00:00 28.4 29.2 31.9 29.4 30.1 30.5 24.5 25.5 26.0 28.9 29.2 28.8

23:00:00 28.3 29.1 31.4 29.4 30.1 30.7 24.5 25.4 26.4 28.8 29.1 28.7

hrs above 26°C 16 20 24 14 24 24 4 5 11 24 24 24

hrs above28°C 4 9 17 9 11 16 none none none 13 18 11

KEY:

temperature < 23°C

23°C ≤ temperature < 26°C

26°C ≤ temperature < 28°C

temperature ≥ 28°C



CHAPTER 5: POST-OCCUPANCY EVALUATION   162 

Lag 

From a visual inspection of the plotted temperatures in the days before and after the 

heat wave, it became evident that while external temperatures were lowered from 2 July 

2015, the high internal temperatures fell with external temperatures with almost the 

same slope in all houses (see fig. 5.31 and 5.32). 

In house UK52 (lightweight construction), the main bedroom temperatures remained 

above 25°C for over 3 days after the end of the heat wave. This fact was unexpected, due 

to the lightweight characteristic of the building fabric and the fact that no thermal mass 

was exposed. This combination was expected to lower temperatures faster than houses 

with a thermal mass exposed (as houses UK54 and UK55). A possible explanation for this 

occurrence lies in the continuously operating MVHR (with heat recovery), with a 

consequent delay in heat purge on the cooler days, or due to another source of heat 

gain, possibly within the building fabric. However, it is not possible to establish with 

certainty the reason for this temperature behaviour, since the design of house UK52 may 

well incorporate other sources of heat gain (such as no solar control in the bedroom 

exposed to the south, or the hot water tank). Further investigation would then be 

required to estimate the relative contribution of different house characteristics to indoor 

temperatures drop. 

In house UK54 (heavyweight construction/natural ventilation) the main bedroom 

temperatures were below the peak day external temperature, but above the following 

days. A similar pattern was found in house UK55 which, as a part of the same 

development, has a heavyweight construction and an MVHR. However, the pattern was 

repeated with 3-4°C difference higher (see fig. 5.32). 
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Fig 5.31 Temperature swing for houses UK51 and UK52 

 

 

 
Fig 5.32 Temperature swing for houses UK54 and UK55 
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Resilience to heat waves: room averages 

The data of all inhabitable rooms have been examined to look for cooler rooms within 

the houses (figure 5.33). Of all the HIHs under study, house UK54 had the lowest average 

temperature during the heat wave. The coolest room was found to be the north-facing 

lounge on the first floor in UK54, where during the heat wave recorded temperatures 

never exceeded 26°C. 

 
Fig 5.33 Rooms average temperatures during the 1 July 2015 

 

House UK55 was found to perform the worst in general. However in this house it was 

possible to find the second-most resilient room (the kitchen, which is located in the 

ground floor, has little or no solar gain, and, importantly, is known to be the only 

naturally ventilated room in house UK55). 

Interestingly, the average temperatures of the bedrooms of house UK52 (lightweight) 

and UK55 (heavyweight) were similar. Both houses had an MVHR without a summer 

bypass running at all times, and only the house UK52 occupant incorporated additional 

ventilation through window opening. However, one would have expected that during a 

heat wave a lightweight and naturally ventilated house would reduce in temperature 

more quickly than a MVHR-ventilated heavy weight house. That was not the case, 

however. The specific reasons that may explain this occurrence cannot be established 

with certainty. A possible explanation could be found in the bedroom size (house UK52’s 
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bedrooms are much smaller than those of house UK55) or due to the site microclimate 

(UK52 surrounded by asphalt, while house UK55 is on a prevailingly vegetated site). From 

the above observations, it emerges that natural ventilation is not the only factor to 

prevent overheating. 

 

Resilience to heat waves: ventilation strategy 

Figure 5.34 depicts an interesting effect that the ventilation strategy has on the thermal 

performance during heat waves. In the four case studies, room temperatures were found 

to be correlated with ventilation type. While correlation does not mean causation, it 

should be noted that houses managed via MVHR and MVHR combined with window 

opening (mixed mode ventilation) showed the highest temperatures (after the non-

ventilated sunspace).  

On the other hand, the one house with purely natural ventilation recorded by far the 

lowest temperatures (indeed, to the point that the ‘hottest’ naturally ventilated room 

recorded lower temperatures that the ‘coolest’ MVHR ventilated room). Whereas one 

should acknowledge that a number of different factors are involved in such performance, 

one cannot help noticing that houses where the heat recovery was constantly “on” 

recorded the highest temperatures. In other words, there seems to be some correlation 

between risk of overheating during heat wave and a constant reliance on MVHR (or other 

heat recovery devices). It is worth underlining that none of the MVHR systems 

incorporated a summer bypass; as such, results here presented cannot extend 

conclusions to all mechanical ventilation systems. Nor it possible to draw the conclusion 

that a summer bypass will solve the issue of overheating during heat waves. 
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Fig 5.34 Peak room temperatures by ventilation type during the 1 July 2015.  

Note that no MVHR installation was provided with summer bypass. 

 

 

5.2.3.3 DISCUSSION OF HEAT WAVE VULNERABILITY 

During the heat wave of summer 2015, some of the rooms became unusable and 

occupants had to relocate to other types of room. This option is not always available in 

highly insulated buildings (consider, for instance, flat apartments or overcrowded 

houses). However, in light of some inherent risks on low-carbon design, designers should 

consider the provision of variability of thermal spaces (whenever feasible) to design 

energy-efficient houses that are resilient to heat waves and protect its occupants from 

extreme heat. 

It was also noticed that a lightweight house and a heavyweight house recorded the same 

average temperatures during the hottest day of the heat wave. This fact is worthy of 

further investigation, with a view to addressing which factor (climate, microclimate, 

layout, ventilation, etc.) is decisive to the (risk of) overheating of highly insulated houses. 

The fact that house UK54 (naturally ventilated house) performed at its best during 

summer does not necessarily mean that MVHRs are to be avoided in HIHs. In fact, 

looking at the other seasons (autumn, winter and spring), it may be noticed that house 
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UK54 stayed ‘cooler’ throughout the entire period of the study. Apparently, this is far 

from ideal, since it might not secure winter comfort (see fig. 5.35 in next pages). 

Finally, the study has found that occupants tend to adopt adaptive behaviour in response 

to their living environments. For instance, all occupants ventilated at least one room. 

However, as shown by house UK52 (lightweight bungalow Passivhaus), user behaviour 

alone is not sufficient to lower internal temperatures. For this reason, it may be 

concluded that the capability of a building environment to adapt to extreme weather 

events (or to put people in the condition to adapt to those events) constitutes a key 

asset of such a building environment, and possibly it marks the transition from a 

vulnerable HIH design to a resilient HIH design. 

5.2.4 YEAR OVERVIEW 

The scope of this research consists of looking at overheating, and how overheating 

correlates with summer discomfort. However, for the sake of completeness and clarity, 

here the findings presented in the previous sections are complemented with a panoramic 

of all houses over a whole year. Figure 5.35 shows the median, interquartile range (box) 

and max/min values room by room and season by season, over the year for each house. 

The following observations can be made on this basis:  

 Summer records high temperatures but also it shows a great variability of 

extreme temperatures, especially in hotter extremes, where variations of 7°C were 

found. This ‘spikiness’ is somehow less evident throughout the rest of year (with 

the exception of spring). 

 During summer, according to TM59 some rooms are deemed to have overheated 

(cf. section 5.2.2 in this chapter). They are highlighted with a red circle in Fig 5.35. 

It can be observed that overheating can occur with different extremes and 

interquartile ranges. 

 With the exception of summer, the non-certified Passivhaus UK52 interquartile 

ranges were similar throughout the heating seasons (again with the sole 

additional exception of the peak temperatures in spring). 

 Autumn, winter and spring are more similar in terms of interquartile ranges. 

However, peak temperatures are higher in spring, probably due to unmanaged 

solar heat gains. A reason for this could be fact that occupants do not 

appropriately adapt their behaviour to avoid early excess heat gains. In this 
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context, it is worth emphasising that in spring, bedroom 2 in house UK51 was 

reported by the occupants to suffer problems of overheating during the night 

(see orange circle in fig. 5.35). This is further analysed in the user perspective 

section of this chapter. 

 The observations for spring are supported by the records of autumn 

temperatures. In fact, in autumn, peaks temperatures are lower. This may be due 

to occupants being aware of, and implementing, adaptive behaviour. This is 

further analysed in the user perspective section of this chapter. 

 Lastly, it is interesting to notice that the cooler house UK54, which proved to be 

the best performing house both in terms of overheating assessment and heat 

wave resilience, recorded the lowest temperatures in the remaining seasons. This 

situation may not be ideal for winter comfort. This aspect is further analysed in 

the user perspective section of this chapter. 

Once the temperatures that were recorded all year around are considered, it was 

found that during summer the houses showed greater variability than in the other 

seasons. Also, it was found that spring and autumn differ notably, especially 

regarding the peak temperatures recorded. The most credible hypothesis for this 

performance is that it was due to the fact that the occupants failed to implement 

adaptive behaviour, possibly in relation to solar gain control. 
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Fig. 5.35 Box and whiskers graph of temperature, for the whole period of analysis, divided by 

seasons 
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5.2.5 SUMMARY OF ENVIRONMENTAL MONITORING FINDINGS 

The summer and heat wave analysis have provided evidence that uncomfortable 

temperatures were found in all the houses under review. However, this has occurred with 

different degrees of severity and for a variety of reasons. During summer, the most 

commonly affected rooms were the bedrooms, which would have been required to stay 

cooler than living areas, confirming what found in the literature review of Chapters 2 and 

3. This situation was exacerbated during the heat wave when some of the rooms became 

unusable and occupants had to relocate to another type of room. And it was noted that 

that this option is not always available in highly insulated dwellings. 

One of the factors that can be claimed to impact most on the overheating experience 

appears to be the presence or absence of natural ventilation. Similarly to other studies 

(see [McGill et al., 2017]), it was found that houses operating MVHR during summer 

reported higher temperatures. In fact, the summer analysis showed that in the houses 

where natural ventilation is used consistently, temperatures were reduced. Conversely, it 

seems important to emphasise that mechanical ventilation in dwellings is meant to 

secure fresh air, not summer cooling. If one wants to minimise the risk of overheating, 

both occupants and designers need to be aware of, and correctly understand, this 

difference as well as the need to use additional natural ventilation in warm weather or 

other form of passive cooling incorporated when ventilation is not a viable solution for 

cooling. 

In addition, it was found that houses with MVHR (none with summer bypass) during 

summer proved to be more affected by uncomfortably warm temperatures and the 

unwanted heat gains collected in certain rooms (via lack of ventilation or solar control) 

may be an exacerbating factor (but certainly not the only factor) that may result in 

excessively warm temperatures. Here it can be hypothesised that the unavailability of a 

summer bypass may have contributed by the heat recovery from the MVHR operating 

constantly during summer49.  

However, the fact that house UK54 (naturally ventilated house) performed at its best 

during summer does not necessarily mean that MVHR are to be avoided in HIHs, 

                                                           
49

 This is not to say that a summer bypass would not recover extra heat. Informal discussions with 

BRE experts have anticipated that there are still leakages of heat with the summer bypass. So 

studies are still needed in the UK in this area. 
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because winter comfort could be compromised. This can be linked to a study that 

questions the use of MVHR in mild maritime climates [Sassi, 2013]. 

On the other hand, the fact that house UK52 - the uncertified Passivhaus bungalow - also 

left the windows in trickle ventilation during winter poses questions as to whether air 

movement is constantly needed.  

In terms of average temperatures, it was shown that 23°C could hide uncomfortably 

warm temperatures, as shown in the summer analysis of houses UK51 and UK52. 

Therefore designers must be cautious when interpreting their tested designs because 

there seems to be need for greater use of detailed simulations at the design stage in 

order to carefully scrutinise internal temperatures.  

It was also noticed that a lightweight house and a heavyweight house recorded the same 

average temperature during the hottest day of the heat wave. This fact is worthy of 

further investigation, with a view to addressing which of the factors (climate, 

microclimate, layout, ventilation, etc.) is decisive in terms of (the risk of) overheating in 

highly insulated houses. 

Overall, the environmental monitoring analysis also showed that the lack of solar control 

in general leads to excessive heat gains and quick response to temperature increase. 

Solar gains can cause severe overheating in HIHs, which can further be exacerbated by 

unconventional design solutions, such the sunspace or the converted loft 50. In fact, from 

the case studies analysed here, in the summer analysis similar unconventional design 

solutions proved to be a source of risk. Interestingly, this is especially the case in the UK, 

where shading has historically been needed or used only rarely. 

As for the heat wave analysis, it was shown that high indoor temperatures persisted after 

the peak day in some houses (even for up to four days). Such persistence encourages 

one to hypothesise a further degree of risk. Whether reason for this increased risk 

depends on the super-insulated building fabric, inadequate ventilation or solar gains 

control was not established. This specific point then requires further investigation, 

possibly with other methods of data collection, such as building simulation. 

                                                           
50

 Incidentally, this was anticipated by a DTM study, though only in consideration of future climate 

projections [Rodrigues, Gillott and Tetlow, 2013]. 
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The assessment of overheating proved to be intricate. Overheating was found in most 

houses when the standards set by CIBSE-2006 and CIBSE TM59-2017 were used. But 

things proved to be different with CIBSE TM52-2013, which, as shown in this section, 

draws a wider picture when it is applied to the dynamics of internal temperatures within 

HIHs. In fact, CIBSE TM52-2013 does not only account for the immediate outdoor 

temperatures but it also gives a sense of the weight of the high temperature. On this 

basis, it can be said that CIBSE TM52-2013 accounts for more dimensions of overheating. 

However, the survey undertaken in the overheating assessment has shown that passing 

the overheating assessment in CIBSE TM52-2013 is easier than in all the other 

assessments taken into account here.  

This is an important finding, since designers with an insufficiently developed professional 

judgement (for instance, designers with limited experience in relation to HIHs) may end 

up overlooking the risk of overheating as a result of relying on CIBSE TM52-2013. While 

this risk is to be confirmed by assessing simulated data (in addition to monitored data), 

CIBSE TM52 was found to underestimate the level of overheating reported in some 

occupants’ responses. 

In addition, the fact that occupancy changed throughout the survey period, particularly 

with regards to their vulnerability to heat stress, suggests that the elaboration of the 

concept of ‘temporary vulnerable occupants’ and its inclusion into the assessment of 

overheating should be considered appropriate. This is an important finding: while in this 

study there were different microclimates within the houses (some rooms with different 

orientations, locations or ventilation), which provided occupants with the opportunity to 

move within the house to adapt to high temperatures, in single-sided multi storey 

apartments this possibility may not be available. Therefore, it could be recommended 

that there be a revision to building categorisation and a flexible occupancy expectancy 

inclusion in standards. 
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5.3 USER PERSPECTIVE (SUBJECTIVE MEASUREMENTS) 

This section looks into the user perspective as a part of the longitudinal study. It is based 

on both quantitative as qualitative data. The aim is to examine how HIHs perform 

thermally by asking the opinion of the occupants. This means that one must evaluate the 

occupants’ responses of how comfortable they find their houses and examine the role 

occupants play in the thermal performance of their houses. Importantly, this section will 

explore how HIHs are used and managed. On this basis, it assesses the occupants’ level 

of understanding of how to maximise thermal comfort. 

In this spirit, questionnaires were aimed at collecting a feedback on the effectiveness of 

new highly insulated designs as well as at collecting data regarding occupants’ 

behaviours, occupants’ control, and occupants’ thermal comfort sensations in order to 

capture how perceived thermal comfort and behaviour of the tenant relates to the 

environmental measurements in their houses. 

These subjective measurements were collected via two types of closed-question 

questionnaires: 

 Q1, which was used to record the interaction between the occupants and their 

houses, such as use, ventilation, adaptive measures, and possibilities for thermal 

pleasure. These questionnaires were submitted at any house visit (5 

questionnaires submitted per case study, total of 20 questionnaires Q1). It 

included a generous number of open questions in the form of “any other 

comments on…” in order to let occupants provide any information that they feel 

relevant. The full questionnaire is included in Appendix C.  

 Q2, or thermal sensation questionnaire, was about what people feel and do in 

order to maintain or modify a thermal state. These self-reported questionnaires 

were submitted at any convenient time by occupants via an online platform, 

except for one occupant who supplied written responses (total of thermal 

subjective responses of 32). The full questionnaire is included in Appendix C. 

The figure 5.36 below shows the timeline for the questionnaires’ submission and location 

within the monitoring period. 
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Fig. 5.36 Subjective measurements’ timeline.  

The period in which temperatures were recorded is shaded 

5.3.1 LONGITUDINAL QUESTIONNAIRE 

5.3.1.1 BUILDING SYSTEMS USE 

Questionnaires allowed us to gain a general view of building systems in each house. 

While houses UK51 and UK54 did not spend the summer in their houses, it was possible 

to collect some information about the past winter heating approach. 

In fig. 5.37 it can be noted that house UK52 (uncertified Passivhaus) used heating for the 

lowest number of months. It can also be noted that three out of four houses had the 

MVHR turned on constantly. This could mean that heat was recovered during summer. It 

can also be noted that the heating was turned on during more months in the Yorkshire 

case studies. Interestingly, in both houses where occupants experienced a hot summer, 

uncomfortably warm temperatures were felt by the occupants to the point that they 

claimed to have felt the need to cool the rooms.  

The necessity to cool rooms was interpreted differently by different occupants. For 

instance, in house UK52 the need to cool rooms was intended, as per opening the 

windows; while in house UK55 the need to cool a room was perceived but the occupant 

believed that the MVHR should have been able to cope with purging high temperatures, 

and so he kept windows closed despite the high temperatures (see below section 

‘window opening patterns). It was also found by the occupants’ responses that opening 

the windows was not automatically linked to cooling. So it is possible that cooling was 

provided inadvertently by opening the windows. 
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Fig. 5.37 Heating and cooling needs as reported by occupants 

 

 

5.3.1.2 WINDOW OPENING PATTERNS 

Questionnaire Q1b collected information about occupants’ behaviour. Question 10 of 

Q1b was aimed at collecting information about window opening as a practice to purge 

high temperatures. The question submitted was the following ranking question: “During 

hot weather, how often do you open the windows in order to cool your house?” (never=0, 

rarely=1, once a week=2, daily=3, night=4, day&night=5). 

A salient finding was the fact that most occupants of the houses surveyed perform 

window opening day and night (even outside the summer season) and that rooms where 

natural ventilation was not performed was only a consequence of some restriction (due 

to an inability to open the windows, inaccessible or street security/odours) rather than 

the need itself not existing. In more detail, the relevant findings can be summarised as 

follows.  

 In house UK51 (fig. 5.38), windows were open in many rooms throughout the 

whole year, especially the bedrooms and the first-floor bathroom. This trend 

changed only for bedroom 1 due to noise from the street. Bedroom 2 (converted 

loft) was kept open day and night, because it was found to be difficult to keep 

comfortably cool. 
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Fig. 5.38 Window opening pattern house UK51  

 

 

 In house UK52 (fig. 5.39), windows were regularly kept open throughout the 

entire monitoring period, surprisingly also in winter. The only window that was 

not regularly opened was in the kitchen, but only because this window was found 

to be difficult to open (occupant had to use a chair to reach the handle, as the 

researcher did when trying to open the window). 

 

 
Fig. 5.39 Window opening pattern house UK52  

 

 

 

 In house UK54 (fig. 5.40), all windows were opened at least daily, with instances 

of day&night ventilation. Construction works restricted the opening of the office 

and bedroom 2 (street facing). Occupants of this house managed the house via 

natural ventilation only because the MEV provided was turned off (due to the 

occupants’ preference to control ventilation by them). Conversations with the 
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occupants revealed a ‘Mediterranean’ approach to manage their house, via 

window opening in the coolest parts of the day. Occupants revealed that they 

have been visiting Mediterranean countries during the summer for many years, 

and have thus learned to use adaptive behaviour. 

 

 
Fig. 5.40 Window opening pattern house UK54  

 

 

 In house UK55 (fig. 5.41), there was no window opening in the main bedroom 

despite high temperatures, probably due to the fact that one of the occupants 

did not notice the warm environment due to health-related issues. 

 

 
Fig. 5.41 Window opening pattern house UK55  

 

When looking at all bedrooms only (fig. 5.42), it is evident that during the warmer season 

house UK55-bed1 windows were kept shut. Also, it was evident that house UK51-bed2 

was kept open day and night throughout the 11 months of monitoring. Interestingly, 
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these two rooms reported overheating (see overheating assessment in section 5.2 of this 

chapter) but the fact that house UK51-bed2 reported overheating despite the ventilation 

management, which brings light to the fact that while house UK55-bed1 would still have 

adaptive possibilities for lower temperatures, house UK51-bed2 does not. 

 

 
Fig. 5.42 Window opening pattern all bedrooms  

 

 

5.3.1.3 OVERHEATED ROOMS 

Question 13 was submitted to gain feedback on areas of potential overheating within the 

house. The question submitted was: “During this time of the year, do you find it difficult to 

keep comfortably cool in any room?” Respondents had to circle the times in which a room 

(room by room) within the house was difficult to keep cool. This question allowed for a 

first-hand approach to obtain information about each house and the relationship to the 

comfort provided to their occupants without mentioning the word overheating within 

the question (table 5.13). This question was completed with an open question for 

interviewees’ comments. 

 House UK51 reported overheating only in bedroom 2 until the last 

questionnaire. In this room, occupants reported trying to keep the blinds down 

to reduce temperatures. However, this solution was not sufficient, but later in the 

year they resolved the issue by opening the windows day and night. 

 House UK52 reported always that the hall was always difficult to keep 

comfortably cool, though the occupant did not perceive it as something to 

complain about. The high temperature of the hall was used to "heat up the rest 

of the house". This may constitute a risk when temperatures are already high, and 

heating is not needed. It is also noticeable that occupants of house UK52 
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reported rooms to be uncomfortably warm in the occupied hours of that room, 

so there is a possibility for such rooms to be too warm during other hours. 

 House UK54 reported no problems besides the office on the first floor. This 

room has a south-facing Velux window which was kept closed at all times during 

the first period of the survey (due to building works nearby). Once work was 

finished and ventilation was restored, no problems were reported. This shows the 

risk of relying purely on ventilation to purge heat, as at times, and for numerous 

reasons, ventilation might not be an option. 

 House UK55 was a particular case, since the interviewed occupant seemed not to 

report problems. However, looking at the loggers recorded temperatures, this 

house has recorded occurrences of severe overheating. In this case, it was known 

that the occupant had a neurological condition that might have limited their 

perception of warmth. 

 

Table 5.13 Reporting of rooms being difficult to cool throughout the longitudinal study 

 

 

It was interesting to find that most of the responses correspond with the loggers’ 

temperatures. In detail, the occupants of house UK51 complained about bedroom 2 from 

the beginning of the survey, which coincided with the overheating assessment.  

House UK52 showed difficulties in keeping the hall comfortably cool for the majority of 

the monitoring time, while the living room and bedrooms only at times of normal 

occupancy and for some parts of the monitoring period. 

House UK54, on the other hand, flagged only the office upstairs. All these three houses 

saw some correlation with the logger’s analysis. On the other hand, the responses from 

house UK55 changed throughout the monitoring period, and different rooms were 

Q1a- question 13:

room: I II III IV V I II III IV V I II III IV V I II III IV V

LIVING ROOM no no no no
18:00-

22:00
no

09:00-

16:00
no no

14:00-

16:00
no no no no no no no no no no

KITCHEN no no no no
16:00-

22:00
no no no no

14:00-

16:00
no no

18:00-

20:00
no no

HALL
00:00-

24:00

00:00-

24:00

00:00-

24:00

00:00-

24:00

20:00-

22:00
no no no no no no no no

00:00-

24:00
no

BATHROOM GROUND no no no no
14:00-

16:00
no no no no no no no no no no

BATHROOM UPSTAIRS no no no no
18:00-

22:00
no no no no no no no no no no

BEDROOM 1 no no no no
18:00-

22:00
no

20:00-

08:00
no

24:00-

08:00

20:00-

22:00
no no no no no no

14:00-

18:00
no no

22:00-

08:00

BEDROOM 2
18:00-

24:00

12:00-

20:00

24:00-

06:00
no

14:00-

18:00
no

20:00-

08:00
no

24:00-

08:00

20:00-

22:00
no no no no no no no no no

22:00-

08:00

BED 3 OR LOUNGE UPS no no no no no no no no no no no no no no no

OFFICE
11:00-

17:00

11:00-

17:00
no no no no

08:00-

12:00
no no no

During this time of the year, do you find it difficult to keep comfortably cool any room?

UK51 UK52 UK54 UK55
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mentioned on different occasions. This reveals that the assessment carried out by 

occupants with health conditions may not be reliable. 

Another relevant finding from question 13 concerns house UK52, where the occupants 

noticed that the hall was being difficult to cool. The hall is not an inhabited space and 

the overheating assessment would not normally be interested in this space. However, 

halls or transitory spaces (such as corridors) often contain building services which may 

affect the thermal performance of the building, especially when they release heat. In this 

case, the domestic hot water tank was located in a cupboard linked to the hall, so 

releasing extra heat in this area. Interestingly, at a certain point the occupants of house 

UK55 also indicated that the hall (where the heating systems were located) was too 

warm. Contributions from the excess heat from these technical rooms are also explored 

in the heat wave analysis (section 5.2.3 of this chapter). 

From a methodological point of view, occupants’ responses to question 13 have shown 

that at times consulting occupants is not sufficient to spot overheating; people might not 

want to complain or, as for house UK55, might have a limited thermal perception. 

Therefore, questionnaires to occupants are to be considered only one part of a more 

comprehensive enquiry. 

Moreover, it was found that, while people adapt to find comfort, this possibility is not 

endless if environments do not provide different means for adaptation. For instance, the 

fact that house UK51-bed2 was not comfortably cool despite the window being open 

during the day and many times during the night shows a concerning risk of rooms 

becoming unusable. In this case, fortunately, the living room provided a temporary 

shelter during the heat wave, however unsustainable this might have been for the 

remaining parts of the year. 

Finally, another observation relates to the temporary unavailability of ventilation, 

which happened in house UK54-office, exemplifying the risk of relying purely on 

ventilation to purge heat as at times, and for numerous reasons, ventilation might not be 

an option. While in this case the disruption was minimal to the occupants, the effects 

that unavailability of ventilation has on HIHs has to be considered. 
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5.3.1.4 OCCUPANT CONTROL 

Question 17 of Q1b was aimed at collecting information about the perception of control 

that occupants have over their environments (see fig. 5.43). The ranking question 

submitted reads: “How much control do you feel you have over the temperature in this 

house?” (1=no control, 7=full control). The open question to comment on the score 

allowed occupants to justify their scores. 

A salient finding was the fact that most occupants of the HIHs performed window 

opening both day and night (even outside the summer season) and that when natural 

ventilation was not performed it was due to an inability to open the windows 

(inaccessible or street security/odours). In detail: 

 House UK51 showed a significant "no control" response over bedroom 2, where 

occupants reported the need to keep the blinds down to reduce temperatures. 

This solution was not sufficient for them to have complete control over the 

temperature. Control over the temperature of bedroom 2 improved throughout 

the survey but, after the summer, the occupant of bedroom 2 swapped location 

with the occupant of bedroom 1. This change may have influenced the feeling of 

control. 

 House UK52 showed a marked change in user perception of control throughout 

the study period for the same room (the living room). 

o In the first questionnaire, occupant of house UK52 reported "no control" 

in the living room, claiming that she felt that not having a thermostat in 

the living room would not give her that option51.  

o On the second survey, this opinion changed to high scores because "I can 

control but because I just kept settings" [occupant of house UK52, II 

survey].  

o On the third visit, the occupant’ mid score was linked to the fact that she 

did not know if she was doing things correctly, but she was happy to 

leave things as they were. 

                                                           
51

 In reality, the living room in UK52 is provided with a thermostat to control the supply air heater. 

This information was written in the house manual, which was in hands of the occupant. Such lack 

of awareness, despite having the house manual, may be linked to the large amount of information 

the occupant had to process in reference to a Passivhaus-like house. 
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o In winter (fourth visit) the high scores were justified by the occupant on 

the basis that she was able to control the temperature by opening the 

windows. 

 House UK54 reported the highest scores with regards to control over 

temperature.  

 House UK55 reported the lowest score with regards to control over temperature 

during the summer. 

 

 
Fig. 5.43 Perception of control over temperatures, all houses 

Question 17 revealed to be one of the most multi-dimensional questions when 

considering the responses to the aspect of control over temperature. When asked to give 

a ranking of their feelings of control, occupants appeared to have difficulty in deciding 

on their levels of control over the temperatures in their houses. Once ranking was 

recorded, the following open question asked them to comment on their ranking. Thanks 

to this open question, the interpretation of the scores given became much more 

insightful, allowing for an understanding of the changing perception of control (see 

house UK52 responses). 

 For instance, in some cases a high score (7=full control) was based on the 

occupant not touching the controls and so being happy with the environment “I 

don’t understand I leave it like that so I have control” [occupant of house UK52, II 

survey]; evidently control in this instance was correlated with contentment over 

temperatures; 
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 Another high score for temperature (during winter) was linked to the occupant 

using a portable electric heater, and therefore was happy to manage 

temperatures at his ease, even though this was in marked contrast with the 

assumptions of the Passivhaus-like retrofit of such a house [occupant of house 

UK51, IV survey]; 

 Another case was when occupant did not want to give a ‘control’ score, since in 

his view there was no need to control the environment that summer, even during 

the heat wave. In this case, the occupant was known to manage the house via 

window opening, though he did not appreciate this as being a means of 

temperature control [occupant of house UK54, II survey]. Also, the same 

occupant later in the year stated that “you can’t fully control because of the 

thermal mass, thermal mass does not provide comfort temperatures as quick as 

other means but I accept it because it performs better” [occupant UK54, IV survey]. 

The above considerations would not have been possible without the open question. The 

answers to this question in particular evolved as the understanding (or confusion) of 

controls increased throughout the monitoring period. This could allow to link the 

changing scores of control to occupants changing experience of control over the 

longitudinal monitoring. 

It is the researcher’s conviction that ranking questions have helped occupants to form an 

opinion about their environment. While ranking questions alone might not provide an 

insightful response (as in the case for temperatures control), they have been effective in 

enabling occupants to formulate their opinions on environmental control (assumed 

previously to be none) of their houses. In this process, it is also acknowledged to be a 

sphere of action research that this longitudinal study has brought, due to the fact that 

through the researcher inputs (however unintentionally) occupants gain a better 

understanding of their environments. 

5.3.1.5 CHANGES IN OPINIONS 

Occupants’ responses at the beginning and the end of the summer have been analysed 

so as to spot differences in opinion throughout the monitoring period. In table 5.14 the 

responses to the same question submitted in late spring/early summer 2015 and in mid-

summer 2015 are highlighted; in other words, at the beginning and at the end of the 

warmest part of the summer. The goal of this strategy was that of seeking confirmation 

to the occupants’ opinions and behaviours throughout summer, as the general feedback 
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from HIHs was overall positive due to the numerous advantages of these new designs. In 

other words, it has been considered important to notice if any ‘forgiveness factor’ was 

influencing occupants’ responses. 

Table 5.14 Changes in opinion across summer 

 

When asked: “How often the windows were kept open in order to cool a room?” the 

occupants of houses UK51 and UK54 said that they left the windows open to cool the 

house day and night. By contrast, the occupant of house UK52 left the windows open 

during daytime only for security concerns. Lastly, no cooling through window opening 

was used in house UK55. These opinions where mostly maintained in both the first and 

second questionnaires. 

On the other hand, when asked: “How difficult is it to keep comfortably cool in a room?” 

the responses from early till late summer (i.e., after the heat wave) showed some changes 

in opinions.  The occupant of house UK52 claimed that she did not report any difficulty 

keeping a room cool in early summer. However, by mid-summer, the occupant did find it 

difficult to sleep due to excess heat and opted to go to the living room to open a 

window and – concerned about potential burglary – kept herself awake by reading a 

book.  

Moreover, the occupant of house UK55 stated that they had no difficulty in maintaining 

room temperatures at a comfortably cool level in the first questionnaire; however, in the 

second questionnaire the same occupant claimed that they experienced difficulties in 

maintaining comfortably cool temperatures throughout the whole house during the 

entire day, to the point that they felt the necessity to go outside in order to gain thermal 

relief. 

This analysis shows that opinions and behaviours change within any given season. Hence, 

the importance of longitudinal studies in innovative architecture.  
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5.3.2 THERMAL COMFORT STUDY 

The aim of this thermal comfort study is to record and reflect on the subjective 

experiences of the occupants of the case study HIHs. This task was achieved by 

comparing the thermal comfort survey of a set of HIHs with the thermal comfort survey 

of a set of non-HIHs. Both sets of buildings were surveyed at the same time as part of a 

larger study (see below). 

The thermal comfort study presented here forms part of a larger international multi-

partner study aimed at understanding the role of air motion in providing thermal 

comfort in the residential sector [Loveday et al., 2016]. This study was funded by the 

British Council as a Global Innovation Initiative (GII) project, and generated a dataset of 

conditions, thermal comfort sensations and occupant behaviours for UK and Indian 

homes. The analysis presented here utilises a subset of that data together with some of 

that analysis. The full presentation of the results is currently under preparation as a 

journal paper. Within this international study there is a group of fifteen British houses, 

four of which are HIHs. The same method of data collection (i.e., electronic questionnaire 

submission and hobo loggers indoors and outdoors) was used for all. This process 

generated a set of data on thermal conditions, sensations and air motion practices. 

In this section, the results of the study concerning the four HIHs are presented in the 

context of the larger group of British houses. 

5.3.2.1 BACKGROUND 

The thermal comfort model engaged is the PMV model. PMV, or predicted mean vote, is 

a thermal index related not only to temperature but to a total of six variables (see table 

5.15). PMV is typically used as an indicator of indoor comfort [Nicol, Humphreys and 

Roaf, 2012]52 

The reason for using this model lies in the fact that Passivhaus was developed on the 

basis of the Fanger’s steady-state thermal comfort model53, which drives the design 

principle to keep the temperature in the building constant [Passivhaus Institute, 2011]. 

Two of the case study houses were designed based on Passivhaus principles. The other 

                                                           
52

 On the contrary, the adaptive thermal comfort model would simply associate thermal sensation 

responses (actual mean vote AMV) to outdoor temperatures. 
53

 Fanger's comfort equation is derived from the concept that for optimal thermal comfort the 

heat loss of the human body is in equilibrium with its heat production [Passivhaus Institut, 2007]  
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two were not designed in this manner, though they did have high levels of insulation and 

air tightness.  

It should be initially noted that the adaptive comfort model could have been used in this 

analysis, in consideration of the fact that in three (out of four) case studies occupants put 

in place a form of adaptive behaviour (namely, window opening). When the limitations of 

each thermal comfort model in the analysis of the case studies are taken into account, in 

HIHs where MVHR operates constantly and the design is based on constant temperature 

maintenance, the PMV model can be claimed to best fit the case studies. This choice is 

made on the understanding of each model’s limitations and degree of uncertainty. 

There are two main components to the data gathering for this analysis:  

a. Gain the participants’ subjective thermal sensations and thermal 

acceptability of their thermal environments. This was reflected on the 

overall actual mean vote (AMV) using subjective thermal votes on the 

thermal sensation scale; and  

b. Obtain the participants’ clothing insulation value (CLO) and metabolic 

rate (MET). This questionnaire was submitted multiple times between the 

period April-December 2015 (see Appendix C for complete questionnaire 

vision); 

 The spot measurements were recorded from the HOBO loggers (indoors and 

outdoors). These were then combined with questionnaire Q2 at the times of 

questionnaire completion. 

Subsequently, and prior to data analysis, data cleaning took place. As previously stated, 

in this survey the general PMV method (and specifically, the analytic thermal comfort 

zone method for compliance) has been applied. Accordingly, only responses with MET 

within 1 and 2 have been considered [ASHRAE, 2013a]. It is acknowledged that the actual 

range of metabolic activities in residential housing is much broader. For instance, while 

sleeping is 0.7 MET, house cleaning lies between 2.0-3.4 MET [ASHRAE, 2013a]. However, 

questionnaires were submitted online and recorded previous activities before submission 

were prevailingly sedentary. 

This first step of data cleaning of the fifteen British houses surveys provided 509 

responses. These responses were divided in two subgroups: (a) highly insulated houses 

(HIHs) and (b) non-highly insulated houses (non-HIHs). 
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In addition, and in order to compare results from the two groups—namely, HIHs and 

non-HIHs—a number of responses were excluded from the analysis to make the two 

groups directly comparable. The reasons for this are listed below: 

 Responses from children (up to 16 years old) were excluded, since in the HIH 

group there were no children; 

 Responses given in the period April 2015 to May 2015 were excluded, since in 

this period, no response from the HIH group was recorded; 

 Responses provided during the heat wave were excluded, since in this period 

only, responses concerning the group of non-HIH were recorded. This means 

that there was no opportunity to compare the outcomes relative to the two 

groups (i.e., associated potential extreme values); 

 Responses given by adults younger than 35 years old were excluded. The reason 

for this deletion is that no adult younger than 35 years old answered questions 

concerning the group of HIHs.  

These further exclusions reduced the number of usable responses to 259. Of the 

remaining 259 responses, 227 responses were relative to the non-HIH group and 32 

responses were relative to the HIH group. It seems worth noting the proportion of 

responses excluded from this analysis as shown in fig. 5.44. 

 

Fig. 5.44 All data collected, and responses considered, in this analysis on the left side of 

the pie chart 
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5.3.2.2 RESULTS 

Compliance with ASHRAE was sought via PMV. In order to calculate the predicted mean 

vote (PMV), six parameters were needed. Table 5.15 lists the sources of data for each of 

the factors. Here, it can be noticed that the air speed value used was assumed to be 0.1 

m/s for all houses.  

It has to be noted that the HIH group was found to have much lower air speeds when 

windows were closed and the MVHR was in operation (spot measurements recorded 

0.02-0.06 m/s average air speed54). However, their occupants have reported keeping at 

least one window open most of the time. For this reason, the value of 0.1 m/s was found 

to be more representative of the air speed within all houses.  

Table 5.15 Factors addressed to predict thermal comfort 

Factors addressed to predict comfort Source of data 

Metabolic rate (MET) Q2 activity + values from ASHRAE 55 

Clothing insulation (CLO) Q2 garment + values from ASHRAE 55 

CLO with Ensemble calculation includes 

seat CLO 
55

 

Air temperature (indoor and outdoor) Spot measurement (HOBO loggers) 

Radiant temperature Assumed (same as air temperature
56

) 

Air speed Assumed 0.1 m/s 

Humidity Spot measurement (HOBO loggers) 

A number of correlations have been considered and presented in the following 

paragraphs57. 

AMV and PMV 

AMV responses and PMV-derived values for all houses were plotted in relation to indoor 

temperatures (spot) recorded at the time of AMV vote submission. Figure 5.45 shows 

                                                           
54

 Average air speed is the numerical average for the three heights: at ankle level the waist level 

and the head level, over an interval not less than one and not more than three minutes [ASHRAE, 

2013a]. 
55

 The omission of the thermal effect that chairs have on their occupants has been linked to PMV 

overestimation [Brager and de Dear, 1998].  
56

 “Lightweight furnishing surfaces are often close to air temperature and consequently the mean 

radiant temperature in a room is typically close to air temperature” [Nicol, Humphreys and Roaf, 

2012, pag. 14]. 
57

 The percentage of people dissatisfied (PPD) has not been considered, because “work based on 

field studies suggest that PPD does not reliably predict the discomfort cause by deviations from the 

comfort temperature in real-life circumstances of diverse activity and clothing” [Nicol, Humphreys 

and Roaf, 2012, pag. 46]. 
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that there is a marked difference between AMV and PMV: while AMV recorded responses 

on the whole ASHRAE thermal sensation scale (i.e., from +2 hot to -1 cold), the 

corresponding PMV results ranged between +1 (slightly warm) and -3 (cold). The first 

observation one can make, therefore, is that all AMV responses report a warmer 

environment than the one that could be predicted. 

 
Fig. 5.45 AMV and PMV against indoor air temperatures for highly insulated houses 

 

This could be of relevance in the design of HIHs in England. The fact that the calculated 

PMV is considerably lower suggests that if PMV were to be used in the thermal design of 

those houses, in reality people would experience a warmer environment than predicted. 

This potential underestimation of warmth could lead to PMV potentially underpredicting 

overheating. Although inconclusive, this finding is in line with other UK field studies 

where it has been found that PMV generally estimated the thermal sensation lower than 

the actual thermal sensation [Beizaee et al., 2012], providing indication that PMV 

prediction is not encountering the other processes of adaptation that occur in real life. 

AMV ranges 

The range of recorded internal temperatures was between 14-28°C. Such a range was 

similar in both the considered subgroups (non-HIHs and HIHs). Within these 

temperatures, non-HIH respondent’s AMV values covered the whole ASHRAE scale, from 

-3 (cold) until +3 (hot). The HIH respondent’s AMV values covered a much shorter range 
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of thermal sensations within the ASHRAE scale, from -1 (slightly cool) until +2 (warm) 

(see fig. 5.46). 

In non-HIHs, respondent’s sensation of “hot” (+3 on the ASHRAE scale) was recorded 

with internal temperatures between 19-28°C, and “warm” (+2 on the ASHRAE scale) was 

recorded with internal temperatures between 16-25°C.  

In HIH, respondent’s sensation of “hot” (+3 on the ASHRAE scale) was not recorded, 

while a thermal sensation of “warm” (+2 in ASHRAE scale) was recorded with internal 

temperatures between 22-24°C. 

On this basis, it can be claimed that a different range of values on the thermal sensations 

scale is shown for each of the subgroups. Moreover, HIHs were found to perform better 

than non-HIHs in terms of comfort when assessed with the analytic thermal comfort zone 

method. 

 

 
Fig. 5.46 AMV Histograms for all houses: non-highly insulated houses (grey) and highly insulated 

houses (orange) 

 

AMV frequency distributions 

Looking at the histogram in figure 5.46, it can be appreciated that the majority of 

reported thermal sensations (AMV) are neutral: in the HIH subgroup the range of thermal 

sensation lies mostly in neutral (0) and slightly warm (+1), whereas in the non-HIH 

subgroup there are instances spanning across the whole thermal sensation scale with 

concentrated responses between slightly cool (-1) and slightly warm (+1). In other words, 
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it can be appreciated that between the two groups the proportions are similar, though 

with a shorter range (-1 until +2) in the HIH group. It is acknowledged that these results 

are based on a small sample; therefore, the results cannot be considered fully conclusive. 

The responses from the HIH group do not suggest a thermal sensation that is “hot” on 

the ASHRAE thermal sensation scale; by contrast, the non-HIHs reported instances of 

“hot” thermal sensation votes. 

Moreover, the histogram in figure 5.46 shows that in the majority of cases (both in the 

non-HIH group and in the HIH group) thermal sensation was indicated as being ‘neutral’. 

A notable difference can be found in the HIH group, where the proportion of ‘slightly 

warm’ responses is higher (a proportion similar to the ‘neutral’ sensation) than that 

recorded for the non-HIH group. 

AMV and temperatures correlation 

As shown in figure 5.47 responses from both groups (non-HIH and HIH) indicate no 

correlation between AMV and indoor temperatures, and between AMV and outdoor 

temperatures. The red arrow in fig. 5.47 is further investigated because it shows a 

“slightly cold” thermal sensation vote with indoor temperatures around 25C. This is 

performed by presenting each house separately, as in figures 5.48, 5.49 and 5.50. 

 
Fig. 5.47 Scatter plot of AMV against indoor temperatures, HIHs in black. 
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Fig. 5.48 Scatter plot of AMV against indoor temperatures, house UK51 

 

 

 
Fig. 5.49 Scatter plot of AMV against indoor temperatures, house UK52 
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Fig. 5.50 Scatter plot of AMV against indoor temperatures, house UK54 

 

The sensation of “slightly cold” with 25C was found in House UK52. While this vote may 

be found hard to believe at such temperature, during the survey the occupant had the 

two windows slightly open to perform cross ventilation in the living room (from where 

she was submitting her vote). Performing cross ventilation may have influenced the 

occupant’s thermal sensation. In figure 5.51 it is possible to appreciate the air movement 

recordings with the Dantec Comfort Sense that may support this finding. 

 
Fig. 5.51 Air movement recorded during the thermal comfort survey in each house.  
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CLO range 

The range of all recorded CLO that took place at the same time in which responses were 

submitted are distributed between 0.19 CLO and 1.10 CLO. The HIH group represented a 

shorter range than the non-HIH group, since the former is comprised of values between 

0.35 CLO and 0.74 CLO. This difference in range is especially evident in cooler seasons 

(figure 5.52). 

 
Fig. 5.52 Scatter plot of CLO against AMV over time 

 

In fig. 5.53 it can be appreciated that there is no apparent correlation between AMV and 

CLO for either the non-HIH or HIH responses. However, if one looks at the thermal 

sensation votes in points 0, 1 and 2, it can be noted the lower CLO values reported by 

respondents from HIHs. This may be an indication in the HIH group respondents are less 

inclined to adapt their clothing to the indoor environment. This is true especially as far 

the addition of CLO values in terms of adaption to winter temperatures is concerned. 

However, the sample used in this study is too small to justify generalisation. Nonetheless, 

one may be tempted to claim that the recorded results may mean that living in HIHs 

discourages clothing adaptation and so in the long term may negatively impact the 

energy consumption in HIHs. 
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Fig. 5.53 Scatter plot of CLO against AMV 

 

CLO and temperatures 

In fig. 5.54 and 5.55, it is possible to appreciate that in non-HIHs, respondents remove 

clothes as internal temperatures get warmer; the correlation is weak. Plus, when external 

temperatures are considered the relationship becomes even weaker.  

In HIHs, no correlation was found between CLO and indoor temperatures, while there 

seems to be a weak correlation between CLO and external temperatures.  

The fact that people in HIHs adapt their clothes in relation to external temperatures 

could be an indication that occupants use natural ventilation as a means of adaptive 

behaviour instead of clothing. This hypothesis seems to be confirmed by the strong 

correlation found between indoor/outdoor temperatures in the HIHs in particular (see 

fig. 5.57 in following pages). 
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Fig. 5.54 Scatter plot: CLO against indoor temperature 

 

 

 
Fig. 5.55 Scatter plot: CLO against outdoor temperature 

 

Indoor/outdoor temperatures 

The recorded range of internal temperatures is distributed between 14-28°C. While in 

non-HIHs a very weak correlation was found between indoor temperatures and outdoor 

temperatures (fig. 5.56).  
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In HIHs there is a strong correlation between indoor temperatures and outdoor 

temperatures (fig. 5.57).  

This difference can be taken to support the assumption, introduced in the previous 

section, regarding the possibly of more frequent use of natural ventilation as a means of 

adaptive behaviour in the HIHs group. This more frequent use is of some significance, 

particularly in consideration of the fact that in 3 out of 4 houses, the MVHR was operated 

at all times.  

 
Fig. 5.56 Scatter plots for non-highly insulated houses responses 

 

 
 

Fig. 5.57 Scatter plots for highly insulated houses responses 

 

13

Non-HIH  RESPONSES (n. 227) 

very weak  correlation

very weak  correlation very weak correlationweak correlation

no correlation no correlation

12

HIH  RESPONSES (n. 32) 

no correlation weak  correlation

no correlation moderate correlation

strong correlation

weak  correlation



CHAPTER 5: POST-OCCUPANCY EVALUATION   198 

5.3.2.3 DISCUSSION OF THE THERMAL COMFORT SURVEY 

The thermal comfort survey undertaken in the preceding sections showed no conclusive 

evidence of overheating (not even a recorded “hot”-point 3 on the ASHRAE thermal 

scale). At the same time, even within the small sample considered in this work, the survey 

has disclosed a number of risk factors pertaining to HIH. Those risk factors can be 

summarised as follows. 

First, HIHs performed better in terms of ASHRAE compliance: in HIHs, the range thermal 

perception is less wide—neither too ‘hot’ nor too ‘cold’. This limited variation should be 

considered positive in terms of the thermal comfort provided. However, when compared 

to non-HIHs, in HIHs the AMV responses were concentrated on the warm side of the 

ASHRAE scale. This marks a significant change in the thermal perception in HIHs. 

In terms of temperature, it was observed that in all houses the air temperature of 24°C 

was linked to different thermal perceptions, ranging from “warm” sensation to “slightly 

cool”. On one hand, air temperature is the dominant environmental factor58, and as such, 

establishing a threshold of ‘hot discomfort’ constitutes a viable goal. On the other hand, 

the thermal perception is also related to other factors, as the 24°C observation suggests. 

This supports the view that thermal comfort is hardly a matter of just temperature. 

Thermal comfort is rather a matter of thermal experience as a whole. Designers should 

be aware of this dimension of thermal comfort when they test their designs and the 

importance of incorporating means to provide such thermal experiences.  

To reinforce this point, thermal adaptation in the built environment has been attributed 

to three different processes: (a) physiological acclimatisation, (b) behavioural adjustment 

and (c) psychological expectation. In the literature, the last two are claimed to be of 

much greater influence [de Dear and Brager, 1998]. However, when a thermally 

comfortable design is reduced to (only) a temperature expectation, it has the potential to 

reduce opportunities for (low-carbon) thermal adaptation. 

In addition, the survey provides initial indication that PMV underestimates actual 

comfort levels of HIHs. That is, in reality, the occupants’ actual comfort levels were higher 

than PMV (especially towards the warm end of the scale). This should be taken as having 
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 After all, air temperature is the dominant environmental factor, as it determines convective heat 

dissipation “air movement accelerates convection, but it also changes the skin and clothing surface 

heat transfer coefficient (reduces surface resistance), as well as increases evaporation from the skin, 

thus produces a physiological cooling effect” [Szokolay, 2008, pag. 17]. 
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implications for the thermal design of houses, since the underestimation of PMV might 

result in some unnecessary over-specification of the building fabric during the design of 

HIHs. However, the sample of HIHs is too small. 

Moreover, the survey also found that in HIHs the range of CLO is smaller than that for 

non-HIHs. This may suggest that occupants decided to rely on other forms of adaptive 

behaviour, such as window opening. This is another notable finding, because, if the 

occupants’ comfort mainly depends on window opening, careful design considerations 

should be taken in order to ensure that this means of adaptation is actually available and, 

for instance, does not interfere with the operation of MVHR (especially during winter), as 

instead it was the case in one of the houses.  

The thermal comfort survey showed that the thermal experience in HIHs had a shorter 

spread over the thermal sensation scale (when compared to the non-HIH group), 

suggesting a shorter window for thermal sensations in HIHs. On the one hand, this could 

be considered a positive outcome of low-carbon design; on the other, the low values of 

CLO and their correlation with outdoor temperatures could be showing that occupants 

are already adapting to cope with warm temperatures. This fact deprives occupants of 

forms of adaptation as indoor temperatures get warmer. 

To restate this point, the constant use of window opening as a means of ensuring 

comfort could be linked to an increase in energy use (the constantly running MVHR may 

have localised heaters as in the case of house UK52). This could trivialise efforts to reduce 

carbon emissions intended in the first place.  Also is important to remark that the 

reliance on such means for comfort (i.e. constant use of window opening to provide 

comfort) could be problematic in certain areas (i.e., UHI, noisy area, etc.) and may induce 

to further carbon emissions (air conditioning) or heat stress. 

Finally, one should not underestimate the fact that temperatures are predicted to rise 

over the next decades due to climate change and increased urbanisation. The tendency 

towards rising temperatures over time means that the demand for cooling in HIH can 

reasonably be expected to rise. For this reason, one can speculate that HIHs, as they are 

built today in the UK, are vulnerable to overheating despite the fact that their enhanced 

insulation has a positive counterbalancing influence. 

Apparently, the findings of the thermal comfort survey in relation of the phenomenon of 

overheating in HIHs are far from conclusive. In fact, in consideration of the limited 
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amount of data available, here it is not possible to generalise the results of the survey 

and related reflections. Nonetheless, the existence of a number of additional risk factors 

in HIHs is hardly deniable. 

5.3.3 SUMMARY OF USER PERSPECTIVE FINDINGS 

This section examined how HIHs are experienced by its occupants, how comfortable HIHs 

are found by them and to what extent user behaviour play a role in such perception. 

The reliance on window opening evidenced by the longitudinal questionnaires have 

provided an initial indication of the use of air movement as main means for achieving 

comfort; it is not known if this is rooted in a hedonic component of comfort (and by so 

related to the pursue of pleasure59) or a need to lower internal temperatures. This implies 

that adaptive measures enacted by occupants might not be enough to provide comfort. 

This is an important finding because HIHs designs are to be equipped with an array of 

adaptive opportunities to avoid discomfort. 

To stress this point, the thermal comfort survey has shown people report smaller CLO 

values in HIHs, therefore clothing as an adaptive measure has already been used and 

other forms of environmental-related adaptive measures are needed. While one of these 

is ventilation, one of the case studies has shown that this is sufficient in itself (UK51-bed 

2), with the effect that the room had to be vacated during the heat wave. While vacating 

a room has been possible in UK51, in other designs (such as single aspect flats) this may 

not be available. 

The form of control from the occupants over the ventilation appears to be 

unpredictable and complex: while ventilation might be a poor source of comfort when 
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 Hedonism in thermal comfort refers to a theory of comfort that moves away from the 

conventional (PMV) and adaptive thermal comfort research. In both the PMV and the adaptive 

approach the objective to minimise thermal discomfort; they consider thermal neutrality as mean 

for comfort, and by so if a thermal environment is unnoticed, the comfort is achieved. Hedonism 

in thermal comfort refers to a paradigm theorised in the seventies in Thermal delight which 

hypothesise the pursue of thermal diversity rather than thermal monotony, linking lifestyles and 

physical environment [Heschong, 1979]. The psychological and socio-cultural components are 

central to this theory. Though, such a paradigm of thermal comfort has been kept underexplored 

thorough these years.  

Some authors are underlining the fact that the psychological aspects of comfort are potentially 

the most significant dimension in thermal comfort, though resenting from the lack of a framework 

that links behaviour, well-being and thermal comfort [Anderson and French, 2010], which may 

allow to move beyond the sphere of physiological acclimatisation. 
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outside temperatures are high, it has been found to be linked to the occupants’ 

comfort60. Linking this to the design of HIHs, it seems appropriate to claim that no one 

solution to ventilation type fits all approach is appropriate when it comes to low-carbon 

design. In this case, for instance, house UK51 would have benefitted from localised 

extract ventilation. While this point seems crucial, it is also important to emphasise that, 

from the results provided, there is no guarantee that one solution can fit an entire year’s 

performance, as the winter results of house UK54 have shown. 

It appears appropriate to conclude that while adaptive behaviour is key to occupancy 

of HIHs, however it is crucial that occupants are given additional options for 

adaptation. Such opportunities are to be given from the design stage and should be of 

many and varied types (according to the contextual design possibilities). 

Also, it should be noted that the HIHs that have been surveyed in this study have cross 

ventilation and hence are capable of effective purge ventilation (theoretically). This 

circumstance has most likely reduced the chance of overheating significantly. However, 

not all the HIHs built in the UK are equipped with this feature. For instance, a multi-

storey building do not necessarily allow for cross ventilation [Nooraei, Littlewood and 

Evans, 2013], which makes these HIH typologies more vulnerable to overheating when 

compared to the buildings surveyed in this work. 
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 Research into air movement to achieve comfort in the UK is currently undergoing [Loveday et 

al., 2016] 
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5.4 CHAPTER SUMMARY 

As found in the published studies presented in Chapter 2, there is neither a universal 

definition of overheating, nor an objective-value-free method for the assessment of 

overheating. These facts are supported by the findings from the environmental 

monitoring, which would not have been interpretable without reference to the user 

perspective discussed in this chapter. The findings introduced and discussed in this 

chapter, then, support the conclusion that the phenomenon of overheating in HIHs in 

England should be approached from a not purely quantitative approach.  

More specific main findings of the chapter can be thus summarised.  

Warmer environments 

The environmental monitoring showed that excessively warm temperatures were found 

to be persistent in some of the cases presented. With the provision of adaptive 

opportunities within HIHs' designs, overheating can hence move from a temporary 

condition to a chronic condition. From a user perspective, it can be said that HIHs 

provide warmer environments. This fact was not necessarily reported as a problem by 

occupants.  

The complexity of HIHs is exemplified by the fact that the analysis of the recorded 

temperatures for the whole year showed that the best performing house during summer 

does not necessarily perform at its best in winter. In fact, the best summer performing 

house showed the lowest temperatures in winter.  

The thermal comfort survey indicated that HIHs are warmer indoor environments. In this 

context, the provision of adaptive opportunities - normally aimed at enhancing the 

thermal experience of occupants - appear to be an essential aspect that should be 

addressed by designers in order to avoid potential thermal stress from warm indoor 

temperatures. 

Ventilation 

Moreover, assessments do not necessarily reflect the risks accompanying low-carbon 

design. In the cases presented, the reasons for not opening windows are numerous: from 

building work nearby to a fear of burglary. This reinforces the idea that designers should 

not design buildings with just one means of adaptation available, since such means may 

become momentarily unavailable. For instance, in HIHs the provision of natural 
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ventilation alone is not sufficient to guarantee a reduced risk of overheating, and designs 

should, therefore, include other means to avoid the build-up of heat inside the thermal 

envelope (i.e., provision of external shading in HIHs).  

Ventilation was shown to be an essential component of adaptive behaviour, though it is 

not always accessible. Mechanical ventilation was revealed to be a complex factor, and its 

interaction with layout design can have dramatic impacts on comfort.  

Innovation 

From the post-occupancy evaluation, it became clear that when considering HIHs, the 

current ‘new' way of designing houses in the UK has perhaps not yet matured sufficiently 

to gain an understanding of innovative designs. In fact, it has to be considered that 

designers today might not have the experience of living in such environments. This 

means that compliance to an overheating assessment or governmental compliance, on 

the one hand, and an understanding of the thermal environment of HIHs, on the other, 

might not be sufficient to minimise the risk of overheating in HIHs. Exceptional measures, 

both in terms of design as per standards guidance change are necessary, such as more 

restrictive assessments, the concept of vulnerable groups of occupants being considered 

in the standards, knowledge development, and post-occupancy evaluation, to ensure 

avoidance of temporary or permanently detrimental environmental conditions for 

occupants of HIHs. 

 

The proposed study has some limits as its finding cannot be generalised due to the small 

sample of houses considered here. On the other hand, the analysis of four houses, so 

different in typology and performance, gives a fair sense of the complexity of the thermal 

performance of HIHs and clues as to potential exploration in future research and design 

precautions that can be embedded by designers.  
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CHAPTER 6: INTERVIEWS WITH DESIGNERS  

 

Synopsis 

This chapter is largely concerned with the prediction aspects of thermally comfortable 

HIHs as it intends to investigate the contribution of the design process of the case 

studies to their thermal performance and its impact on the occurrence of overheating in 

the case studies. This chapter is thus devoted to critically analyse the interviews to 

designers and to single out the dimensions of design that are potentially associated with 

the production of overheating61. 

Due to the nature of the design process, qualitative research, in the form of semi-

structured interviews to architects and designers, was used in order to complement data 

from the POEs.  
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 The nomenclature ‘production of overheating’ is used to refer to overheating as an unintended 

consequence of HIHs design; and by so, to distinguish it from overheating as a consequence of 

climate change. 
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In this chapter, first a framework is introduced to guide both the collation of data 

(interviewees’ responses) and the critical analysis of the designers’ interviews; secondly, a 

content analysis is performed to reflect on the design of HIHs, as it is conceived and 

practiced today in UK.  

Two short caveats should be added before proceeding: to begin with, the analysis 

undertaken in the chapter will be exclusively concerned with the qualitative component; 

to continue, the outcomes of this chapter contribute to map (or model) the production 

of overheating – map that will be introduced and discussed in Chapter 7. 

6.1 BACKGROUND 

In the literature the use of interviews with designers constitutes a consolidated 

methodology. Such interviews are used in the present research to investigate the impact 

that the design of selected case studies has on the thermal performance of specific HIHs 

and so on their overheating. Semi-structured interviews to architects and designers are 

here employed to investigate how designers handle the new design requirements 

established by the governmental carbon reduction agenda in the light of their 

knowledge and the project requirements. 

Due to the nature of the design process, in this work qualitative research is used to 

complement predominantly quantitative methods. In this context, it is acknowledged 

that while qualitative methods can follow a well-established set of rules, such as coding 

[Bryman, 2015], there exists an intrinsically subjective (or at least less-than-objective) 

dimension in qualitative data analysis. This dimension necessitates a conceptual 

framework, which will be formulated in section 6.1.1. This conceptual framework has 

been used to frame the questions to the designers of the HIHs under consideration. 

It is important to preliminarily note that the relevant conceptual framework is derived not 

only from the literature review but also from the researcher’s personal and professional 

experience. Other relevant elements affecting the framework are the researcher’s 

speculative thinking (as it is shaped by her architectural background), the current non-

academic debate, and a number of unpublished papers that have been circulated among 

academics during the time in which this research project was undertaken (the relevance 

of those sources is discussed in Chapter 4). In particular, the non-academic debate 

undertaken by members of the construction industry, governmental parties, housing 

associations, architects, Passivhaus architects and occupants of ‘overheated’ houses 
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provides anecdotal insights into overheating. Those insights are in turn based on 

practical experiences, which have so contributed to channel the present research project.  

In creating the conceptual framework for the research questions, some of the factors that 

are understood to influence the thermal performance of houses have been reviewed. 

They are listed below (in order of importance).  

To begin with, climate should be considered a major factor influencing the thermal 

performance of buildings. Climate-base considerations have driven building design since 

the very outset of architectural work, although this integration in design was tacit. This 

dimension of architecture is made evident by vernacular and traditional design of 

buildings [Dahl, 2009], in which all meteorological factors are regarded as ‘not subject to 

human interventions’ [Givoni, 1998]. In contemporary architectural practice, only in the 

recent decades designers have explicitly integrated weather data into design by means 

the deployment of building simulation [Herrera et al., 2017]. Prior to this, design was 

based on the locally known technical advice and requirements shaped by what is known 

to work for that climate and context. 

To continue, in addition to climate considerations other environmental conditions are 

taken into account and refined by taking localised conditions into account. These 

include the context (urban, rural, urban heat island, urban cold island, wind exposure, 

etc.) [Ritchie and Thomas, 2013]. Some effects of those (such as site layout, microclimate 

and orientation of the building) can be manipulated in the design stage, though not 

necessarily under the direct control of the design team (since decisions relating to the 

site layout, microclimate and orientation of the buildings are normally split between 

decision takers - client and design team- and planning requirements). 

Further down the hierarchy, there are the factors that are commonly attributed to 

building design, such as house layout, typology, materials, and building services. The 

house layout, materials and building services depend on the interactions between the 

client and design team (including consultants); and reflect the building regulation 

requirements. Low-carbon design heavily relies on the interaction between layout, 

typology, materials and building services when adopting a fabric energy efficiency 

approach.  

The final aspect influencing the thermal performance of buildings is occupancy, which 

can have a different degree of impact. To some extent designers can influence the 
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behaviour of occupants with their designs. But occupancy-related elements are not 

completely under the control of designers, if not for other reasons because occupancy is 

likely to change through the life of buildings. Likewise importantly, designers tend to 

make assumptions on how these buildings will be used and managed, based on either 

the designers’ experienced-based assumptions or design guidance on a typical 

household. However, when it comes to innovative designs, it should be considered that 

these assumptions are (a) not necessarily correct, (b) not necessarily followed by 

occupants, or (c) followed by certain occupants but not others [Stevenson, Carmona-

Andreu and Hancock, 2013].62 

Despite the fact that the scope of design predominantly depends on each project’s 

specifics, such as the context, procurement route, etc., all the above mentioned factors, 

either tacitly or explicitly, have an impact on the performance of a (thermally performing) 

building. Consequently, there is no exact location where the ‘realm’ of design operates. 

The diagram drawn in figure 6.1 attempts to nuance the areas of potential design 

manipulation63. These are also areas of potential overheating ‘production’. 

 
Fig. 6.1 Factors concurring in the thermal performance of buildings and design control 
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 Incidentally, this aspect shows the importance of gaining knowledge in the relationship 

Environment-Behaviour as a whole, to inform the architectural profession, as introduced by 

Takahashi [2000]. 
63

 The microclimate (or site or landscape) can be treated to reduce the effects of solar radiation, 

wind, temperature, and humidity on a particular site and by consequence to the buildings in it 

[Brown and Gillespie, 1995]. 
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6.1.1 FRAMEWORK FOR SEMI STRUCTURED INTERVIEWS TO 
DESIGNERS  

The literature review provided in Chapter 2 showed that in UK overheating in houses can 

be caused by the cumulative effects of (a) external heat gains (such as sun and UHI), (b) 

internal heat gains (such as occupancy effects, appliances’ heat outputs) and (c) 

inadequate ventilation [Dengel and Swainson, 2012; NHBC, 2012b]. The impact on such 

cumulative factors is exacerbated by high levels of insulation [Orme, Palmer and Irving, 

2003; Energy Saving Trust, 2005; DCLG, 2012]. In fact, in relation to overheating, HIHs 

provide a context in which gains and ventilation act differently when compared to non-

HIHs. 

The factors mentioned above have been integrated in the diagram presented in figure 

6.2, where both factors of building design (left side of the diagram) and the cumulative 

factors of overheating (right side of the diagram) have been integrated to allow 

identifying (a) the basic themes used in the guide interview, and (b) to link these 

interviews questions to the areas of potential risk of overheating in the design stage 

(such diagram will be used later to produce the integrated findings from all areas of 

enquiry in Chapter 8).  

This diagram is not considered as a fixed interpretation of the integration between 

design-related factors and overheating-related factors; instead it constitutes an 

opportunity to link areas of design to potential overheating factors and to taking into 

account the intrinsic uncertainties in understanding occurrences of overheating in HIHs. 
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Fig. 6.2 Diagram of cumulative effects to overheating (right-hand side) in relation to building 

thermal performance factors (left-hand side) (repeated from Chapter 3). The three groupings on 

the left-hand side express the relationship thermal-design/overheating factors. 

 

6.1.2 METHODS  

The factors just illustrated are presumed to be understood and weighted differently in 

different projects. Therefore, there is scope to explore their knowledge and control within 

the design process. The questions of the semi-structured interviews to the designers of 

the building studied in this work central to this research project are listed below: 

 Do designers have the knowledge to avoid overheating? 

 How do designers assume their designs to perform? What do they know? 

Other questions asked during the interviews (see Appendix E) specifically looked at how 

designers went about their designs of HIHs. The rationale of those questions consisted in 

trying and establishing how to prevent overheating in the design phase and what can be 

improved in that phase Those questions were then directed to obtain information about: 

o What tools were used to design the case study houses, 

o What standards were considered, 

o What designers did in respect to comfort and whether they perceive or 

take into account any discomfort issue (such as winter comfort, summer 

comfort, particular time of the day discomfort), 
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o Whether designers considered the cumulative effects of external gains, 

internal gains, and ventilation cumulatively 

o Whether designers considered overheating as an issue  

o What the designers’ view of their HIH projects was 

o What the main focus of their studies houses was. 

A total of five interviews were conducted with the designers of the case study houses: 

two interviews for house UK51, two interviews for house UK52, and one interview for a 

house that has not been part of the monitoring process in the present research (and so is 

not, strictly speaking, a case study, and yet can be considered of significance). 

The addition of the latter was decided once it become clear that it was not possible 

interview the designers of houses UK54 and UK55, who never replied to the interview 

requests. During the interview of one of the designers of UK52, the interviewee 

mentioned the existence of a new project. This led the researcher to contact the architect 

of another HIHs development in which the consultant of UK52 was also involved. The list 

of all the interviewees is reported below:  

 From house UK51 (case study 1), interviews with both a designer and a 

consultant. 

 From house UK52 (case study 2), interviews with both a designer and a 

consultant. 

 From a project linked to the consultant of case study 2, interview with the 

architect. 

 

Table 6.1 - Interviewees list (repeated from Chapter 4) 

 
 

Where possible, interviews were held after POEs had initiated. This means that the 

interviewer had some feedback about the houses to discuss with the designers, in case 

they wished to. The link between designer and case study house is listed in table 6.1. 

Coded name role in case study  background

From case study 1 D1-UK51 Project initiator designer and planner

From case study 1 D2-UK51 Specification consultatnt building surveyor

From case study 2 D3-UK52 Passivhaus consultant physicist

From case study 2 D4-UK52 Design architect architect

Linked to case study 2 D5 Project manager architect
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After being transcribed, interview data have been managed through the software 

NVivo11. The data then underwent a content analysis that identified and confirmed a 

number of themes relating to the production of overheating. This analysis forms the 

backbone of the discussion contained in the next chapter (Chapter 7: Overheating Map). 

6.2 RESULTS 

The transcripts were reviewed in the light of the framework presented in figure 6.2. The 

analysis also accounts for issues brought forward by the designers themselves while 

telling the story of how their designs took shape.  

To analyse the data, a technique called coding has been performed. Coding is a key for of 

qualitative data analysis and it entails two main stages: (i) a first line-by-line breaking 

down the transcribed data into ‘codes’, called open coding, and (ii) a second stage in 

which the researcher formulated main categories (or themes), which is referred as axial 

coding [Bryman, 2015]. In other words, while open coding breaks the interview into pieces 

(i.e. the coded themes), the subsequent axial coding reassembles such data by searching 

for connections between the categories emerged [Strauss and Corbin as cited by Bryman, 

2015, p.574]. 

 (i) Open coding 

The data underwent a first breaking down through a line-by-line open coding, where 

tentative labels where formulated. The result was numerous amount of codes (see 

Appendix F “Open coding” to gain a sense of the proliferation of codes generated) which 

is normal at the first stage of coding [Bryman, 2015].  

To aid the analysis, codes where combined to a higher order of abstract codes, where 

data were not just coded to an overheating-related factor (such as solar gain and MVHR), 

but also in the perspective of the designers’ knowledge and opinion about these and the 

changes in the design practice, i.e. if they expressed a conflicted feeling about 

airtightness or understanding of MVHR. Hence within the open coding, theses abstract 

codes were: 

 codes relating to factors of overheating (solar gains, inadequate ventilation etc.), 

as emerged in literature and relating to the building physics aspects of 

overheating; 
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 codes relating to the process in which HIH are conceived (superinsulation design, 

Passivhaus design, building regulations, etc.) 

 codes relating to a generalised critique expressed by the interviewee (to the 

Passivhaus design, or building regulations, etc.)  

 codes relating to anything else raised up by the interviewee. 

This first breaking down of data (open coding) can be seen in figure 6.3a. It is recognised 

that open coding poses the risk of losing both the context of what it is said and the 

narrative flow, due to the fragmentation of data [Bryman, 2015]. These problems are 

tackled through the subsequent step, axial coding. 

 (ii) Axial coding 

Then data has been reviewed to consider more general ideas in relation to the first open 

coding, connecting coded data to concepts relating to overheating that have emerged 

from interviews. This is called axial coding. Axial coding acts as a mechanism to bring 

coherence to the coded data, by looking at what those data have in common so that 

they can be combined into more generic themes [Bryman, 2015].  

In this process, connections between codes are created with the guidance of the 

elaborated framework developed in fig. 6.2. Such framework has guided the researcher’s 

interpretation, while at the same time keeping a flexible attitude towards any rigid 

categorisation.  

It is acknowledged that axial coding requires a degree of interpretation from the 

researcher [Bryman, 2015], but has also been added by assigning a degree of weight of 

codes (via repetition), which was aided managing the transcribed data within Nvivo 

software. In figure 6.3b the process just described can be appreciated. 
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a. 

 
 

b. 

 
 

Fig. 6.3 The distillation of themes process from open coding (a) to axial coding (b) 
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The gradual grouping of codes has led to a gradual distillation of themes from open 

coding to axial coding. The themes identified by the analysis are presented in table 6.2. 

An example of such distillation of themes from open coding is provided with the theme 1 

- implementation of solar gain control. Here, codes (listed in appendix F) such as the 

provision of solar gain control (code name: “factor_solar gains”) is linked to the use of 

housing layout to control solar gains (code name: “factor_typologyLayout”), as a result of 

no budget allocation for external shading (code name: “process_funding”). As a result, 

this first theme is the result of the grouping of a number of distinct codes (such as solar 

gain control, site layout, designers’ experience, architectural language) that have found 

an (axial) relationship with aspects of knowledge, expectation, or even budget issues. 

The same process used in relationship to theme 1 has been applied to other codes too. 

This reiterated procedure has produced the other themes listed in table 6.2 

Table 6.2 - Key themes distilled from the interviews 

 

To further clarify the table just introduced, a theme can be defined as a category 

identified by the analysis, which possibly relates to the research questions, as listed 

above, and builds on codes identified in transcripts [Bryman, 2015]. The reconstruction of 

the key themes has allowed organising and interpreting the data.  

This method was found particularly suitable because it allowed an interpretative 

approach, where a repetition of a word is insufficient as a criterion for it to be labelled as 

a theme and where the meaning behind words or phrases are the focus [Bryman, 2015]. 

While using this framework, it was allowed for themes to emerge in a non-fixed and 

prescriptive manner (using the framework as guidance only).  

In the following sections, each theme is discussed and presented with examples of 

comments made by the interviewees. 

theme

1 Implementation of solar gain control

2 Ventilation and MVHR: novelty and misconceptions

3 ‘Fabric first’ approach: insulation and airtightness

4 Initial requirements: brief, standards and aspirations

5 Design aspects

6 Emerging issues linked to HIHs
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6.2.1 THEME 1: IMPLEMENTATION OF SOLAR GAIN CONTROL 

This theme encompasses the designers’ attitudes towards solar gain control in HIHs. In 

the UK sensitivity to solar gain control has developed only in recent decades as the solar 

radiation has historical been modest. Not surprisingly all the case studies have no solar 

control (apart from the sporadic use of internal curtains or Velux internal blind). 

6.2.1.1 UNDERSTANDING OF SOLAR GAINS CONTROL IN THE CONTEXT OF 
PASSIVE DESIGN 

The first consideration emerging from the interviews is that solar gains are considered by 

designers a positive and necessary contribution in the thermal balance of passive houses. 

As one interview puts it:  

“We were trying to get living rooms facing south or S or SW or SE, we were trying 

to achieve that…. It will be more pleasant also” [D4-UK52, May 2016].  

Related, designers referred to site layout in order to maximise its gains and avoid 

overshadowing: 

“All the roofs at a certain pitch, with a steep pitch facing south to get the optimum 

solar gain for that façade” [D5, March 2017]. 

In this context, it should be added that at least Passivhaus trained consultants are aware 

not only of the positive effects of solar gains, but also the negative effects that excess 

solar gains have on the thermal balance of HIHs. This emerges from the following 

statement, for instance:  

“These days I will be much more inclined to recommend fixed solar shading and 

rely less and less on the window opening” [D3-UK52, May 2016]. 

Despite this awareness, when the historic building stock (i.e. traditional terrace houses) is 

retrofitted, the negative effects of excess gains tend be overlooked. As acknowledged by 

one of the designers: 

“When you have got a terrace house in the middle of a terrace street solar gain 

thorough window is very limited” [D4-UK52, May 2016]. 

In addition, tools like SAP seem to be perceived as recommending merely curtains as 

devices securing solar protection:  

“SAP have a thing where you have your curtains” [D4-UK52, May 2016]. 
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6.2.1.2 COSTS OF SOLAR GAINS 

Orientation of the buildings is the most passive and cost effective way to control solar 

gains in houses. However, this variable is often not controllable: 

“Sometimes you have to have north facing; it is just a fact of life” [D4-UK52, May 

2016]. 

Notably, even when the variable is controllable, the risk is correctly identified and an 

understanding of the effects of excessive gains in HIHs is fully grasped by those in charge 

with the relevant decision, budget may still not allocated to implement an effective 

strategy of solar control. This point was emphasised in the interview with consultant D3-

UK52, for instance:  

 “What I will try and recommend the more and more is fixed solar shading. But 

again I can recommend it but it comes down costs at the end of the day whether it 

is included or not” [D3-UK52, May 2016]. 

Also in consideration of the additional risks, such as the effects of climate change, there 

is a persistent reluctance to dedicate budget costs to external fixed shading, as it 

emerges from the statement that follows: 

“(The contractor) took the view that the solar shading is not needed now, it’s 

needed in the future, when the climate is warmed up” [D3-UK52, May 2016] in 

reference to the other (not the case study) project. 

In this context it can be also appreciated that postponing a strategy developed ‘today’ to 

a ‘future’ retrofit may result in loss of information when the time for retrofit comes.  

6.2.1.3 CULTURAL BARRIERS 

In addition, architectural design can be a barrier to solar gain control in the UK when 

designs contemplate a vernacular language. In this regard I refer the reader to the 

following statements: 

“One of the criteria was to make it actually look like a normal house” [D4-UK52, 

May 2016]; 

“Was thought at the very early stages but I think that it didn’t fit with the 

vernacular which they were thinking to achieve with this houses… so I don’t think 

that the solar shading architecturally aesthetically will have fit in this scheme, with 

a very traditional looking scheme with a fake chimney” [D3-UK52, May 2016]. 
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6.2.1.4 FUTURE TENDENCIES 

For all the above reasons, the conception of external shading must be developed from 

the very first stages of the design concept: 

“Certainly if you get involved with the scheme earlier on, then it’s possible to get it 

the designed in from the very early design stages and it is not seen as an add-on 

then” [D3-UK52, May 2016]. 

Here, it is recognised that layout and orientation do not always work in one’s favour; so 

other techniques are in place, such as extended eaves: 

“We put solar shading at the top of these by building extended eaves, so we 

already got being protected by solar gain” [D5, March 2017]. 

Finally, while climate change is recognised as threat, it is managed by designers as a 

remote risk: 

“We evaluated the homes using future climate scenarios and were found them to 

be in need of additional solar shading from the current state at some point in the 

future, I can’t remember when, in 20 years or 50 years something like that … But 

[the contractor] took the view that the solar shading is not needed now, it’s needed 

in the future, when the climate is warmed up … [the contractor] took the view that 

it was pointless to install the external shutters and now because they will come to 

the end of the life the serviceable life time” [D3-UK52, May 2016] in reference to 

the other (not the case study) project. 

6.2.2 THEME 2: VENTILATION AND MVHR: NOVELTY AND 
MISCONCEPTIONS 

In this section the focus of the analysis shifts to cooling tools in general, and ventilation 

and MVHR in particular. In this context, the (mis-)conception of cooling, as they are 

widespread among designers are accounted for.  

6.2.2.1 VENTILATION BY MEANS OF MVHR 

A first, honest, misconception of the purpose of ventilation, as this is achieved by means 

of MVHR, concerns the issue as to whether they provide cooling via its air change rate64. 

While the continuous operation of the MVHR system provides for background ventilation 
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 None of the case studies in the present research have summer bypass nor comfort cooling. 
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(i.e. for pollutant or water vapour removal), it does not cope with purge ventilation65. This 

statement is not universally accepted in practice, though. In fact some designers believe 

that the mechanical ventilation can also cope with high temperatures via rapid 

ventilation. This attitude is attested by the following statement collected in the interview 

process: 

“There was a MVHR obviously to cool the building to heat the building and cool the 

building, during cold spells and warm spells” [D4-UK52, May 2016]. 

Other designers are, however, aware that cooling does not occur through MVHR 

operation. For instance, two of the designers claimed that: 

“(MVHR) has very slow ventilation rates, is not going to do much (cooling)” [D3-

UK52, May 2016].  

“(the MVHR) it’s got a boost on it but the truth was that you have to go for opening 

the windows for rapid ventilation” [D5, March 2017]. 

6.2.2.2 LOCATION OF THE MVHR UNITS 

There appears to be several rationales for the MVHR location within the house. One of 

those rationales relates to the optimum efficiency, as it is clarified by the statement 

below: 

“Getting a dedicated cupboard for the unit and making sure that the unit is on an 

external wall to keep the intake and exhaust duct length very short because that 

improves the efficiency in the system [D3-UK52, May 2016]. 

Another rationale relates to facilitating access for maintenance to the MVHR units when 

servicing them as filters need cleaning or replacement: 

“You got another cupboard with the boiler and the MVHR outside. We wanted to 

put that stuff in a cupboard with external access to make it easier to access and 

service it” [D3-UK52] in reference to the other (not the case study) project. 

At the same time, this interviewee listened carefully to the researcher’s account of the 

problems with temperature stratification (as they occurred in another case study, UK51), 

and changed his view:  
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 Purge ventilation consists in a much higher rate of ventilation, normally provided by window 

opening (manually) or via localised fans (mechanically) [HM Government, 2013a]. 
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“I guess is that it might be a good idea to extract from the top floor room where the 

heat is going to be collecting and then obviously that gets push around the heat 

recovery ventilation system” [D3-UK52, May 2016].  

The above comments bring into light the fact that there is no ‘best practice’ when it 

comes to the location of the MVHR units. 

6.2.2.3 VENTILATION BY MEANS OF WINDOW OPENING 

The reliance on window opening as a form of cooling proved to be tainted by fewer 

misconceptions. It can even be said that this practice is understood clearly by most of the 

designers, as evidenced by the following statements: 

“We thought to deal with overheating by opening and closing the windows” [D1-

UK51, April 2016]; 

“In terms of overheating, we put in a window regime (in PHPP) which involves 

during the cooler hours of the night, two windows open at the opposite sides of the 

bungalow to allow for cross ventilation and open for one hour … what PHPP was 

telling me is that it was okay with some window operating” [D3-UK52, May 2016]. 

At the same time, window opening can be claimed to be at least underestimated by 

technical consultants. In fact, when the Passivhaus consultant of house UK52 was told 

that its occupant leaves the windows open (in trickle) all the time, even in winter, his 

comment was:  

“She likes fresh air, it is interesting that that is something the MVHR should be 

providing for. There maybe that is something she is used to do, the MVHR should 

provide it but maybe it is something she is used to do it” [D3-UK52, May 2016].  

While it cannot be ascertained whether the occupant performed constant windows 

opening for the purpose of comfort or as a mere habit, it is hardly deniable not only that 

the Passivhaus consultant of house UK52 pointed at that as a preference-based 

behaviour (rather than reducing temperatures). However, such unexpected proportion of 

window ventilation should be regarded as an issue that requires attention during the 

design phase, for it has the effect to trivialise the efforts aimed at securing heat recovery 

(energy efficiency and airtightness measures) pursued via MVHR.  
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6.2.2.4 FUTURE TENDENCIES 

Interestingly, the uncertainty surrounding window opening, together with location 

constrains, has led one of the Passivhaus consultant to rely less in window opening in 

future designs: 

“These days I will be much more inclined to recommend fixed solar shading and 

rely less and less on the window opening” [D3-UK52, May 2016] in reference to 

the other (not the case study) project. 

6.2.2.5 INNOVATION AND EMBEDDED KNOWLEDGE 

The extent of innovation in HIHs has proved to challenge the experience of UK 

professionals. This fact is exemplified by the difficulty that designers have experienced in 

relation to the scale and connectivity that a HIH’s ‘kit’ embeds. This statement is 

supported by the following quote reporting a conversation that an interviewee had with 

his technical team: 

“We did the thermal store ‘we are going to size the solar thermal store on the basis 

of your space heating demand’ … and we said ‘well hang on a second, we think 

that our heating demand is going to be so low that the only reason you need the 

solar thermal is for domestic hot water’… How big this thermal store was going to 

be”? A really naïve obvious question like is it 200 litres, 500 litres? And was that 

they never worked on a project as super insulated property, a Passivhaus.” [D1-

UK51, April 2016]. 

Another interviewee said that s/he experienced similar difficulties for the same case 

study:  

“Nobody looks at how they will all integrate together in one big lump. And I think 

that is probably one big learning that needs to come out of that…It’s like the 

MVHR, their ducting system was too big and it would have took a lot from the 

insulation out of the wall” [D2-UK51, April 2016]. 

This shows a (missing) aspect of holistic design in HIHs – aspect that would be necessary 

to balance the complexity brought by innovation. 

A third interview pointed out another issue, which is related to the learning curve of 

installing and maintaining these units: 

“The roof pod had the inlet for MVHR system and the intake and out vent should 

have been separate by 3 meters. We have them far too close together, so you could 
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have cool air going out and being sucked back or hot air going and being sucked 

back in, so it doesn’t fit the best practice” [D1-UK51, April 2016]. 

This statement is revealing of another misunderstanding with the heat recovery: inlet and 

outlet have similar temperatures but, importantly, this proximity between them results in 

stale air be going into the inlet. 

Finally, there are issues relating to the maintenance of the MVHR units. It was witnessed 

by the researcher that the maintenance company forgot to turn on the MVHR unit after 

servicing it in house UK52. Noticing no noise, the researcher observed the switch in ‘off’ 

position, and called the housing association to notify the mistake. 

6.2.3 THEME 3: ‘FABRIC FIRST’ APPROACH: INSULATION AND 
AIRTIGHTNESS 

Insulation is recognised as the most important factor in energy efficient design. However, 

efficiency is also linked to the control of air leakage.  

6.2.3.1 WINTER FOCUS 

The ‘fabric first’ approach to energy efficiency in houses is generally viewed as a way to 

‘keep the warmth in’. Consequently, most of the focus of the ‘fabric first’ approach is 

devoted to achieve ‘winter comfort’. As such, much effort is made to provide a building 

fabric with the lowest overall U-values and airtightness solutions, and to produce 

drawings specification that go into tender before involving the contractor. This means 

that specifications go into tender, as attested by the following statements: 

 “I say to them “do this calculation before they go to tender and write a document, 

give the contractor a clue on how was going to achieve this“ [D4-UK52, May 2016]; 

“Some of these contractors it’s all the money and “can we get away with putting 

100 mm in the floor rather than 150 or 125”. And I say “for God sake put 150 and 

then you‘ll be alright”… And the number of times you are literally on the limit“ [D4-

UK52, May 2016]. 

6.2.3.2 NOT ONLY INSULATION 

The fact that fabric insulation efficiency comes hand in hand with air infiltration control 

should not be downplayed. The control of air infiltration, which is referred to as low air 

permeability (UK Building Regulations) or as high levels or airtightness (Passivhaus), has 
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increasingly been changed in recent years. As a result, the designers’ experience is 

challenged by this innovation in regulations and calculations in the market offer: 

 “All comes down to airtightness at the end of the day” [D4-UK52, May 2016]; 

“We dealt with that kind of red line around the whole thing” [D1-UK51, April 

2016]. 

6.2.3.3 REGULATIONS CATCHING UP 

Several aspects of regulations have kept changing quickly in the last years. As a 

consequence, the construction sector finds it difficult to catch up with those swift 

changes, as one of the designers explicitly pointed out: 

“They are getting more and more airtight; they are getting now condensation 

problems” [D4-UK52, May 2016]. 

In this context, a problem concerning the way in which the law-makers have regulated 

purpose-provided ventilation and air leakage control should be noticed. In England 

purpose-provided ventilation guidance is regulated in Part F of the Building Regulations 

(‘Ventilation’), where it is established that for calculation purposes, one should assume 

no, or zero, air permeability. By contrast, air leakage control (or control of infiltration via 

airtightness measures) is regulated in Part L of the Building Regulations (‘Conservation of 

Fuel and Power’). Now, in the Building Regulations those two dimensions – purpose-

provided ventilation and air leakage control – are dealt with as they were disaggregated 

(this is the reason why they are regulated in different parts of those regulations). By 

contrast, in practice they are closely connected and interlinked. This problem is 

emphasised by the following quotes: 

“So what they actually said was ‘if you achieve 5 or worst then you have the 

standards, if you achieve 5 or better, you have to put more trickle ventilation under 

part F’" [D4-UK52, May 2016]; 

“It seems a bit pervasive that we are driving to get airtight buildings and at the 

same time they change the regulation to get more air into the building” [D4-UK52, 

May 2016]. 

The fact that the concept of airtightness is new to the construction industry is also a 

cause of concern for the building constructors: 
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 “We know that the airtightness was going to be an issue, we didn’t know that 

asphyxiation of the residents was going to be a big issue” (laughing) [D1-UK51, 

April 2016]. 

6.2.3.4 ISSUES WITH AIRTIGHTNESS  

Airtightness presents a number of difficulties for designers and builders. One of the most 

obvious difficulties has to do with the possibility to implement an airtightness strategy in 

a refurbishment project, as claimed by one interviewee: 

“The airtightness barriers that was more… because of the way the building was put 

together and there were so many anomalies in the building that was more of a 

learning curve once it has been installed” [D2-UK51, April 2016]. 

Another difficulty concerns the MVHR units. In fact, a senior and experienced architect 

reported: 

“To get Passivhaus you got to achieve below 166 (ACH) is actually complicated by 

the fact that they had two different methods … it was the figures, the xm3/ … it was 

a different reading, a different criteria … and they didn’t make life easy cause the 

figure they had in their calculation didn’t bear any relationship to the ACH in 

Building Regulations” [D4-UK52, May 2016] 67. 

                                                           
66

 The Passivhaus requirement of airtightness fixes a maximum of 0.6 ACH at50 Pascal) verified 

with an onsite pressure test (in both pressurized and depressurized states) [Passivhaus Institut, 

2015] 
67

 This issue is indeed quite complicated and it is easy to bring confusion among trained people 

which are dealing with projects in the UK with international standards. To clarify, the airtightness 

of a building is often expressed in terms of the leakage airflow rate through the building's 

envelope at a given reference pressure (usually 50 Pascal). Airtightness can be expressed in 

different ways, commonly referred as (a) air permeability area and (b) air changes per hour volume 

[ATTMA, 2010] 

a) In UK, it is calculated by dividing the leakage airflow rate (obtained by performing the 

blower door test) by envelope area, noted as Q50 units expressed in m3/(h·m2). The 

requirement from part L is to limit air permeability area to max. 10 m3/(h·m2). 

b) In other countries, and the Passivhaus standards it is calculated by dividing the leakage 

airflow rate (obtained by performing the blower door test) by heated building volume, 

noted as N50, units expressed in h
-1

 

The main difference is that air permeability considers the envelope area (m2) and ACH the volume. 

Using ACH means that it is not possible to take into consideration the effects of shape and size. 

[Johnston et al., 2004]. 

In addition, it should be noted that the value obtained for air permeability is fine for comparing 

the airtightness of different buildings. However it is important to underline that the leakage flow 

rate (m3/(h·m2) is measured with blower door test, while the ventilation heat loss rate (ACH) is 

measured with tracer gas test. It is possible to get the ACH figure by dividing air permeability by 
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A further difficulty has to do with the challenge of contextualising airtightness within the 

construction process. In this context, another architect mentions the careful quality 

control that their Passivhaus-like houses went through:  

So once you laid the ground floor membrane, it was ready for insulation and it will 

be signed of, and the door was locked away from anybody being able to go to that 

space, Until the next step it was ready…So the point was that if you didn’t put the 

quality control in, you weren’t going to achieve that lower (D5, March 2017). 

Finally, even the effectiveness of the airtightness measures was perceived as a problem. 

Specifically, the life cycle of the airtightness membrane: was considered problematic: 

“I know that there are issues about the performance of the insulation airtightness 

fading overtime, that it probably won’t be as good in 10-15 years down the line … 

But actually if it is, it creates more a problem because it is climate change so isn’t 

resilient enough to cope” [D1-UK51, April 2016];  

“I am a little bit worried about airtight buildings; I think airtightness might not be 

the way forward” [D4-UK52, May 2016]. 

6.2.3.5 FUTURE TENDENCIES 

Among designers, modern methods of construction are perceived as a reliable option to 

achieve greater airtightness, as attested by the quote reported below: 

“It has to achieve a certain air leakage rate. And they say how you can do this, you 

can’t use masonry, it leaks like a sieve! …. and standard timber frame leaks like a 

sieve. They went down to this composite panel system, where the panels where 

factory made, so they were airtight and to make the factory manufacture poses 

obviously a controlled process.” [D4-UK52, May 2016]; 

“My experience of using modern methods of construction in a factory is that 

you can do something that is as cheaper than a standard construction if you 

are performing to Code level 5 or Code level 6. The cost benefit is that is was 

cheaper in a factory because of the quality control in factory and with 

airtightness particularly” [D1-UK51, April 2016]. 

                                                                                                                                                                     

 

20, which gives an approximation of the ventilation rate at normal atmospheric pressures 

[Nicholls, 2008]. 
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However, in practice design systems that perform better in terms of airtightness are 

often excluded on the grounds of cost: 

“We thought it will be much easier to implement the airtightness details and from 

a thermal bridging perspective if we use the complete system but [the builder of 

UK52] chose not to on the basis of costs” [D3-UK52/UK56, May 2016]. 

6.2.4 THEME 4: INITIAL REQUIREMENTS: BRIEF, STANDARDS AND 
ASPIRATIONS 

6.2.4.1 REFURBISHING THE OLD STOCK 

One of the case studies (UK51) was a traditional terrace house. In this case, designers had 

the ambition of retrofitting a traditional building to Passivhaus-like standards. This 

provided an opportunity to explore the potential of off-site manufacturing and modem 

methods of construction as well as to determine how the retrofitting industry was 

affected. In the words of one the designers, the intention was to achieve 

 A “code for sustainable homes, which was abolished two years ago, level 5 and 6 

and 36kWh/m2 per annum … which is higher than Passivhaus, but zero carbon 

because all of that had to be met by low or zero carbon technologies” [D1-UK51, 

April 2016]; 

I thought that probably was a step too far, and I think that when they did it, they 

thought that too [laughs] [D2-UK51, April 2016]. 

When one of the consultants was asked if he had any concerns with overheating, he 

replied that: 

“The only thing that worried me was damp and any moisture getting trapped 

somewhere … a big 150mm of insulation, big lump of insulation. If that get damp 

in the wall nobody will ever know … you have hidden an old building behind 

something that is so airtight, so thermally efficient, that that worries me more than 

anything” [D2-UK51, April 2016]. 

Retrospectively, this interviewee reflected on the suitability of aspiring to such standards. 

This was expressed not only in terms of difficulty but also in terms of land occupation. 

This raises further questions about sustainable housing design:  

“Don’t do the Passivhaus, or don’t try to do Passivhaus in a terrace house unless is 

a new built. It was challenging, it was interesting and exciting, we lifted a roof pod 
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and it look very good in the news, but is not the right house to do it on … I think it 

ended up with a small house probably being too small” [D2-UK51, April 2016]. 

6.2.4.2 CODE AND PASSIVHAUS 

Something that kept emerging in the interviews was ‘the Code’, which is also something 

of actual interest to the client. One of the distinctive strengths of the rationale of 

Passivhaus project is its goal of delivering the lowest possible levels of carbon emissions 

whilst also avoiding the costs of renewables: 

“Housing associations, and they want their Code 4 houses, but if you say let’s put 

PV panels on the roof, well "why we need that? but you only need get more points 

so just change something else" [D2-UK51, April 2016]; 

“At the time were interested at meeting Code 4 without any renewables energy and 

they wanted to explore the options for that, and we presented Passivhaus as being 

one of those options” [D3-UK52, May 2016]. 

On this basis, it can be predicted that the Passivhaus tool (PHPP) may keep, if not even 

increase, its popularity and use. 

6.2.4.3 EVOLUTION OF STANDARDS AND REGULATIONS 

With the withdraw of the Code for Sustainable Homes in 2015, an interviewee —an 

architect with 35 years of professional experience—depicts the Building Regulations as 

the main magnet of all standards: 

“The Code 4 had disappeared, the Building Regulations had taken over; Secured by 

Design had disappeared, Part Q has taken over of the Building Regulations, Life 

time homes had disappeared, because Part M of the Building Regulations had 

taken over… So all these standards were replaced by the Building Regulations” [D4-

UK52, May 2016]68. 
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 Approved Document M from the Building Regulations deals with the access to and use of 

buildings in dwellings and buildings other than dwellings, and provides a baseline for accessibility 

in the built environment. Approved Document Q instead is concerned with security in dwellings 

and provisions that must be made to resist unauthorised access to any dwelling; and any part of a 

building from which access can be gained to a flat within the building [MHCLG, 2015a, 2015b]. 
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6.2.5 THEME 5: DESIGN ASPECTS 

6.2.5.1 BLINDED DESIGN 

None of the interviewees have had any real experience in designing HIHs before they 

were involved in the projects that features as case studies in this research. Likewise 

importantly, they never experienced living in HIHs: 

“Really the project of house UK52 was my first new built passive house scheme” 

[D3-UK52, May 2016]; 

“Never worked on Passivhaus project before … nobody has worked to this level of 

performance in the UK” [D1-UK51, April 2016]. 

“I have not lived in one, have you done interviews with people that live in them?“ 

[D5, March 2017]. 

These inexperienced designers hence relied on Passivhaus consultants and learnt from 

their training and knowledge: 

 [the Passivhaus consultant], well they certainly were instructed in specification of 

the heating system and the MVHR so that all there they knew really [D4-UK52, 

May 2016]; 

[The Passivhaus consultant] was consulted …in hitting the targets, managing air 

control air leakage together with detail assessment of all installation and electric’s 

body heats … how much … has to be extracted when it goes to the MVHR [D5, 

March 2017]. 

Notably, the Passivhaus consultant’s advice impacted not only in the sizing of HVACs but 

potentially on the house layout too, as indicted in the following statement: 

“They didn’t want the boiler in the kitchen because obviously would create a heat 

loss” [D4-UK52, May 2016]. 

6.2.5.2 TOOLS 

Tools appear to be mostly engaged when taking decisions aimed to achieve a target. In 

the projects considered in this study the relevant target was that of achieving CO2 

emissions reductions from energy savings from winter comfort. The need to avoid 

overheating risk was also taken into account, as this quotation indicates: 

“So from our perspective the model was telling us that the model was manageable 

with window opening and that is what we have been communicating the amount 
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of window opening, so that would have been the end of the conversation really” 

[D3-UK52/UK56, May 2016]; 

 “Well the SAP calculations does tell you if you are complying with overheating or 

not” [D4-UK52, May 2016]. 

During the interviews, the appropriateness of a trusted and well developed tool such as 

PHPP has been called into question, as some designers raised doubts about the 

appropriateness of relying on PHPP in the UK context. For instance, one of the designers 

recognised the limitations (at least in climate data) of PHPP69 for a project in Leicester: 

 “TSB [Technology Strategy Board who funded project] asked to use PHPP … but 

also we tried to triangulate with SAP …” [D1-UK51, April 2016]. 

In the same vein, another interviewee observed that, according to PHPP, occupants 

manage their comfort: 

“PHPP assumes that we people want to maintain a constant comfortable 

temperature throughout the year, so it is not really based on occupancy in a sense” 

[D3-UK52, May 2016]. 

However, this assumption is not shared by other designers, who expressed a much 

deeper view of the family structure in social housing, where the physics of PHPP was 

applied: 

“The first question that PHPP asks is the level of occupancy: it was so airtight so the 

internal heat gains are get by the people. And one of the families had a child, and 

he had a child from different relationships, and he was away an awful lot, so the 

occupancy was something between 3 and 6. So the first question of PHPP is about 

how many people live in the building and we couldn’t answer that. We knew who 

was going to be there but we couldn’t put in the software and say its 3 4 5 6. It was 

a ridiculous question” [D1-UK51, April 2016]. 

Finally, another interviewee claimed that, when common sense is needed to grasp the 

intrinsic limitations of tools, requirements of compliance to a target (leading to a 

prescriptive-tick boxing design attitude) and the process thinking that accompanies it 

may get in the way of managing the normal uncertainties of a project: 
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 EnerPHit, the established Passivhaus Standard for refurbishment of existing buildings using 

Passive House components, was not available at the time of refurbishment. 
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“That is what I think real world comes to place, that we just need to use common 

sense, we knew what the software was trying to do, buy we need to guess the best 

information we can” [D1-UK51, April 2016]. 

6.2.5.3 ARCHITECTURAL LANGUAGE 

As shown in the discussion of the theme concerning solar gain control, the architectural 

language in housing in the UK seems still to aspire at unrealistic standards: 

“One of the criteria was to make it actually look like a normal house, that looks like 

any other house…It doesn’t get rendered pallets or big windows or louvres…” [D4-

UK52, May 2016]. 

Nonetheless, architects seem to leave their clients free to choose their own preferred 

architectural give the option of language to. This could interfere with a design thought to 

be energy efficient, though: 

“That is what we asked “do you want a contemporary approach to this or you want 

it to look like standard houses”, and they wanted a fairly traditional approach” 

[D4-UK52, May 2016]. 

Where it was possible, Passivhaus designers opted for technological solutions by thus at 

the same time disregarding vernacular options (see ‘solar implementation’ section). 

However, this attitude may increase the risk of overheating, as noticed in the quote 

below: 

“There is no (solar) protection at all, but there is a configuration: if you look at the 

plan you will find only this one and this one window facing out … it was only on 

featured elevations because of architectural language. But, yes, maybe there is 

some additional risk” [D5, March 2017]. 

6.2.6 THEME 6: EMERGING ISSUES LINKED TO HIHS 

6.2.6.1 LAND CONSUMPTION 

One of the most evident consequences of HIHs is the thicker fabric, and hence the 

increase in land consumption (if new) or the reduction of internal space (if retrofitting). 

“I think it ended up with a small house probably being too small” [D2-UK51, April 

2016]. 
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While this fact by itself can be claimed to call into question the suitability of ‘sustainable’ 

houses, another statement collected in the interview process shows the extent of the 

conflicts between passive design and development density: 

“It has to be low density because we couldn’t get the separation between the 

units, because one was overshadowing the other unit for the midterm sun the 

autumn and spring midterm low sun … you have to look at how you can get to 

come out (the sun) of the rooftops” [D5, March 2017]. 

 

6.3 DISCUSSION 

The issues found in this part of the research project can be related to the diagram in 

figure 6.2. The interviews of designers revealed that most of the problems relate to (a) 

external gains and (b) inadequate ventilation. 

The fact that most interviewees were at their first experience with HIHs can be claimed to 

have significantly impacted on their capacity to acknowledge the risk of overheating. 

Because of their relative inexperience, they had the tendency to overlook not only the 

combined effects leading to overheating but the also the potential risk for increased 

energy consumption and, even worst, for threat to health. 

6.3.1 EXTERNAL HEAT GAINS 

With regards to external heat gains, it can be argued that there is a limitation in the 

knowledge of designers. The research found that most designers consider external gains 

to be a positive contribution of heat in the context of passive design. As such, site layouts 

are designed to allow for as much solar contribution as possible. While this feature is not 

wrong in itself, in the case studies at hand it led designers to underestimate the effects of 

excessive solar gains in HIHs.  

In addition, from the research it emerged that SAP plays no decisive role in preventing 

this oversight. In fact as, most designers are at their first HIH projects, unless preventive 

measures are put in place, there is a risk that the control of solar gains is neglected. 

Moreover, the effects of excessive solar gains have been understated in the retrofitted 

terrace house (namely house UK51). The morphology due to the close proximity of 

English terraces tends to be considered incompatible with solar gains. However, the 
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situation proved to be different in house UK51, where the converted loft showed 

excessively high temperatures. The fact that traditionally terraced houses do not have 

problems associated with excessive solar gains may thus be claimed to have mislead the 

designers into thinking that traditional houses are by construction immune to those 

problems and so to have led then not consider the risks associated with solar gain. 

The research also showed that there is reluctance to allocate project funds to control 

solar gain. In the case of new HIHs, where consultants simulated the risk of overheating 

in a climate change scenario, developers delayed action until the future refurbishment of 

such houses.  

During the interviews the possibility was considered to embed new projects of solar 

control optimised designs from the earlies stages of projects. This strategy would require 

one to rely on architectural languages (such as thick walls, big reveals, and external 

shading) that may depart from the traditional approaches still embraced by architects 

today and are incompatible with the ‘new’ language required by in the design of HIHs.  

In consideration of the possibility of such tension, architects should have the authority to 

advice clients to take a different approach, if not to exclude altogether the recourse to 

the traditional approach. This way, the design of HIHs would be an opportunity for 

developing a new design language that takes into account, and creatively incorporates, 

today’s needs. 

Finally, the conversations that took place during the interviews proved to be 

opportunities to consider whether in HIHs there is a need for a solar optimised fabric 

design combining both contemporary requirements of energy production (i.e. building 

fabric optimised for solar panels) and thermal comfort (i.e. building fabric optimised for 

solar control). Such optimisation could be achieved by means of a plethora of alternative 

solutions. Nonetheless, their application appeared to be disjointed in the case studies 

presented in this research work. 

6.3.2 INADEQUATE VENTILATION 

With regards to inadequate ventilation the interviews showed the existence of lacunae in 

the knowledge of (1) MVHR as a technology, (2) the concept of airtightness, and (3) the 

need of window opening in HIHs by its occupants. 
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6.3.2.1 MVHR AND WINDOWS 

Designers proved to tend to underestimate the need for window opening by the 

occupants. The underestimated use of windows in HIHs may lead to compromise the 

efforts of energy efficiency. In fact, while designers and builders are required to 

implement outstanding control of air leakage, in some of the cases studied in this 

research project (UK51 and UK52) occupants relied on constant window opening to 

regulate their indoor environment. 

On these occasions, MVHR operation was maintained. This would not have been a 

problem if the energy expenditure (and consequent emissions) had been the limited 

expenditure associated with the fact that the MVHR’s fan worked constantly. However, 

MVHR units are not always just a fan with a heat recovery chamber: they may incorporate 

heaters and, in some recent cases, comfort cooling, whose performance in terms of 

comfort and energy requirements in the context on HIHs is under researched70. 

6.3.2.2 AIRTIGHTNESS CONCEPT 

The lacunae in embedded knowledge of airtightness are due not only to the novelty of 

the concept of airtightness but also to the different metrics and diverse paradigms of 

means of ventilation. While the Passivhaus-related term ‘airtightness’ is connected to the 

need of sealing from air leakage, the ‘air permeability’ measured in air change per house 

has an immediate connection to fresh air provisioning. Both terms concur in ‘infiltration 

control and management’. But airtightness may be perceived as a negative word (as the 

asphyxiating concerns ironically rose by D1-UK51). This may in turn lead to 

misjudgements on the management of the ventilation in HIHs. 

6.3.3 ENERGY EFFICIENCY IS NOT EVERYTHING - THE ROLE OF DESIGN 

The current ability of designers of HIHs is challenged by the knowledge problems just 

introduced. Those problems negatively impact on the capacity designers currently have 

                                                           
70

 Even though terms are marketed in a confusing way, comfort cooling is different from air 

conditioning, the latter means full control (of air temperature and humidity) though often used to 

mean just cooling. Comfort cooling controls only temperature [Designing Buildings Wiki, 2018] 

It is marketed as having a lower capital cost than AC and that it drops temperatures by 8-12ºC on 

airflow from outlets ) and as an integrated in the MVHR system (using existing ducting). It requires 

a condensing unit (references are not explicit as to whether it is an external or internal condensing 

unit) [Insulation Warehouse, no date; Systemair, 2018] 

Recently used in residential to cope with street noise when ventilation is needed to reduce 

overheating [Conlan and Harvie-clark, 2018], their efficiency in terms of energy consumption 

when compared to air conditioning systems has been questioned [The Independent, 2006].  



CHAPTER 6: INTERVIEWS WITH DESIGNERS   233 

to deliver HIHs. Such ability is put at risk by other factors too. In particular, delivering low 

energy and thermally comfortable houses is made more difficult by the frequently 

changing requirements for energy efficiency in combination with long standing systems, 

processes of design, and social expectations. 

 A good example of this difficulty is provided by the role of façades. Building façades 

requires more than just delivering ‘thermal’ building fabrics, since in buildings façades 

cannot be reduced to their thermal role. Façades incorporate qualities other than the 

reduction of heat transfer: they form part of the urban landscape and, as such, they play 

a role in the social dimension of people. This was exemplified by the recreation of a 

‘village atmosphere’ to promote the family dynamic, as narrated by D5 [D5, March 2017], 

and by the aesthetically valuable proportion of size windows assigned to a side façade in 

a kind of ‘formal’ dialogue with an important road adjacent to it [D4-UK52, May 2016]. 

These other dimensions of design too have to be acknowledged and consequently dealt 

with. In this context of innovation, the act of design71 in ought to respond to a design 

problem with an optimal solution to a number of (possibly conflicting) variegated 

requirements, not easy72 to balance. 

  

                                                           
71

 Design has been defined in Chapter 3 by the author as “the act that (intentionally or 

unintentionally) initiates change in man-made things to deliver the optimum solution to the sum of 

the true needs of particular set of circumstances". 
72

 Not instinctively immediate to designers. 



CHAPTER 6: INTERVIEWS WITH DESIGNERS   234 

6.4 CHAPTER SUMMARY 

This chapter was aimed at investigating the contribution of the design process of the 

case studies to the thermal performance, inclusive of the overheating, of those buildings. 

The themes that emerged from the conversations with designers and architects 

concerned not only the environmental factors that pertain to overheating (as per the 

framework introduced in section 6.1.1), but also the ambitious low-carbon agenda set 

out by public bodies in combination with the limited knowledge of the practice of the 

design of HIHs. That is to say, in HIHs current knowledge is challenged by innovation and 

(perhaps) by a more traditional social expectation of inhabiting such buildings. 

This chapter also showed that overheating can be seen as a risk triggered by the process 

of transition towards an energy efficient environment and low-carbon design. Therefore, 

overheating calls for a solution from the same context in which it originates as a 

problem: design. The practice of designing HIHs thus need incorporate specific extra 

measures, because today low-carbon design is in the process of knowledge developing: 

experience and innovation are still limited and partial, at least in the UK, where the 

practice of designing and constructing energy efficiency buildings does not have (yet) a 

long history. 
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CHAPTER 7: OVERHEATING MAP 

Synopsis 

This chapter rely on the “dialogue paradigms” introduced in Chapter 4 to describe the 

reality in which overheating occurs. The leading idea structuring the treatment of 

overheating offered here, then, is that only a combination of methods and reliance on 

both quantitative and qualitative data, which then need to be triangulated, can secure a 

solid understanding of overheating in HIHs. Building on these premises, in this chapter 

overheating is modelled by means of a structured methodology (process mapping) 

capable of graphically representing the functional relationships in the different stages of 

the building process and their influence on overheating risk. The result of this modelling 

exercise is a map of the production of overheating73, as it occurs in HIHs in the UK. In sum, 

thus, this chapter completes the picture of both overheating performance and prediction 

of HIHs by thus addressing the second fundamental research question structuring this 

research work, namely: How can the process of designing HIHs be improved to reduce the 

risks of overheating? 

                                                           
73

 The nomenclature ‘production of overheating’ is used to refer to overheating as an unintended 

consequence of HIH design, and by so, to distinguish it from overheating as a consequence of 

climate change. 
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7.1 TRIANGULATION: OVERHEATING MAP 

The real-world knowledge described in previous chapters is integrated in this chapter in 

the attempt to arrive at an explanation of overheating production. Integration of data, as 

explained by Bryman [2015], can take place in different forms. In its simplest form, 

integration takes the form of a triangulation and refers to the process of cross checking 

findings derived from both quantitative research and qualitative research. Triangulation is 

not the only procedure that combines quantitative and qualitative research. An 

alternative process, which is called explanation, prioritises one of the research methods 

applied to the subject matter and use it to explain the findings generated by the other 

method(s). An even more elaborated form of integration of quantitative and qualitative 

research requires the use of different research questions [Bryman, 2015]. In the 

triangulation carried out here the integration by reference to different research questions 

will play an important role. For the two fundamental research questions structuring this 

project (namely I. Do HIHs provide an uncomfortable indoor environment for their 

occupants?, and II. If so, how can the process of designing HIHs be improved to reduce the 

risks of overheating?) will be combined in the attempt to understand under which 

circumstance HIHs overheat and what can be changed in the design of HIHs to avoid the 

risk of overheating.  

In this research process, there is thus an element of progression, as the qualitative data 

coming from the interviews help explain the findings obtained from the post-occupancy 

evaluation via a methodology of process modelling (called IDEFØ), in turn validated74 via 

a focus group (fig. 7.1). Importantly , the mapping process (IDEFØ) restructures the 

findings of this research in an integrated whole, as opposed to a mere bulk of different 

inputs. 

 
Fig. 7.1 Chapter 7 process: sequential triangulation and validation 
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 Construct validity is achieved through a strategy of multiple measures of the same construct 

[Yin, 1993]. 
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7.1.1 PROCESS MAPPING 

The occurrence of overheating in HIHs has proved to be an intricate phenomenon, the 

complexity of which needed to be modelled, so that both the physical and the non-

physical aspects that govern it could be represented. In the present study, the 

quantitative research provided an account of a phenomenon whilst the qualitative 

research provided a sense of the process in which that phenomenon occurs by qualifying 

it. 

In order to model the occurrence of overheating in HIHs , a transdisciplinary approach to 

the problem has been adopted. As indicated in Chapter 4, such approach crosses over 

architecture and systems engineering. Systems engineering is a discipline that provides 

methodologies by which one is able to model organisms, organisations and structures. 

Some of these methodologies rely on traditional methods such as data flow diagrams, 

whereas others rely on methods specifically developed in recent years for process 

mapping.  

As such and in order to model the risk of overheating in HIHs, a specific function 

modelling method has been adopted. Such method, which is known as IDEFØ, 75 is part 

of a family of modelling languages – the so-called Integrated Definition Methods - which 

covers a range of uses (function modelling, information modelling, process description 

modelling, etc.). IDEFØ is a structured analysis methodology that is capable to graphically 

represent the functional relationships in the different stages of the building process and 

their influence on overheating risk. In this study, IDEFØ has been used to facilitate the 

legibility of the POE conducted, as it illustrated the interactions between activities in 

terms of inputs and outputs [Hassanain and Iftikhar, 2015].  

The advantage of IDEFØ lies in its capacity to model the decisions, actions, and activities 

of a system. So, the decisions, actions and activities that have characterised the case 

studies have been modelled through IDEFØ by using the stages of the building process 

as context. As a result, the reliance on IDEFØ has enabled the researcher to triangulate 

the data collected from the physical reality (from POE, the data of which have both 

quantitative and qualitative nature) and data collected from the interviews with 

designers, by so linking prediction and performance, which are the main areas of enquiry 

of this research.  

                                                           
75

 This technique it is also known as structured analysis and design technique (SADT). 
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7.1.1.1 BACKGROUND INFORMATION ON IDEFØ 

IDEFØ is a function modelling methodology and functional modelling language that 

addresses information models and database design issues [Ang et al., 1997]. Released in 

1993, IDEFØ is useful in “establishing the scope of an analysis, especially for a functional 

analysis. As a communication tool, IDEFØ enhances domain expert involvement and 

consensus decision-making through simplified graphical devices. As an analysis tool, IDEFØ 

assists the modeller in identifying what functions are performed, what is needed to perform 

those functions, what the current system does right, and what the current system does 

wrong“ [Knowledge Based Systems, no date].  

IDEFØ, which is characterised by its simple graphics and precision [Pieterse, 2006], has a 

specific semantics relying on boxes and arrows. An activity box specifies the process 

represented. On the left-hand side of this box, incoming arrows represent the inputs of 

the action. These inputs can be, for instance, data or consumables needed for that 

activity. On the upper part, the incoming arrows represent data necessary for the action, 

commands or conditions which influence the execution of the activity but that are not 

consumed. On the bottom of the box, incoming arrows stand for the means used for the 

action: the components or tools used to perform that activity. Outgoing arrows show a 

link to another activity box and by so expressing a dependency of the activity of this box 

to another one. On the right-hand side of the box, the outgoing arrows represent the 

outputs of the actions or products produced by that activity (fig. 7.2).  

 

 
a. b. 

 

Fig. 7.2 IDEFØ: arrow positions and roles (a) and example (b) [NIST, 1993] 

Arrows on an IDEFØ diagram can also represent a sequence (fig. 7.3) when the subject 

being modelled is sufficiently detailed to treat specific changes made to specific data 

items [NIST, 1993].  
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Another useful feature of IDEFØ is that it can represent nested stages within a function 

box, from a more general (parent) diagram to a more detailed (child) diagrams(s), by 

decomposing a top-level function into sub-function boxes. Likewise, each box may be 

both a parent box (detailed by a child diagram) and a child box (see fig. 7.4), because 

every parent box can be part of a higher hierarchy diagram [NIST, 1993]. This unfolding 

and potentially never-ending series of parent/child boxes is extremely versatile, especially 

when representing complex processes. 

  
 

Fig. 7.3 IDEFØ: arrows in a sequence [NIST, 

1993] 

 

Fig. 7.4 IDEFØ: parent and child boxes [NIST, 

1993] 

In this study, this technique for process mapping is combined with the stages of the 

building process. This way, both (process mapping and framework) form the canvas on 

which the factors influencing the production of overheating in HIHs are located.  

 

7.1.1.2 THE BUILD PROCESS 

While in this study IDEFØ provides the method for modelling overheating, a framework 

representing the process also needs to be adopted. From conception to use, each 

building follows the stages of the building process. In the UK, this process has been 

formalised within the RIBA Plan of Works, as a shared framework, or model, for the 

building design and construction process. Such a model splits the building design and 

construction process into a number of key project stages and identifies a number of core 

tasks with associated team members’ responsibilities [RIBA, no date c]. The RIBA Plan of 

http://www.designingbuildings.co.uk/wiki/Project_stages
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Works is effectively both a process map and a management tool, which was initially used 

for identifying liabilities [Designing Buildings, no date].  

First conceived in 1963, the Plan of Works has continuously evolved to incorporate the 

complexity of projects, changing regulation, multiple procurement routes and a variety of 

roles and multidisciplinary teams through a flexible process where stages such as 

planning permission and procurement are moveable to embed requirements relating to 

sustainability and Building Information Modelling (BIM) [RIBA, no date b].  For instance, 

the UK RIBA 2007 presents the main stages of a design framework with the addition of a 

pre-construction stage for pre-tender documentation production, while UK RIBA 2013 

focuses on the documentation to be produced at each stage and responsibilities of roles, 

and is thus more applicable to complex buildings [RIBA, no date a].  

Due to the nature and growing interest in low-carbon design, which can nowadays be 

considered to be a complex project, it seemed appropriate to apply a more generic 

abstraction of the RIBA Plan of Works. This abstraction was regarded as necessary to 

formulate the IDEFØ map of overheating in HIHs, as found in the case studies this thesis 

has been concerned with was also felt necessary in order to:  

a. simplify the mapping of the data collected; 

b. make this research applicable to other countries’ building design and 

construction processes and other countries’ research into their built environment;  

c. and, even more importantly, to cope with some of the vagueness of the collected 

data.  

In arriving at the required abstraction two frameworks for the build processes have been 

considered: (a) the Spanish framework, which is focused on the stages prior to 

construction; and (b) the Italian framework, which is focused on the three main stages of 

the building life cycle. In both these cases, all stages can easily be compared to the RIBA 

stages (see fig. 7.5). 
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Fig. 7.5 The build process in various contexts: from the top, the UK RIBA 2007, UK RIBA 2013, the 

Spanish “Proyecto de Obra” and, at the bottom, the Italian “Progetto edilizio” [RIBA, no date c; 

Wikipedia, 2007; Giovenale, 2012] 

For the purposes of the present research, the current version of the RIBA Plan of Works 

(2013) has been simplified from eight stages into four basic stages. These are indicated in 

fig. 7.6 below (in brackets one will find the main, although not necessarily the only, 

actor): 1. BRIEF (client), 2. DESIGN (designer/architect), 3. CONSTRUCTION (construction 

company) and 4. IN-USE (occupants), as shown. 

 
 

Fig. 7.6 IDEFØ framework to map overheating from the data collected.  

The parent level (box process A0) contains a series child boxes (boxes named B1, B2, B3 and B4).  

Dashed lines are to indicate this parent-child relationship between the established parent level 

and its (zoomed) child boxes.   
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7.1.2 OVERHEATING MAPS OF CASE STUDY HOUSES 

The framework presented in fig. 7.6 forms the basis on which to elaborate an overheating 

map for the case study houses based on disparate forms of data (qualitative and 

quantitative), as they emerge from the previous two chapters (Chapter 5-POE and 

Chapter 6-Interviews). The data has then been interpreted to formulate and position the 

‘arrows’ with information relevant to the production of overheating76. 

Producing these maps has entailed some degree of subjectivity, as one needs to 

interpret the data, once they have been collected, and breaking them down into the 

IDEFØ map. And the processes of interpreting and reorganising are not completely 

objective procedures, since the input of the interpreter plays a role too. The subjectivity 

involved in handling (even objective) data is widely regarded as a natural component of 

(almost) any type of research though [Strauss & Corbin, as cited by Rabiee, 2004, p. 657]. 

So, there is nothing arbitrary in the mapping process relied on in this research. 

In addition, the triangulation exercise carried out here is based on the constructivist 

assumption that there is no value-free objectivity and so research projects are also 

shaped by the reflexivity and stated epistemological assumptions of those who carried 

those projects out (as referred in Chapter 4 section 4.2). 

By following this approach, two maps were produced, one for house UK51 and one for 

house UK52. The maps indicate the occurrences of overheating in accordance to TM59 

(see fig. 7.7 and 7.8). In these cases, coloured text is intended to represent information 

coming from different actors in the design process. A red arrow is instead intended to 

highlight some of the reflections of the design team with regards to future projects. The 

other two case studies, namely UK54 and UK55, were not mapped because it has not 

been possible to interview the members of the design team to date. 

By looking at the IN-USE stage of the overheating map of the Victorian retrofitted house 

UK51 (fig. 7.7), it can be appreciated that such house is uncomfortably warm in some 

rooms in summer, autumn and spring. A lesson learnt by interviewing one of the 

consultants is that retrofitting Victorian houses to Passivhaus standard as a low-carbon 

strategy should be avoided, due to loss of space associated with that typology of house. 

Another indication that emerged during the interviews is that both external shading and 

controlled glazing G values should be used. Interestingly, this map also highlights not 
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 Other studies have use IDEFØ to map data from POE only [Hassanain and Iftikhar, 2015]. 
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only that the DESIGN stage made use of PHPP as a tool, but also that the thermal model 

was triangulated by the designers with other tools. This shows that despite careful 

considerations, the outcome of the thermal performance of UK51 was at time and in 

some rooms unsuccessful for summer comfort.  

By looking at the IN-USE stage of the overheating map of the uncertified Passivhaus 

UK52 (fig. 7.8), it can be noticed that such house UK52 is uncomfortably warm in summer 

only. In this case the overheating risk analysis was performed on the assumption of a 

window-opening schedule: “two windows open at the opposite sides of the bungalow to 

allow for cross ventilation and open for one hour… And with this level of ventilation, the 

frequency of overheating is 0.2%”77 [D3-UK52, May 2016]. The POE has instead shown 

that residents do not open the windows at night for security concerns. This indicates that 

the assumptions designers make on the behaviour of occupants may be unrealistic at 

times and this fact may mislead overheating assessments. 

Both the cases under consideration were informed during the DESIGN stage, and careful 

thermal considerations were taken at this stage, and underwent SAP assessments. 

However the factors leading to overheating were not fully identified, to the effect that: 

 In house UK51 no external shading was provided (see input to DESIGN stage), 

because it was considered that internal curtains would be sufficient (as it is in any 

traditional Victorian house). This expectation was, perhaps wrongly, extended to 

the converted loft, which had Velux windows.  

 In house UK52 the Passivhaus consultant had to transform into Passivhaus a 

development that was designed to be traditional. Consequently, no external 

shading was provided. For this reason, avoidance of overheating had to rely 

purely in a ventilation strategy, which however was not performed by the 

occupants. 

As shown in these examples, the complexity of the production of overheating in HIHs can 

be described only when the system where overheating occurs is described. It can also be 

noted that future designs may benefit from these maps, which have the potential to 

substantially improve the design of HIHs. 
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 Note that 10% of frequency of overheating is the criteria threshold. 
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Fig. 7.7 Overheating map of house UK51 
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ig. 7.8 Overheating map of house UK52 
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7.2 VALIDATION: FOCUS GROUP 

The word validity has different meanings and aspects according to the nature of the 

research. Mixed methods research by its own nature incorporates the validity criteria 

embedded in the distinct quantitative and qualitative components. As such, it means that 

mixed methods research incorporates the criteria of validity in use in both quantitative 

research (such as objectivity) and qualitative research (such as reflexivity), see Chapter 4 

Section 5 “Validity”. While for mixed methods research, there are still undergoing 

discussions on what constitutes validity delineated [Dellinger and Leech, 2007], it is 

accepted that meaning is not a function of the type of data collected but rather a result 

of the interpretation of such data [Dellinger and Leech, 2007].  

To provide a legitimate meaning to the different “constructs” of the reality of 

overheating (quantitative and qualitative), in this research such constructs have been 

triangulated into a process map (IDEF map in Section 7.1) via a procedure of holistic 

interpretation of the performances of the different HIHs.  

Such interpretation has been provided by the researcher, who has relied on her own 

epistemological assumptions, as treated by numerous authors [Pyett, 2003] and as they 

have been set out in Chapter 4. However, while triangulation alone may provide validity 

to the multiple methods and sources (see Section 4.5.2 of this thesis), it does not validate 

the construct of the reality of overheating represented in the IDEF maps.  

For this reason, the researcher has integrated the process leading to establish the 

meaning of the findings with a discussion involving a group of experts. This idea is 

justified by the thesis, defended by Dellinger and Leech that construct validation78 is the 

continuous process of negotiation of meaning accomplished through argument (as 

dialogue), criticism and objection [2007]. In the context of this research the relevant 

argumentative and dialogical process has then taken the form of a focus group. In the 

latter an expert audience has critically engaged and partially revised the original 

triangulation exercise (IDEF map). That way, the main findings of the research have been 

subjected to “negotiation” with a view of achieving interpretative rigor. 

                                                           
78

 Construct validity is defined as “an overall evaluative judgement of the extent to which empirical 

evidence and or theoretical rationale support the adequacy and appropriateness of the 

interpretation” [Dellinger and Leech, 2007, p. 316]. 
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To achieve this, the two maps reported in the previous section have been validated by 

means of gaining feedback about their usability. Feedback was facilitated by conducting 

a focus group session, where a brief background of both (a) occurrence of overheating in 

HIHs and (b) a process mapping methodology were presented to a specialised audience 

consisting of experts in sustainable building design. Participants were designers and 

engineers, working both industry and in academia. 

In order to gain feedback by means of focus groups, Bryman recommends a controlled 

group size, from six to ten members [Bryman, 2015]. To control both participation and to 

allow for management of responses, in this instance seven participants were invited (see 

table 7.1).  

Table 7.1 - Focus group participants (repeated from Chapter 4) 

 

During the focus group, a brief background to the process mapping methodology was 

presented by the researcher. The audience was then divided into groups of two people 

each. Each group was invited to reflect and elaborate on the maps presented (fig. 7.7 and 

7.8) in order to propose a more generic ‘overheating map’. Accordingly, the first part of 

the workshop focussed on ways by which to avoid overheating, mapped in a blank IDEFØ 

map template (fig. 7.9) and distinguished into the four key stages. 

 

 
a. b. 

 

Fig. 7.9 Blank IDEFØ map for focus group (a) focus group pairs ‘IDEFØ’ exercise (b) 

Coded name architecture engineering
Housing 

association

FGP1 designer academia and industry 1

FGP2 architect industry 1

FGP3 engineer academia 1

FGP4 engineer industry 1

FGP5 housing provider industry 1

FGP6 engineer academia 1

FGP7 engineer academia 1

background

B1

BRIEF

B2

DESIGN

B3

CONSTRUCTION

B4

IN USE
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Subsequently, the audience commented on their maps and on the usability and 

appropriateness of the process map methodology used (IDEFØ map) in a plenary, open 

discussion. During the plenary session, a group synergy, in terms of positive interaction, 

was achieved, as anticipated by many authors [Rabiee, 2004; Bryman, 2015]. This synergy 

allowed the participants to arrive at a shared interpretation of the IDEFØ map, namely, to 

achieve the so-called joint construction of meaning, as articulated by Bryman [2015, 

p.501].  

Data gathered during the discussion was transcribed and a thematic analysis was 

performed. In this respect, it is worth emphasising that because the focus group was not 

of an exploratory nature (in fact, it was framed by the findings described in Chapter 6), 

content analysis was found not to be necessary. 

The plenary discussion provided suggestions for improving the overheating map concept 

originally presented.  

The main findings of the focus group are presented in the following paragraphs. This 

validation and related suggestions enabled the researcher to turn the original map into a 

possible ‘overheating aiding tool’.  
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7.2.1 OVERHEATING AVOIDANCE 

7.2.1.1 BRIEF STAGE 

With regards to the first stage in the map—

the BRIEF (fig. 7.10.a)—during the plenary 

discussion, it was suggested that the DESIGN 

phase should feed back into the BRIEF stage, 

to the effect that the client may be invited to 

reconsider the requirements in light of the 

implications of the design of HIHs buildings 

(fig. 7.10.b). In this context, participant FGP5 

observed that: 

“We thought that the DESIGN should 

feedback the BRIEF… Making sure that 

the person who is asking for the 

property actually understands the 

consequences of what they are asking 

for, and that they understand the 

consequences and cost of what they 

might need to add to the design”. 

Another participant (FGP7) observed that there was a need to have an understanding of 

what affects comfort in order to be able to specify what the design should achieve. This 

observation does not only imply that clients and facilitators should understand the 

implications that their demands have on comfort; it also implies that BRIEF requirements 

should be informed by the POE, which presently is not compulsory (fig. 7.10.c). 

7.2.1.2 DESIGN STAGE 

A greater amount of time of the focus group was devoted to discussing the DESIGN 

stage (fig. 7.11.a). At first, the group discussed which guidance, or tool, or/methodology, 

was needed to avoid overheating. The debate then moved to the relevance of having 

proper guidance (a suitable tool for measuring overheating) and, in particular, a specific 

tool that focusses on overheating (participants FGP4 and FGP5). A participant (FGP6) 

noted that an overreliance on calculating tools may impair judgement.  

a. 

 

 

 

 

 

b. 

 

 

 

 

c. 

 

 

 

 

Fig. 7.10 BRIEF stage (a) and links to other 

stages, emerging during the focus group 
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In this context, it was observed that one single tool to assess overheating may not be 

sufficient. As participant FGP6 put it “one of the problems is ON trusting too much these 

tools”. 

Likewise, some participants reflected on the kind of accuracy that is required when using 

these tools. In this context, it was widely agreed that it would be wise not to rely on just 

one particular tool, but rather to perform tool triangulations. As participant FG7 put it:  

“if you use more than one method of assessment, if you get discrepancies between 

them, there is an opportunity to ask the question which of these is right, which is 

closer to being right, and what are the differences … is actually understanding what 

results you are getting back and why you are getting them”. 

In other terms, every tool inevitably incorporates a degree of subjectivity (approximation 

and error), so it is important to exercise one’s judgement when interpreting the results of 

the analysis (no matter which tool has produced it).  

For this reason, it seems to be the case that different forms of approximation are needed 

to predict the performance of HIHs, or at the very least to anticipate (and guess) the risks 

of overheating, at least insofar as it may be possible.  

Moreover, in relation to comfort, the group highlighted that designs should be simple for 

users to understand and maintain. In fact, a 

thermal strategy is often found to be not so 

intuitive by occupants. Accordingly, it was 

proposed to avoid designing for thermal 

strategies that cannot be easily understood 

and followed by occupants, who may not 

necessarily be aware of the principles of 

building physics and not shape their way of 

living on those principles.  

The audience’s shared opinion also linked the 

DESIGN stage with IN-USE, where the output 

from the design stage (a HIHs design) 

becomes a tool by means of which occupants 

a. 

 

 

 

 

 

 

 

 

b. 

 

 

 

 

 

 

 

Fig. 7.11 DESIGN stage (a) and links to other 

stages (b) 
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can achieve comfort (IN-USE stage). In this way, house design should incorporate the 

means to achieve, maintain and change comfort. 

Another theme that emerged in the discussion was the need for concept drawings as 

well as for a high level of detail (LOD) and definition. This need was claimed to be due to 

the fact that the design process occurs within a complex multidisciplinary and 

organisational territory, with a lack of process integration between BIM and energy-

related tools. This fragmentation of information combines with a large number of 

professionals’ involvement. 

 In this context, it was also noted that: 

“the difficulty is that some architects work at concept and pass that work to a 

second architect or to a specialist engineer to get the technical work… The client 

might just walk away with that and give it to somebody else and turn it into design 

and build, so that way it is contractual” [FGP1].  

The fact that there is no one single individual responsible within the building process, 

and so there is no one responsible for overheating, makes it even more evident that the 

overheating risk has to be viewed in its complete dynamics. Otherwise, we will not be 

able to avoid it. This point is further elaborated in the discussion, see reflection 7.3.2. 

Once all these components are considered, the design stage showed strong links with all 

the other stages and so could be considered the most crucial stage on the dynamics of 

overheating (fig. 7.11.b).  

7.2.1.3 CONSTRUCTION STAGE 

During the exercise it was briefly discussed how 

overheating could be avoided in the 

CONSTRUCTION phase (fig. 7.12). The 

strategies to avoid overheating relate to the 

development of specific skills and to the fact 

that “contractors build according to Building 

Regulations” [participant FGP7]. This last 

statement may be read as having two 

implications.  

 
 

 

 

Fig. 7.12 CONSTRUCTION stage 
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First, the statement indicates that designers’ thermal strategies may be overlooked or 

omitted, especially during a build process in which designers’ involvement is completed 

when they hand over the ‘product’ design to construction companies. In such a case, a 

house archetype may be implemented without taking into consideration the actual 

orientation of the building and so without taking into account the potential solar gains 

associated with its orientation. This case is widely exemplified in the history of planning 

in the UK. On this basis, there is no ground to believe that in the future the same issue 

will not arise again, despite the fact that HIHs design requires a careful consideration of 

orientation. 

Secondly, the statement emphasises the fact that if overheating is to be avoided, it has to 

be embedded in the Building Regulations as a matter of priority. This is not to claim that 

it will be sufficient to focus purely on regulations in order to avoid overheating; rather, it 

is to say that the action of governmental authorities (especially in the form of embedding 

overheating checks into the Building Regulations) would significantly contribute to avoid 

the risk of overheating. At the moment of writing there is no compulsory ‘overheating’ 

check-list embedded in the Building Regulations. 

7.2.1.4 IN-USE STAGE 

The IN-USE stage (similar to the DESIGN stage) provided an opportunity for a lengthy 

discussion with a number of interlinked considerations (fig. 7.13). The discussion 

undertaken in the DESIGN stage about the need to deliver simpler designs led to a 

related debate about the manageability of HIHs houses and its effects with regards to 

the performance of buildings. Part of this debate consisted in elaborating on the thesis 

that not just occupants but also house managers can play a pivotal role in this respect:  

“We also, though, should consider the landlord as well…. In another box… it 

shouldn’t be just the tenant; it is the tenant plus the landlord” [participant FGP5].  

Participant FGP5 elaborated on the idea that, within the IN-USE stage, there is a dual 

responsibility, shared by the house’s manager and house’s occupants in the overall 

performance of HIHs. If this dual contribution to house performance is not properly 

understood, HIHs are at risk of problems that may considerably affect thermal comfort 

(especially in consideration of the fact that in HIHs comfort is not achieved by turning 

up/down the heating, like in traditional houses): 

“if they (the house managers) are going to lock everything in a cupboard and the 

tenants have an issue, they (the house managers) have got to react very quickly, 
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and they have got to understand the controls to make sure they make the changes 

they need to” [participant FGP5]. 

From this, the discussion moved to consider the actual reliance on a house manual. Here, 

participants seem to have very different views. Some of them supported the idea that 

HIHs should not rely on a manual to be operated correctly. The manual can, in fact, be 

lost in the life cycle of a house, especially when tenants or owner change: 

“You should be able to come back in 10 years’ time, 20 years’ time you should still 

be able to understand what you need to do. So, a manual the first occupier might 

keep it, might throw it away… So, the design of the house should be as much as 

possible a successful design irrespectively of what you do to it [participant FGP7]. 

Another participant instead claimed that, at 

least in certain kinds of organizations, the 

manual might be essential:  

“I think it is different if you are a 

social housing provider… I think 

some really good facility managers 

groups up in the North East who 

want to keep those manuals … And 

they are maintaining the systems, 

cleaning the filters, and checking the 

MVHR system on a regular basis… It 

will be difficult to cope with the 

situation when the situation changes 

over time” [participant FGP1]. 

Lastly, another participant observed that shared facilities may cause issues as far as 

maintenance goes:  

“In my experience the biggest issue is a shared facility. So, if I have multiple 

occupancy blocks with one MVHR system, and it’s got a mix of rent/owned … or 

you have terraces with shared occupancies and one heating system, one thermal 

boiler store for the whole street…who maintains the system?” [participant FGP1]. 

Overall, the IN-USE stage of the discussion emphasised the need to consider HIHs 

management even at the DESIGN stage and at the BRIEF stage. For instance, if the BRIEF 
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b. 

 

 

 

 
 

 

 
 

 

Fig. 7.13 IN-USE stage (a) and links to other 

stages (b) 
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requirement is the Code for Sustainable Homes level 4 with no renewables (as it was the 

case with house UK52), a building will end up displaying outstandingly high levels of 

energy reduction requirements. In turn, at least in certain types of development, the 

same requirement may lead to the provision of shared technical facilities, which is 

associated with the risks explained in the previous paragraph. For this reason, the IN-USE 

stage should be considered as being highly dependent on the other two stages, as 

shown in fig. 7.13.b.  

7.2.2 SUITABILITY OF IDEFØ MAPPING 

The usability of IDEFØ as an appropriate, or useful, method to map overheating, received 

mixed feedback from the participants in the focus group.  

During the discussion, the perception of IDEFØ improved from scepticism to [cautious] 

acceptance. For the discussion begun with the expression of some reservations about the 

explanatory potential of an IDEFØ map of overheating. Some participants claimed, for 

instance, that the framework achieved by means of IDEFØ was too complicated if one is 

only engaged in one stage of the build process. Similarly, in the course of the discussion 

it was acknowledged that the use of IDEFØ requires familiarity with its language: 

“it is effectively a list of all the things you need to think about in different stages… 

but that relies on the person using it (IDEFØ) to actually understanding it” 

[participant FGP7]. 

These reservations eased out during the discussion. In fact, by the end of the debate, a 

more positive view of the potential of IDEFØ had gained some momentum, as 

participants gradually realised that IDEFØ mapping allows for the possibility of breaking 

down a complicated issue into more elemental and simpler units.  

The table below is indicative of the dynamics just described.  

Table 7.2 - Polarity on the views of IDEFØ map during the focus group 

- “So, I was thinking that we can use less tools or method focus on smaller 

aspects, maybe it is easier to break it down” [FGP4] 

+ “Having had the time to break down the map, it is a good way of helping 

you to understand a complex problem, making sure you got everything 

covered” [FGP5] 

+ “Because you are not restricted to looking at design in isolation or 

construction in isolation or whatever…you get the links in all the different 

stages…You could see where one thing influences another” [FGP7] 
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7.2.2.1 IDEFØ MAP POSSIBLE USES 

The positive assessment of IDEFØ further evolved into an almost enthusiastic acceptance, 

as participants realised the manifold possibilities inherent in the use of IDEFØ. Among 

those different possibilities envisioned by the participants was the use of the IDEFØ map 

of overheating as an aid to designers. In this context, it was noticed that IDEFØ can be 

used as: 

 A methodology for overheating avoidance, based not only on its potential to 

establish interconnections between different issues but also on its focus on 

check-listing specific stages of the whole process. In this context, for instance, 

actions to be taken at the IN-USE stage to avoid overheating can be listed and, at 

the same time, linked to the DESIGN stage. In this way, designers may be able to 

make a list of the adaptive capabilities that occupants need to act on. 

 An analysis tool for post-occupancy evaluation, which enables one to add 

information as knowledge from real-life HIHs is acquired and required actions are 

individuated. In this case, the purpose of IDEFØ will be twofold, as IDEFØ will be 

instrumental to both analysis and knowledge dissemination. 

 A device that can be turned into a project plan, especially in projects where 

multiple stakeholders are involved and are able to work on a single stage, with a 

complete-process view (cf. “In a complicated project, with multiple stakeholders 

coming in it and then that makes sense to show where you fit in the overall 

jigsaw….. The sequence I think is important for all of us, the checks and feedback 

loops… It is a systematic approach” [participant FGP1]. 

 As a design tool providing an understanding of things that need to be 

considered. As it was noted, “you could almost form like chambers, where you got 

to consider the orientation and you look and say, ‘ok in this particular instance this 

building orientation is not a problem because is north facing or whatever, but it 

acts as a prompt to consider those things’” [participant FGP7]. 

Here, it is important to consider the opinion of a participant, who claimed that the IDEFØ 

map of overheating highlights the importance of POE: “It is clear how the IN-USE links 

back to the design and to the brief (stages)… So, showing how conducting POE can benefit 

the earlier stages of future design, so it has a sort of interlinking I think is another useful 

feature to it” [participant FGP7]. Therefore, IDEFØ has been acknowledged by the 

participants in the focus group to be, at the very least, a good enabler of POE findings’ 

communication and discussion. 
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7.2.3 SUMMARY OF FOCUS GROUP 

The issues identified during the focus group are summarised below. From the discussion 

on overheating avoidance (section 7.2.1) it was determined that: 

 The BRIEF stage needs to be informed by an understanding of the impact on 

comfort that HIHs design has. In this context, the implications of HIHs design of 

for the use and management of HIHs should also be accounted for. 

 The DESIGN stage should inform the BRIEF stage, insofar as the implications of 

HIHs design are concerned. The suitability of the BRIEF stage also needs to be 

tested in light of those implications. In addition, design considerations are to be 

supported by adequate tools to assess their designs or to triangulate different 

tools. This is required in consideration of the fact that available tools may 

overlook overheating risks79. Finally, it emerged that HIHs are to be understood 

as a means to achieve comfort, and for this reason they should be effective in 

their provision of comfort and their maintenance. 

 The last point deeply links the DESIGN and the IN-USE stages, because comfort 

in HIHs is achieved (purely) by the design (not by energy). Therefore, HIHs design 

should support comfort (in both winter and summer). In other words, if HIHs are 

understood as a means for comfort, then HIHs design, as a practice, may shifts its 

focus away from the traditional one - the traditional focus being the provision of 

comfort via energy use and the new focus being the provision of low-carbon 

comfort via low-carbon design. 

The debate about the suitability of the IDEFØ map (section 7.2.2) revealed that IDEFØ 

provides a discussion-enabling tool. In this particular case, the discussion made possible 

by the IDEFØ map led to the conclusion that a simplification of the IDEFØ map could be 

turned into a design tool for overheating avoidance in the context of an integrated 

view of the building process.  

In this spirit, the responses given by participants were recorded and subsequently 

translated into an IDEFØ map during the focus group. But this process proved not to be 

a straightforward exercise. In fact, the number of the issues involved in relation to the 

language of IDEFØ itself, for instance, supported the claim that the direction of arrow 

could vary according to the stage the arrow is linked to. In this respect, the INPUT arrow 

                                                           
79

 The limitations of measuring overheating have been shown in Chapter 5 and discussed further 

in Chapter 8. 
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in a stage may well correspond to the OUTPUT arrow from the previous stage. Similarly, 

discrepancies were noted among the the arrows acting as a MECHANISM (and, hence, 

supporting a stage’s function) and the arrows acting as a CONTROL (and, hence, 

governing the same stage’s function), like the use of SAP or other prescriptive 

procedures as target designs. Nonetheless, during the mapping exercise it was noted 

that many issues raised in relation to the DESIGN stage had implications for the other 

stages of HIHs (see Appendix G for an overview of this map). 

7.2.3.1 IDEFØ MAP OF OVERHEATING AVOIDANCE 

This research process undertaken in this study has led to the creation of an overheating 

avoidance map. The creation of this map is an attempt to responding to the second 

research question underlying this thesis, namely, the question: How can the process of 

designing HIHs be improved to reduce the risks of overheating?  

The main issues discussed and presented in the previous sections have been summarized 

in such a map, which shows the themes that were agreed to be suitable strategies for 

avoiding overheating. This map cannot be considered complete as it is based on the 

discussions on one focus group and it is based on a limited amount of case study HIHs. 

Nonetheless, it can provide the basis of a methodology that aims to avoid overheating, 

by so constituting the basis of an ‘overheating aiding tool’, as it were. 

The proposed map is based on two drawings (figures 7.14 and 7.15). The first drawing 

(fig. 7.14) shows a parent box with the task to perform — in this case, ‘overheating 

avoidance’. The second and nested level (child) shows all the stages with some of the 

issues discussed during the plenary discussion of the focus group. Here, it is evident that 

the BRIEF stage appears in need of considerable feedback from the new built and design 

to understand the everyday and long-term implications of their requirements. The 

CONSTRUCTION stage could have some form of overheating measures embedded within 

the building regulations. In the IN-USE stage, the needs of the other stages to support 

this activity box become clear; at the same time, this stage impacts on the inputs of the 

previous stages by so creating new knowledge. 
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Fig. 7.14 Overheating avoidance map, based on a simplified version of the map drawn during the 

focus group, levels 1 (A0, parent) and 2 (B1, B2, B3, B4 child) 

 

The second drawing, shown in fig. 7.15, further details the DESIGN stage in order to focus 

on the issues pertaining to it. Here, the physical factors (such as the avoidance of the 

cumulative effects of solar gain, inadequate ventilation, and internal gains) are indicated 

in black (as opposed to being indicated in red, which refers to data derived from the 

literature review).  

As an input to the DESIGN stage the issue of comfort has been added. This means that in 

designing HIHs an understanding of comfort (how to achieve it and maintain it by the 

occupants) is essential. This understanding on comfort is to be supported by the 

knowledge gained from the POEs of similar HIHs. This requirement is based on the 

acknowledgement of the limitation of performance predictions when compared to real-

life situations. Moreover, the design should be based on ‘informed’ brief requirements. 

This means that an interactive consultation between the early stages of design and brief 

requirements should be engaged to avoid unsustainable goals.  
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As output from the DESIGN stage, the most relevant concepts relate to the delivery of 

HIHs that are uncomplicated to operate and that serve as means of comfort. The latter 

implies that HIHs designs are to be equipped with adaptive opportunities for occupants 

when controlling their comfort. 

 

 
 

Fig. 7.15 Overheating avoidance map, based on a simplified version of the map drawn during the 

focus group, level 2 (B2 parent) and level 3 (C5 child) 
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7.3 DISCUSSION 

The feedback on overheating avoidance within the building process and the opinions 

regarding the usability of IDEFØ to map overheating avoidance expressed by the 

audience were instrumental to make a number of reflections. The main ones are reported 

below. 

7.3.1 ON THE NOVELTY OF THE IDEFØ LANGUAGE 

At first, the complexity of arrows and boxes seemed to overwhelm the audience, 

especially because of the abstract structure of IDEFØ. Once the familiarity with the 

semantics of IDEFØ grew, the map developed easily from the suggestions made by the 

participants during the focus group. As a result, participants came to realise that IDEFØ is 

only superficially complex and abstract. However, in light of the initial perplexity felt by 

the participants, it may be advisable to think of ways by which to simplify the IDEFØ map 

before applying it to the mapping of overheating.  

In fact, during the session breaking down the audience’s suggestions for overheating 

avoidance into the proposed framework (IDEFØ map) occasionally proved to be a tall 

order, especially because participants did not have a clear view of whether a suggestion 

should be considered an input, a control, or a mechanism. An example of this difficulty is 

provided by the need for the user controlling their environment to achieve comfort. 

Comfort-control was attributed as a mechanism in the IN-USE stage by one participant. 

By contrast, another participant referred it to the DESIGN stage. The ability for occupants 

to control their environments is indeed best regarded as an input, if considered in the 

DESIGN stage, and as a tool, or mechanism, when focusing on the IN-USE. The fact that 

the ability for occupants to control their environments belongs to both stages requires 

that each arrow in one stage has a corresponding arrow in the other stage(s). 

Additionally, those arrows have different directions; this also means that the map can 

become extremely dense. 

As a consequence of this feedback, a simplification of the IDEFØ was performed and 

presented in section 7.2.3.1: the IDEFØ map of overheating avoidance. 

The multiple potential positions of the arrow (and consequent meaning) is one of the 

strengths of IDEFØ; but, as the focus group demonstrated, this can also be a weakness of 
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IDEFØ since it can be misread by the audience in consideration of the fact that “it takes a 

lot of time to understand the arrows’ meanings and break them down” (participant FGP7). 

On the other hand, IDEFØ has been proven to effectively contextualise a process, its 

needs and its implications. In this context, IDEFØ can effectively be considered to focus 

on the DESIGN stage of HIHs and instigate interconnected thinking. 

7.3.2 ON THE FRAGMENTED DESIGN PROCESS 

The view, expressed by one participant, that IDEFØ “is a good way of making you think 

about it” (participant FGP5) emphasises the fact that the map presented helps one to 

think in an interconnected way. This view contributed to reinforce the idea that a ‘ticking-

boxes’ approach to design should be replaced by a more organic way of designing, in 

which consideration is given to what comes before, or after, a given stage. In other 

words, while performing a task, a designer should always be aware of the implications of 

any action along the whole process of building, and s/he should consider the influence 

of his/her decision making. This could be an advantageous progress when innovation 

brings new complexities that are to be handled by designers. 

7.3.3 ON LOW-CARBON DESIGN 

It is clear that the risk of overheating is initiated in the BRIEF stage, where higher targets 

of carbon reduction can drive into a relatively new and underexplored design practice 

based on building performance prediction. This is not to say that HIHs should not be 

built in order to prevent overheating from occurring, though. Instead, this kind of 

consideration stimulates the adoption of a different approach to designing HIHs.  

To consolidate this point, one should consider that a non-HIH (or traditional house) 

achieves its comfort via energy use; by contrast, HIHs delegate this task to proper design, 

construction and use of the building. Hence, the comprehension of the links between 

design and other stages is of paramount importance. 

This reflection justifies the conclusion that every actor involved in the building process of 

HIHs should be aware of the implications on thermal environments that the construction 

of HIHs generates — this is especially the case when one compares HIHs to traditional 

houses (non-HIH). 
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To elaborate on this last point and link it to the bigger picture aimed at reducing carbon 

emissions from buildings, one can conclude that HIHs, under certain circumstances, may 

be at risk of an increasing (and unintended) demand for cooling.  

The need for cooling in this context would correspond to a change (or switch) in energy 

demand that originated in pursuing energy demand reduction. Hence, there is a need of 

reducing energy demand. And this requires a new practice of design in which the role of 

comfort is understood in its complexity, rather than being reduced to a matter of fabric 

efficiency only. This way, it should be possible to achieve a reduction in energy demand 

(and not a merely switch in energy demand from heating to cooling). 

7.3.4 USE OF THE ‘OVERHEATING AVOIDANCE MAP’ TO AID BUILDING 
DESIGN 

As this chapter has demonstrated, the use of IDEFØ method has proven to be a 

straightforward framework for POE findings, as well as a useful graphical tool to 

communicate lessons learned from POE. It would also be crucial that knowledge gained 

from POE were shaped by an integrated approach (such as process mapping) since this 

could help avoid a siloed attitude to knowledge development.  Hence, there seems to be 

scope for developing research into a systems thinking approach to aid and channel POE 

findings. 

The lessons learned from POE -urgently needed from innovative designs- can then 

inform designers. For instance, the overheating map avoidance can have a role in 

supporting designers. This can be achieved by breaking down every four stages and 

relate them to the RIBA Plan of Work. The RIBA Plan of Work can be then integrated with 

an ‘Overheating Overlay’; in a way similar to the ‘Green Overlay’ [Gething, 2011]. While 

the Green Overlay integrates each RIBA Work Stage with a ‘Sustainability Checkpoint’, 

the overheating avoidance map instead can inform the RIBA Work Stage with an 

“Overheating Checkpoint”. However, the target of this aiding map may only be architects. 

To extend the umbrella of users of the ‘Overheating avoidance map’ produced with 

IDEFØ method, one may consider embedding such map in the building information 

modelling (BIM) environment. This can be achieved by integrating the IDEFØ 

Overheating avoidance map with IDEF5. IDEF5 (Integrated Definition for Ontology 

Description Capture Method) is software engineering method, designed - among other 

things- to aid researchers in the application of knowledge representation methods to 
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problems in engineering and manufacturing [Benjamin et al., 1994]. In the context of 

BIM, the IDEFØ map can be translated into a structured ontology (IDEF5) to become a 

development for Dynamo environment (visual programming for parametric programs 

such as Revit) and can be used by any building modeller (engineer or architect). In 

addition, such ontology can be updated as knowledge (in this case of the production of 

overheating) develops. 
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7.4 CHAPTER SUMMARY 

The methodology used in this chapter to graphically represent both the data gathered 

and their functional relationship was instrumental to arrive at a triangulation of the 

findings of the two previous chapters.  

A proper methodology (IDEFØ) and framework (the build process) were chosen, and their 

benefits of the resulting maps were discussed. The resulting ‘overheating maps’ of 

houses UK51 and UK52 were then validated by means of a focus group. The results of 

this chapter also provide the basis of a possible future development of an ‘overheating 

avoidance aiding tool’. 

In conclusion, the findings introduced in this chapter provide an indication that the 

complexity of overheating production in HIHs can be successfully described only when 

the system where overheating occurs is described. In addition, findings from the 

discussed maps led to highlighting the limits and benefits of process mapping a complex 

issue like overheating in HIHs, where knowledge is not yet consolidated and so it should 

(and can) be ‘mapped’ to inform future design. 
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CHAPTER 8: INTEGRATED FINDINGS AND 

CONCLUSIONS 

 

 

Synopsis 

The intention of this chapter is to convey the findings from the main areas of research (as 

built on data of a diverse nature) in order to respond to the main research questions 

underpinning the project. Doing so is essential to closing the loop between the research 

framework that has guided this research project and the findings of the research itself.  

As such, this chapter presents the integrated findings from this research project. It links 

the main cumulative factors established to lead to overheating (namely, solar gains, 

inadequate ventilation and internal gains) to the fundamental questions and different 

components and of the research. Accordingly, the strategies will be discussed to provide 

an initial contribution to low-carbon housing advancement in knowledge. 
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8.1 FINDINGS IN RELATION TO THE MAIN AREAS OF THE 
RESEARCH ENQUIRY 

The chief goal of this research work consists of informing the design process through 

which new HIHs are conceived, so providing aid to architects and designers in their low-

carbon designs. This result has been pursued by addressing two specific research 

questions:  

I. Do HIHs provide an uncomfortable indoor environment for their occupants?  

II. If so, how can the process of designing HIHs be improved to reduce the risks of 

overheating? 

To respond to these questions, three main areas of research have been pursued: 

i. The in-use aspects of the overheating enquiry, which was concerned with the 

real-world data. This part was essentially devoted to finding evidence of 

overheating in HIHs by means of objective and subjective measurements 

collected from the houses that served as case studies in order to determine the 

likelihood, and the sources, of overheating.  

ii. The design aspects of the overheating enquiry. This area takes into account all 

the design considerations as well as issues related to predicting the thermal 

performance of HIHs. As part of this research, the designers of the case study 

houses were interviewed in order to gain information about their knowledge, 

assumptions relating to performance, tools and techniques used, and 

assumptions regarding user behaviour. 

iii. The contextual aspect, or process, in which HIHs are conceived, built and used. 

This part linked the thermal performance of HIHs to the design thinking and 

processes behind those houses. It was also intended to identify any risk that 

could lead to overheating during the design stage and in determining how the 

design process could be improved in order to avoid overheating. This objective 

was pursued by linking the real-world data and the interviews to designers in one 

process map. As a result, the functional relationships in the different stages of the 

building process and their influence on the risk of overheating were graphically 

represented. 
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Figure 8.1 illustrates this configuration of the research enquiry and fig. 8.2 shows data 

from the real-world and data acquired from the interviews to designers have been used 

to address the main research questions relating to the problem of overheating when 

designing HIHs. Figure 8.1 also indicates a general strategy that could be applied to any 

research problem relating to innovation in sustainable design.  

 
 

Fig. 8.1 Overview of proposed research methodology for the main areas of enquiry (repeated from 

Chapter 4) 

 

8.1.1 THE IN-USE ASPECT OF HIGHLY INSULATED HOUSES 

The aim of this part of the enquiry consisted of examining the thermal performance of 

HIHs and the role of the occupants in terms of their house’s performance. This aim was 

achieved by means of continuous environmental monitoring of the four case study 

houses and the longitudinal questionnaires completed by their occupants (in other 

words, via post-occupancy evaluation). These real-world data have been analysed and 

presented in Chapter 5. 

The post-occupancy evaluation - spread across 11 months - consisted of both objective 

and subjective measurements. Objective measurements were used to assess the summer 

performance, with a special attention given to heat wave vulnerability, of the case 

studies. This analysis was integrated with an overview of the year’s performance and 

related to some of the points raised by the occupants during the surveys. In addition, an 

overheating assessment was performed, which took into account the limitations inherent 

to the recourse to monitored data in such types of analyses. The objective measurements 

were integrated with subjective measurements, which consisted of two different 

questionnaires, submitted to the occupants of the case study houses. One of these 
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questionnaires (Q1) was designed to collect information about the occupants’ attitudes, 

behaviour, and controls; the other (Q2) was designed to determine the occupants’ 

subjective thermal preferences. 

This – extensive- part of the enquiry revealed that the question “Is there evidence of 

overheating?” did not receive a straightforward answer: while evidence of uncomfortably 

warm temperatures was found, overheating is underestimated by some assessment 

methods. In addition, in some instances, occupants tend to understate overheating 

because they are overall very satisfied with such homes. 

However, with due regards for the limitations of these assessments, it can be argued that 

finding such evidence is less relevant than actually demonstrating that there is a latent 

risk. In this context, the findings did illustrate a number of vulnerabilities, in both design 

and occupancy, of three out of four of the case study houses. In other words, the HIHs 

surveyed showed a significant risk of overheating. This finding has important implications 

for both the design and use of such houses. This is not to say that the design of HIHs 

should be abandoned; rather, it means that low-carbon housing design is in urgent need 

of a better understanding of the risk of overheating.  

8.1.1.1 VENTILATION 

Inadequate ventilation was found to be one of the most significant factors in the 

production of overheating. Houses where natural ventilation was applied consistently 

saw reduced internal temperatures in two out of the four case study houses (incidentally, 

such houses had no thermal mass exposed). 

Occupants seemed to need to ‘fine tune’ their indoor environments. The fact that most 

occupants kept their windows partially open throughout the whole year remains an issue 

worthy of further investigation because this choice could be due to hedonic reasons (not 

only the fact that temperatures were uncomfortably warm). However, despite the fact 

that ventilation was showed to be an essential component of adaptive behaviour, it may 

be not always accessible for a number of ordinary and quite justifiable reasons (security 

concerns, noise, etc.). 

MVHR proved to be a complex factor, as its interaction with layout design was shown to 

potentially have a dramatic impact on comfort. In fact, it was found that even though in 

one of the case studies a room was provided with an air supply valve for fresh air (tested 
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and found to be working properly), it suffered from lack of air flow because the nearest 

outlet was located in the lower floor bathroom.  

8.1.1.2 SOLAR CONTROL 

Even though ventilation was key to providing comfort during summer, in one case it 

proved to be insufficient. In this case (bedroom in the loft), a combination of house 

layout and the solar gains through the Velux windows made this room uninhabitable at 

times. Where provided, solar control alone was also found to be insufficient to maintain 

comfortable temperatures in some rooms in one of the case study houses (UK55). This 

risk becomes a problem when there is no other room in which occupants can find 

shelter. 

8.1.1.3 CROSS-SECTIONAL FINDINGS 

The evidence from the post-occupancy evaluation (as presented in Chapter 5) showed 

some issues with the cumulative factors leading to overheating (namely, external gains, 

internal gains and inadequate ventilation). These cumulative factors have been linked to 

the design factors proposed in Chapter 6 (see fig. 8.2). Here, it can be appreciated that 

the effects of the combined factors leading to overheating (as found in case study 

houses UK52 and UK55) result in a combination leading to overheating. This combination 

can be referred to as the site-orientation-ventilation-occupancy combination (as 

shown in fig 8.2). 

For instance, in the development where case studies UK54 and UK55 are located 

(Yorkshire), the same typology has been placed throughout the entire site (as is 

traditional with UK planning). The site layout was designed with a number of planning 

considerations (such access, SUDS, closeness to district heating, etc.). However, it failed 

to incorporate specific orientation-related changes in order to adjust solar gain. While it 

is known that the site layout contributes in different ways to the thermal performance of 

each unit (i.e., according to orientation), it seems that designers underestimate the 

effects of excessive solar gains when rotating the house units.  
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Fig. 8.2 Interlink between factors leading to overheating as found in case studies UK52 and UK55 

In fact, in house UK55 excessive solar gains in the sunspace facing east led to extremely 

high recorded temperatures that reached 42°C on occasions. In this case, the lack of 

synergy between site layout and typology resulted in the inability to mitigate solar gains. 

This fact should be regarded as a missed opportunity which increased the risk of 

overheating. In this case the risk of overheating was thus due to the exclusive reliance on 

the occupant-ventilation to lower temperatures (which, incidentally, was found not to 

occur in house UK55). 

The case study UK52, which is located in Sandiacre, does not have solar control because 

the designers considered that cross-ventilation was sufficient to purge high 

temperatures. In fact, the occupant did not perform night ventilation due to security 

issues. The reliance on occupant-ventilation to lower temperatures was then shown to be 

a misconception in ventilation design that could result in it being impossible to remove 

heat from within the house. 

8.1.2 THE DESIGN ASPECTS OF HIGHLY INSULATED HOUSES 

The aim of this part of the enquiry was to examine the design process that leads to an 

HIH. To achieve this aim, it was necessary to evaluate the architects’ and designers’ 

current knowledge on how to deliver their low-carbon designs whilst simultaneously 
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designing for thermal comfort. Interviews held with architects and designers were 

analysed in Chapter 6. 

In order to investigate the impact that the designs of the selected case studies had on 

their thermal performance, interviews with the designers of the case study HIHs were 

conducted. Their analysis, which was carried out in Chapter 6, was guided by a 

supporting framework presented in the same chapter before the analysis. Within that 

framework, open coding and axial coding was undertaken. These led to the conclusion 

that a number of themes could be related to the problem of overheating. 

This part of the enquiry showed that designers find themselves on a learning curve, 

constantly meeting new requirements in terms of energy efficiency, since HIHs design 

carries the risk of producing overheating. While this process is part of the history of 

design (and design will eventually be fine-tuned through direct experience), it should be 

noted that current HIHs may put the health of occupants at risk. This factor highlights the 

need for extraordinary measures and immediate forms of control. 

Content analysis revealed that this was most of the interviewees’ first experience of 

Passivhaus-like design, despite the fact that they had many years of experience in the 

building sector. As a consequence, they had a number of misconceptions as far as the 

specific design of HIHs is concerned. These misconceptions were exemplified by the 

tendency to overlook the combined effects that could lead to overheating. This 

observation led to conclude that, currently, overheating in HIHs is the result of a 

transitional design that is asked to respond to the fast-growing need to deliver energy 

efficient houses. 

The research into the novelty of HIHs design brought two additional main findings. First, 

it was found that comfort is, for the most part, only considered by designers in terms of 

winter comfort. Secondly, it was found that, when different consultants and providers 

bring their expertise, there is no one individual who is ultimately responsible for looking 

at the performance of the ‘kit’ (house). Also, some designers confessed that the standard 

design and built procurement process, in which construction companies were claimed to 

have the final decisions on, for instance, the provision of external shading is a factor that 

reduces their capacity to minimise the risk of overheating. 
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8.1.2.1 VENTILATION 

Ventilation was found to be more intricate than other aspects and to be underestimated 

in some of the case studies. Ventilation serves to supply and remove air (by natural 

and/or mechanical means). It “normally comprises a combination of purpose-provided 

ventilation and infiltration“ [HM Government, 2013a].  

However, the means and the purpose of ventilation are often somehow confused. This 

confusion may be attributed to the fact that in the UK the approach to HIHs is entirely 

different to the approach to traditional houses. In HIHs, the means of ventilation can 

consist of both windows and MVHR, whereas the purpose of ventilation can be either the 

removal of stale air (air hygiene or control of thermal comfort). By contrast, in traditional 

UK houses, where the levels of air infiltration were ten time higher (fig. 8.3) [Johnston et 

al., 2004], purpose and means were fused within the ‘traditional’ requirement of removal 

of stale air.  This situation is perhaps triggered by the fact that the historically high levels 

of infiltration and the UK’s mild climate require little or no consideration for the need to 

quickly dissipate high temperatures. Also, the low or zero levels of insulation have 

historically made British traditional houses quite cool.  

 
Figure 8.3 Relationship between dwellings age and air leakage [Johnston et al., 2004 after Stephen 

2000; HM Government, 2013b; Toledo, Cropper and Wright, 2016], repeated from Chapter 3. 

 

It is likely that due to this traditional approach to ventilation, some designers - as well as 

other stakeholders – wrongly think that MVHR can cope with both the need for fresh air 

and comfort. While this may be true in terms of winter comfort, findings from the POE 
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revealed that it is not the case when a (new) need for purging excessively warm 

temperatures arises. In other words, when there is a (new) need to cool rooms and/or to 

ventilate them to provide comfort. This need requires further investigation in order to 

understand whether it relates to (a) the necessity of cooling (excessively warm 

temperatures), or (b) the need to tackle warm air distribution and stratification, or (c) an 

individual search for pleasure (known as thermal alliesthesia) (fig. 8.4).  

`Fig. 8.4 Conceptualisation of strategies needed in residential to avoid overheating 

Another hypothesis as to why high levels of airtightness in the UK may have an uneasy 

relationship with the search for comfort may be that, while in the UK the traditional 

figure for airtightness is 10 ACH (m3/(h.m2) at 50 Pascals), in Germany, where the 

Passivhaus standard was invented, the same figure is 0.6 (see table 8.1). This stark 

difference means that in Germany both designers and occupants are aware of the need 

to operate the windows to a greater extent than in the UK, where in certain traditional 

houses some windows could not even be reached to be opened. 
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Table 8.1 - Air permeability standards in different countries, as proposed by NHBC [NHBC 

Foundation, 2009] 

 

In the case studies (see Chapter 5), cross-ventilation was found to be important in order 

to achieve comfort. Currently, the Building Regulations Part F only encourages cross-

ventilation. However, in consideration of the different environment provided by HIHs, 

and due to the higher risk of overheating in the absence of the possibility of cross-

ventilation, the requirement for cross-ventilation should arguably be incorporated into 

the Building Regulations. 

Finally, some issues pertaining to ventilation, MVHR and airtightness revealed a number 

of misconceptions such as the risk of poor air quality and the lack of durability of the 

airtightness barrier over time. In relation to MVHR installation, a best practice location of 

the units seems not, as yet, to have matured; some designers favoured installing the 

units in the loft in order to tackle air stratification whilst others preferred the ground 

floor in order to facilitate maintenance with no interference to the occupants’ routines. In 

relation to airtightness, questions arose among designers regarding the suitability and 

necessity of Passivhaus airtightness levels80. 

8.1.2.2 SOLAR CONTROL 

The study showed that the negative effects of increased temperatures from solar gains 

are largely underestimated and the level of knowledge in this regard on the part of 

different designers was not uniform. Solar gains were either explicitly claimed to be “not 

an issue in the UK” or regarded as a positive contribution to the thermal balance in 

passive design (at least in winter). 

                                                           
80

 The Building Regulations require a max. of 10 ACH (m
3
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2
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at 50 Pascals), and the U51 and UK52 below 1 ACH (m
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) at 50 Pascals.  
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Particularly, designers who used PHPP as a calculation tool were aware of the excessive 

heat gains caused by uncontrolled solar gains. Even so, the case study houses where 

PHPP was used as a tool (namely, houses UK51 and UK52) did not incorporate any form 

of solar control. In such cases, designers ‘trusted the tool’ when cross-ventilation was 

apparently found to be sufficient to avoid overheating. It has also to be noted that 

designers using PHPP were aware of the excessive heat gains caused by uncontrolled 

solar gain. 

While the tool used for the overheating check, such as PHPP, may be insufficient to 

predict overheating (TM59 assessment) to require calibration for the UK context (see 

Chapter 6), the role that PHPP has on educating designers is undeniable, especially in 

developing a sensibility towards both the positive and negative impacts of solar gains in 

HIHs. This component proved to be an advancement in the knowledge associated with 

passive design. However, regulation (and SAP assessment in particular) does not obligate 

designers to provide measures of solar control. 

Solar control was found to be delegated by most designers to internal curtains or to 

cross-ventilation. On the current consideration that external shading is sufficient to 

reduce the risk of overheating, some designers concluded that external shading is too 

expensive and need not be implemented (at most it should be considered an add-on to 

the project). This way the relative costs were postponed to future refurbishments81. This 

attitude is rather risky, though, since it does not seem to give any serious consideration 

to the phenomenon of climate change. 

Some designers have already incorporated a number of cost-effective design strategies 

(such as layout control or extended balconies and eaves) to avoid excess heat gains from 

the sun. Their efficiency proved reliant on the coordination of appropriate ventilation 

strategies (see Chapter 5, case study UK55 and previous section). 

                                                           
81

 Although anecdotal, evidence from a Passivhaus development in Frankfurt (Germany) with no 

external solar control (for the same budget reason) was claimed to not show any problems with 

overheating by its occupant. After this claim, the researcher contacted the architects to gain some 

further insight (perhaps another form of cooling provided?) but it was not possible as the 

architects were not available for interview. 
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8.1.3 OVERHEATING MAP OF HIHS 

The aim of this part of the enquiry was to triangulate data from the case study houses 

and from the interviews with the designers of these houses with a view to mapping the 

overheating risk within the entire build process. Chapter 7 presented the modelled 

process of the case study houses and also presented a validation of the overheating map. 

In order to represent both the physical and the non-physical aspects that govern the 

nature of overheating in HIHs, a transdisciplinary approach was adopted to map the 

occurrence of overheating. The integration of this data relied on a process mapping 

methodology referred to as IDEFØ. This methodology was chosen because of its simple 

graphics, precision, relatable vocabulary (input, control, mechanisms and output82), and 

its capacity to incorporate parent-child diagrams (nested stages within a process) in a 

similar manner to BIM.83  

The elaborated maps of overheating risk were subsequently presented to an expert 

audience by means of a focus group involving experts in sustainable building in order to 

validate its usability. In the focus group, participants were asked to use a blank map of 

overheating and then comment in an open plenary session. The findings of this 

workshop, which were presented in detail in Chapter 7, are summarised below. 

The integration of the data concerned with overheating into an IDEFØ map proved to be 

successful and so could potentially constitute a design tool for overheating avoidance 

that is useful to all stakeholders in the build process. Nonetheless, the exercise also 

showed that it may be advisable to think of ways in which to simplify the IDEFØ map in 

order to make its findings more user-friendly and so more accessible to possible users. 

From the feedback on overheating avoidance received from the selected audience, it also 

became clear that design is a crucial stage in the production of overheating.  

Moreover, the focus group made it clear that planning and design are in need of the 

feedback from recently built projects (POE). For instance, user adaptive behaviour 

showed that occupants tend to over-ventilate their houses. While the reasons for this 

                                                           
82

 Similarly, CIBSE uses a similar vocabulary to illustrate the integrated design [CIBSE, 2015].  
83

 BIM is the process through which the data for planning, design, construction, operation and 

maintenance can be integrated through a unified model using graphic and non-graphic machine-

readable attributes for each facility/building component, new or old, which contains all 

appropriate information created or gathered throughout the building life cycle. 
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behaviour were not established with any real certainty, its impact on waste energy is 

likely to be noticeable.  

The discussion within the focus group also indicated that designers should investigate 

the impact of their designs in more depth and from it draw lessons about what works 

and deserves resources and what may underperform (or run the risk of 

underperforming). The example of the bungalow (house UK52), where designers relied 

on night ventilation to avoid overheating, showed that night ventilation is not necessarily 

practiced (in this case because of the occupants’ security concerns). Cases such as this 

one indicate to designers that while PHPP may have not shown overheating at the design 

stage, it may lead to overhearing at the in-use stage.  

The design output was found to be crucial as it influences comfort. The study showed 

that the output should be an HIH that has the sufficient adaptive capacities for the 

occupants to control their comfort at low energy costs. In other words, the output of the 

design stage (and construction stage) should be the means by which to achieve comfort 

in the in-use stage. Accordingly, the design output (HIH) should incorporate all the 

required means to support both winter and summer comfort in a way that occupants 

(and housing managers) would find it manageable. This means that design needs to 

allow for as many means for (low-carbon) summer comfort as possible. 

The study also showed that design has the potential to provide feedback the brief 

stage, by so redefining the requirements in the light of the outcomes of the design 

stage. This circle in which the initial requirements are reconsidered could potentially 

change the strategy to achieve given targets, such as the Code for Sustainable Homes 

Level 4. In this context, one may consider, for instance, the case of houses UK52 

(Passivhaus uncertified in Sandiacre) and UK55 (in York). House UK55 had a halved 

dwelling emission’s rate compared to the uncertified Passivhaus (UK52), mainly due to 

the contribution of the fuel factor (biomass) from the district heating to UK55’s dwelling 

emission rate.  

This highlights the possibility of gaining carbon savings from other strategies of low-

carbon design that may be considered during the brief stage when summer comfort may 

be at risk. Reflecting back in terms of costs, maintenance, and benefits to the brief stage 

will allow one to opt to reconsider the implications of the chosen strategies. 
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Another significant finding of this research was that the design stage is in need of an 

appropriate methodology to avoid overheating. Those who took part in the focus group 

agreed that assessments should be triangulated with different tools. This hypothesis is 

supported by the findings in Chapter 5 and Chapter 6, where overheating assessments 

were found to underestimate the risk of overheating. To support this activity, best 

practice (or worst practice avoidance) should be engaged. To do so, learning from 

recently built HIHs is crucial. 

Lastly, the map was found to be useful to think in an interconnected way, namely in 

accordance to strategies enabling designers to be aware of the implications of any action 

throughout the entire building process, and so of the influence of their decision-making. 

For instance, the brief stage can be used to revise aspirations once the risks during the 

in-use phase are understood. The IDEFØ map should be considered a tentative means to 

contribute to such an integrated design framework. 

In sum, this part of the study engaged with the question “How can the process of 

designing HIHs be improved to reduce the risks of overheating?” and reached the following 

three fundamental conclusions: 

 The design stage (and construction stage, if of the design and built procurement 

type) is to provide houses that incorporate diverse adaptive capacities for 

occupants to achieve comfort. Likewise, ventilation should not be relied on as the 

only strategy for heat rejection (OUTPUT in IDEFØ language) 

 The design stage should not rely purely on compliance tools (like SAP) to 

evaluate the risks of overheating. In addition, in consideration of the fact that no 

single tool can be uncritically engaged with, designers should make use of the 

lessons learnt in recently built HIHs in the UK (MECHANISM in IDEFØ language) 

 Lastly, design as a practice should revise and fine-tune its ambition and the 

strategies it implements to achieve low-carbon houses. This requires designers to 

reflect and (re)discuss with those responsible for the planning stage and the brief 

(commissioning) stage in order to gain optimal solutions for the context. Here, 

‘context’ indicates not only the location where a building stands (e.g., UK climate) 

but also the knowledge and best practice available in a particular historic 

moment. In this way, design could balance the benefits and risks inherent to low-

carbon design when being informed by the POE.  
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8.1.4 FINDINGS SUMMARY 

In the context of an overall project aimed at decarbonising the built environment, HIHs 

are necessary. This research, which has specifically considered the risk of overheating in 

HIHs, was intended to contribute to the broad understanding of this innovative design 

(HIHs).  

The results presented in the previous chapters indicate that there is considerable scope 

for improvement in the design of HIHs as implemented in the UK. In what follows, based 

on the discussion carried out in the rest of this work, the main findings of the research 

are summarised and some recommendations for future research concerning HIHs are 

given.  

FINDING 1: SEASONAL PERFORMANCE OF HIHS 

The (almost) one year of environmental monitoring of internal temperatures showed that 

the season giving the greatest variability of internal temperatures is summer. Also, it was 

found that spring and autumn differ significantly insofar as the recorded peak indoors 

temperatures are concerned. Based on the case studies, it can be concluded that there 

are different risks and advantages associated with any given season. 

FINDING 2: MEAN TEMPERATURES 

Both the summer analysis and overheating analysis showed that mean indoor 

temperatures can mean (almost) anything, as they can be linked to very different 

environmental conditions. For instance, the mean indoor temperature of 24°C proved to 

be associated with the occurrence of overheating in one house, whilst it could not be 

associated with overheating in another case study. More specifically, the mean indoor 

temperature of 24°C was:  

 linked to overheating (TM59) in the context of the south-facing lightweight room 

of house UK52 (Passivhaus bungalow); 

 not linked to overheating (TM59) in the context of the east-facing bedroom1 and 

living room of house UK51 (refurbished terrace). 

One of the differences between the two cases was the temperature range (larger in 

house UK52, smaller in house UK51). It is important to note that temperature 

interpretability cannot be considered in the context multi-storey apartments. 
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When it comes to modelling the design of HIHs for overheating avoidance, it is likely that 

reference to average temperature alone could be misleading in terms of assessing the 

level of comfort experienced by occupants, especially when predicting performance via 

building simulation. 

FINDING 3: ASSESSMENTS OF OVERHEATING 

There are limitations to an overheating analysis based exclusively on the data monitored 

in summer. The analysis carried out in the case studies showed disparate results between 

the various forms of assessment (CIBSE 2006, TM52 and TM59), but also certain 

similarities at least between some of them (CIBSE 2006 and TM59).  

The consideration of the actual occupancy of the case study houses revealed that 

vulnerability among occupants changed throughout the survey period, particularly with 

regards to their vulnerability to heat stress. This finding suggested that the concept of 

‘temporarily vulnerable occupants’ should be included in the overheating assessments, 

especially in consideration of the fact that HIHs tend to be warmer environments than 

traditional buildings. 

The research finally indicated that with the right considerations at hand (judgement of 

vulnerability, risk factors, etc.) TM59 is a step forward in the assessment of overheating. 

Future research should then assess the real-world performance of houses against the 

criteria set in TM59 which, however, as a tool remains directly applicable to building 

simulation only.  

FINDING 4: OCCUPANTS’ PERCEPTION OF OVERHEATING 

When it comes to assessing the perception of overheating, it was found that occupants 

tend to underrate overheating. From the seasonal questionnaires, it emerged that the 

occupants who did not report overheating at the beginning of the summer changed their 

opinion of comfort and their attitude towards window opening by its end.  

Such a forgiving factor could be explained by the fact that, in the case studies presented, 

occupants relocated from one room to another when one room was affected by 

overheating. Such relocation within different rooms is an adaptive behaviour that 

requires a variability of microclimates within one house. It has then been categorised as 

an adaptive opportunity. 
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In addition, the seasonal questionnaires showed that when occupants were asked about 

‘rooms difficult to keep comfortably cool’ (even if not necessarily affected by 

overheating), answers had a direct correspondence with the loggers’ temperatures. 

However, some responses changed throughout the monitoring period, which means that 

the judgements of the environmental conditions rendered by occupants have a ‘short 

memory’ and necessitates longitudinal research.  

FINDING 5: NATURAL VENTILATION 

Reliance on natural ventilation during summer was found to reduce overheating and to 

mitigate excessive temperatures. This is no surprise, since the recorded outdoor 

temperatures were lower than the temperatures recorded inside the case study HIHs, 

except during three days of heat wave.  

Another salient finding was that some occupants also leave the windows in trickle during 

winter time. This may provide an initial indication that window opening is used not only 

to prevent the occurrence of overheating but also to achieve air movement (and can so 

be linked to the phenomenon of thermal alliesthesia). 

FINDING 6: MECHANICAL VENTILATION (MVHR) 

It was found that exclusive reliance on MVHR during summer produced overheating, 

whereas the one case study with no MVHR, and so relying on natural ventilation 

strategies (combined with thermal mass in house UK54) performed at its best (including 

during the heat wave). 

The above is not yet sufficient to conclude that MVHR is the main contributory factor to 

overheating, but is at least an indication that the background ventilation provided by the 

MVHR is not effective in purging high temperatures, and further that some occupants 

and designers were not aware of this.  

FINDING 7: HEAT WAVE VULNERABILITY 

Findings from the vulnerability analysis carried out during the heat wave showed that in 

some cases HIHs may vulnerable to high temperatures during such periods. During the 

heat wave that occurred during the period of monitoring, some rooms became 

uninhabitable and in fact actively collected unneeded heat which was then distributed 

around the rest of these houses. The reasons for it are attributable to both HIHs design 

and house management. 
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This was not the case for the naturally ventilated, heavy weighted, north-south oriented 

houses where the main bedroom temperatures were below the peak day external 

temperature and where recorded temperatures never exceeded 26°C during the heat 

wave. Also here, the reasons for it are attributable to both HIHs design and house 

management. 

The analysis also showed a persistence of high indoor temperatures after the peak day 

(i.e., four days) in some houses. Such persistence encourages one to hypothesise a 

further degree of risk of overheating in HIHs, despite the fact that it was not established 

if the reason for this increased risk was the super-insulated building fabric, the 

inadequate ventilation, or the solar gains control. This specific point requires further 

investigation, possibly with other methods of data collection such as building simulation 

applied to combined variations in HIHs design (MVHR, orientation, etc.). 

FINDING 8: HIDDEN SOURCES OF HEAT GAINS 

The present research also found some instances of design that should be regarded as 

being at risk of becoming sources of unwanted gains. This was the case with the 

sunspace built in one of the case studies. That sunspace was found to be used 

improperly, and so to collect heat at times of the year when heat was not needed. This 

situation could be avoided if there were some form of engagement between design 

intentions and occupancy. This was not the case for this case study, though. 

In another case study, the loft conversion presented a problem in terms of air flow (even 

though in the presence of a balance system of air in/out). In such cases, house layout and 

temperature stratification may be deemed to contribute to the excessively high internal 

temperatures (this fact could hardly be foreseen by a designer, hence the importance of 

real-world research). 

Lastly, the research indicated that transitory spaces (such as halls or corridors containing 

building services) release heat to the entire house, and that this phenomenon may 

escape a standard overheating assessment. It is hence suggested to consider the location 

of building services outside the thermal envelop the case of HIHs. 

FINDING 9: THERMAL COMFORT STUDY 

The thermal comfort survey was not conclusive due to the limited data; however, 

significant discoveries were made. On this basis, the existence of a number of extra risk 

factors in HIHs can be concluded.  
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The thermal comfort survey suggested that there is a shorter window for thermal 

sensation in HIHs. On the one hand, this could be considered a positive outcome of their 

low-carbon design; on the other, however, the low values of CLO and correlation with 

outdoor temperatures indicate that occupants may already been adapting in the attempt 

to cope with warm temperatures. This combination has two risky consequences: (a) 

window reliance for comfort may trivialise efforts to reduce carbon emissions; and, more 

importantly, (b) in case of inadequate natural ventilation (building typology, heat wave, 

UHI, noisy area, etc.), occupants could be deprived of this form of adaptation. 

FINDING 10: IMPORTANCE OF ADAPTIVE OPPORTUNITIES 

From the overheating assessments analysis, it emerged that assessments may not be 

reflecting all the risks accompanying HIHs design. The overall reliance on window 

opening was not found to be sufficient to guarantee a reduced risk of overheating. This 

finding reinforces the idea that designers should not settle for designs with just one 

means of adaptation, as this adaption might become temporarily unavailable.  

In HIHs where design is the provider of comfort (as opposed to traditional houses, which 

use energy to achieve comfort), it appears appropriate to conclude that adaptive 

behaviour is key to occupancy. However, it is crucial that occupants are offered more 

options for adaptation. Such opportunities should be given at the design stage and there 

should be several and of different types (according to the contextual design possibilities). 

FINDING 11: DESIGNERS’ KNOWLEDGE 

In general terms, the fact that the case studies represented most interviewees’ first 

experience with HIHs can be claimed to have significantly impacted on their capacity to 

acknowledge the risk of overheating. As a result, they had the tendency to overlook not 

only the combined effects that could lead to overheating but the also the potential risk 

of increased energy consumption, and even any threat to health. The lack of knowledge 

was reflected in the following areas: 

1. External heat gains unawareness 

The research found that most designers consider external gains to be a positive 

contribution to heat in the context of passive design. While this feature is not wrong in 

itself, in some case studies these led designers to underestimate the effects of excessive 

solar gains in HIHs (and by so, retrofit of traditional houses to a highly-insulated fabric 

should be regarded as a potential risk). Moreover, the effects of excessive solar gains 
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were understated in the retrofitted terrace house. This may be because designers do not 

associate existing traditional Victorian stock with the risk of solar gain. 

The research also showed that there is a reluctance to allocate project funds to control 

solar gain, even with the awareness that the climate is in the process of changing. 

Because of this, some consultants considered the possibility of incorporating solar 

control in new HIHs designs. However, this intention may encounter resistance in the 

‘traditionally looking’ design of houses. 

2. Ventilation unawareness 

With regards to inadequate ventilation, the interviews showed the existence of lacunae in 

the knowledge of (1) MVHR as a technology, (2) the concept of airtightness, and (3) the 

need for window opening in HIHs by their occupants. 

Some designers were found to have the tendency to underestimate the need for window 

opening by occupants, who by contrast relied on constant window opening to regulate 

their indoor environment while MVHR operation was maintained. This could be a 

problem both in terms of energy consumption and in terms of the actual provision of 

adequate means of natural ventilation (natural ventilation that in Chapter 5 was found to 

be essential in these houses). 

In addition, the lacunae in embedded knowledge of airtightness are due not only to the 

novelty of the concept of airtightness but also due to the different metrics and diverse 

paradigms of means of ventilation. The gaps in embedded knowledge of HIHs design (in 

terms of ventilation and MVHR, airtightness) impact on the already existent factors 

contributing to overheating (tools unreliability, lack of guidance, etc.). 

FINDING 12: IMPORTANCE OF PROCESS MAPPING COMPLEX REALITIES 

Process mapping - as a methodology to analyse and communicate findings- with IDEFØ 

proved to be effective in contextualising a process, its needs and its implications. In this 

context, IDEFØ can effectively focus on the DESIGN stage of HIHs and instigate 

interconnected thinking at the same time; by relying on IDEFØ, a designer is in the 

position of always being aware of the implications of any action during the entire 

building process and so of the influence of their decision making. 

Processing the fragmented findings and arranging them into an overheating IDEFØ map 

shaped by a suitable framework proved to be a task that was both challenging and 
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useful. The focus group conducted after the mapping had taken place confirmed the 

complexity of mapping as well as its usability. 

For instance, thermal comfort has been found to be important at every stage of the build 

process; it needs to be considered from the design stage by considering how such 

comfort will be maintained or achieved during the in-use stage. During the research 

project, it also became clear that it is of paramount importance that such designs should 

be uncomplicated in operation and that it serves as a means of comfort by being 

equipped with adaptive opportunities for occupants when controlling their comfort 

levels. 

 

8.2 FINDINGS IN RELATION TO THE METHODS USED 

The present research focussed on the integrated aspects that led to overheating in the 

context of HIHs in UK. As such, it adopted a descriptive and explanatory multi-case 

study approach. Both the objective and subjective knowledge gained through this 

research were framed through the two main research questions underpinning this study. 

Accordingly - and in line with the principles of pragmatism - diverse approaches were 

integrated into the construction of a set of knowledge that disengages with concepts of 

truth and reality (this idea was elaborated in Chapter 4 section 4.2). 

Table 8.2 - Study typology (repeated from Chapter 4) 

(Pragmatic) critical realism A dialogue of divergent mental models to 

expand, deepen and reflect on the nature 

of overheating in HIHs 

Mixed methods Integration of data of different sources 

type: POE, interviews, process mapping, 

focus group 

Multiple case study In-depth study of four HIHs in England 

(descriptive and explanatory multiple case 

studies) 

Longitudinal study Data collected over a period of 11 months, 

to cover four seasons. 

 

This research used of different methods of data collection, such as (originally explored) 

building simulation, environmental monitoring, subjective monitoring, interviews, and 

focus groups. 
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The novelty of the topic under consideration was argued to require reliance on different 

methods of analysis (overheating assessments, explorative statistical plots, hour-to-hour 

temperatures change inspections, thermal comfort analysis). Making use of this variety of 

methods proved to be time consuming. Particularly, the post-occupancy evaluation in 

Chapter 5 was found to be very eclectic in nature (see actual data collected in fig. 8.5). At 

the same time, it enabled the researcher to depict different areas of concern in a holistic 

manner and to understand how diverse factors interact in what is considered to be 

‘innovative design’. As a result, post-occupancy evaluation reveals the existence of a 

whole virgin territory for exploration: the practices of ventilation in HIHs. 

 
 

Fig. 8.5 Actual data collected. This caption evidences the difficulty, when doing real-world 

research, of maintaining the original research plan, at least for what the number of cases.  

All in all, the methodology used in this research allows one to map specific areas of 

concern, the mechanisms of overheating in HIHs, and how these could inform the design 

process of HIHs. Such knowledge can inform both the build process and design as 

practice. The latter was defined in Chapter 3 as the act that (intentionally or 

unintentionally) initiates change in man-made things to deliver the optimum solution to 

the sum of the true needs of a particular set of circumstances. Here, optimum solution is 

that of an energy efficient house; true needs are the requirements to achieve thermal 

comfort and IAQ; and the set of circumstances is the context (a given historical time, the 

design process in the UK).  
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8.2.1 POE 

The post-occupancy evaluation (POE) made it possible to allow for the sensorial 

contribution from the occupants. The occupants’ feedback was facilitated by means of 

periodic surveys, which walked them through the whole evaluative process and 

contributed to identifying areas of concern, especially in relation to high temperatures. 

The use of periodic surveys and the addition of open questions embedded in the 

questionnaires also functioned to assist occupants to identify first-hand the difficulties 

that they were experiencing and yet were not able to explicitly acknowledge.  

In addition, the POEs allowed for the interaction between occupants and researcher. Such 

interaction is likely to have affected the understanding occupants developed in relation 

to their HIHs, and therefore possibly their actions and responses (action research). 

The POEs revealed a number of risks and vulnerabilities in both design and occupancy 

which would have been difficult to identify through other methodologies such as 

building simulation. However, it should also acknowledge that the findings of POEs are 

not conclusive and some aspects need be further explored, also by means of building 

simulation, in order to secure their statistical validity. 

POE was instrumental to arriving at numerous of findings (listed in section 8.1), which 

also corroborate the conclusion that the importance of longitudinal real-world studies to 

HIHs cannot be overstated. 

8.2.2 SEMI-STRUCTURED INTERVIEWS 

The methodology of semi-structured interviews was found to be most appropriate, 

especially in consideration of the fact that while open coding fragmented the discourse 

into key words, axial coding made a unified interpretation possible, at least in some 

cases. Since the researcher remained in direct contact with the occupants of the case 

study houses throughout the research, it was possible to ‘make sense’ of their answers, 

and facilitate this way a reliable interpretation by the researcher.  

The face-to-face interviews resulted in in-depth conversations with architects and 

designers about both specific aspects of the cases study and generic aspects of the low-

carbon-driven design. Designers proved to be willing to talk about the substantial 

dimensions of their projects and were open to acknowledging the weaknesses of their 

project as well as to talk about things they would change. 
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8.2.3 PROCESS MAPPING 

The map of overheating presented by the researcher was found to be useful in many 

respects by the audience: (1) as an analysis tool; (2) as a project plan; and as (3) a design 

tool. Most importantly, it stimulated an interconnected thinking approach. The outcomes 

of the focus group proved to be insightful (and spread across all stages on the build 

process), especially in relation to strategies for the avoidance of overheating.  

The methodology has its own limits, though, the most obvious of which is that it requires 

familiarity with the IDEFØ language—a familiarity that not every specialist may be 

presumed to have. 

This methodology also showed the importance of a shared construction of meaning 

when it comes to tackling the problem of overheating in HIHs. In fact, the first maps 

(overheating maps of houses UK51 and UK52) drawn by the researcher, provided only 

the first step towards the simplified map that was produced as a consequence of the 

collective effort within the focus group (overheating avoidance map). The latter map was 

presented at the end of the Chapter 7 and can be regarded as having great potential to 

become an overheating tool. 

8.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

HIHs design is a low-carbon design strategy in which fabric efficiency is instrumental to 

achieving the objective of carbon reduction by means of reducing the energy demand to 

absolute minimal quantities. The appropriate understanding of comfort provision and the 

means by which to achieve comfort should inform the design of HIHs, since they have 

the potential to optimise the performance of the building fabric and so give the 

opportunity to achieve low-carbon comfort in UK houses. 

8.3.1 POE AND SYSTEMS THINKING (REAL-WORLD RESEARCH) 

With POE, the integration of different techniques of data collection enabled the 

determination of aspects that could have remained hidden if only one method had been 

used. In Chapter 5, POE was shown to play a central role in the evaluation and 

knowledge development of HIHs. In particular, the findings revealed traits of occupants’ 

behaviour that would have been otherwise difficult to predict. Accordingly, it is 

recommended that future research should specifically focus on new residential units with 

a view to gaining more real-life lessons of innovation in building design. The outcomes 
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of the real-world research can then feed into the technological aspects of the HIHs as 

well as their social (user) components.  

It would also be crucial that knowledge gained from POE were shaped by an integrated 

approach (such as process mapping) since this could help avoid a siloed attitude to 

knowledge development.  Hence, there seems to be scope for developing research into a 

systems thinking approach to aid and channel POE findings. 

8.3.2 MVHR (EXPERIMENTS INFORMED BY REAL-WORLD RESEARCH) 

The research found that there are a number of challenges concerning MVHR systems at 

both the design and the in-use stages, which can be informed by further research. 

In Chapter 6, it was noted that there were different rationales behind MVHR unit location 

depending on the issue under consideration. The opinion as to the optimal position 

(within a house) for these units differs depending on the objective the MVHR is taken to 

serve. For instance, if the MVHR location is meant to facilitate maintenance, its optimal 

position might be in a cupboard (on the ground floor); if the MVHR location is intended 

to achieve warm air removal efficiency, it is best located in the top floor; finally, if the 

MVHR location is instrumental to securing the efficiency of the duct system, it should be 

positioned close to a wall. There is thus scope for future research to inform the UK best 

practice design of HIHs’ MVHR systems.  

Such experiments may include scenarios informed misconceptions and misuse of MVHR, 

as reported in Chapter 5. Examples of misuse included (a) the technical staff forgetting to 

turn the system on after maintenance, (b) the occupants failing to understand the 

instructions as to how operate features provided by the system, and (c) the occupants 

delegating cooling to the MVHR system during the heat wave.  

8.3.3 HIHS DESIGN OPTIMISATION (REAL WORLD RESEARCH) 

Low-carbon design (specifically the design of HIHs) needs to be fine-tuned not only to 

avoid heat stress to occupants but also to incorporate a number of thermal adaptation 

opportunities. 

For instance, the findings of this research indicated that in the case study HIHs, window 

opening was frequently used as a means of cooling. At the same time, the research did 

not conclusively establish when window opening served the purpose of cooling and 
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when it served the purpose of improving the thermal experience of occupants 

(alliesthesia). This aspect thus necessitates further research, arguably based on field 

studies aimed at investigating both patterns of window opening and reasons for window 

opening. Such research has the potential to enable one to understand not only how the 

occupants’ thermal experience can be improved but also how unnecessary energy losses 

can be avoided (for instance, energy losses associated with the fact that the MVHR was 

constantly turned on while windows were open).  

8.3.4 ARCHITECTURAL LANGUAGE DEVELOPING 

In terms of solar control, it was found that some designers underestimate the effects of 

the absence of a device for solar control (see Chapter 6 Section 6.4.1). This finding 

suggests that further research should be undertaken to explore strategies for 

incorporating solar control during the very early stages of concept design by maximising 

the use of the building fabric. From this future research, a new architectural language 

could be developed in order to exploit fabric performance not only in relation to the 

thermal dimension of buildings but also in relation to their spatial/volumetric dimension 

(i.e., eaves extensions maximised from the thick fabric). The wide availability of powerful 

building simulation software may well aid this investigation.  

8.3.5 MULTIDISCIPLINARY-LED DESIGN TEAMS  

As noted in the context of the analysis of the interviews with designers, with the 

increasing demand for of carbon reduction and the associated implementation of low-

carbon design at its first trials there is the risk that the multi-team processes involved in 

design will not implement a creative problem-solving approach to design. In particular, 

the interviews with designers (see Chapter 6) showed a tendency to discharge 

responsibilities from one team to another. This shift of responsibilities has a negative 

impact on the whole process of problem solving—a process that is, or at least ought to 

be, the very basis of design. Further qualitative studies of the modern design process in 

the construction industry may then be appropriate for this purpose. 

8.3.6 DESIGN TOOLS 

As demand for the design of HIHs increases, predictions of thermal performance are 

essential. However, in Chapter 5 (from the overheating assessment and internal 

temperature plots) and in Chapter 6 (from the interviews with designers) it emerged that 
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the available tools may well underestimate overheating. There is hence scope for further 

research aimed at evaluating the appropriateness of the different tools available for 

prediction (from PHPP steady-state and dynamic building simulation) and their most 

effective use during different design stages (from concept design to detailing).  

In this context, it should be recognised that Passivhaus (and with it, PHPP) will most likely 

to remain popular in the UK due to its user friendliness and spread among designers. 

However, this research provided an initial indication that PHPP (a tool calibrated with 

data from German buildings) may underestimate overheating in the context of British 

houses (see Chapter 5, summer analysis). Research directed at calibrating PHPP to the UK 

context is thus recommended. Such research can be expected to require longitudinal 

field studies in the UK and advanced building simulation. 

8.3.7 ASSESSMENT PROTOCOLS 

As the demand for low-carbon design increases, the innovative designs of HIHs are being 

built. However, this research provided an initial indication that occupants of HIHs may be 

vulnerable to high indoor temperatures as a result of the number of concurring factors. 

Concern increases when urbanisation and climate change are considered. Furthermore, 

this research suggested that the recognition of some categories of occupants as being 

temporarily vulnerable should be incorporated in the appropriate design standards (see 

Chapter 5, overheating assessment).  

At the same time, future research may be directed towards the development of an 

overheating assessment based on field studies in the UK. The goal of reducing the risk of 

overheating may be served by the practice of undertaking overheating assessments at 

the early stages of the design. Nevertheless, it should be emphasised that thermal 

comfort is not just a matter of temperature (this point was made in particular in Chapter 

5 as a result of both the overheating assessment and the thermal comfort study). 

Therefore, a specific type of diagnosis for overheating may incorporate the principles of 

adaptive capabilities offered by the indoor environment to avoid overheating, no matter 

whether overheating is (a) of a temporary nature (vulnerable occupants, heat wave, 

misuse) and easily tackled, or (b) of a chronic nature (houses or rooms where action 

might be required to correct the unintended consequence of innovative design). 
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8.4 CONCLUSIONS 

Based on the findings of this research and having English houses as case studies, one can 

conclude that, under certain circumstances, HIHs are at risk of overheating and an 

increased (and unintended) demand for cooling, which if unaddressed, may lead to heat 

stress. The need of cooling in this context would correspond to a change (or switch) in 

energy demand that originates in the pursuit of reduced energy demand; hence the need 

to reduce energy demand for comfort in both winter and summer. This need calls for a 

new practice of design in which the role of comfort (and how it is achieved by occupants) 

can be understood in its complexity, rather than being reduced to a matter of winter 

comfort only. This way, it should be possible to achieve a reduction in energy demand 

(and not a merely a switch in energy demand from heating to cooling). 

This research was (also) started because the researcher had a conflicted personal stance 

between carbon reductions and health risks, as presented in the UK. The conflicted 

perspective towards the suitability of HIHs that contributed to initiating this research 

project has by now resulted in the recognition that low-carbon houses, and with it, the 

move towards designing HIHs, ought not to be called into question. And this work has 

attempted to illustrate, there are design-related areas that are in urgent need of 

knowledge development and issues that need be handled as immediate risks while 

knowledge is developed and, later, tacitly embedded.  

While this knowledge develops, the complexity of the design of HIHs in the UK remains 

high and thus vulnerable to discomfort in certain contexts. Therefore, knowledge 

acquisition (via POE) and systems thinking beyond disciplinary boundaries are needed as 

a matter of urgency. This work has been an attempt to indicate the direction of such a 

multidisciplinary approach, as it has put different disciplines in communication with a 

view to enhancing the knowledge underlying the design of HIHs.  
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APPENDIX B – PARTICIPANT INFORMATION AND CONSENT FORM 

 

 



313 

 



314 

 
 

 

 

  



315 

APPENDIX C – QUESTIONNAIRES Q1A Q1B Q2 

QUESTIONNAIRE Q1A – FIRST TIME  
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QUESTIONNAIRE Q1B – SEASONAL 
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QUESTIONNAIRE Q2 – THERMAL COMFORT SURVEY 
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APPENDIX D – HOUSES DETAILS 
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APPENDIX E – INTERVIEW WITH DESIGNERS 
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APPENDIX F - OPEN CODING (NODES) 

Name Sources References 

knowledge_overheating awareness 5 35 

process_Passivhaus 5 31 

factor_solar gains 5 30 

process_design 4 25 

factor_MVHR 5 23 

process_standards required 4 23 

factor_airtightness 4 21 

factor_ventilation 5 20 

knowledge_experienced designer 5 18 

factor_materials 5 16 

process_tools 3 16 

process_conflicts 4 15 

process_construction management 4 13 

process_after 4 12 

process_multidisciplinarity 3 12 

process_experimentation 3 11 

factor_end user 5 10 

factor_site 2 10 

process_confusion 3 10 

process_funding 4 10 

process_intent-trigger 4 10 

process_language 3 10 

process_procurement 3 10 

process_role 5 10 

factor_climate change 4 8 

factor_IAQ 3 8 

factor_typologyLayout 3 8 

process_deadline 3 8 

process_control 3 7 
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critique to constructor 3 6 

else_land consumption 2 6 

factor_urban considerations 3 6 

factor_windows 3 6 

factor_climate 1 5 

factor_orientation 2 5 

process_constrains 2 5 

critique to government 2 4 

critique to Passivhaus 1 4 

critique to tools 1 4 

factor_other HVACs 3 4 

knowledge_learning on the go 1 4 

process_responsibility 2 4 

critique to client 1 3 

else_for PHPP 1 3 

factor_stack 2 3 

critique to funding process 1 2 

else_MM 2 2 

factor_internal gains 2 2 

process_concept drawings 1 2 

process_product 1 2 

factor_cooling 1 1 

factor_UHI 1 1 

knowledge_innovation 1 1 
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APPENDIX G – OVERHEATING MAP DURING FOCUS GROUP 

Overheating avoidance map drawn during the focus group, compiled by the researcher 

as the plenary discussion unravelled. 
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APPENDIX H – WORD ANALYSIS WITH NVIVO FROM INTERVIEWS 
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D4-UK52 

 



380 

MK-UK56: 

 

 

 



381 

APPENDIX I – HISTOGRAMS AND STANDARD DEVIATIONS 
GRAPHS  
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APPENDIX J – SUMMER GAINS/HEAT LOSS RATIO CALCULATION 
(APPENDIX P OF SAP) 

Without going into de detail of the points 2 and 3, it seems worth to explore in detail 

what it is considered in the calculation of the SUMMER GAINS/LOSS RATIO (point 1). The 

SUMMER GAIN LOSS RATIO it is made up by the following formula: 

𝑺𝑼𝑴𝑴𝑬𝑹 𝑮𝑨𝑰𝑵/𝑳𝑶𝑺𝑺 𝑹𝑨𝑻𝑰𝑶  =   
𝑮

𝑯
   =   

𝐺𝑖 + 𝐺
𝑠𝑢𝑚𝑚𝑒𝑟

𝑠𝑜𝑙𝑎𝑟

𝐻(𝑠𝑢𝑚𝑚𝑒𝑟)𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 + 𝐻(𝑎𝑙𝑙 𝑦𝑒𝑎𝑟)𝑓𝑎𝑏𝑟𝑖𝑐 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 
 

 

Where G SUMMER GAINS is made by the sum of the internal gains and the solar gains: 

𝐺𝑖 + 𝐺(𝑠𝑢𝑚𝑚𝑒𝑟) 𝑠𝑜𝑙𝑎𝑟  

The internal gains [𝑮𝒊] in summer are assumed equal as in winter, and gains associated 

with heating systems are not included. In fact, for the purposes of SAP calculations, gains 

from MVHR are not added, because their effect is included in the MVHR efficiency: the 

specific fan power and heat exchange efficiency are multiplied by the appropriate in-use 

factor for specific fan power and In-use factor for efficiency. These values affect the air 

change rate and in an adjusted infiltration rate [BRE, 2014]. Even though it is stated that 

these factors will be updated as research on practical performance of MVHR systems is 

produced [BRE, 2014]., MVHR systems are an emerging market with products that update 

at very high speed. 

In other words, for the purpose of SAP calculations, MVHR it is not considered as heating 

system, but the heat recovered is allowed for via an effective air change rate. It is only 

considered as a fan and the heat recovery is encountered as an adjustment of only the 

infiltration rate (not even the efficiency of the heating systems) [BRE, 2014]. And no 

mention of its efficiency is been found on the heating systems section in SAP worksheet. 

Therefore the internal gains of the incoming air pre-heated by the heat exchanger (since 

most of the times there no summer bypass) it is not included.  
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Table A1: SAP internal gains list, heat gains in watts [BRE, 2014] 

 

The solar gains [𝑮(𝒔𝒖𝒎𝒎𝒆𝒓) 𝒔𝒐𝒍𝒂𝒓]is made up by the solar gains separately for each summer 

month, and separately for each orientation. The formula is made up by the climatic data 

provided and geometric information of the house.  

 Mean global solar irradiance (W/m²) on a horizontal plane, and solar declination 

(i.e. in the Midlands, the mean global solar irradiance for July is 194 W/m² and 

the solar declination for July is 21.2° 

 Solar radiation on vertical and inclined surfaces, for 8 orientations ( and tilt, using 

the given month’s horizontal solar flux in W/m², including latitude in degrees and 

the declination for that given month. 

H SUMMER LOSSES are made by the sum of the summer ventilation and the (winter) 

fabric heat losses. 

𝐻(𝑠𝑢𝑚𝑚𝑒𝑟)𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 +  𝐻(𝑎𝑙𝑙 𝑦𝑒𝑎𝑟)𝑓𝑎𝑏𝑟𝑖𝑐 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠  

The procedure for calculating the summer ventilation [𝑯(𝒔𝒖𝒎𝒎𝒆𝒓)𝒗𝒆𝒏𝒕𝒊𝒍𝒂𝒕𝒊𝒐𝒏] accounts for 

the air change rate (in ach) specified in a table and for different types of dwellings for 

different window opening position) and provides a figure ach/m3. To this and in case of 

mechanical ventilation (MV), it is possible to use the specified air change rate and volume 

of the house (MVHR not treated in this calculation). 

Table A2: SAP effective air change rate, in ach [BRE, 2014] 
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Not only no graphics are provided by these values, knowing that depending on the 

position of the ceiling, the effective air change rate of a windows (for instance tilted) can 

vary hugely. 

The procedure for calculating the fabric heat losses [𝑯(𝒂𝒍𝒍 𝒚𝒆𝒂𝒓)𝒇𝒂𝒃𝒓𝒊𝒄 𝒉𝒆𝒂𝒕 𝒍𝒐𝒔𝒔 ] is made up 

by the sum of the fabric heat loss (W/K) and the thermal bridges calculation (W/K).  

The points above mentioned making one to do some considerations in regards to the 

risk of overheating as it is calculated in SAP, Appendix P. 
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APPENDIX K – OVERHEATING RELATED EVENTS ATTENDED 

A component of the methodology of this PhD consisted in the attendance of a number 

of events (seminars/workshops/masterclass) that were held during the PhD timeframe. 

They provided a glimpse of what was going on the industry, academia and government. 

 

date event 

12-06-2013 UCL Energy Institute Masterclass: 

BUILDING PERFORMANCE: THE BIGGER PICTURE, Bill Bordass and 

Adrian Leaman, Usable Buildings Trust 

25-06-2013 GHA conference:  

Climate Change and Overheating: Opportunities and risks for 

Designers and the supply chain 

10-09-2013 Urban Energy Research Group at Heriot Watt University: 

Low-carbon Futures project follow up 

07-10-2013 Loughborough University research seminar:  

Integrating Indoor Air Quality and Energy Efficiency in Buildings, Bill 

Bahnfleth 

10-06-2014 UCL research seminar:  

Energy and built form: geometry and history', Prof Philip Steadman 

30-07-2014 BRE training: Part L, revision of awareness 

07-11-2014 Leicester BSF workshop: Sustainability Lessons Learnt  

12-12-2014 GHA Masterclass: Closing the Building Performance Gap 

23-06-2015 Workshop: Overheating and Indoor Air Quality in new homes - 

Peterborough , organised by Homes and Communities Agency 

(HCA). 

20-10-2015 UK Passivhaus Conference 2015, Business Design Centre, 52 Upper 

St, London N1 0QH  

27-11-2015 7CEPH - 7ª Conferencia Española Passivhaus - 26 y 27 de noviembre 

del 2015 - Barcelona 

26-04-2017 UKIEG 2017 Conference: Indoor Environments and Health in 

Buildings, Glasgow School of Art, Glasgow G3 6RQ 

 

 

http://www.goodhomes.org.uk/#event'.$n->uid.'
http://www.goodhomes.org.uk/#event'.$n->uid.'
https://ukieg2017.eventbrite.co.uk/?utm_source=eb_email&utm_medium=email&utm_campaign=order_confirmation_email&utm_term=eventname&ref=eemailordconf
https://ukieg2017.eventbrite.co.uk/?utm_source=eb_email&utm_medium=email&utm_campaign=order_confirmation_email&utm_term=eventname&ref=eemailordconf
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APPENDIX L – GENEROSITY OF PARTICIPANTS 

 

This appendix serves to provide ‘evidence’ of the generosity of the participants who 

patiently received the researched five times in each house. During the research period, 

their enthusiasm developed at times in jointed meals and later in friendships. 

 

 

 

 


