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Abstract
Background: The inability to objectively diagnose childhood asthma before age five 
often results in both under-treatment and over-treatment of asthma in preschool 
children. Prediction tools for estimating a child's risk of developing asthma by school-
age could assist physicians in early asthma care for preschool children. This review 
aimed to systematically identify and critically appraise studies which either devel-
oped novel or updated existing prediction models for predicting school-age asthma.
Methods: Three databases (MEDLINE, Embase and Web of Science Core Collection) 
were searched up to July 2019 to identify studies utilizing information from children 
≤5 years of age to predict asthma in school-age children (6-13 years). Validation stud-
ies were evaluated as a secondary objective.
Results: Twenty-four studies describing the development of 26 predictive models 
published between 2000 and 2019 were identified. Models were either regression-
based (n = 21) or utilized machine learning approaches (n = 5). Nine studies conducted 
validations of six regression-based models. Fifteen (out of 21) models required addi-
tional clinical tests. Overall model performance, assessed by area under the receiver 
operating curve (AUC), ranged between 0.66 and 0.87. Models demonstrated moder-
ate ability to either rule in or rule out asthma development, but not both. Where ex-
ternal validation was performed, models demonstrated modest generalizability (AUC 
range: 0.62-0.83).
Conclusion: Existing prediction models demonstrated moderate predictive perfor-
mance, often with modest generalizability when independently validated. Limitations 
of traditional methods have shown to impair predictive accuracy and resolution. 
Exploration of novel methods such as machine learning approaches may address 
these limitations for future school-age asthma prediction.
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1  | INTRODUC TION

Asthma is the most common chronic disease in children.1,2 The 
clinical presentation of childhood asthma is highly heterogeneous. 
While hallmark symptoms include wheeze, shortness of breath, 
cough and chest tightness, children may present with one or a 
combination of these symptoms, which may be intermittent or 
persistent.3-7

Asthma symptoms usually manifest in early life. However, in a large 
proportion of children, these symptoms are transient, often disap-
pearing by school-age (6-13 years). For example, wheeze, the primary 
symptom observed in asthmatic children, affects half of all preschool 
children, of whom only one third go on to develop asthma.8,9 In addi-
tion, a study of children enrolled onto the Tucson Children's Respiratory 
Study in the United States identified that 20% of school-age asthmat-
ics were asymptomatic in early life.8 As a result, it is difficult to predict 
which pre-schoolers will develop asthma later in childhood and whose 
symptoms will subside. Unsurprisingly, there is a window of uncer-
tainty in clinical decision-making,10 resulting in both under-diagnosis 
and over-diagnosis of probable asthmatic pre-schoolers.11,12

Prediction models which can distinguish true future asthmatics from 
a group of high-risk, symptomatic preschool children can assist physi-
cians in providing early diagnoses and interventions. However, models 
which can also identify future asthmatics within a general population 
of pre-schoolers have the additional benefits of identifying late-onset 
asthmatics and stratifying individuals by asthma risk to subsequently 
promote asthma prevention among moderate/low-risk children. 
Besides being cost-effective, such strategies, as already demonstrated 
in other disease areas,13-16 could promote personalized asthma care, 
limit unnecessary exposure to the adverse effects of asthma medica-
tions, and reduce the wastage of healthcare resources.11,17

To be of clinical value, the performance of any predictive tool 
needs to be reproducible in independent populations with compara-
ble characteristics. Although several prediction models for childhood 
asthma exist, not all have been validated in independent populations. 
Surprisingly, none have yet been incorporated into clinical practice.18-20

1.1 | Objectives

This systematic review critically evaluates existing prediction mod-
els for school-age asthma development by assessing their predictive 
performance, statistical methodology and their potential clinical util-
ity. Where relevant, external validation studies of these models were 
assessed. Finally, potential issues which might be responsible for the 
lack of clinical utility of existing asthma prediction models were iden-
tified and recommendations for future research priorities presented.

2  | METHODS

This systematic review (PROSPERO registration number: 
CRD42019146638) was conducted in accordance with the 

guidelines reported in the Preferred Reporting Items for Systematic 
reviews and Meta-Analyses (PRISMA) statement.21

2.1 | Search strategy

An electronic search of three databases, MEDLINE, Embase and 
Web of Science Core Collection, was performed on 26 July 2019. 
Free-text and MeSH terms were used to identify articles related to 
predictive modelling for childhood asthma (Table S1-S3).

All articles underwent a two-stage duplicate removal: first elec-
tronically using EndNote X8.222 followed by a manual removal of 
remaining duplicates. Two independent reviewers conducted a title 
and abstract screening to assess the relevance of the remaining ar-
ticles. Discrepancies were resolved through discussion among the 
reviewers. A full-text screening and additional screening of citations 
in selected papers and reviews of prediction models for childhood 
asthma were conducted. Identified studies underwent data ex-
traction and qualitative analysis.

2.2 | Study selection

Articles were included if they met the following criteria: the 
study detailed the development of a novel prediction model or 
updated a pre-existing model; the target population was children 
aged ≤5 years; the main prediction outcome was future childhood 
asthma or wheeze persistence at school-age (6-13 years old); and 
at least two risk predictors were used to construct the model. 
Models developed in both general and high-risk populations were 
considered. Validation studies that improved upon existing models 
were included. Studies that externally validated existing models in 
populations unrelated to that in which they were developed were 
also included.

Articles were excluded if a final prediction score was not de-
veloped or studies failed to report any performance measures for 
model evaluation. Conference papers, randomized control tri-
als, proceedings, letters, editorials and non-English articles were 
excluded.

Key Message

This study reviewed childhood asthma prediction models 
that have been developed and/or validated to date and 
identifies key methodological limitations which may ac-
count for their lack of current clinical utility. This critical 
evaluation informs physicians of the strengths and limita-
tions of tools currently available to assist preschool asthma 
care management, and provides researchers with key rec-
ommendations for future studies developing clinically rel-
evant childhood asthma prediction models.
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2.3 | Data extraction

Information on study design, candidate predictors, statistical meth-
odology for model development and prediction outcome were col-
lected from model derivation studies.

Model performance was evaluated using prediction measures 
of: discrimination, sensitivity, specificity, positive and negative 
predictive values (PPV and NPV, respectively) and positive and 
negative likelihood ratios (LR+ and LR−, respectively; Table  1). 
Where absent, likelihood ratios were calculated using reported 
sensitivity and specificity. Where applicable, performance mea-
sures were collected from both derivation and validation studies 
in order to assess model generalizability. The Prediction model 
Risk Of Bias ASsessment Tool (PROBAST) checklist23 was used to 
critically appraise the risk of bias and applicability of each article.

3  | RESULTS

The literature search identified 4187 articles (Figure 1). Following 
the removal of 1204 duplicate articles, 2983 articles underwent 
title and abstract screening. The screening process identified 59 
articles for full-text review. Of these, 25 studies were deemed 
relevant. An additional citation screening of relevant articles and 
the seven identified review papers on childhood asthma prediction 
tools identified a further three studies. These 28 studies were clas-
sified into two categories based on the methods used for develop-
ing the predictive models: regression-based (n = 20; Table S4) and 
machine learning approaches (n = 4; Table S5). The remaining four 
studies were external validations of previously developed models 
(Table 3).

3.1 | Regression-based models

Twenty-one regression-based prediction models were described in 
20 studies (Table S4). Thirteen of the 21 models were novel while 
eight were modifications of existing models: six modified the Asthma 
Predictive Index (API)24-29; one updated the PIAMA risk score30 and 
one adapted the Obstructive Airway Disease (OAD) risk score.31 
Additionally, nine studies externally validated six prediction models, 
detailed within either developmental (n = 5) or independent valida-
tion studies (n = 4).32-35

3.1.1 | Target population

Of the 21 models carried forward for qualitative analysis (Table S4), 
six were developed in the general population24,31,36-38 and 15 within 
high-risk populations, the latter restricting inclusion to children 
with a parental history of allergy/asthma (four models)25,28-29,39 or 
asthma-like symptoms (11 models,30,40 with nine specifically target-
ing children experiencing wheeze26-27,41-47). Only one model was de-
rived based on predictors initially associated with childhood asthma 
within a low-income, Puerto Rican population.37

3.1.2 | Predictors

Thirty-eight different predictors were used among the 21 identified 
models, including seven variations of wheeze and two different meas-
ures for both allergic sensitization and pulmonary function (Table S6). 
The number of predictors used to construct the models ranged be-
tween 3 and 10. Twenty out of 38 predictors were each included in 

Performance measures Definition

Calibration How well the model's predictions compare to the observed 
outcomes (goodness of fit)

Discrimination How well the model distinguishes between those with 
and without the disease, measured by the area under the 
receiver operating curve (AUC)

Sensitivity The proportion of individuals with the disease who are 
correctly predicted to have the disease

Specificity The proportion of individuals without the disease who are 
correctly predicted as disease-free

Positive predictive value (PPV) The proportion of individuals with a positive disease 
prediction who truly have the disease

Negative predictive value (NPV) The proportion of individuals with a negative disease 
prediction who are truly disease-free

Positive likelihood ratio (LR+) The ratio of true positive predictions against false positive 
predictions which indicates a model's ability to rule in 
disease

Negative likelihood ratio (LR−) The ratio of false negative predictions against true 
negative predictions which indicates a model's ability to 
rule out disease

TA B L E  1   Definitions of the main 
measures used to evaluate prediction 
model performance
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just one of the 21 models (last column, Table S6). For example, familial 
pollen allergy was a predictor in RAST alone, while race was only in-
cluded in PARS. A history of parental asthma and personal eczema 
were the most frequently used predictors of childhood asthma, each 
incorporated into 14 models. Three studies used data only available in 
early life (≤2 years)31,36,43 while another only used predictor data col-
lected at birth.38 Predictor information was mainly collected from par-
ent-reported questionnaires or standard clinical assessments. Sixteen 
models required data from additional clinical tests such as blood or 
skin prick tests (SPT) to assess allergic sensitization status (14 models); 
measures of pulmonary function (two models); biomarkers of volatile 
organic compounds in exhaled breath condensate (one model); and 
gene expression in peripheral blood (one model).

3.1.3 | Outcome

The prediction outcome in most studies (19/20) was school-age 
asthma, yet nine different definitions of asthma were used (Table 2). 
Seventeen studies included asthma-like symptoms, twelve included 
a doctor diagnosis, and nine incorporated objective pulmonary tests 
as components in their asthma definition. One study used persistent 

wheeze determined through the frequency of wheezing episodes 
as the prediction outcome.41 The most common definition (in 5/20 
studies) specified a combination of asthma-like symptoms, use of 
asthma medications and/or objective respiratory tests. All studies 
identified a child's asthma status by evaluating the outcome criteria 
within the last 12 months except one which evaluated the asthma 
criteria across two consecutive years.42

3.1.4 | Model construction

The API and its modifications are clinical indices requiring a com-
bination of major and minor criteria to be met. The other predic-
tion models are weighted scoring systems based on derivations of 
each predictor's regression coefficients, with the exception of two 
unweighted scoring systems.37,41

3.1.5 | Performance measures

Three studies failed to report any model performance measures de-
tailed in Table  1. Of these, the modified Asthma Predictive Index 

F I G U R E  1   PRISMA flow diagram of 
study search strategy. †Citation screening 
of articles identified three additional 
studies. ‡Included in the final qualitative 
analysis. §One study transformed a 
diagnostic model into a prediction model 
upon external validation (considered 
a developmental study in this review). 
¶Validated the developmental study 
model (n = 2) or an existing model (n = 3). 
¥Excluded from the main qualitative 
analysis
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Records screened  Records excluded  

Full-text articles 
assessed for eligibility 

(n = 59)

Full-text articles excluded, with 
reasons:  

Not primary research paper (n = 10)  
No predictive score developed (n = 5)  

Outside outcome age (n = 6)  
Non-asthma outcome (n = 3)  

Single predictor models (n = 2)  
Non-English (n = 1) 
Reviews (n = 7) †

Relevant studies  
(n = 25)†

Studies included in this review (n = 28):

Model development studies  
(n = 15) ‡§

Model development and validation 
studies (n = 5) ‡¶

Independent validation studies (n = 4) ‡
Machine Learning models (n = 4) ¥

Records identified through database 
searches: 

MEDLINE (n = 918)
Embase (n = 2200)

Web of Science (n = 1069)

Total: (n = 4187) Duplicate records 
excluded 

Endnote (n = 849)
Manual (n = 355)

(n = 2983)

(n = 2983) (n = 2924)
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Asthma outcome definitions
Number of 
studies Study reference

1. Doctor diagnosis only 1 26

2. Symptoms only 1 41

3. Doctor diagnosis and symptoms 4 24,30,37,47

4. Doctor diagnosis and medication 2a  28

5. Symptoms and medication 2 44,46

6. Doctor diagnosis, symptoms and medication 1 42

7. Symptoms, medication and lung function testsb  5 27d,e , 25d,e , 
40e ,45d,e , 38c 

8. Doctor diagnosis, symptoms and lung function testsb  1 39c,e 

9. Doctor diagnosis, symptoms, medication and lung 
function testsb 

3 36c ,31c , 43d 

aThe asthma outcome for the mAPI was extracted from the m2API study which evaluated the 
model's performance. 
bLung function tests comprised of one or a combination of exercise tests (c), spirometry assessing 
reversibility to bronchodilators (d) and bronchial hyper-responsiveness to methacholine or 
histamine (e). 

TA B L E  2   Nine main classes of asthma 
definitions used among asthma prediction 
model developmental studies

TA B L E  3   Model performance of externally validated asthma prediction models

  Author
Population 
geography Risk group

Variation in 
predictors

Variation in 
outcome

Study size 
(prevalence, 
%)

Study asthma  
prevalence (%) Target age Prediction age Sensitivity (%) Specificity (%) PPV (%) NPV (%) LR+ LR− Discrimination

Loose 
API

Castro-Rodriguez et al24 USA General population     986 57.1 ≤3 6-13 41.6 84.7 59.1 73.2 2.72a  0.69a  -

Rodriguez-Martinez et al32 Colombia High risk - - 93 22.5 1-3 5-6 71.4 33.3 23.8 80 1.07 0.86 -

Leonardi et al35 UK General population ✓  - 1731 11.5 2-3 7 57 80 26 94 2.85a  0.54a  0.68

          1291 10.5 2-3 10 57 81 25 94 3.00a  0.53a  0.69

Devulapalli et al36 Norway General population ✓ ✓ 459 21.1 3 10 59.8 79 43.9 87.7 2.85a  0.51a  -

Stringent 
API

Castro-Rodríguez et al24 USA General population     1002 57.1 ≤3 6-13 15.7 97.4 76.6 68.3 6.04a  0.87a  -

Rodriguez-Martinez et al32 Colombia High risk - - 93 22.5 1-3 5-6 42.9 79.2 37.5 82.6 2.06 0.72 -

Leonardi et al35 UK General population ✓ - 1683 11.5 2-3 7 37 93 40 93 5.29a  0.68a  0.65

          1257 10.5 2-3 10 32 94 35 92 5.33a  0.72a  0.63

Caudri et al42 Netherlands High risk ✓ ✓ 1177 11.7 0-4 7-8 20 92 25 90 2.50a  0.87a  0.62

Devulapalli et al36 Norway General population ✓ ✓ 459 21.1 3 10 56.7 83 47.8 87.4 3.34a  0.52a  -

PIAMA Caudri et al42 Netherlands High risk     2171 11.1 0.4 7-8 19 97 42 91 6.33a  0.84a  0.74

Hafkamp-de Groen et al30 Netherlands High risk ✓ ✓ 2877 6.0 1-4 6 - - - - - - 0.74

Rodriguez-Martinez et al32 Colombia High risk - ✓ 123 53.6 1-3 5-6 54.5 78.9 75.0 60 2.59 0.58 -

PARC Pescatore et al44 UK High risk     1226 28.1 1-3 6-8 72 71 49 86 2.47 0.40 0.74

Grabenhenrich et al33 Germany High risk ✓ - 140 20.0 3 8 82 69 40 94 2.63 0.26 0.83

Pedersen et al34 UK High risk ✓ - 2690 14.0 1.5-3.5 7.5 69 76 32 94 2.87 0.41 0.77

PAPS Vial Dupuy et al43 France High risk     200 47.5 <2 6 42.4 89.6 66.7 75.9 4.06 0.64 0.66

Vial Dupuy et al43 France High risk - - 227 18.9 <2 13 62.8 67.4 31 88.6 1.93a  0.55a  0.65

PARS Biagini Myers et al39 USA High risk     589 16.1 ≤3 7 68 77 37 93 3.02 0.41 0.80

Biagini Myers et al39 UK General population ✓ ✓ 1098 - 2 10 67 79 36 93 3.25 0.41 0.79

																                          Note: Shaded rows: prediction models as reported in the developmental studies; unshaded rows: external validation studies. ✓Used altered  
																                          definitions in the external validation study compared to the original developmental study: predictors = exclusions or surrogate variables used;  
																                          outcome = variation in components used to determine asthma.
																                          Abbreviations: LR−, negative likelihood ratio; LR+, positive likelihood ratio; NPV, negative predictive value; PPV, positive predictive value.
																                         aLikelihood ratios calculated based on reported sensitivity and specificity as: LR+ = sensitivity/(1 − specificity), LR− = (1 − sensitivity)/specificity. 

(Continues)
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(mAPI), developed within a randomized clinical trial protocol, did 
not evaluate the model's performance.29 Performance measures for 
the mAPI were extracted from Chang et al's study28 which evalu-
ated and compared the mAPI to another modified API (m2API).28 The 
other two studies only reported single performance measures of 
population attributable risk37 and Nagelkerke R2.31

Discriminative ability was reported for 12 models and ranged 
between 0.66 and 0.87. Sixteen models reported sensitivity (range: 
15.7%-88%) and specificity (range: 62.3%-99%). PPV and NPV were re-
ported for 15 models, ranging between 12.4%-90% and 68.3%-97.2%, 
respectively. Likelihood ratios were reported for eight models and were 
derived for an additional eight models using reported sensitivity and 
specificity. The ability to rule in disease (LR+) ranged from 1.94 to 21 
while the ability to rule out disease (LR−) ranged from 0.13 to 0.87.

3.1.6 | Validation

Nine studies performed external validation: four validated the loose 
and/or stringent API, two validated PIAMA and PARC while PAPS 

and PARS were each validated once (Table 3). Upon validation, most 
models demonstrated a trade-off between improvements in sensi-
tivity at the expense of specificity, resulting in increased false posi-
tive predictions and a decline in PPV and LR+ estimates compared to 
their derivation models. While the PARS model showed comparable 
performance upon validation, only the PARC model demonstrated 
superior performance, with improvement in LR+ (2.47 vs 2.63) and 
AUC (0.74 vs 0.83) compared to the derivation model.

3.1.7 | Critical appraisal

The overall risk of bias was deemed high for all 21 models due to: 
(a) predictor and outcome bias (21 and 17 models, respectively), 
predominantly due to the subjective interpretation of their defini-
tions, particularly those based on parent-reported information; and 
(b) biased analysis due to an inappropriate number of candidate pre-
dictors, inappropriate handling of missing data, failure in reporting 
performance measures (eg calibration) or failure in treating models 
for potential overfitting or performance optimization as detailed in 

TA B L E  3   Model performance of externally validated asthma prediction models

  Author
Population 
geography Risk group

Variation in 
predictors

Variation in 
outcome

Study size 
(prevalence, 
%)

Study asthma  
prevalence (%) Target age Prediction age Sensitivity (%) Specificity (%) PPV (%) NPV (%) LR+ LR− Discrimination

Loose 
API

Castro-Rodriguez et al24 USA General population     986 57.1 ≤3 6-13 41.6 84.7 59.1 73.2 2.72a  0.69a  -

Rodriguez-Martinez et al32 Colombia High risk - - 93 22.5 1-3 5-6 71.4 33.3 23.8 80 1.07 0.86 -

Leonardi et al35 UK General population ✓  - 1731 11.5 2-3 7 57 80 26 94 2.85a  0.54a  0.68

          1291 10.5 2-3 10 57 81 25 94 3.00a  0.53a  0.69

Devulapalli et al36 Norway General population ✓ ✓ 459 21.1 3 10 59.8 79 43.9 87.7 2.85a  0.51a  -

Stringent 
API

Castro-Rodríguez et al24 USA General population     1002 57.1 ≤3 6-13 15.7 97.4 76.6 68.3 6.04a  0.87a  -

Rodriguez-Martinez et al32 Colombia High risk - - 93 22.5 1-3 5-6 42.9 79.2 37.5 82.6 2.06 0.72 -

Leonardi et al35 UK General population ✓ - 1683 11.5 2-3 7 37 93 40 93 5.29a  0.68a  0.65

          1257 10.5 2-3 10 32 94 35 92 5.33a  0.72a  0.63

Caudri et al42 Netherlands High risk ✓ ✓ 1177 11.7 0-4 7-8 20 92 25 90 2.50a  0.87a  0.62

Devulapalli et al36 Norway General population ✓ ✓ 459 21.1 3 10 56.7 83 47.8 87.4 3.34a  0.52a  -

PIAMA Caudri et al42 Netherlands High risk     2171 11.1 0.4 7-8 19 97 42 91 6.33a  0.84a  0.74

Hafkamp-de Groen et al30 Netherlands High risk ✓ ✓ 2877 6.0 1-4 6 - - - - - - 0.74

Rodriguez-Martinez et al32 Colombia High risk - ✓ 123 53.6 1-3 5-6 54.5 78.9 75.0 60 2.59 0.58 -

PARC Pescatore et al44 UK High risk     1226 28.1 1-3 6-8 72 71 49 86 2.47 0.40 0.74

Grabenhenrich et al33 Germany High risk ✓ - 140 20.0 3 8 82 69 40 94 2.63 0.26 0.83

Pedersen et al34 UK High risk ✓ - 2690 14.0 1.5-3.5 7.5 69 76 32 94 2.87 0.41 0.77

PAPS Vial Dupuy et al43 France High risk     200 47.5 <2 6 42.4 89.6 66.7 75.9 4.06 0.64 0.66

Vial Dupuy et al43 France High risk - - 227 18.9 <2 13 62.8 67.4 31 88.6 1.93a  0.55a  0.65

PARS Biagini Myers et al39 USA High risk     589 16.1 ≤3 7 68 77 37 93 3.02 0.41 0.80

Biagini Myers et al39 UK General population ✓ ✓ 1098 - 2 10 67 79 36 93 3.25 0.41 0.79

																                          Note: Shaded rows: prediction models as reported in the developmental studies; unshaded rows: external validation studies. ✓Used altered  
																                          definitions in the external validation study compared to the original developmental study: predictors = exclusions or surrogate variables used;  
																                          outcome = variation in components used to determine asthma.
																                          Abbreviations: LR−, negative likelihood ratio; LR+, positive likelihood ratio; NPV, negative predictive value; PPV, positive predictive value.
																                         aLikelihood ratios calculated based on reported sensitivity and specificity as: LR+ = sensitivity/(1 − specificity), LR− = (1 − sensitivity)/specificity. 

TA B L E  3   (Continued)
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the PROBAST checklist (Table 4). The 15 studies which used high-risk 
developmental populations presented with low risk of bias (assuming 
their intended use in settings similar to their developmental study) 
but high concern regarding applicability to a general population.

3.2 | Machine learning approaches

Four studies which utilized machine learning approaches to develop five 
prediction models for childhood asthma within a paediatric hospital pop-
ulation of diagnosed asthma patients were identified.48-51 These studies 
presented with ambiguity in their study design with regard to unclear 
predictor definitions, time points of predictor measurements and popu-
lation characteristics. Additionally, due to limitations of using an asthma 
diagnosis as a predictor, the small study size for machine learning ap-
plications, and signs of overfitting in the reported results, these studies 
were excluded from the main qualitative analysis. However, they are 
included in this review to highlight novel methodologies currently being 
explored for childhood asthma prediction (Table S5).

4  | DISCUSSION

This review identified 26 prediction models for predicting child-
hood asthma at school-age but none have been widely implemented 
into standard clinical practice. Only the API is mentioned in asthma 
management guidelines4 and has been utilized with caution (upon 
modification), in the recruitment of participants into clinical trials.29 
Against this background, a critical evaluation of these studies aimed 
to identify potential problems surrounding the lack of applicability 
of these models. The key issues centred on: the choice of population 

for model derivation and/or validation, predictor and outcome defi-
nitions, methodologies employed for predictor selection, methods 
of data collection, study power and the interpretability of models.

4.1 | Choice of population

The performance of any predictive model is highly dependent on its 
developmental setting and may not generalize well in alternative risk 
populations. Fifteen of the twenty-one regression-based models were 
developed in high-risk populations. High-risk populations, which have 
a higher asthma prevalence compared to the general population, are 
commonly used for model development in the hope of increasing the 
power for predictor selection and the detection of true asthmatics. 
However, such models may overestimate asthma risk within the gen-
eral population. At present, only PARS has assessed this and was able 
to show comparable predictive performance in high-risk and general 
populations. In contrast, the loose and stringent API, developed in a 
general population, demonstrated a substantial improvement in sen-
sitivity, although at the cost of increasing false positive predictions, 
when validated in high-risk populations (Table 3).

4.2 | Population-specific predictors

Most models were developed in European/predominantly 
Caucasian cohorts. Exposures specific to less developed countries, 
such as poverty and pollution, are typically not considered as impor-
tant predictors of asthma in these models due to inadequate repre-
sentation of such populations in the study cohorts.52 For example, 
Szentpetery et al initially developed a diagnostic model, identifying 

TA B L E  4   Critical appraisal of each study's risk of bias and applicability using the PROBAST checklist

 
Loose 
API24
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API24 mAPI29 m2API28 API + FeNO26 API + biomarkers27 ucAPI25 IOW41 RAST40 OAD36 OAD + IgE31 PIAMA42

Updated 
PIAMA30

Lødrup 
Carlsen et 
al38 PAPS43 PARC44 CAPS45

Boersma 
et al46

Szentpetery 
et al37

MAAS-
APT47 PARS39

Risk of bias

Participants L L H H H H H H H L L H H L H H H H L H H

Predictors H H H H H H H H H H H H H H H H H H H H H

Outcome H H H H H L H H H L L H H H U H H H H H H

Analysis H H H H H H H H H H H H H H H H H H H H H

Overall risk H H H H H H H H H H H H H H H H H H H H H

Concern regarding applicability

Participants L L H H H H H H H L L H H L H H H H L H H

Predictors L L L L L H L L L L L L L L L L L L L L L

Outcome L L L L L L L L L L L L L L L L L L L L L

Overall risk L L H H H H H H H L L H H L H H H H L H H

																                          Note: Risk of bias and applicability were assessed as: H = High risk, L = Low risk, U = Unclear risk using the criteria outlined in the PROBAST  
																                          checklist.23 For each domain, the risk of bias or concern of applicability is considered: high—if ≥1 signalling question in the PROBAST critical  
																                          appraisal criteria were answered “no” or “probably no”; low—if the answer to the signalling questions were all “yes”; unclear—if relevant information  
																                          was missing to answer the signalling question and none of the signalling questions were answered “no”. The overall risk of bias and applicability were  
																                          deemed low if all domains were evaluated as low risk, high risk if ≥1 domain was considered high-risk, and unclear if ≥1 domain was considered  
																                          unclear and all other domains were low-risk.(Continues)
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gun violence and an unhealthy diet as predictors of childhood 
asthma in a Puerto Rican population. However, when validated as a 
prediction model in a Swedish cohort, data for these two predictors 
were unavailable, potentially due to low concern for these risk fac-
tors in this population, and were excluded from the model.37

4.3 | Prediction window

Due to the transient nature of asthma-like symptoms in early life, 
the evaluation of clinical predictors from 4-5 years of age is more 
predictive of school-age asthma.8 However, for prediction models 
developed with the intention of preventing asthma development 
rather than targeting children for early therapeutic intervention, 
predictions made at 4-5 years may already be too late. Four models 
used predictor data available before age 231,36,38 but only one was 
externally validated.43 Lødrup Carlsen et al's model38 only used pre-
dictor data collected at birth; however, the need to perform neonatal 
lung function tests (rarely conducted outside of a research setting) 
greatly impairs its potential clinical applicability.

4.4 | Data collection

Most studies collected predictor information through parent-com-
pleted questionnaires, a method prone to recall bias and misclassi-
fications. A recent study identified that one third of parents change 
their answer after watching a recording of wheeze.53 Such under/
overestimations of parent-reported predictors can result in poor 
model performance compared to models using data collected from 
physicians, healthcare records or objective measurements.

4.5 | Predictor availability

Thirty-eight different predictors indicative of well-documented 
asthma risk factors were used across the 21 regression-based 
models. This variation reflects the inherent heterogeneity of 
childhood asthma across different populations and variability in 
predictor availability between studies. Sixteen models required ad-
ditional clinical tests, most commonly blood and skin prick tests 
(SPT) to determine a child's atopic status. These tests were the 
main amendment in four of the seven modified prediction mod-
els. Four other studies demonstrated that the addition of IgE as 
a predictor in their models improved predictive power compared 
to their models without IgE.31,40,45,46 One modification of the API 
included biomarkers of volatile organic compounds in exhaled 
breath condensate and gene expression27; despite ranking second 
in terms of AUC (AUC = 0.86, unboot-strapped AUC = 0.95), the 
use of this model is unlikely to be feasible outside of a specialist/
research setting. Models developed with predictors which are not 
readily available, or which require the use of additional healthcare 
resources, can be limited in their generalizability and potential clin-
ical implementation.

4.6 | Predictor selection

Methodology for the selection of predictors varied between 
the 20 regression-based studies. Models used either a priori 
knowledge,24,28,29 univariate analysis,24 multivariate regression 
analysis26,30 or a combination of univariate and multivariate re-
gression.25,41-42,46,47 Despite the latter two-stage combination 
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approach being an established method used across biomedical 
research, this method can introduce significant bias to the fea-
ture selection process due to inconsistencies between univariate 
and subsequent multivariate analyses.54,55 To address this, some 
studies adopted a stepwise backward or forward selection multi-
variate regression approach,27,37-40,45 and the PARC model56 uti-
lized LASSO (least absolute shrinkage and selection operator).57 
However, none of these studies address the issue of multicollinear-
ity between candidate predictors which can introduce noise and 
subsequently reduce model performance. Among the four machine 
learning studies identified, supervised and unsupervised machine 
learning algorithms were used for feature selection.48-51 Indeed, 
machine learning algorithms, particularly those such as random 
forest, recursive feature elimination and genetic algorithms, are 
more robust in handling the relatedness between predictors and 
may promote better predictor selection compared to regression-
based methods.57,58

4.7 | Outcome

Nine asthma outcome definitions were used across the 20 regres-
sion-based studies. This may have led to an artificial variation in the 
prevalence of asthma across studies influencing the construction, 
optimization and subsequent performance of predictive models. 
Childhood asthma is often considered an umbrella term describing 
a syndrome of different respiratory symptoms.3 As a result, models 
developed to predict childhood asthma are predicting a subjective 
entity. A consensus on an objective definition acceptable to the clini-
cal and research community is essential.

4.8 | Study power

Upon critical appraisal, at least eight studies were identified as 
lacking sufficient power to develop stable prediction models; 
these studies had a ratio of candidate predictors to total num-
ber of cases lower than recommended (at least 20 cases per 
candidate predictor) to achieve sufficient power.30,38,41-42,44-

45,47 Underpowered studies risk important predictors not being 
selected (under-fitting—Type II error), the incorrect selection of 
predictors (overfitting—Type I error) as well as the misrepresenta-
tion of the associated directionality between predictors and the 
outcome.59

Compared to traditional regression methods, machine learning 
approaches possess superior power and resolution for pattern rec-
ognition. By allowing a larger number of candidate predictors to be 
considered and being more robust to the relatedness between pre-
dictors, there is potential to identify novel predictors and exclude re-
dundant predictors which may have been previously overlooked by 
traditional predictor selection approaches.60-6260-62 Despite the po-
tential benefits offered by machine learning methods, the four ma-
chine learning studies reported to date remain underpowered.48-51 

Further studies are necessary to determine whether machine learn-
ing approaches can develop better performing asthma prediction 
models over regression-based methods.

4.9 | Validation

Models tend to perform best within their developmental popula-
tion. External validation studies, which assess the true performance 
of models in independent populations, are essential to assess the 
generalizability of a model. However, only six of the 21 identified 
regression-based models were externally validated. None of the 
five machine learning models were externally validated (Table 3). 
While the PARS and PARC models demonstrated comparable per-
formance when validated, the other models demonstrated poorer 
predictive performance, particularly in terms of PPV and likelihood 
ratios. This may be due to inconsistencies between the derivation 
and validation study designs, mainly with regard to the predictor/
outcome definitions and the exclusion or use of surrogate vari-
ables for unavailable predictor information (Table 3). Validation of 
all existing models within a single independent population using a 
single outcome definition is necessary to standardize inconsisten-
cies in study design and population effect to facilitate a compara-
tive analysis between models. However, this remains difficult in 
practice due to the need for a reference population of sufficient 
size with data available for all 38 predictors.

4.10 | Interpretability

At present, a quantitative evaluation of the performance of existing 
models is difficult as not all studies report the standard performance 
measures listed in Table 1. Discrimination (AUC) is often used to com-
pare the overall performance between models, with a discrimina-
tive threshold of 0.80 considered to identify a very good predictive 
model.63 Three developmental models reached this threshold but only 
one, PARS, was externally validated. The good generalizability of PARS 
(AUC = 0.79) has facilitated its transformation into an online interactive 
tool and mobile app for use by both physicians and parents.39

However, using discrimination alone to compare model perfor-
mance is inappropriate as models with similar AUC can show large 
variations in sensitivity and specificity. There is a clear trade-off 
between optimizing both of these performance measures, with 
no one model able to achieve both high sensitivity and specificity. 
Therefore, clear aims of whether a model intends to optimize to-
wards higher sensitivity or specificity for the future application of 
prevention or asthma symptom management, respectively, would 
benefit the evaluation of a model's predictive power and viability.63

Finally, the API and its modifications provide a dichotomous 
outcome of asthma risk, while the remaining regression-based 
models present asthma risk across a range of potential scores, 
often stratifying individuals into groups of low, medium or high risk. 
However, physicians are already able to make similar predictions 
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upon clinical assessment which may explain the lack of clinical 
uptake of existing models. The exploration of novel approaches, 
such as machine learning, for the development of prediction mod-
els with greater probabilistic resolution of an individual's asthma 
risk is warranted.

Yet, existing prediction models are not redundant—the use of 
well-performing, externally validated models should be considered 
for use in clinical trials to support the stratification of participants 
for inclusion or treatment allocation. These models are likely to offer 
superior predictions compared to trials currently utilizing the API29 
or, more frequently, parental history, to assess asthma risk.

5  | CONCLUSIONS AND FUTURE 
RECOMMENDATIONS

Based on the findings of this review, a number of key considerations 
are needed for the development of future prediction models.

5.1 | Study design and data availability

Improving model generalizability across all population settings could 
be achieved by standardizing predictor and outcome definitions 
across settings, and addressing issues of population bias and data 
availability. While the perfect solution would be to establish a single, 
general population, prospective cohort of sufficient size for model 
development with an independent reference population for valida-
tion, this is unrealistic.

Instead, studies should specify and closely match the devel-
opmental population of the model for its future application. Data 
should be collected using objective measurements and high-quality, 
standardized questionnaires with unambiguous descriptions which 
are consistent across both clinical and research settings. Where 
parental-reported data are used, clinical jargon should be decon-
structed and/or be supported by auditory or visual aids to minimize 
recall bias and misclassification wherever possible.

In addition, only easily derivable and commonly available clinical 
predictors should be used. While biomarkers can have high predictive 
power, their predictive benefit needs to be measured against the cost 
of test availability across different healthcare settings, patient/physi-
cian time and demand on healthcare resources. Yet, the exploration 
and identification of novel biomarkers, particularly in early life, may 
encourage the transition from asthma management to prevention.

5.2 | Isolating predictors for model development

Due to the heterogeneity of childhood asthma, a number of can-
didate predictors have been associated with childhood asthma. 
One approach to identifying predictors for model development 
is to isolate a subset of the most frequently used predictors from 
previous studies. For example, parental asthma, eczema, wheeze 

without cold, specific IgE, frequent wheeze, allergic rhinitis 
and sex have been used in at least a quarter of existing models. 
However, as previously discussed, population-specific influences 
and predictor selection methodological limitations exist in these 
studies. A better approach would be for future studies to utilize 
a robust predictor selection method (such as  recursive feature 
elimination), which is sufficiently powered and able to address 
the multicollinearity between predictors, in order to distinguish 
strong predictors from redundant variables within their specific 
population.

5.3 | Model development methodologies

The majority of existing studies have utilized regression-based 
methods and have developed a number of similar prediction mod-
els, few generalizing well in independent populations, and none 
widely implemented into clinical practice. Alternative methods such 
as machine learning approaches have advantages over these statis-
tical methods as already discussed, particularly with regard to ad-
dressing frequently overlooked concerns of predictor relatedness, 
distinguishing between predictive and redundant predictors, and im-
proving the resolution of predictions. Such methods have not been 
adequately implemented; hence, future studies using robust study 
designs are needed to assess their potential benefits for childhood 
asthma prediction.

Finally, it is crucial for any developed model to undergo exter-
nal validation within a population similar to its future application. 
Non-validated models are not clinically useful and are largely limited 
as exploratory studies. Reporting of all standard performance mea-
sures for both development and validation is necessary to evaluate a 
model's generalizability and subsequently promote its clinical appli-
cation for predicting school-age asthma.
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