
Assessment of Machine Learning Techniques for
Building an Efficient IDS

Sotirios Panagiotis Chytas
Computer Science and Telecommunications

University of Thessaly
Lamia, Greece
schytas@uth.gr

Leandros Maglaras
School of Computer Science and Informatics

De Montfort University
Leicester, UK

leandros.maglaras@dmu.ac.uk

Abdelouahid Derhab
Center of Excellence in Information Assurance (CoEIA)

King Saud University
Riyadh, Saudi Arabia
abderhab@ksu.edu.sa

George Stamoulis
Computer Science and Telecommunications

University of Thessaly
Lamia, Greece
georges@uth.gr

Abstract—Intrusion Detection Systems (IDS) are the systems
that detect and block any potential threats (e.g. DDoS attacks)
in the network. In this project, we explore the performance of
several machine learning techniques when used as parts of an
IDS. We experiment with the CICIDS2017 dataset, one of the
biggest and most complete IDS datasets in terms of having a
realistic background traffic and incorporating a variety of cyber
attacks. The techniques we present are applicable to any IDS
dataset and can be used as a basis for deploying a real time IDS
in complex environments.

Index Terms—Security, IDS, Machine Learning

I. INTRODUCTION

In recent years cyber attacks, especially those targeting
Critical National Infrastructures that provide essential informa-
tion or services are becoming more sophisticated and difficult
to detect. The protection of their network and information
systems becomes a significant issue [1]. The attacks on such
systems vary from reconnaissance attacks, to attempts of pene-
trating to the internal network and installation and execution of
malicious code that can be used in order to steal sensitive data
or even change the behavior of specific physical equipment
with devastating consequences. A category of attacks, entitles
Advanced Persistent Threats (APTs) are stealthy attacks, with
the ability to stay undetected, concealing themselves within
targets network, and interacting just enough to achieve the
defined objectives. For example, APT actors may use zero-day
exploits to avoid signature-based detection, and encryption to
obfuscate network traffic.

In order to tackle this growing trend academia and industry
are joining forces in an attempt to develop novel systems and
mechanisms that can defend their systems. Along with other
preventive and reactive security tools and solutions that are
proposed, such as movel access control and authentication
mechanisms, intrusion detection systems (IDS) are deployed
as a second line of defense. IDSs can distinguish between

normal and malicious actions [2] using either specific rules or
patterns of normal behavior of the system.

An Intrusion Detection System (IDS) is a device or software
application that monitors a network or system for malicious
activity or policy violations. Intrusion detection and prevention
systems are primarily focused on identifying possible incidents
in systems and networks, logging information, reporting at-
tempts, and learning. IDS have become a necessary addition
to the security infrastructure of nearly every organization [3].
Based on the current practical situations, machine learning
(ML) technologies have been employed to improve the effi-
ciency of intrusion detection systems, which is one of the most
commonly used security infrastructures to protect networks
from attacks.

Recently many novel algorithms have been proposed. In
[4] authors proposed a hierarchical intrusion detection system
based on the combination of three different classifiers, the
REP Tree, the JRip algorithm and Forest PA, that can be
used for IoT. In another work, authors in [5] proposed a
novel IDS that incorporates physical characteristics in order to
detect spoofing attacks in a networks of connected vehicles.
In a recent survey work [2] the importance of deep learning
techniques in detecting novel attacks was revealed.

In this work, we focus on network-level threats and we
present the most prominent machine learning ideas that can
solve that problem. We use the CICIDS2017 dataset, a huge
dataset with more than 2.8 million rows of benign and malig-
nant cases.

Usually IDS are based on [6], [7]:
1) Signature-based detection (Compare against saved sig-

natures. Does not generalize to new threats.)
2) Anomaly-based detection (Detect any deviations from

normal behaviours based on data. Does generalize.)
3) Stateful protocol analysis detection (Compare against

pre-determined behaviours and patterns. Also does not
generalize to new threats.)



Machine learning techniques belong to the second category
(Anomaly Detection), and this is the category we are going to
analyze.

Although there are many works that present various ma-
chine/deep learning algorithms that can be used for an IDS
[8]–[13], it seems to be a shortage of papers that analyze
possible ways to use these algorithms to build an IDS based
on various cases of needs and resources. Our paper’s goal
is to provide all the well-known techniques that can be used
for an IDS. This paper, in combination with papers that offer
a survey on specific machine learning algorithms [2], is a
valuable document for any scholar who wants to build or
customize an IDS based on machine/deep learning techniques.
Our contributions in this work are:

• We present 2 major classification categories that are used
for an IDS, and analyze them further.

• We provide specific results for all the presented methods
in the CICIDS2017 dataset.

• We give insight into many design choices that occur
during the machine learning pipeline, e.g, feature impor-
tance, threshold tuning, etc.

In section II we briefly present the dataset that we use.
In sections III-VI we present and analyze various machine
learning methodologies and algorithms that can be used, with
more or less successful results. Section VII includes the
conclusion and any future steps.

II. DATASET

We used the IDS 2017 dataset [14]. It is one of the most
famous and biggest IDS datasets, with more than 2.8 million
rows (concatenation of 8 smaller datasets).

A. Labels

The dataset contains data for 14 different attacks (DDOS,
XSS, SQL-injection, etc) and normal cases (Benign). The
distribution of the labels is provided in Fig. 1.

For this project, we change the names of the labels to
BENIGN (0) and MALIGNANT (1) as we care about building
an Intrusion Detection System an not an Intrusion Classifier.
About 80% of the dataset consists of Benign cases and the
rest 20% is various Malignant cases.

B. Features

The dataset consists of 78 features with some of them being
• Destination Port
• FLow Duration
• Total Length of Bwd Packets
• Fwd Packet Length Std

C. Preprocessing

We apply the following preprocessing steps to the dataset.
1) Remove any columns (features) whose most frequent

value is encountered in more than 99.9% of the rows.
2) Remove one of the two columns of each pair if their

absolute correlation is more than 0.99.

Fig. 1: There are 15 labels in total. However, as we can
observe, the distribution is highly unbalanced. We display the
names of the 5 most frequently encountered labels.

In that way, we end up with 52 features (originally 78). That
makes our training time smaller and the whole training process
easier. Obviously, we can proceed with the whole dataset
which consists of 78 features. However, we will not observe
any increase in our score, and, in fact, in some cases, it is
likely to observe a decrease of the score, while the training
time will be much greater.

III. MACHINE LEARNING TECHNIQUES - OVERVIEW

In this section, we provide a brief overview of the machine
learning techniques that we analyze, in detail, in the following
sections. We should note however that one of the most impor-
tant aspects of any machine learning project is the dataset’s
size. It is well known in the machine learning community that
more data beat a more sophisticated algorithm that is trained
on fewer data.

As you will observe below, we achieve an almost perfect
accuracy with a simple algorithm (Decision Tree, Random
Forest). Our primary goal of this work is not to find the
algorithm that achieves the best accuracy but to list various
methodologies that can potentially be used for an IDS.

We separate the techniques that we present in two main
categories:

1) Two-class or Multi-class classification
2) One-class classification

Usually, the first category yields better results (Sec. IV).
However, we often do not possess a dataset that has benign and
malignant cases, but only benign ones, which are much easier
to find. In that case, we can only use one-class classification
techniques. Although our dataset provides enough malignant
cases, we present also the most successful and frequently used
one-class classification techniques too (Sec. V).



We used the Scikit-Learn [15] and the Keras [16] libraries
for the development and the evaluation of the machine learning
models.

IV. TWO-CLASS CLASSIFICATION

Two-class classification, just like the name states, deals with
two types (classes) of data (in our case benign and malignant).
Below we present two distinctions of this method. We also
should note that the same principles can be also applied to
the multi-class classification which deals with more than two
classes (e.g. benign, DDoS, SQL-injection, ...).

A. Binary classification

The simplest way is called binary classification and assumes
we have a dataset with two different labels that are equally
important. In table I you can observe the results we achieve
with various well-known algorithms. We depict both accuracy
and F-score (F-scores gives a better measure of the incorrectly
classified cases).

We trained the algorithms with 80% of the dataset (2.25
Million rows) and evaluated their performance at the rest 20%
(0.56 Million rows). As we can see, tree-based algorithms
achieve amazing results. In table II we have listed the False
Positives and the False Negatives of each algorithm in order
to get more insight into the performance of each one.

TABLE I: Accuracy and F-score results for the most well-
known binary classification algorithms. (neural network’s ca-
pacity against performance is depicted in more detail, in Fig.
2 ).

Algorithm Accuracy F-score

Logistic Regression 93.5% 83.4%
Decision Tree 99.87% 99.7%

Random Forest 99.89% 99.74%
Gradient Boosting 99.67% 99.2%
Neural Network 99.5% 98.7%

TABLE II: False positives & false negatives. False positives
measure refers to benign cases that were wrongly classified
as malignant and false negatives to incorrectly classified true
malignant cases.

Algorithm False Pos False Neg

Logistic Regression 16696 19827
Decision Tree 345 350

Random Forest 297 280
Gradient Boosting 913 942
Neural Network 1824 1100

B. Weighted binary classification

Usually, in Intrusion Detection Systems we value more the
malignant cases. This means that we care more to correctly
classify the malignant cases even if this means we will classify
a few benign cases as malignant. Visually, we can think of
weighted binary classification as a stretch of the ”valuable”
class’ region. For example, in Fig. 3, if we value more the red
class, we stretch the red region and make it bigger. The bigger

Fig. 2: The change on Neural Network’s accuracy (right y-
axis) as we increase the network’s hidden layers (x-axis).
We observe that the improvement is negligible. However, the
training time (left y-axis) explodes. In the last case (4 hidden
layers) the training time is approximately the same as in the
previous case because the network overfits quickly and we
used the early stopping technique to prevent that. (We used 100
neurons in each hidden layer. Different sizes lead to similar
results).

Fig. 3: The effect of the weighted binary classification to the
decision boundary of the unweighted bimary classification.
The arrows represent the move of the boundary in favor of
the red class. The bigger the red class’ weight, the bigger the
arrows. [17]

the weight, the bigger (theoretically) that stretch is. We can
clearly see that there is a trade-off between correctly classified
red points, and misclassified blue points.

Some of the machine learning algorithms offer the ability
of weighted classification. Thankfully, tree-based techniques
(which have the best results in binary classification) have
this capability and, in this section, we experiment with that
option. In table III you can observe the effect of the weighted
classification on the False Positives and False Negatives. We



used a weight of 1 for the Benign cases and a weight of 2 for
the Malignant ones. Bigger weight differences do not offer an
improvement, and, in fact, decrease the performance (Fig. 4).

TABLE III: False positives and false negatives for the weighted
cases. Inside the parenthesis we present the results of the
previous section i.e. same weights. The decrease of the false
negatives is obvious as well as the increase of the false
positives.

Algorithm False Pos False Neg

Logistic Regression 27355 (16696) 8785 (19827)
Decision Tree 355 (345) 242 (350)

Random Forest 345 (297) 259 (280)

Fig. 4: The change on FN and FP (y-axis) based on the weight
(x-axis) we apply to the malignact class (benign has always
weight=1). We can see that too big values lead to worse results
for both classes. We used Weighted Decision Trees for the
graph.

C. Threshold tuning

To further improve the results of the algorithms, we can tune
the probability threshold. By default, when a classifier outputs
a probability of benign higher of 0.5 then we predict that this
case is a benign one and malignant otherwise. However, we
can alter this threshold. For example, we may set it to 0.7 if
we value more the malignant cases, or to a value lower than
0.5 if we care more for the benign cases.

In order to properly tune the threshold without overfitting to
the testing dataset, we need a new, unseen dataset. The training
pipeline is depicted in Fig. 5. In Fig. 6 you can observe the
effect of the threshold on False Positives and False Negatives
for the unweighted Random Forest.

V. ONE-CLASS CLASSIFICATION

A usual case in anomaly detection problems is the one-class
classification. Many datasets provide only benign cases (not
the case here) and we are required to build an algorithm that
can extract knowledge from these cases in order to accurately
detect any malignant cases.

The one-class classifiers try to ”understand” the concept of
the given class, with various techniques. This is a much harder

Fig. 5: Threshold tuning pipeline

Fig. 6: The change on FN and FP (y-axis) based on the
threshold (x-axis) we apply to the predicted probabilities.

task than binary classification, because the model’s ”world”
is just this given class. In simple terms, the most common
technique is to understand the true values of each feature as
well as for combinations of these features, so that they will be
able to detect any big deviations from these ranges, and mark
these cases as outliers (malignant cases). Consequently, such
algorithms perform much worse than the binary classifiers
presented above.

A. Isolation Forest

Although our dataset provides both benign and malignant
cases, we use only the benign cases as training dataset and we
train an Isolation Forest, one of the most well-known one-class
classifiers. The results we obtain are far worse than the ones
we achieve when we train a binary classifier. Specifically, we
achieve accuracy of 83.5% and F-score of 50.9% (30K False
Positives and 63K False Negatives)



Another well-known algorithm is the one-class SVM. How-
ever, its complexity is too high for such a huge dataset (in
terms of both rows and columns) [18]. We mention it though
because it is one of the few one-class classifiers and it can
be very useful with even better results than Isolation Forest
for smaller datasets, or for someone who possesses greater
computational power.

B. Autoencoder
Many recent works [19], [20] have explored the idea of

using an autoencoder to detect any anomalies. An autoencoder
architecture trained on normal data (benign) is very likely
to not be able to properly reconstruct a ”weird” example
(malignant). The big advantage of this idea is the use of only
benign cases (which are abundant in contrast to malignant
ones) during the training phase.

We train an autoencoder using the 80% of the benign cases,
at the architecture of the Table IV. After having trained the
autoencoder, we have to determine the reconstruction error
threshold in a similar way as in the previous section (Fig. 5).
In Fig. 7 you can observe how the Accuracy and the F-score
change as we change the threshold value. The results we get
are much worse than these of the previous methods but similar
to the other one-class classification algorithms. Careful tuning
of the architecture and techniques such as Dropout [21] may
improve the results but they will never be as good as the results
we get with the tree-based methods. However, if the dataset
consists only of benign cases, then one-class classification
methods are the only available.

TABLE IV: Autoencoder architecture. We used the ReLU
activation for all the hidden layers. The input is real-valued
so the activation of the final layer should also be linear (no
activation).

Encoder layer 1 (Input) input size - Linear
Encoder layer 2 40 - ReLU
Encoder layer 3 30 - ReLU

Latent representation 20 - ReLU
Decoder layer 1 30 - ReLU
Decoder layer 2 40 - ReLU

Decoder layer 3 (Output) input size - Linear

VI. FEATURE IMPORTANCE

Lastly, we can use well-known machine learning algorithms
in order to get more information about our features. In Fig.
9, we can observe how three algorithms (Logistic Regres-
sion, Decision Tree, Random Forest) ”rank” the features.
For instance, we can observe that the feature ”Bwd Packet
Length Std” is one of the most important features in all three
algorithms.

This part provides information to the data analytics part and
can lead to the decision to add some features that may help
achieve better results. Additionally, we may choose to remove
features that seem to be ”useless” and they just increase the
training time without adding any value to the classification
process. We depict the whole training pipeline in Fig. 8.

Fig. 7: The x-axis corresponds to different thresholds for the
reconstruction error. Accuracy reaches as high as 80% while
F-score reaches the value of 50%.

Fig. 8: The whole training pipeline. After preprocessing our
data (Sec. II), we train the algorithms (Sec. IV, V), and
use feature importance to improve the results by altering the
dataset (Sec. VI)

VII. CONCLUSION - NEXT STEPS

In this work, we presented various machine learning tech-
niques that can satisfactorily solve the IDS problem. We tested
every algorithm with the CICIDS2017 dataset, one of the
biggest and most complete IDS datasets. We obtained the best
results with Random Forest and weighted Decision Tree.



Fig. 9: From top to bottom. (1) Top-5 absolute coefficients of the Logistic Regression method. (2) Top-5 Weighted Decision
Tree importances. (3) Top-5 Weighted Random Forest importances.

The next steps include incorporating these models into a
server and test them against our own, new data in a continuous,
real-time fashion. After being sure of the effectiveness of the
model, we can use them for real-world applications (Deploy-
ment step as depicted in Fig, 8), run stress tests and conduct
thorough efficiency and communication overhead analysis.

REFERENCES

[1] L. A. Maglaras, K.-H. Kim, H. Janicke, M. A. Ferrag, S. Rallis,
P. Fragkou, A. Maglaras, and T. J. Cruz, “Cyber security of critical
infrastructures,” Ict Express, vol. 4, no. 1, pp. 42–45, 2018.

[2] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep
learning for cyber security intrusion detection: Approaches, datasets, and
comparative study,” Journal of Information Security and Applications,
vol. 50, p. 102419, 2020.

[3] M. Martellini and A. Malizia, Cyber and Chemical, Biological, Radi-
ological, Nuclear, Explosives Challenges: Threats and Counter Efforts.
2017.

[4] M. A. Ferrag, L. Maglaras, A. Ahmim, M. Derdour, and H. Janicke,
“Rdtids: Rules and decision tree-based intrusion detection system for
internet-of-things networks,” Future Internet, vol. 12, no. 3, p. 44, 2020.

[5] D. Kosmanos, A. Pappas, L. Maglaras, S. Moschoyiannis, F. J. Aparicio-
Navarro, A. Argyriou, and H. Janicke, “A novel intrusion detection
system against spoofing attacks in connected electric vehicles,” Array,
vol. 5, p. 100013, 2020.

[6] M. Whitman and H. Mattord, Principles of Information Security. Thom-
son Course Technology, 2009.

[7] E. Kirda, S. Jha, and D. Balzarotti, “Recent advances in intrusion
detection,” Proc. 12th International Symposium, RAID 2009, Saint-Malo,
France., 9 2009.

[8] S. S. S. Sindhu, S. Geetha, and A. Kannan, “Decision tree based light
weight intrusion detection using a wrapper approach,” Expert Systems
with applications, vol. 39, no. 1, pp. 129–141, 2012.

[9] S. A. Mulay, P. Devale, and G. Garje, “Intrusion detection system using
support vector machine and decision tree,” International Journal of
Computer Applications, vol. 3, no. 3, pp. 40–43, 2010.

[10] P. B. Hasan M., Nasser M. and A. S., “Support vector machine and
random forest modeling for intrusion detection system (ids),” Journal of
Intelligent Learning Systems and Applications, vol. 6, no. 6, pp. 45–52,
2014.

[11] Y. Kim, M. S. Johnson, S. H. Knox, T. A. Black, H. J. Dalmagro,
M. Kang, J. Kim, and D. Baldocchi, “Gap-filling approaches for eddy
covariance methane fluxes: A comparison of three machine learning
algorithms and a traditional method with principal component analysis,”
Global Change Biology, vol. 26, no. 3, pp. 1499–1518, 2020.

[12] S. A. R. Shah and B. Issac, “Performance comparison of intrusion
detection systems and application of machine learning to snort system,”
Future Generation Computer Systems, vol. 80, pp. 157–170, 2018.

[13] S. K. Biswas, “Intrusion detection using machine learning: A comparison
study,” International Journal of Pure and Applied Mathematics, vol. 118,
no. 19, pp. 101–114, 2018.

[14] https://www.unb.ca/cic/datasets/ids-2017.html.
[15] https://scikit-learn.org/stable/.
[16] https://keras.io/.
[17] https://blogs.sas.com/content/iml/2017/07/17/

prediction-regions-classification.html.
[18] O. Chapelle, “Training a support vector machine in the primal,” Neural

computation, vol. 19, pp. 1155–78, 06 2007.
[19] J. An and S. Cho, “Variational autoencoder based anomaly detection

using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
2015.

[20] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with
nonlinear dimensionality reduction,” in Proceedings of the MLSDA 2014
2nd Workshop on Machine Learning for Sensory Data Analysis, pp. 4–
11, 2014.

[21] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

https://www.unb.ca/cic/datasets/ids-2017.html
https://scikit-learn.org/stable/
https://keras.io/
https://blogs.sas.com/content/iml/2017/07/17/prediction-regions-classification.html
https://blogs.sas.com/content/iml/2017/07/17/prediction-regions-classification.html

	Introduction
	Dataset
	Labels
	Features
	Preprocessing

	Machine Learning techniques - overview
	Two-class classification
	Binary classification
	Weighted binary classification
	Threshold tuning

	One-class classification
	Isolation Forest
	Autoencoder

	Feature importance
	Conclusion - Next steps
	References

