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Abstract  

To study CO2 capture potential, n-methyl diethanolamine (MDEA) was used to prepare three 

types of transition-temperature mixtures (TTMs) by mixing methyltriphenylphosphonium bromide 

(MTPPB) as a hydrogen bond acceptor (HBA) and MDEA as a hydrogen bond donor (HBD) in 

molar ratios of 1:7, 1:10 and 1:16 HBA to HBD. Fourier transform infrared spectroscopy (FT-IR) 

results showed that TTMs have almost similar spectra to their HBD (MDEA) with different levels 

of transmittance and exhibit similar behavior. From the experimental results, it was found that the 

thermal stability, viscosity and surface tension of TTMs decreased as the concentration of MDEA 

in the mixture increased. According to response surface methodology (RSM) models and analysis 

of variance (ANOVA), temperature and molar ratio had a great effect on the viscosity and surface 

tension of TTMs. The final part of this research was the measurement of CO2 solubility in TTMs 

at 303.15 K at pressure up to 1.35 MPa. It was found that CO2 solubility in TTMs was enhanced as 

the MDEA quantity increased in the mixture up to 1:10 mole ratio. However, by increasing MDEA 

concentration to 16:1 mole ratio, there was a decreasing trend in the CO2 solubility data. Also, all 

TTMs, particularly TTM containing 10:1 mole MDEA (MTPPB-MDEA 1:10) exhibited an 

equilibrium loading capacity approaching 1 mole CO2 per mole solvent at high pressure, revealing 
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their high potential for CO2 capture. A comparison showed that the CO2 solubility in the studied 

solvents was higher than that of existing deep eutectic solvents (DESs) and other TTMs as well as 

several ionic liquids (ILs) to date. To the best of our knowledge, this is the first study to report the 

CO2 solubility in phosphonium-base TTMs containing MDEA. 

Keywords: Transition-temperature mixtures; Fourier transform infrared spectroscopy; 
Thermogravimetric analysis; viscosity; surface tension; CO2 solubility. 

 

 INTRODUCTION 

CO2 is the main greenhouse gas (GHG), which is released through human activities, for example, 

burning fossil fuels and deforestation, as well as natural sources (i.e. volcanic eruptions). According 

to Mauna Loa Observatory data, the emissions of CO2 have dramatically increased over the last 50 

years and atmospheric concentration reached values around 409.02 ppm in October 2019.1 The high 

CO2 concentration is leading to dramatic changes in global temperature and climate change. It is 

projected that if CO2 emissions are not reduced quickly, the global surface temperature might rise 2-

5 ℃ by the end of this century.2 Therefore, the influence of the steadily growing CO2 concentration 

released to the atmosphere has received increasing scientific attention. Carbon capture and storage 

(CCS) technology offers viable solutions to tackle problems related to emissions of GHGs.3,4 The 

first step in the CCS chain is the capture of CO2. There are several strategies to reduce CO2 

emissions: post-combustion, pre-combustion, oxy-fuel combustion, and electrochemical separation. 

Post-combustion capture can be regarded as the most straightforward technology among these 

available technologies.5 In this case, chemical absorption using amine-based solvents is the most 

suitable technology for reduction of CO2 emissions in industrial processes such us fossil fuels power 

plants, cement production, and iron and steel manufacturing.6-9 Amine-based chemical absorption 

technology was developed to remove CO2 about 70 years ago.10 There are, however, several inherent 

drawbacks related to using amine solvents which limit the use of amine-based technology, 

especially, the large energy requirements for solvent regeneration, formation of corrosive 
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byproducts, solvent losses and solvent degradation products,11-19 and these inherent drawbacks limit 

the use of amine-based technology. Therefore, the design of alternative solvents for CO2 removal is 

of high importance and researchers are trying to synthesize and explore new efficient solvents as 

alternatives to traditional CO2 absorbents. 

Among the many possibilities, ionic liquids (ILs), deep eutectic solvents (DESs) and transition-

temperature mixtures (TTMs) have been considered and attracted wide attention as potential solvents 

for CO2 capture. ILs have been proposed for many applications especially CO2 capture due to many 

unique characteristics; however, they suffer several disadvantages which have limited their use in 

large-scale industrial applications including potential toxicity, the creation of large amounts of waste, 

availability and cost issues, purification and complex reaction steps, poor biodegradability, high 

viscosity, and low CO2 loading capacity.20-23 

DESs and TTMs have emerged as possible alternatives to both conventional solvents and ILs. In 

2003, Abbott et al. explored DESs by a combination of a range of quaternary ammonium salts and 

urea.24 TTMs combining different natural carboxylic acids, amino acids, choline chloride, and other 

environmentally benign starting constituents were introduced by Francisco et al. in 2012.25 They 

have several solvent properties similar to ILs and some potential advantages over ILs, including low 

cost, easy preparation routes, good renewability, and low toxicity. The main differences between 

these solvents and ILs are: (1) DESs and TTMs can be prepared from non-ionic species in some 

cases; and (2) DESs and TTMs comprise both ionic and neutral species while ILs are entirely made 

of ions.26  

Both DESs and TTMs are composed of two or more components, namely hydrogen bond 

acceptors (HBAs) and hydrogen bond donors (HBDs) which can associate with each other through 

the hydrogen bonding interactions. The difference between these solvents is that TTMs show only a 

glass transition-temperature while DESs display not only glass transition temperature but also a 

freezing point in differential scanning calorimetry (DSC) curves.22,27,28 Because of the tunable 
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composition of TTMs, it is possible to control their physicochemical properties and phase behavior. 

Moreover, most TTMs have other advantages including a wide liquid range, low volatility, non-

flammability, biocompatibility, biodegradability and above all, easy preparation without further 

purification.27-29 TTMs have been used in different areas, for example, as the entrainers for extractive 

distillation,30 and simulation of ethanol-water systems separation,31 the antioxidant phenolics 

extraction from industrial cereal solid wastes,32 metal extraction,33 polyphenols extraction from 

Moringa oleifera leaves,34 and from olive leaves,35 biomass delignification,36,37 lignin 

modification,38 the electrodeposition of zinc,39 and CO2 capture.22,40  

In order to establish the possible use of TTMs in chemical engineering and industrial processes, 

it is necessary to know and collect their thermo-physical properties. To date, the thermo-physical 

characterization of TTMs is inadequate and there exist minimal data on these properties, particularly 

viscosity, surface tension, and thermal stability data; therefore, there is a need to collect thermo-

physical data for TTMs. On the other hand, CO2 solubility in DESs and TTMs is not very good. To 

overcome this limitation, synthesizing solvents with better CO2 absorption performance is also 

required. Since TTMs have tunable properties, it is possible to prepare new solvents using different 

amines as HBDs to improve CO2 absorption. Alkanolamines, for instance, monoethanolamine 

(MEA), diethanolamine (DEA), n-methyldiethanolamine (MDEA), and 2-amino-2-methyl-1-

propanol (AMP) are widely used in industries as sweetening agents. To investigate the possibility of 

improving CO2 solubility in TTMs, therefore, MDEA (a tertiary alkanolamine) was used. MDEA 

has several advantages such as a high CO2 loading capacity (1 mole CO2 per mole of MDEA), low 

energy requirement for regeneration, lower vapor pressure and corrosiveness, better thermal and 

chemical stability.41,42 Therefore, in this study, TTMs were prepared by mixing 

methyltriphenylphosphonium bromide (MTPPB) as HBA and MDEA as HBD in three molar ratios 

of 1:7, 1:10 and 1:16 HBA/ HBD. The main objectives of this study are: (1) analysis of the functional 

groups and hydrogen bonding; (2) investigation of fundamental thermo-physical properties of 
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solvents namely viscosity, surface tension, and thermal stability; and (3) measurement of CO2 

solubility. 

 EXPERIMENTAL SECTION 

Chemicals and Gases 

MDEA was purchased from Merck Sdn Bhd. MTPPB was supplied by Angene International 

Limited. CO2 and N2 as the purified gases were used in this research work. CO2 and N2 were 

purchased from Malaysian Oxygen Berhad and Malaysian Weld Gas Enterprise, respectively. Table 

S1 provides the details of pure chemicals and gases utilized in this research work. Table 1 presents 

the abbreviation of TTMs and their individual components together with the symbol, molecular 

weight, molar ratio, and glass transition temperature. The chemical structures of MTPPB and MDEA 

are shown in Fig. S1.  

 

Table 1 . The Composition and Tg of TTMs 

Solvent  HBA HBD Molar ratio Glass 
transition 
(Tg / oC) d 

Symbol MTTM 
a Abbreviation MHBA 

b
 Abbreviation MHBD 

c HBA HBD  

TTM1 148.920 MTPPB 357.22 MDEA 119.163 1 07 -100.33 
TTM2 140.805 MTPPB 357.22 MDEA 119.163 1 10 -100.54 
TTM3 133.166 MTPPB 357.22 MDEA 119.163 1 16 -101.39 
a Molecular mass of TTM in g.mol−1 (formula is available in the previous work).43 b Molecular 

mass of HBA in g.mol−1. c Molecular mass of HBD in g.mol−1. d Glass transition temperatures of 

TTMs were taken from previous work.28 

 

 

DES Preparation 

TTMs were synthesized easily according to the preparation process reported in the previous 

works.27,28 In brief, MTPPB (solid) as HBA was mixed with MDEA as HBD in three molar ratios 
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of 1:7, 1:10, and 1:16 HBA/HBD using a hot plate magnetic stirrer in sealed bottles and stirred at 

400 rpm and heated up to 373 K. After around 1 h, the solvents became homogeneous, uniform and 

stable with no precipitation. All solvents were kept in tightly-sealed bottles and a humidity-

controlled environment to prevent moisture and any contamination from the outside atmosphere. 

The TTMs were used without any further purification. 

Characterization 

In order to identify the transformations resulting from the formation of TTMs and analyze 

functional groups of TTMs, MTPPB, and MDEA, a Thermo Scientific™ Nicolet™ iS 10 FT-IR 

spectrometer (KBr disc, resolution 4 and apodization function of Norton-Beer) was employed at 

ambient temperature. The FT-IR spectra of samples were recorded at the wavenumbers from 4000 

cm-1 to 600 cm-1. 

For thermogravimetric analysis (TGA), a Perkin-Elmer (STA 6000) instrument was used to 

measure the thermal decomposition temperatures (Tdcp) of all samples with an accuracy of 

temperature control better than ±0.5 K. The samples were placed in a small pan under N2 

atmosphere with a flow rate of 20 mL.min−1 and heated at a rate of 10 K.min−1 in a temperature 

range from 298 K to 1100 K.  

A rotational automated viscometer Anton Paar Stabinger SVM3000 with cylindrical geometry 

was used for measurement of viscosity of TTMs and MDEA at atmospheric pressure. Further details 

on the instrument and measurement procedure are found in the literature.44,45 According to the 

manufacturer, it allows viscosity measurements over the temperature range from 243.15 to 

378.15 K, and in the viscosity range of 0.2 to 20 Pa.s. The viscosity meter was calibrated by the 

manufacturer, using several density and viscosity standard reference fluids. The uncertainty of 

temperature for the viscosity meter is ±0.02. The viscosities of HBD and TTMs were measured 

three times at atmospheric pressure and at temperatures ranging from 293.15 K to 353.15 K with 

an interval of 10 K. The final viscosity data are the average values of three measurements.  
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A video-camera based optical contact angle tensiometer (OCA 15 EC) was employed to 

determine the surface tension of TTMs and MDEA through a pendant drop method. The machine 

has a measuring accuracy of ±0.03 mN.m-1. Additional details about the instrument and 

measurement procedure are available elsewhere.46 The surface tensions of MDEA and TTMs were 

measured three times at atmospheric pressure and at temperatures ranging from 298.15 to 353.15 

K. The final surface tension data are the average values of three measurements. 

CO2 Solubility Measurement 

Pressure drop is an isochoric method commonly used for CO2 solubility measurement in the 

solvents.47,48 In this method, the solvent volume is maintained constant while the pressure in the 

equilibrium cell is monitored during CO2 absorption by the solvent. A high-pressure solubility cell 

(SOLTEQ BP-22) was employed to measure CO2 solubility in TTMs, as shown in Fig. S2. Details 

of this apparatus have been explained elsewhere.49-52 A set of equations (Eqs. (S1)-(S7)) was used 

to calculate the CO2 solubility,49,50,53,54 as presented in the Supplementary Material. 

Design of experiment (DOE)   

Design of experiment (DOE) is an effective method to manipulate a process as opposed to 

observing a process.55,56 Studying the influence of input factor(s) on the response(s) is highly 

important in a process. To do so, therefore, DOE was applied by selecting the user-defined option 

of response surface methodology (RSM). This efficient method of DOE can be also used for 

modeling and optimizing processes.15,16,28,49,57-59 This method was applied to study the effect of 

temperature (T/K) and HBA mass fraction (wHBA) as two important factors on the responses such 

as viscosity and surface tension of TTMs. Table S2 lists these input factors along with their 

respective levels. Tables S3 and S4 present the user-defined matrix for viscosity and surface 

tension, respectively. Three-dimensional (3-D) surface plots are created based on the developed 

regression models to study the effect of aforementioned factors on the responses. In this work, 
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Design Expert 10.0.4.0 was used to design the experiments and analyze the results. More detail on 

DOE is available in Supplementary Material (see Appendix A, section 2).  

 RESULTS 
 

FT-IR Analysis 

The FT-IR spectra of the individual constituents (MTPPB and MDEA) and prepared solvents 

TTM1, TTM2 and TTM3 are shown in Fig. S3 and Fig. 1, respectively. The hydrogen bonding 

interactions appear at the wavenumbers between 3800 cm-1 to 3100 cm-1. The hydroxyl group of 

HBDs favors the hydrogen bonding between the anion of HBA and HBD. As evident in Fig. S3, the 

peak at the wavenumber of 3312.30 cm-1 is associated with hydrogen bonding interactions in pure 

MDEA. After the formation of TTMs, this absorption band shifted to a weaker band. From Fig. 1, 

OH stretching bands occurred at the wavenumbers of 3325.42 cm-1, 3330.13 cm-1, and 3345.22 cm-

1 in TTM1, TTM2, and TTM3, respectively. Indeed, a blue shift of OH stretching bands was observed. 

This indicates that adding MTPPB to MDEA decreased the strength of hydrogen bonds in new TTMs 

compared with pure MDEA.  

On the other hands, the strength of hydrogen bonding between HBA and HBD increases by the 

fractional decrease in the OH covalent bonds wavenumbers. The wavenumbers of OH stretching 

vibrations in TTM1, TTM2, and TTM3 are 3325.42 cm-1, 3330.13 cm-1, and 3345.22 cm-1, 

respectively. Therefore, the lower OH stretching frequency in TTM1 indicates that the hydrogen 

bonds inside TTM1 are relatively stronger than those of TTM2 and TTM3.  

Since MDEA is a tertiary amine, there are no N-H stretching bands in the spectrum of MDEA 

as well as in the spectra of the TTMs. 

Normally, the bands at the wavenumbers of 2940-2915 cm-1 and 2870-2840 cm-1 are assigned to 

CH2 stretching bands, while the CH3 stretching bands appear in the vicinity of 2950-2975 cm-1 and 

2885-2865 cm-1. Since these bands are weak, they may not be distinguished in the spectrum.60-64 In 
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pure MDEA, theses aliphatic stretching bands occurred in the region from 2945.32 cm-1 to 2841.04 

cm-1, as depicted in Fig. S3. From Fig. 1, these vibrations can be observed at almost the same region 

from 2946 cm-1 to 2840 in the case of all TTMs. 

In tertiary amines, methyl and methylene groups next to the nitrogen atom result in bands at 2800 

cm-1.60 From Fig. S3, this C-N stretching band appeared at the wavenumber of 2798.31 cm-1 in the 

spectra of MDEA. The peaks at the wavenumbers of 2797.31 cm-1 for TTM1, 2795.95 cm-1 for TTM2, 

and 2795.53 cm-1 for TTM3 are ascribed to the C-N stretching band. 

The wavenumbers between 1100 cm-1 and 1030 cm-1 are associated with C-O stretching.65 For 

pure MDEA, the C-O stretching band occurred in two wavenumbers, 1031.89 cm-1 and 1078.46 cm-

1, as depicted in Fig. S3. According to Fig. 1, it is obvious that these vibrations occurred in two 

vicinities for all TTMs; 1031.37 cm-1 and 1077.86 cm-1 for TTM1, 1031.42 cm-1 and 1078.55 cm-1 

for TTM2, and 1032.17 cm-1 and 1077.99 cm-1 for TTM3. 
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Fig. 1.  FT-IR spectra for TTMs studied in this research work. 
 
 
 

Thermal Stability Results  

Fig. 2 displays the TGA curves of TTMs as well as their individual compounds. Generally, the 

Tdcp of HBAs is higher than that of HBDs.66 As seen from Fig. 2, MTPPB had a higher Tdcp than 

MDEA and it is obvious that there was only one decomposition step in TGA curves of pure 

components (MTPPB and MDEA), while two decomposition steps occurred in TGA curves for all 

TTMs; then, there are two onset temperatures (Tonset). As is clear in Fig. 2, the first Tonset in TGA 

curves was almost the same, about 473 K, indicating the Tdcp of MDEA. At the first decomposition 

step, TTM1 has a lower weight loss compared to TTM2 and TTM3. By continuing the heating at a 

constant rate, the second decomposition step can be observed. The TTM3 exhibited the lowest 
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second Tonset in the TGA curve. The second step is pertinent to the Tdcp of MTPPB because the HBA 

is more stable than HBD and decomposes later. 

Several researchers have used the Tdcp at 10% weight loss (T10%) as an accurate method to 

analyze the stability of materials.67-69 Because of two degradation steps, Tdcp at 90% weight loss 

(T90%) is also reported for better comparison. All TTMs had a T10% value of about 433 K. The values 

of T90% for TTM1, TTM2, TTM3 were 677 K, 663.24 K, and 625.03 K, respectively. Therefore, it 

can be interpreted that increasing the MDEA concentration in mixtures decreased their thermal 

stability. 

 
Fig. 2.  Dynamic TGA curves for single components and TTMs. Lines represent: 

(━) MDEA, (━) MTPPB, (━) TTM1, (━) TTM2, (━) TTM3. 
 
 

 
 

Viscosity Results 

The experimental viscosity data of MDEA and TTMs are summarized in Table S5, and shown 

in Fig. S4. From the data in Table S5 and Fig. S4, it is evident that the viscosity of MDEA is lower 

than that of TTMSs. Table S5 also presents a comparison between the viscosity of MDEA in this 

research work and the literature.70-72  The low average absolute deviation (%AAD) value of 0.1429 

indicates the consistency between experimental viscosity and literature data.73,74 
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According to ANOVA results presented in Table S6, both temperature and HBA mass fraction 

had a great effect on the viscosity, however, the effect of temperature was more significant than that 

of HBA mass fraction. Fig. 3 manifests three-dimensional (3-D) surface plots for viscosity was 

created based on the transformed quadratic model (see Table S6) As shown in Fig. 3, the viscosity 

data decreased upon decreasing the HBA concentration at any constant temperature.  Indeed, a larger 

quantity of HBD in the mixture resulted in increased OH stretching bonds; then the hydrogen 

bonding interactions became weaker. As a result, the viscosity of TTMs decreased. A similar result 

was observed in the previous work.46 Typically, as the temperature increased up to 323.15 K, the 

viscosity of TTMs decreased dramatically at any constant HBA mass fraction, further raising 

temperature did not have much effect on the viscosity. 46 

 

 

Fig. 3. 3-D plot of viscosity data against temperature and HBA mass fraction. 

The following empirical equation was used to correlate experimental η data:27,46,75 
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where T and ρ stand for temperature and density of TTM (available in previous work28), 

respectively; Ai is the fitting parameter; MTTM is molecular weight of TTM in g.mol-1.  

In addition to the above equation, several equations such as Arrhenius, Vogel-Fulcher-

Tammann (VTF), Andrade, Waterton, Seddon and Yaws were used to correlate the experimental 

viscosity with temperature, as mentioned in the Supporting Information. A Levenberg-Marquardt 

method based on the nonlinear least-squares algorithm was used to derive the fitting parameters of 

equations together with root mean square error (RMSE) and coefficient determination (R2) values, 

as presented in Table S7. The solid lines in Fig. S4 represent the calculated viscosity data via Eq. 

(1). As seen in Fig. S4 and Table S7, Eq. (1) suitably correlated the experimental viscosity data 

indicating high accuracy of this equation.  

The experimental η data were used to estimate the energy barrier (E, J.mol-1) of TTMs. If the E 

data is higher, the ions hardly move past each other, which can be inherently associated with the 

interactions occurring in the fluid.76,77 This is an indication of a highly viscous fluid. Eq. (2) was 

used for calculation of E:46 
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where E is the energy barrier of TTM in J.mol-1; η is the viscosity of solvents in mPa.s; T and R are 

temperature in K and the gas constant in J.mol-1. K-1, respectively; A1 and A2 are fitting parameters, 

as presented in Table S7. The calculated E data obtained from fitting parameters are set out in Table 

2. As Table 2 shows, the E values decreased moderately with an increase in temperature. Moreover, 

it is observed that TTM1 had a higher activation energy than the other studied TTMs indicating 

higher viscosity of this solvent.  
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By applying Eyring’s absolute rate theory, the viscosity of a liquid is expressed via:78-80 
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where V is molar volume of TTMs (and available in previous work28); h and NA stand for Planck’s 

constant and Avogadro’s number, respectively; R and T are the universal gas constant and 

temperature, respectively; and ΔG* is the molar Gibbs free energy of activation which was 

determined from Eq. (4): 
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Combining Eq. (4) with Eq. (3), the viscosity of liquid estimated as:   
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In Eqs. (4) and (5) ΔS* and ΔH* are the entropy and enthalpy of viscous flow, respectively. 

Depending on liquids, there is a linear relationship between R.ln (η.V/h.NA) and 1/T; then, ΔH* is 

obtained from the slope and ΔS* from the intercept. Here, however, there was a curvature by plotting 

R.ln(η.V/h.NA) vs. 1/T, as displayed in Fig. S5. These results show that ΔH* is not independent of 

temperature for DESs. Therefore, the following polynomial fitting equation was used to determine 

thermodynamic properties: 
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where β1, β2, and β3 are adjustment coefficients. 
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The ΔH* and ΔS* values were obtained by the following equations: 
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The ΔH*, ΔS* and ΔG*values are presented in Table 2. It can be seen from the data in Table 2 

that TTM1 has higher ΔH*, ΔS*, and ΔG* values than the other TTMs. It is evident that with an 

increase in the temperature and molar ratio of TTMs, these properties experienced an decreased 

trend in the value. The highest values of these activation parameters were observed at 293.15 K in 

the case of TTM1 while their lowest values occurred at 353.15 K for TTM3. 

A positive (+) ΔS* change means an increase in disorder. The positive values of ΔH* and ΔS* 

are in good agreement with those of DESs in the previous work.46 From Table 2, it can be found 

that the magnitude of ΔH* is higher than T.ΔS* values. This indicates that the energetic 

contribution, corresponding to ΔH*, is more significant than the entropic contribution terms to ΔG* 

values.81 Therefore, for these investigated systems in this study, it seems that the interactional factor 

is predominant over the structural one. 
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Table 2 . Energy Barrier (E /J.mol-1), Enthalpy of Viscous Flow (ΔH* /J.mol-l), Entropy of Viscous Flow (ΔS*/J.mol-l .K-1) and Molar Gibbs Free 

Energy (G* / J mol-1) for TTMs in this Research Work 

T (K) E (J.mol-1) ΔH* (J.mol-l) ΔS* (J.mol-l .K-1) G* (J mol-1) 

 TTM1 TTM2 TTM3  TTM1 TTM2 TTM3  TTM1 TTM2 TTM3  TTM1 TTM2 TTM3 

293.15 51355.4 49164.8 47135.5  51369.03 49168.08 47104.69  81.477 76.106 71.269  27484.1 26857.7 26212.1 
303.15 47856.4 45955.9 44199.8  47869.48 45958.84 44170.02  69.736 65.339 61.423  26729.1 26151.4 25549.5 
313.15 44581.0 42951.9 41451.6  44593.43 42954.56 41422.77  59.102 55.587 52.506  26085.7 25547.5 24980.6 
323.15 41508.2 40133.9 38873.4  41520.14 40136.23 38845.55  49.439 46.726 44.403  25543.8 25036.7 24496.7 
333.15 38620.0 37485.0 36450.1  38631.34 37487.08 36423.06  40.634 38.651 37.019  25094.1 24610.4 24090.1 
343.15 35900.0 34990.5 34168.0  35910.92 34992.34 34141.75  32.587 31.272 30.271  24728.6 24261.3 23754.2 
353.15 33334.2 32637.3 32015.1  33344.56 32638.88 31989.64  25.214 24.511 24.088  24440.1 23982.9 23482.8 
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Surface Tension Results 

Table S8 presents the surface tension (γ) data of MDEA and TTMs and Fig. S6 depicts these 

data as a function of temperature. From the data in Table S8 and Fig. S6, TTMs had a lower surface 

tension value than MDEA. Table S8 also compares the γ of MDEA in this research work and the 

literature. The low %AAD value of 0.2303 indicating a well agreement between experimental γ and 

literature data.  

The experimental γ values were correlated using Eq. (9): 
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where ρ and MTTM represent the density and molecular weight of TTM, respectively; T is the 

temperature in K, and Ai is the fitting parameter. The solid lines in Fig. S6 are the calculated surface 

tension data using Eq. (9). Table S9 lists the fitting parameters, RMSE and R2. From the correlation 

results shown in Table S9 and Fig. S7, it is clear that Eq. (9) can correlate the experimental γ data 

satisfactorily and suitably with R2 of more than 0.99. 

The main factors which have a great effect on γ data are temperature and hydrogen bonding 

between HBA and HBD. Hydrogen bonds provide higher γ to a liquid. Table S10 presents the 

ANOVA results for surface tension response. According to the ANOVA results, although both 

temperature and HBA mass fraction were highly significant with a p-value of less than 0.0001, 

temperature had a higher effect on the surface tension of TTMs. The effect of temperature and HBD 

mass fraction on the surface tension is illustrated in Fig. 4. It is obvious from Fig. 4 that as the 

temperature increased the γ values decreased linearly due to the disruption of hydrogen bonds in 

the liquids. There was a decreasing trend in the surface tension data as the HBA mass fraction (the 

ATPPB concentration) decreased in the mixture. As mentioned earlier, the hydrogen bonding 

between HBA and HBD was more strong in the case of TTM1, therefore, it is expected to have a 
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higher surface tension in comparison to TTM2, and TTM3 over the temperature range. These results 

are in good agreement with previous results reported for DESs.46 

 

Fig. 4. 3-D plot of surface tension data against temperature and HBA mass fraction. 

 

In order to understand the interactions between different components, the derived surface 

thermodynamic properties including surface entropy (Sγ) and internal surface energy (Uγ) are 

important.46 Then, Gibbs-Helmholtz expressions were applied to obtain the surface thermodynamic 

properties:46 
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where Sγ and Uγ represent the surface entropy and internal surface energy, respectively; P and T are 

pressure and temperature, respectively. In order to evaluate the Sγ and Uγ, the experimental γ values 
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were linearly fitted with respect to T. As presented in Table 3, the Sγ values of all TTMs are very 

close to each other and remarkably low, particularly when these values are compared with traditional 

molecules (i.e. alcohols and water ),82 as well as some DESs.46 There are increasing trends on the Sγ 

values with increasing molar ratio of TTMs. Similar results were reported in the case of DESs.46  

It is evident from Table 4 that with an increase in the temperature and molar ratio (or moles of 

HBD), the Uγ values of the TTMs decreased; hence, TTM1 had higher Uγ values than TTM2 and 

TTM3 over the entire temperature range studied here. 

 

Table 3 . The Derived Surface Entropy (Sγ/mJ.m-2.K-1) of 

TTMs Using Eq. (10) along with RMSE and R2 Values 

Solvent Sγ (mJ.m-2 .K-1) RMSE R2 

TTM1 0.03975 0.0225 0.9994 

TTM2 0.04841 0.0267 0.9994 

TTM3 0.05096 0.0262 0.9995 

 

 

 

Table 4 . The Derived Internal Surface Energy (Uγ/ mJ.m-

2) of TTMs Using Eq. (11) at Several Temperatures 

T (K) TTM1 TTM2 TTM3 

293.15 31.21 28.37 26.80 

303.15 30.82 27.82 26.29 

313.15 30.03 26.84 25.24 

323.15 29.22 25.89 24.24 

333.15 28.40 24.93 23.17 

343.15 27.67 23.97 22.22 

353.15 26.83 23.01 21.19 
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3.1 Estimated critical temperatures 

Since many corresponding state correlations include the critical temperatures (Tc), calculation of 

this thermo-physical property is highly important. Several approaches have been reported for 

prediction of the Tc in the literature, namely the Valderrama, Robles, Eötvos and Guggenheim 

relations.83-87 A result reported by Freire et al. showed that using Robles and Valderrama relations 

are unreliable for estimating the Tc of some imidazolium-based ILs.83 Therefore, in this research 

work, Eötvos and Guggenheim relations were applied to estimate the Tc of TTMs, as given below:46 

Eötvos equation: 
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where V is the molar volume of TTMs in g.cm-3 which is determined from V=MTTM/ρ (MTT and ρ are 

the molecular weight and density of TTM, respectively); γ0 and Tc are an empirical parameter 

characteristic of the TTMs and the critical temperature, respectively. Since 11/9 is close to 1, Eq. 

(13) is simplified to γ = γ0- γ0T/Tc. Therefore, by raising the temperature, the γ data will decrease and 

go linearly to zero at a critical point.88 Finding the γ and ρ data at the same experimental conditions 

in the literature is the main limitation of using Eötvos equation. Table 5 lists the calculated Tc values 

of TTMs by the Eötvos and Guggenheim equations. The Tc of MDEA is 667.5 K and is lower than 

all the TTMs. Therefore, as MDEA concentration increases in the mixture, Tc values of liquids 

decreases towards Tc of MDEA, as presented in Table 5. TTM1 had a higher Tc value than TTM2 and 

TTM3 due to the strongest hydrogen bonds in TTM1.  
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As seen from Table 5, there is a difference between predicted Tc of TTMs using the Eötvos and 

Guggenheim empirical equations. Therefore, it is important to understand the reliability and 

accuracy of these equations and to investigate which calculated Tc is reliable. To do so, the modified 

Rackett equation was employed as given below:46 

 )14 ( ]).(1[lnlnln n
CT/Tbaρ                                                    

where ρ is the density of TTMs in g.cm-1; Tc is critical temperature in K; a, b, and n represent 

regression coefficients. Table S11 lists all coefficients along with R2 and RMSE. According to the 

data in Table S11, although there is good agreement between calculated and experimental density 

data using calculated Tc by both Eötvos and Guggenheim equations, using Guggenheim equation for 

calculating Tc of TTMs is slightly more accurate than Eötvos equation. The same results were 

achieved for DESs.46  

 

Table 5 . Estimated Critical Temperatures (Tc / K) Using Equations of Eötvos and 

Guggenheim along with RMSE and R2 Values 

  Eötvos equation, Eq. (12)  Guggenheim equation Eq. (13) 

Solvent  Tc (K) R2 RMSE  Tc (K) R2 RMSE 
TTM1 2317 0.9977 0.604 1616 0.9994 0.0093 
TTM 2 1735 0.9987 0.607 1372 0.9995 0.0105 
TTM 6 1603 0.9988 0.612 1299 0.9995 0.0105 

 

CO2 Solubility in TTMs 

Table 6 provides the data on CO2 solubility in solvents at 303.15 K and pressure up to 1.35 MPa 

are presented in. As can be seen from Table 6, by increasing the pressure, the CO2 solubility in 

TTMs increased, as is typically expected for gas solubility in liquids. The most striking result to 

emerge from the data in Table 6 is that there was no direct relationship between molar ratio and 

CO2 solubility and no increase in CO2 solubility was detected for solvent with molar ratio 1:16. 

According to Table 6, the CO2 solubility in TTMs followed this order: TTM2>TTM1>TTM3. 
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Indeed, by increasing the amount of MDEA in mixtures, the CO2 solubility increased in TTM2 and 

then decreased in TTM3. Therefore, TTM2 exhibited a higher CO2 absorption compared with TTM1 

and TTM3.  

A number of studies have examined the effect of increasing quantity of amines as HBDs in 

mixtures on CO2 solubility. Ali et al. stated that increased MEA moles in MTPPB-MEA mixture 

decreased the CO2 solubility in this DES.89 However, other researchers have reported different 

stories. Adeyemi et al. measured the CO2 solubility in a mixture of choline chloride-MDEA (ChCl-

MDEA) in different molar ratios of 1:6, 1:8 and 1:10 at 313.15 K.90 Their results showed that by 

increasing the quantity of MDEA in the mixture, CO2 absorption increased. They did not investigate 

the CO2 solubility in higher molar ratios of ChCl-MDEA mixture (for example 1:16). A similar 

result was reported by Sarmad et al. who measured CO2 solubility in tetrapropylammonium 

chloride-ethanolamine in molar ratios of 1:4 and 1:7 HBA/HBD and tetrabutylammonium bromide-

ethanolamine with two molar ratios of 1:6 and 1:7 HBA/HBD.91  The CO2 uptake in several DESs 

was reported by Shukla et al. who used monoethanolammonium chloride, 1-methylimidazolium 

chloride and tetra-n-butylammonium bromide as HBAs and  ethylenediamine (EDA) and 3-amino-

1-propanol (AP) as HBDs with molar ratios of 1:1, 1:2, 1:3, and 1:4 HBA to HBD.92 Their results 

revealed that CO2 uptake was improved by increasing the molar ratio of HBA/HBD from 1:1 to 

1:4. They also did not report the CO2 uptake at higher molar ratios of DESs.  

On the other hand, the same mixtures of MEACl-EDA with the same molar ratios of 1:1, 1:2, 

1:3, and 1:4 HBA to HBD were prepared by Trivedi et al. for CO2 capture. 93 After 3 hours, MEACl-

EDA 1:3 ratio exhibited the highest CO2 uptake (mole CO2/mole solvent) at 303.15 K compared 

with other DESs. Unlike the result obtained by Shukla et al.,92 they pointed out that there is no 

direct relationship between CO2 solubility and molar ratio and an increase in EDA concentration in 

the mixture (4-mole) had a negative effect on the CO2 uptake so that it decreased slightly. Therefore, 
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in light of the above-mentioned findings, it can be inferred that there is no direct relationship 

between increasing the fraction of amine as HBD in the mixture and increasing CO2 solubility. 

It is elucidated from Table 6 that the CO2 loading capacity (����) of TTM increased with an 

increase in MDEA concentration up to 10:1 mole ratio, and further increase in MDEA concentration 

suppressed the ���� of TTM. Like MDEA, these solvents had an equilibrium loading capacity 

approaching 1 mole CO2 per mole TTM at higher pressure. This indicates that the nature of HBD 

plays an important role in the CO2 solubility process because MDEA has a high CO2 loading 

capacity.  

Table 6 . The CO2 Solubility Results at 303.15 in 

this Research Work 

Solvent EP  (MPa) ����  ���� 

TTM1    

 0.660 0.4090 0.6919 

 0.826 0.4333 0.7646 
 1.009 0.4525 0.8266 
 1.351 0.5052 1.0211 
TTM2     

0.597 0.3934 0.6484 
 0.797 0.4284 0.7494 
 0.896 0.4525 0.8264 
 1.230 0.5131 1.0539 
TTM3    

 0.615 0.3816 0.6172 
 0.816 0.4234 0.7343 
 0.982 0.4396 0.7845 
 1.243 0.4821 0.9311 

 

A comparison between CO2 solubility in ILs and DESs and that in TTM2 is shown in Fig. 5. To 

do so, CO2 solubility data were collected in trihexyltetradecylphosphoniump [THTDP]-based IL  

with anion of bis(trifluoromethyl)sulfonylimide ([NTf2]−) and several imidazolium-based ILs 

containing cations such as 1-ethyl-3 methylimidazolium ([C2mim]+), 1-(2-hydroxyethyl)-3-

methylimidazolium ([C6mim]+) and 1-octyl-3-methylimidazolium ([C8mim]+) and different anions, 
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for instance, [NTf2]−, hexafluorophosphate ([PF6]−), trifluoromethanesulfonate ([OTf]−), 

tetrafluoroborate ([BF4]−), ethylsulfate ([EtSO4]−), and bis(trifluoromethyl)sulfonylimide ([NTf2]−) 

as well as two types of phosphonium-based DESs comprising HBA of  allyltriphenylphosphonium 

bromid (ATPPB) different HBDs of TEG and DEG. 50,94-99 As can be seen from Fig. 5, the solvent 

studied in this research work, TTM2, exhibited higher CO2 solubility in comparison to ILs and 

DESs. So far, in the literature, solvents amongst DESs and TTMs with better CO2 absorption 

performance than solvents studied here cannot be found. 

 
Fig. 5. A comparison of CO2 solubility in TTM2 in this research work with that in ILs and 

DESs at 303.15 K. Symbols are: (♦) TTM2; (□) ATPPB-TEG 1:4;50 (○) ATPPB-DEG 1:4;50 

(#) [THTDP][NTf2];94 () [C6mim][BF4];95 (–) [C6mim][OTf];96 () [C6mim][PF6];96 (*) 

[C8mim][PF6];97 (∆) [C2mim][EtSO4];98 and (◊) [C8mim][NTf2].99 

 

 

 CONCLUSIONS 

In this research work, new transition-temperature mixtures were synthesized for CO2 capture by 

mixing MTPPB as a HBA and MDEA as a HBD in three molar ratios of 1:7, 1:10, and 1:16 HBA 

to HBD. Since these solvents are new, collecting the fundamental thermo-physical data is 
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necessary. The FT-IR analysis showed that TTMs had similar spectra and chemical compositions 

with different levels of transmittance. Moreover, it was found that solvent containing lower MDEA 

concentration had a lower wavenumber of OH stretching vibration. Thermal stability results 

disclosed that as the MDEA concentration in the mixture increased the thermal stability of TTMs 

decreased towards the lower thermal stability of MDEA. The viscosity and surface tension of 

solvents and MDEA were measured at atmospheric pressure and temperature up to 343.15 K. It 

was observed that, with an increase of temperature and addition of MDEA in mixtures, both 

viscosity and surface tension of TTMs decreased. Experimental viscosity values were used to 

calculate activation parameters of TTMs based on Eyring’s absolute rate theory such as molar Gibbs 

free energy of activation, the enthalpy, and entropy of viscous flow. The experimental surface 

tension data were used to calculate the critical temperatures of TTMs and their surface 

thermodynamic properties such as surface entropy and internal surface energy. The result indicated 

that TTM1 had higher critical temperatures because of strong hydrogen bonding. In order to study 

the effect of temperature (T/K) and HBA mass fraction (wHBA) on the viscosity and surface tension 

of TTMs, a response surface methodology (RSM) was applied and the results revealed that both 

factors had a significant effect on the studied properties. Finally, CO2 solubility data showed that 

TTM2 exhibited the highest CO2 absorption amongst all TTMs studied here at 303.15 K and had an 

equilibrium loading capacity of 1 mole CO2/mole TTM at a pressure of 1 MPa. The present research 

work demonstrates that these studied solvents possess a greater affinity for CO2 and higher CO2 

absorption performance compared with other TTMs and DESs reported in the literature up to now 

and they can be regarded as solvents with high potential for CO2 capture. 
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