
Analysis and Multi-objective Optimization of Slag Powder
Process

Xiaoli Lia,b,∗, Shiqi Shena,b, Shengxiang Yangc, Kang Wanga,b, Yang Lid

aFaculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
bBeijing Key Laboratory of Computational Intelligence and Intelligent System; Engineering Research

Center of Digital Community, Ministry of Education, Beijing, 100124, China
cCentre for Computational Intelligence School of Computer Science and Informatics, De Montfort

University, United Kingdom
dCommunication University of China, Beijing 100024, China

Abstract

Slag powder is a process with characters of multivariables, strongly coupling and non-

linearity. The material layer thickness plays an important role in the process. It can

reflect the dynamic balance between the feed volume and discharge volume in the ver-

tical mill. Keeping the material layer thickness in a suitable range can not only improve

the quality of powder, but also save electrical power. Previous studies on the material

layer thickness did not consider the relationship among the material layer thickness,

quality and yield. In this paper, the yield and quality factors are taken into account and

the variables that affect the material layer thickness, yield and quality are analyzed.

Then the models of material layer thickness, yield and quality are established based on

generalized regression neural network. The production process demands for highest

yield, best production quality and smallest error of material layer thickness at the same

time. From this point of view, the slag powder process can be regarded as a multi-

objective optimization problem. To improve the diversity of solutions, a CT-NSGAII

algorithm is proposed by introducing the clustering-based truncation mechanism into

solution selection process. Simulation shows that the proposed method can solve the

multi-objective problem and obtain solutions with good diversity.
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optimization algorithm

1. Introduction

In recent years, with the development of construction industry and high-speed rail

industry, the demand for steel is increasing rapidly. With the increment of steel produc-

tion, the waste generated from the steel production is increasing gradually. If the waste

is not handled effectively, it will not only cause a lot of waste, but also lead to heave5

pollution of air and land. The slag can form powder after grinding. When the specific

surface area of slag powder is more than 400m2/kg, the strength of the cement is obvi-

ously enhanced [1]. So how to ensure the quality and yield of slag powder has been an

important issue. Slag powder is a multivariate, strongly coupled and nonlinear process.

Normally, the model based on mechanism is very difficult to be set up. During the pro-10

duction process of slag powder, a large amount of data has been recorded, but the data

is only kept for maintenance and the information hidden behind the data is not digged

out effectively. With the rapid development of artificial intelligence and machine learn-

ing, many researches have been developed for slag powder [2, 3, 4, 5, 6, 7, 8, 9, 10].

In the literature[5], a detailed analysis of the particle size has been carried out through15

the industry vertical mill grinding GGBS (ground granulated blast-furnace slag). On

this basis, qualitative analysis has been carried on by using image method and sam-

ple preparation method for slag microstructure. Meanwhile the microstructure of slag

powders has been quantified by using shape index, roundness coefficient, flat degree,

angularity and surface roughness. In the literature [6], the particle size of the slag pow-20

der was measured by using support vector regression, fuzzy inference and adaptive

fuzzy inference respectively. It was found that the method based on adaptive fuzzy

inference is more accurate. The literature [7] compared the coarse iron ores in the ball

mill and vertical mill and showed that the vertical mill has a greater advantage in the

regrind circuits. In the literature [8], the online monitoring model for cement fine-25

ness was established by using several different feedforward neural networks and least

square support vector regression. It was found that the elastic backpropagation neural

network has the best modeling effect. Hence, the authors designed the cement fineness
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controller based on this model. In the literature [9], the internal state of the mill and

some unknown parameters were estimated by using an extended Kalman filter. After30

verification, the state is consistent with the actual situation.

From the slag to the final powder, a large amount of electrical power will be con-

sumed. The crushing, grinding and separation process approximately counts for 60%-

-70% electrical consumption of the whole process. The material layer thickness is an

important factor in this process, which reflects the dynamic balance between feeding35

and discharging in the vertical mill. The thicker the material layer thickness is, the

more difficult it is for the vertical mill to completely grind the slag. When the material

layer thickness is too thin, the grinding roller and millstone will contact directly, it will

lead the vertical mill to vibrate greatly. In some serious cases, it may even cause the

vertical mill to shut down, thereby seriously affecting economic benefits. Hence, ensur-40

ing the material layer thickness in the suitable range is another important factor besides

production yield and quality. In the literature [10], the authors studied the relationship

between the feed volume and material layer thickness. The material layer thickness

was controlled by a fuzzy controller. However the relationship between the yield and

quality was not considered when the material layer thickness was analyzing. In prac-45

tical industrial engineering, yield, quality and other production indexes are competing

in most cases which compose a multi-objective problem [11]. In the literature [12], the

author constructed the multi-objective optimal problem of slag powder process and ob-

tained the optimal solutions about yield and specific surface area, but did not consider

the material layer thickness as an objective function.50

For slag powder process, operational stability of the vertical mill (indexed by the

material layer thickness) is the primary concern for production safety and long-term

benefits. This paper takes the most concerned control objectives – yield, quality (i.e.

specific surface area) and material layer thickness – into consideration, and tries to an-

alyze the control objectives and obtain optimal solutions by solving the multi-objective55

optimal problems. Because of the multiple variable and strong coupling characters,

firstly, we analyze technological process and extract the variables which affect the three

objectives. Due to the demand of highest yield, best production quality and most sta-

ble material layer thickness, the three-objective optimal problem is constructed. Slag
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powder is produced in the closed vertical mill where complex physical and chemical60

change happens, leading to the difficulty of modeling by mechanism. Generalized re-

gression neural network (GRNN) algorithm has the characteristics of fast convergence

speed and good nonlinear approximation performance [13]. Hence, GRNN is utilized

to construct models of the three objectives using the process data.

In order to get the optimal solution of yield, specific surface area and material lay-65

er thickness NSGAII algorithm is firstly used. Because the NSGAII adopts crowding

distance mechanism, only when the non-dominance sorting cannot select the required

solutions completely, crowding distance sorting is applied. This leads to the result

that the convergence is superior to the diversity in NSGAII [14]. To solve this prob-

lem, some algorithms are optimized in diversity, such as RL-NSGAII [15], GrEA [16],70

NSGAII-M2M [14] and so on. Dr Manish Aggarwal proposed PLEMOA algorithm,

which aims to aid a decision maker to find his most preferred solutions without ex-

ploring the whole set of Pareto optimal solutions. PLEMOA can not only been applied

to many subfields of operations research, but also reduce computational complexity

[17, 18]. Some scholars also proposed an improved NSGA-II algorithm based on the75

sub-regional search and archiving strategy, which can reduce computational complex-

ity [19]. In this paper, to improve diversity of solutions, clustering-based truncation is

introduced into environmental selection process based on original NSGAII algorithm.

Using the CT-NSGAII algorithm and GRNN models, optimal Pareto front of slag pow-

der MOP (multi-objective optimal problem) are obtained. Further more, combining80

real production demand, optimal solution is determined from the Pareto front to guide

the future control process and practical production.

In this paper, the whole slag powder process is introduced firstly. Then some fac-

tors affecting the material layer thickness are analyzed. The models of material layer

thickness, yield and special surface area are established by using the generalized re-85

gression neural network. Finally the optimal yield, special surface area and material

layer thickness are determined by the proposed multi-objective optimization algorithms

CT-NSGAII.
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2. Analysis of objectives in the slag powder process

2.1. The slag powder process90

The slag grinding system is the core of the slag powder control system, which con-

sists of batching station, conveyor belt, vertical mill, hot gas generator, dust collector

and product warehouse. The vertical mill is shown in Fig 1.

+154-26.6

M

M

M M

M M

Separator

Hot wind entrance

Slag entrance

Hydraulic

Figure 1: Vertical mill

The entire slag powder process is shown in Fig 2. Firstly raw slag materials are

transported into the vertical mill through the conveyor belt after iron removement and95

drying process. The raw slag is ground under the pressure of the grinding roller and

the millstone. The slag powder is blown to the upper part of the vertical mill by the hot

gas. Then the slag powder which meets the particle size requirement is screened out by

the separator, and the slag powder which does not meet the particle size requirement

will be re-entered into the mill through the bucket elevator for re-grinding [12, 20].100

2.2. Objectives and affecting factors of slag powder process

Except demands for higher yield and better quality, material layer thickness is a

very important factor in the slag powder process. Material layer thickness which is too

thin or too thick can affect the yield and quality of slag powder in an adverse way.
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Figure 2: Slag powder process

From the practical experience, main factors that affect the material layer thickness105

include the feed volume, grinding roller pressure, separator speed and temperature d-

ifference between mill inlet and outlet. These factors can not only affect the material

layer thickness, but also have a large influence on the yield and specific surface area.

The effects of these variables on the material layer thickness will be explained sepa-

rately below.110

1) Feed volume. The hardness, humidity and feed volume of raw slag can have a

large effect on the material layer thickness in the vertical mill. Suppose that the hard-

ness of the material, the moisture content of the material, the separator speed and other

factors are fixed. The larger the feed volume, the thicker the material layer thickness

will be.115

2) Grinding roller pressure. When the feed volume and other variables are fixed,

the grinding roller pressure has a large impact on the material layer thickness. The

greater the grinding roller pressure is, the thinner the material layer thickness will be.

When the material layer thickness is too thin, the grinding roller will directly contact

the millstone. This will make the vertical mill vibrate fiercely, even stop running.120

3) Separator speed. Separator is used to screen out the slag powder that meets

the requirement. Separator speed is an important factor that determines the specific
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surface area of slag powder. The faster the separator speed is, the better the quality

of slag powder will be. Also when other variables are fixed, the faster the separator

speed is, the more circulating material there will be. This will lead to the increment of125

material layer thickness.

4) Temperature difference between mill inlet and outlet. When the temperature

difference is large, it means the moisture content of the material in the vertical mill is

high. This will lead to the slag being ground insufficiently and increase material layer

thickness. When the temperature difference is small, it means the moisture content of130

the material is low and the slag is dry. This will make the vertical mill vibrate.

3. The description of the slag powder process optimal problem

In actual production, the company always wants to obtain more powder with better

quality. In other words, the company hopes that both specific surface area and the yield

are large. This could ensure better profit of a company. As mentioned above, material135

layer thickness will indirectly affect the yield and specific surface area. And material

layer thickness demands to be as close to 13.73mm as possible in actual production.

To maintain the stable operation, based on engineer experience, the maximum value of

material layer thick is 25.11mm, and the minimum is 2.33mm. Therefore, considering

yield, specific surface area and material layer thickness comprehensively, the optimal140

value of material layer thickness can be obtained by multi-objective optimization algo-

rithm. Through above analysis, feed volume, grinding roller pressure, separator speed

and temperature difference between mill inlet and outlet can affect yield, specific sur-

face area and material layer thickness. However, mechanism model is normally hard to

be obtained, the models based on data will be given instead.145

Yi = fi(X1,X2,X3,X4) i = 1,2,3 (1)

Where Y1 is the yield, Y2 is the specific surface area and Y3 is the material layer

thickness. X1 is the feed volume, X2 is the grinding roller pressure, X3 is the separator

speed, X4 is temperature difference between mill inlet and outlet. By experience of

engineers, the initial ranges of the feed volume, grinding roller pressure, separator
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speed and temperature difference between mill inlet and outlet can be given in Table150

1. After normalization, these variables are mapped into the range of [0, 1]. Meanwhile

Table 1: Initial range

variable

range
Ximin Ximax

X1 83 109

X2 115 128

X3 1010 1160

X4 114 171

these variables are also decision variables for multi-objective optimization. The multi-

objective problem can be described as follows:

max f1 (X1,X2,X3,X4)

max f2 (X1,X2,X3,X4)

min |f3 (X1,X2,X3,X4)−13.73|

s.t. Ximin < Xi < Ximax i = 1,2,3,4

2.33≤ f3 ≤ 25.11

(2)

The optimal solution set of yield, special surface area and material layer thickness is

obtained by solving the multi-objective problem. Combing practical production situa-155

tion and production demand, optimal yield, quality, material layer thickness and corre-

sponding production variables is determined from the obtained Pareto solutions. The

entire solution scheme can be seen in Fig 3.

Data

preprocess

Establish

models f1, f2, f3

Solve:

Max f1 (X1;X2;X3;X4)

Max f2 (X1;X2;X3;X4)

Min | f3(X1;X2;X3;X4) -13.73 |

optimal value

of production

objectives
 

 

Figure 3: Entire solution scheme
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4. Modeling with GRNN

4.1. Data preprocessing method160

The field data is adopted at every sample time. Some abnormal values inevitably

appear. In this paper, we collected a total of 546 samples. The sample sets can be

expressed as (xi;yi)
N
i=1, where N is the number of sample size, xi ∈ Rm, yi ∈ Rn. Denote

zi = (xi;yi) ∈ Rm+n. To reduce the gross error, data is preprocessed by the box-plot

method [21]. The method is described as follows:165

Step1: Sort sample data from small to large.

Step2: Calculate the upper and lower boundaries, the median, the lower quartile

Q1, the upper quartile Q3, define IQR=Q3-Q1.

Step3: When the sample data zi j is less than (Q1 j - 1.5IQR j) or zi j is greater than

(Q3 j + 1.5IQR j), j=1,2,. . . ,m+n. It indicates that zi is an outlier sample. Then delete170

zi. Otherwise, zi is reserved.

After data preprocessing, 448 sets of sample remain.

4.2. The generalized regression neural network algorithm

The GRNN neural network has strong nonlinear mapping capability, high fault tol-

erance and robustness. The network eventually converges to the optimized regression175

surface with more sample accumulation, which is suitable for solving nonlinear prob-

lems [13]. And GRNN is suitable for small sample data. To establish the data-based

models, GRNN algorithm is adopted. For a given sample set (xi;yi)
N
i=1, three data-

based models in regard with yields, specific surface area and materia layer thickness

are expected to be established. The feed volume, grinding roller pressure, separator180

speed and temperature difference between the mill inlet and outlet are taken as input,

yield, specific surface area and material layer thickness are taken as the output. The

GRNN model is shown in Fig 4.

Suppose the input variable of the network is X = [x1,x2, · · · ,xm]
T , and the output

variable of the network is y ∈ R. In this experiment, the number of input layer neurons185

is equal to the dimension of the input vector in the training sample m, the number of

pattern layer neurons is equal to the number of training samples k, and the number of

output layer neurons is equal to the dimension of output vectors in the training sample.
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Figure 4: GRNN neural network

The data processing flow is as follows:

Input layer: Input test samples, the number of node is equal to dimension of the190

sample.

Pattern layer: Calculate the value of the Gauss function about each sample in the

training sample and the the label sample. The number of nodes is equal to the number

of training samples. Gauss function value (pi) between the ith test sample and the jth

training sample could be calculated as Eq.(3).195

pi = exp

[
−
(Xtej−Xtri)

T (Xtej−Xtri)

2σ2

]
i = 1,2, · · · ,k; j = 1,2, · · · ,n (3)

where σ is the smooth factor, Xte j is the input vector which is a test sample. Xtri is a

train sample, corresponding to the ith neuron. Xte connects input layer serially. k is the

number of train sample. n is the number of test sample.

Summation layer: Two types of neurons are used for summation in the summation

layer, one is SD = ∑
k
i=1 pi, another is SN = ∑

k
i=1 yi pi, where yi is i-th sample output.200

Output layer: Finally, the output of the GRNN is: ŷ = SN
SD

.

Using the above method, the models of yield, specific surface area and material

layer thickness are established respectively. The model of yield is f1 =
SN1
SD1

, the model
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of specific surface area is f2 =
SN2
SD2

, and the model of material layer thickness is f3 =

SN3
SD3

.205

4.3. Simulation results of GRNN

A total of 448 sets of data were collected in this experiment. The first 300 sets

of data are used for the training of GRNN, and the remaining 148 sets of data are

tested. The feed volume (X1), grinding roll pressure (X2), separator speed (X3) and

temperature difference between mill inlet and outlet (X4) are taken as input, and yield,210

specific surface area and material layer thickness are taken as the output respectively.

Shown as in Table 2, the number of neurons in the input layer is Ni = 4, the number

of neurons in the pattern layer is Np = 300, the number of neurons in the summation

layer is Ns = 2, and the number of neurons in the output layer is No = 1. Given smooth

factors σ1 = 0.1, σ2 = 0.2 and σ3 = 0.1, modelling results of yield f1, specific surface215

area f2 and material layer thickness f3 are shown in Fig 5-7:

Table 2: Parameters of GRNN

Model Ni Np Ns No σ

Yield 4 300 2 1 0.1

Specific surface area 4 300 2 1 0.2

Material layer thickness 4 300 2 1 0.1

Mean square error (MSE), mean absolute error (MAE) and average relative error

(MRE) are used to evaluate three models. The result is shown in Table 3.

5. Optimizing with multi-objective algorithm

5.1. Brief introduction of NSGAII220

The above established models are nonlinear, and the variables are continuous. NS-

GAII algorithms [22] show good performance in handling with optimization problems

based on nonlinear models.

NSGAII adopts elite strategy, which not only guarantees the uniform distribution of

non-inferior optimal solutions, but also improves the calculation speed. The NSGAII225
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Figure 6: Simulation of specific surface area

algorithm is widely applied to many occasions and it is one of the best algorithms to

this day [22]. The NSGAII algorithm flow is as follows:

Step1: The initial population P0 is randomly generated and then sorted by non-

dominated rule. Set population size N = 200. P0 is composed of 100 individuals. Each

individual represents a four-dimensional vector. After the stratification, new population230

P
′
0 is obtained by selection, cross and mutation operations. Then P0 and P

′
0 are merged
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into a new population Q0, Q0 = P0
⋃

P
′
0.

Step2: Fast non-dominated sorting for Q0. Two parameters ( Dq, Nq ) are set for

every individual in the population Q0. Dq is the set of all individuals that q dominates.

Nq is the number of individuals who dominate q. Dq = { j|q� j; q, j ∈ Q0}, Nq =235

|{k|k � q; q,k ∈ Q0}|. The algorithm searches the population Q0 to get all the non-

dominated solutions and puts them into the set F1. F1 is the first level of individuals.

Then, for every individual in F1, the corresponding set Dq is searched. The parameter

Nl of each individual in Dq is reduced by 1. Nl is the number of individuals who

dominate individual l. If Nl-1 is 0, the individual l is non-dominated in the set Dq. The240

individual l is put into the set F2 and the F2 is the second level. So the set of different

levels can be obtained according to above algorithm.

Step3: Calculate the crowding distance and sort all the individuals in the non-

dominated solution set.

Step4: Choose the best N individuals in Q0 to form a new population P1. Then245

sort P1 by non-dominated order and calculate the crowding distance to get P2. When

maximum number of iterations is reached or other termination conditions are met, the

algorithm stops.
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Table 3: Index results of models

Index

Model
f 1 f 2 f 3

MSE(train) 0.6575 9.0121 0.7127

MSE(test) 1.0799 12.0305 2.9075

MAE(train) 0.6191 2.3065 0.6437

MAE(test) 0.8125 2.7353 1.4216

MRE(train) 0.67% 0.54% 6.79%

MRE(test) 0.88% 0.64% 13.34%

5.2. Improved NSGAII using clustering-based truncation

In NSGAII, environmental selection used fast non-dominated sorting and crowding250

distance to select elite solutions. However, in order to obtain non-dominated solutions

with good diversity, inspired by [23, 24], clustering-based truncation is introduced into

environmental selection to select the solutions in the last front. The CT-NSGAII algo-

rithm has made following modifications mainly in environmental selection compared

with original NSGAII.255

First, offspring population O is evaluated combined with the parent population P.

Then sorted to different layers according to the non-dominated relationships (F1,F2,

. . . ,Fl). Where l-th layer is the last accepted layer that cannot be fully accommodated.

In this case, only these solutions with good performance will be selected to next gen-

eration according to the second selection criterion. Second, the truncation procedure is260

performed as follows.

1) A set of uniformly distributed reference vectors W is generated [25]. The number

of reference vector W is defined as follow:

W =

M+ p−1

p

 (4)

Where M is the number of objective, p is the divisions of each objective.
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2) For each solution in the last layer Fl , the objectives are translated as:

fi = ( fi− zmin)/
m

∑
j=1

( fi− zmin) ∀i ∈ {1,2, · · · ,m} (5)

where f i is the objective function value, zmin is the minimum value in each objective.

3) The vertical distance metric between each solution and reference vector is cal-

culated as follows:

dis = d (i,w) (6)

where i represents the i-th solution, w is reference vector.

The smaller value of dis, the better quality of solution i will be. Therefore, after265

computing the distance metric dis for each solution in Fl , the set Fl is sorted in descend-

ing order with respect to dis. Finally, first k elements of the sorting set are included

into P.

The simulation results of NSGAII and CT-NSGAII in DTLZ1 problem are shown in

the Fig 8. It shows that the proposed CT-NSGAII algorithm can obtain Pareto solutions270

with better diversity for the 3-objetives DTLZ1 problem.
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Figure 8: NSGAII and CT-NSGAII results in DTLZ1 problem

5.3. Simulation results of multi-objective algorithm

Set the population size N = 200 and the maximum number of iteration steps t = 400

in NSGAII algorithms. Each individual represents a four-dimensional vector. Simula-

15



tion result of two multi-objective optimization algorithms is shown in Fig 9:
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Figure 9: Simulation results of NSGAII and CT-NSGAII algorithms

275

HV index: Hypervolume [26] evaluation index is a comprehensive performance

evaluation index. The HV is used to represent the coverage of Pareto solution set in a

certain area. Suppose P = {a,b,c} is a set of Pareto solutions and the reference point

R is an individual with the worst objective function value. Reference point R will form

a hypercube V i with every point i in P. The equation is as follows:280

HV = volume

(
|P|

∑
i=1

Vi

)
(7)

|P| represents the number of Pareto solution sets. The greater the value of HV, the

better the convergence and diversity of the algorithm is.

Obtained pareto fronts, HV was used to evaluate the performance of NSGAII and

CT-NSGAII. Reference point is (0,0,0.5). The HV index of NSGAII is 0.8802. The

HV index of CT-NSGAII is 0.8901. It can be seen that CT-NSGAII is better than285

NSGAII in convergence and diversity.

5.4. Selection of optimal solution from Pareto front

According to the results in the Fig 10, the pareto front can be roughly divided into

α , β and γ regions. In the α region, the specific surface area is better but the yield is
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relative low; in the β region, material layer thickness is almost the best, at the same290

time, yield and specific surface area are both in the neutral position; in the γ region, the

yield is higher but the specific surface area is relative low. Based on above analysis,

β region is selected as the optimal index. The optimal value of three objectives is

(98.39,439.2,13.4).
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Figure 10: Result-analysis of multi-objective algorithm

6. Conclusion295

Firstly, the slag powder process is introduced and the factors affecting the yield,

specific surface area and material layer thickness are determined. The models of yield,

specific surface area and material layer thickness are established by GRNN. Introduc-

ing the clustering-based truncation into environmental selection, a norval CT-NSGII

algorithm is proposed to improve diversity of optimal solutions. For the optimal ob-300

jectives of highest yield, best quality, and smallest material layer thickness, experiment

shows that the proposed CT-NSGAII algorithm obtains better convergence and diversi-

ty compared with original NSGAII. Combing production demand with obtained Pareto

solutions, optimal solution for slag powder production process is determined. This

17



solution can be used as a setpoint for subsequent control problem and can provide a305

reference for predictive monitoring.
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