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Abstract 

The concept of biorefinery expands the possibilities to extract value from organic matter either in 

form of bespoke crops or organic waste. The viability of biorefinery schemes depends on the 

recovery of higher-value chemicals with potential for a wide distribution and an untapped 

marketability. The feasibility of biorefining organic waste is enhanced by the fact that the 

biorefinery will typically receive a waste management fee for accepting organic waste.  
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The development and implementation of waste biorefinery concepts can open up a wide array of 

possibilities to shift waste management towards higher sustainability. However, barriers 

encompassing environmental, technical, economic, logistic, social and legislative aspects need to be 

overcome. For instance, waste biorefineries are likely to be complex systems due to the variability, 

heterogeneity and low purity of waste materials as opposed to dedicated biomasses. This article 

discusses the drivers that can make the biorefinery concept applicable to waste management and the 

possibilities for its development to full scale. Technological, strategic and market constraints affect 

the successful implementations of these systems. Fluctuations in waste characteristics, the level of 

contamination in the organic waste fraction, the proximity of the organic waste resource, the 

markets for the biorefinery products, the potential for integration with other industrial processes and 

disposal of final residues are all critical aspects requiring detailed analysis. Furthermore, 

interventions from policy makers are necessary to foster sustainable bio-based solutions for waste 

management. 

Keywords: organic waste; biorefinery; pre-treatment; biological processes; thermal processes; 

implementation 
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1. Introduction 

Organic waste treatment has traditionally been based on layouts involving a single bioprocess such 

as composting or anaerobic digestion, and in some cases a combination of the two (Ma and Liu, 

2019; Cossu, 2009). Composting is a simple process that can be implemented for solid organic 

waste with relatively small capital investments. The composting process, however, involves an 

energy-intensive treatment due to the need for forced aeration; at the same time, the marketability 

of the final product may be limited due to very low market prices or lack of acceptance from final 

users (e.g. farmers) if compost quality is compromised by the presence of contaminants (e.g. high 

metals concentration) or undesired components (e.g. plastics) (Cattle et al., 2020; Asquer et al., 

2019). Anaerobic digestion has been increasingly practised over the last two decades for the 

treatment of both solid and liquid municipal and industrial organic residues, with economic 

incentives coming from government policies being key drivers for process implementation. Such 

incentives stimulate the production of electric energy, thermal energy or biomethane from biogas as 

a renewable resource to be exploited beyond the plant boundaries (Kapoor et al. 2019; Kougias and 

Angelidaki, 2018; De Gioannis et al., 2017). The total installed electric capacity of anaerobic 

digesters in Europe has almost tripled during the last ten years (from 4158 in 2010 to 10532 MW in 

2017; EBA, 2018), contributing to achieve renewable targets for energy production in many 

countries (e.g. the energy roadmap defined by the EU; European Commission, 2011). 

In a world with finite resources, waste or residues, including organic waste, must be considered as 

sources of secondary raw materials. Currently, recovery of the organic waste “value” is obtained in 

the form of only a few products, e.g. biogas, compost, and nutrients in the liquid phase of the 

digestate. These have a relatively low economic value, often supported by incentives for the 

production of renewable energy granted by environmental and energy policies adopted in some 

countries (Clarke, 2018). 

 A shift to renewable resources (e.g. green hydrogen, biofuels, bioplastics) (Papież et al., 2018, 

Carley and Browne, 2013; Lu et al., 2013),  driven by businesses and the general public looking to  
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implement circular economy principles, (Sarc et al., 2019; Walmsley et al., 2019; Vrancken et al., 

2017) has changed the perception of organic waste. Organic waste materials are now seen as readily 

available and widely distributed and flexible renewable resource (Ma et al., 2018; Girotto et al., 

2015; Diacono and Montemurro, 2010). This has moved the frontiers of organic waste management 

towards more ambitious and articulated targets that may be fulfilled by the implementation of the 

waste biorefinery concept.  

A number of definitions exists for biorefinery (Schieb et al., 2015) but in essence all refer to a 

series of processes converting biomass into chemicals, material and fuels (Schieb et al., 2015; 

Dubois, 2012; Cherubini et al., 2009). An organic waste biorefinery can therefore be an evolution 

of the biorefinery notion to include waste as an alternative to dedicated biomass or to introduce a 

management practice enhancing the recovery of value from organic waste. The concept has raised 

great interest in the last years as technologies to recover value from waste feedstocks have been 

improved ensuring its environmental and economic sustainability (Cristóbal et al., 2018; Go et al., 

2019). The range of products from a biorefinery receiving organic waste may be limited by the 

variability of the waste stream, but organic waste can also be homogeneous waste such as 

agroindustrial by-products or surplus materials which can be as defined as dedicated crops (Caldeira 

et al., 2020). In this paper, the terms organic waste or waste feedstock were used in the broadest 

sense to include any biogenic waste, effluent, by-product and production surplus (Fava et al., 2015; 

Coma et al., 2017). 

The aim of this paper is to (i) provide an overview of the framework and context that organic waste 

biorefineries are viable, (ii) discuss critical aspects associated with future implementation, and (iii) 

develop recommendations for suitable configurations of organic waste biorefineries. 

 

2. Scope and boundary conditions for organic waste biorefineries 

The purpose of waste biorefineries is to exploit the potential of organic residues from different 

sources to generate a range of bioenergy, biofuel and biochemical products (Cherubini et al., 2010). 
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Waste biorefineries offer platforms for integrated utilisation of a wide range of resources in organic 

waste. The development and implementation of the waste biorefinery concept offer a range of 

economic, environmental, social and political benefits: 

- stimulate the engagement of local communities to promote and apply sustainable waste 

management strategies; 

- provide a profitable alternative solution for waste management in areas with growing urbanisation; 

- support the implementation of circular economy principles; 

- reduce the pressure on non-renewable resources; 

- help diversify sources of strategic supply and decrease dependence on imported resources; 

- promote distributed production systems and sustain regional and rural development; 

- contribute to mitigate climate change impacts by providing useful products and off-setting the use 

of fossil carbon. 

The general concept of a biorefinery has evolved driven by three pivotal aspects: (i) synergism with 

other industries; (ii) economic sustainability; (iii) environmental sustainability (Muntoni, 2019; 

Akhlaghi et al., 2016). 

 

2.1. Underlying principles of waste biorefineries 

The cascading approach involves the flexible and sequential integration of different biological, 

chemical and/or thermal processes aimed at producing a mix of biofuels and biomolecules to 

maximise production yields and incomes (Olsson et al., 2016). To this aim, both the direct and the 

inverse cascading approach may be implemented depending on whether bioenergy generation is 

downstream or upstream of  biomaterials production (Poggi-Varaldo et al., 2014). The integration 

of processes for both cascading approaches depends on technical feasibility, economic 

sustainability, market conditions, environmental issues as well as local needs and constraints, and 

leads to a specific array of biofuels and biomaterials (Maina et al., 2017). Increasing the range of 

output products is expected to impact the achieved level of waste recovery preventing organic waste 
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from being disposed to landfill or open dumps. The flows that are diverted from landfill would need 

to meet quality and technical standards specific to the biorefinery.  Compared to a conventional 

biorefinery, a waste biorefinery would, therefore, involve an additional layer of complexity due to 

the variability, heterogeneity and low purity of waste materials as opposed to dedicated biomasses 

(Duan et al., 2020; Ubando et al., 2020; Sadhukhan and Martinez-Hernandez, 2017).   

The alternative of using suitable organic waste as is without processing must always be considered, 

such as the application of non-putrescible crop residues on land or the use of clean food waste as 

animal feed (Caldeira et al., 2020; Cristobal et al., 2018; Matharu et al., 2016). 

 

2.2. Technical and economic sustainability 

From the technical and economic viewpoint, the main challenges involved are: (i) mitigating the 

impacts that the fluctuations in waste composition and characteristics can have on the array of 

processes adopted in a biorefinery (Matharu et al., 2016); (ii) arranging an integrated set of suitable 

waste materials as the feedstock to maximise the final product yield and quality (Roni et al., 2019); 

(iii) determining the optimal size of the system which can range from high-performance, multi-

feedstock installations to decentralised, more specialised systems with a reduced number of 

platforms (Galanopoulos et al., 2020; Roni et al., 2019); (iv) integrating the system with other 

industries to allow for improved circulation of materials and energy (Caldeira et al., 2020); (v) 

accommodating for fluctuating market demands and price volatility of products (Duan et al., 2020). 

Organic waste feedstocks mainly consist of agricultural and forestry waste, food processing waste 

and effluents, sludges, yard and organic household waste. Such diversified materials contain 

valuable amounts of proteins, sugars, lipids, fibres, vitamins and bioactive agents (antioxidants and 

antimicrobial agents, enzymes) that are worth recovering. Through specific combinations of 

treatments followed by proper separation and purification procedures, pigments, pharmaceuticals, 

flavours, organic acids, biopolymers, biofuels and soil improvers can be extracted or produced 

(Fava et al., 2015).  
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Organic wastes represent a plurality of substrates having different characteristics and whose 

availability changes significantly over time. In general, post-consumer organic waste is 

heterogeneous but less affected by seasonal availability, while waste at the food processing stage is 

more homogeneous but affected by seasonality (Cristóbal et al., 2018). Differences in origin and 

characteristics as well as seasonality drive production strategies, design, operation, and logistic 

choices for a biorefinery.  

The treatment train could be potentially designed to match and buffer variations. For example, 

biorefineries might be designed to switch between seasonal feedstocks  or use mixed supplies rather 

than a single source. Seasonal flow can also be buffered using air-tight storage and preservation 

techniques such ensiling or bio-drying. The synthesis of these various approaches to manage 

seasonal waste would arguably require a combinatorial problem-solving approach (Pyrgakis and 

Kokossis, 2019). 

Transportation of the waste feedstocks to the biorefinery is another main logistic issue. Whilst more 

attention is usually given to the choice of the value recovery processes, the feasibility analysis 

should include also the management of the supply-chain (Caldeira et al., 2020). Matching 

generation points and biorefinery location is a key factor that affects the viability of a biorefinery. 

In this respect Cristóbal et al. (2018) considered two diametrically opposite scenarios while 

performing a techno-economic and profitability analysis of four food waste biorefineries for tomato, 

potato, orange, and olive processing waste. Fewer large biorefinery plants co-located with the food 

processing plants would be effective for processing wastes from harvested goods, but would not 

represent the optimum transport solution for harvesting wastes and rejects, while, a strategy based 

on numerous smaller plants would minimise the transport costs for these in-farm wastes. The 

analysis stressed that few large plants would be the most profitable scenario as this allows for 

concentrated production, takes advantage of economies of scale,  and simplifies transport logistics 

(Cristóbal et al., 2018). An economic analysis on a biorefinery treating citrus waste for the recovery 

of limonene, ethanol and biogas was performed by Lohrasbi et al. (2010).  
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The ethanol production cost proved to be sensitive to the feedstock transportation costs. Increasing 

the transport cost from approximately 9 to 27 €/ton resulted in ethanol cost rising from 0.8 to 1.3 

€/L, a feature reported also by Satari and Karimi (2018). The economic feasibility of biorefineries 

for food processing waste is enhanced if the bio-refinery is co-located with the food processing 

plant, eliminating transport as a cost for the biorefinery (Caldeira et al., 2020). 

 

2.3. Environmental sustainability 

Waste management schemes are characterised by environmental impacts associated with the 

activities and technologies within the system, i.e. the handling and processing of waste materials. 

The outputs recovered or produced from waste contribute to the environmental savings by offsetting 

the demand for other resources. For a waste biorefinery to be environmentally sustainable, the 

environmental “value” of these outputs has to be higher than the “effort” invested in providing the 

outputs. More specifically, it is necessary to assess whether the use of organic waste as a starting 

material is less resource-demanding than the manufacturing of the same products from virgin 

materials (Cristóbal et al., 2018). The environmental performance of a  biorefinery will depend on 

the regional settings and whether simpler alternatives  such as composting or anaerobic digestion 

have equal or greater environmental benefit. As such, a wide range of aspects are important when 

assessing the environmental sustainability of a waste biorefinery, e.g. the (i) feedstock availability, 

composition, properties and variability which may lead to higher proportions of rejected feedstocks 

that require disposal, (ii) logistic issues such as transport distance and need for storage capacity, 

compared to that of simpler and more scalable composting or digestion plants, (iii) more elaborate 

process configurations, including the need for complex pre-treatments, (iv) framework conditions 

and integration into “surrounding” industrial and waste management sectors, (v) and management 

of co-products and side streams from the refinery chain. The combination of all these aspects has a 

strong context-specific connotation and defines the overall environmental gain achievable in 

comparison with the use of simpler waste management strategies.  
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Collecting reliable information on the available waste feedstocks is pivotal, although data on the 

streams that can be intercepted are seldom available (Cristóbal et al., 2018). 

Life cycle assessment (LCA) offers a systematic framework for evaluating the environmental 

consequences of waste management technologies and systems (e.g. ISO, 2006) with respect to a 

range of selected impact categories, such as climate change, resource depletion, eutrophication, and 

toxicity effects. Relatively few consistent LCA studies have been carried out with a focus on 

organic waste biorefineries, although a wider range of studies have addressed individual 

components such as anaerobic digestion and composting (e.g. Boldrin et al., 2011; Eriksson et al., 

2005), fuel production (e.g. Venkata Mohan et al., 2016) and incineration (e.g. Astrup et al., 2015). 

Most of the LCA studies in literature focusing on integrated biorefinery systems have evaluated 

combinations of traditional waste technologies, such as material recovery facilities, anaerobic 

digestion, pulping and incineration, with the recovery of specific biofuels or biochemicals (e.g. 

Tonini et al., 2013; Sadhukhan and Martinez-Hernandez, 2017; Nizami et al., 2017; Chen et al., 

2017; Moretti et al., 2017). As such, generic conclusions regarding the specific sustainability of 

organic waste biorefineries may be difficult to draw from existing literature due to variations in 

conditions and assessment approaches. However, biorefineries based on organic waste from 

households offer larger climate benefits compared to biorefineries that process industrial food 

industry (Tonini et al., 2016).  

Two different LCA perspectives may be applied when evaluating the environmental sustainability 

of organic waste biorefineries: (i) a “waste management perspective” focusing on comparing the 

waste biorefinery with other (traditional) waste management options such as composting or 

landfilling, or (ii) an “output perspective” focusing on comparing one or more waste biorefinery 

products with alternative (traditional) production options. The alternative management options are 

important in both of these perspectives: if the waste was otherwise landfilled, the environmental 

benefits of waste utilisation in a biorefinery may be significantly larger than if the alternative 

management was anaerobic digestion or energy recovery via incineration (Astrup et al., 2015).  
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This also relates to indirect effects, such as land-use-changes when crop markets are affected, e.g. 

organic waste fractions previously upgraded to animal feed products and now used as feedstock in 

biorefineries with different target outputs. In this case, the environmental impacts associated with 

the animal feed products need to be accounted as well. As waste biorefineries are multi-output 

technologies per definition, the environmental consequences associated with all outputs should be 

considered.  

While the feedstock composition and properties can be considered fundamental for the 

environmental performance of waste biorefineries (Bisinella et al., 2017), also the configuration and 

performance of individual unit-processes are critical. Recently, Lodato et al. (2020) developed an 

LCA approach specifically targeted towards integrated technologies such as (waste) biorefineries, 

thereby demonstrating that process efficiencies and mass, energy, and substance flows within a 

biorefinery have profound importance for the overall environmental performance. This includes the 

composition of side streams, rejects and co-products from the biorefinery (e.g. digestate, fibre 

fractions or contaminants) and the environmental implications of their management and final 

disposal. An important aspect is the potential effects associated with carbon or metals sink options 

(Morello et al., 2018), and the risk of spreading micro-pollutants or microplastics (Butkovskyi et 

al., 2016). 

 

2.4 Market potential 

The use of organic waste as a feedstock for biorefineries can be the nexus between environmental 

protection, bio-economy and circular economy promoted by EU policies (European Commission, 

2015). In particular, waste biorefineries could potentially exploit the untapped potential stored in 

approximately 130-151 million tonnes/year of biowaste estimated to be generated in the EU by 

2020 (European Commission, 2011). The latest data published by Eurostat (Eurostat, 2020) indicate 

an actual total (municipal + industrial) production potential of about 230 million tonnes/year of 

organic waste for EU28 in 2016, composed of ca. 42% of animal and vegetable waste, 26% of the 
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organic fraction of municipal solid waste, 20% of wood waste and 9% of non-hazardous sludge 

from sewage treatment plants or food processing plants.  

The market targeted by waste biorefinery products has grown steadily notwithstanding the 

economic crisis of the last decade. The global production of organic chemicals accounts for a major 

share of the overall chemical industry and is estimated to amount, excluding fuels, to more than 300 

Mtons/year. The associated market was worth over USD 6 billion in 2014, growing at an average 

rate of 8% per year from 2009 to 2014. It is expected to reach USD 16 billion by 2025, at a 

compound annual growth rate of about 7-8% from 2019 to 2025 (Fiormarket, 2019).  

The primary outputs of the traditional organic chemical industry are a relatively limited number of 

building blocks used to produce a plethora of end products for various sectors (e.g. food and 

beverages, pharmaceuticals, personal care products and cosmetics, fertilisers, pesticides, 

agrochemicals, water treatment chemicals, automotive components, gasoline additives and 

polymers). 

The current global bio-based chemical and polymer production is estimated to be around 90 million 

tonnes. The demand for bioproducts from renewable sources is estimated to reach, depending on the 

market conditions, 26–113 Mtons/year in 2050, up to 38 % of the total organic chemicals 

production. The associated market is projected to account for 7–8 billion USD, with a growth rate 

of 15% per year that could further benefit from the increasing demand for biopolymers (IEA 

Bioenergy - Task 42 Biorefinery, 2020). This indicates a market with a large potential that has not 

yet been tapped. Basic building blocks can indeed be obtained from organic waste, enabling the 

supply of raw materials from internal and diffused sources. This would de-risk the supply chain 

from external and potentially volatile suppliers, guarantee a secure supply at lower production and 

transport costs and achieve economic sustainability even for disadvantaged and isolated contexts 

such as, for instance, some of the main Mediterranean islands. 
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3. Implementation of waste biorefinery systems 

3.1 From traditional biorefineries to waste biorefineries 

The technological and economic perspectives of traditional biorefineries are not entirely applicable 

to waste biorefineries. Waste materials fluctuate in composition (Bisinella et al., 2017; Alibardi and 

Cossu, 2014) and contain impurities or other undesired fractions (e.g., small plastics) that are not 

easily removable.  

Pre-treatment of organic waste is considered a crucial step in a biorefinery scheme to cope with the 

complexity and heterogeneity of waste materials. The aim of pre-treatments is to remove unwanted 

constituents, change the physical properties of the solid matrix (e.g. its crystallinity) to speed up 

downstream processes (Tonini and Astrup, 2012) and make valuable components more available to 

subsequent treatments. Recovery of building blocks of interest for the chemical industry, which can 

be further transformed into compounds for downstream utilisation, often requires the isolation of 

homogeneous fractions and the disruption of the original chemical structure. This is particularly 

true for complex residual materials (e.g. lignocellulosic). Three major analysis points arise in this 

respect, including (i) the selectivity of the applicable pre-treatment techniques; (ii) the amount of 

rejected fraction generated; and (iii) the intensity (amount of chemicals and energy) of the pre-

treatment stages. Appropriate tools to assess the overall environmental profile and economic 

sustainability of the whole process should therefore be adopted to evaluate and compare different 

valorisation options (Albizzati et al., 2019; Astrup et al., 2018). 

 

3.2 Production strategies in waste biorefineries 

The simplest layouts of a waste biorefinery are those aimed at recovering low-added-value 

products, i.e. biofuels or energy carriers, soil improvers and fertilisers. A higher complexity is 

required to generate pure streams of platform chemicals for the production of biomaterials, where 

more specific technical standards must be met. The feasibility of a complex biorefinery with high-

value outputs is linked to the availability and type of feeding residues, the market conditions and 
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demand for these products and the possibility for a waste biorefinery to be integrated within the 

existing industrial system (Shahzad et al., 2017). Indeed, some organic waste streams contain 

appreciable quantities of substances whose value may be as high as 12,000 €/g, e.g. biophenols such 

as hydroxytyrosol and tyrosol (Tinikul et al., 2018), or are suitable for conversion into profitable 

molecules and pivotal building blocks, e.g. lactic acid, acetic acid and ethanol (Moretto et al., 2019; 

den Boer et al., 2016). While biorefineries earn revenues from the sale of products, waste 

biorefineries can also earn income from gate fees. Gate fees strongly depend on the territorial 

context, the balance between demand and offer for waste treatment and local regulations. In an 

initial stage, gate fees can contribute to assuring a stable income for a waste management company 

to de-risk the uncertainties of a non-mature market for biofuels or bioproducts. In the long-term, the 

generation of high-value products might increase the profitability, allowing for reducing or even 

eliminating waste gate fees (Sadhukhan et al., 2018). 

It is generally acknowledged that, in order to generate high-value outputs and ensure environmental 

sustainability (what is commonly referred to as a second-generation biorefinery), the process should 

be arranged to comprise two or more platforms (Budzianowski and Postawa, 2016; Naik et al., 

2010). According to the definition introduced by Task 42 of the IEA (IEA Bioenergy, 2012), 

analogous to the petrochemical industry, platforms are intermediates linking feedstocks and final 

products. The combined production of multiple platforms would ensure an optimised recovery of 

individual precursors from the feedstock. For instance, in order to make the selling price of biofuels 

competitive with that of fossil fuels, it is necessary to combine biofuel production with bioproducts 

that have high value and a sufficiently large market. In turn, producing multiple platforms requires 

the integration of a range of different treatment processes, the nature of which is a function of the 

characteristics of both the feeding waste to be exploited and the final products. Furthermore, 

adequate fractionation of individual waste components may be necessary to generate an array of 

outputs of different characteristics. To this regard, the selectivity, accuracy and yield of separation 

play a key role in view of full implementation of multi-platform biorefineries.  
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3.3 Size-dependent waste biorefinery approaches 

The minimum economically viable size of complex biorefinery installations, the criteria for 

acceptable waste feedstocks and the viable products that can be generated from waste biorefineries 

is  still the subject of debate. Traditional biorefineries are generally indicated as requiring large 

plants with a minimum size in the range of about 500,000–700,000 tons/year to ensure economic 

sustainability (Kuchta, 2016). Using organic waste as a feedstock for biorefineries would 

presumably reduce the minimum size required, because of the expected income from waste 

treatment fees on top of the revenues from the obtained products.  

The array of options available for biorefineries may range from large, high-performance 

installations to decentralised, simplified-layout systems (Budzianowski and Postawa, 2016). Larger 

installations benefit from the economies of scale and must produce bio-commodities that feed into 

large markets. As a result, larger installations are expected to include more complex process 

layouts, integrating several platforms and processes of different nature in order to diversify, 

functionalise and maximise materials and energy recovery. For the same reasons, large biorefineries 

are also envisaged to accept a range of feedstocks, both residual and non-residual biomass, to allow 

for larger treatment capacity. This flexibility will accommodate the seasonal variability of organic 

residues and bio-product markets, although a consolidated market pattern for bioproducts, in terms 

of both demand and price stability, is a highly relevant prerequisite. For large-scale centralised 

systems, however, the need for transportation of organic residues from different sources may be a 

concern from both the logistical and the economic point of view. The typically low energy density 

and solids content of organic residues, the need to reduce the storage period to a minimum to 

prevent biodegradation as well as the need to develop a highly structured supply chain represent 

significant constraints on the siting of a biorefinery.  

Small scale biorefineries involve less complex treatment layouts with lower capital and operating 

costs, due to a reduced number of platforms and a smaller range of end products.  Decentralised 



 

 15 

dedicated medium- to small-scale plants will use a reduced number of feedstocks, which are 

expected to be available at the local scale. At the same time, decentralised installations allow the 

generated biofuels and biomolecules being tailored to the existing context, promoting close 

integration with other local industries in view of the circulation of materials and energy. The 

technological complexity and the industrial know-how of waste biorefineries is less developed than 

highly specialised chemical processing installations. It therefore appears more reliable, at least from 

a short-term development perspective, to conceive a waste biorefinery as a system producing 

intermediates, precursors or building blocks, which are then further processed beyond the 

boundaries of the biorefinery. 

A critical risk associated with waste-derived products is the potential spreading of impurities and 

contaminants, either associated with the original waste or produced during the processing as a result 

of side reactions and/or the addition of external chemicals. This aspect should be considered in 

relation to all waste management and recycling systems (Astrup et al., 2018). The characteristics of 

final residues from complex biorefinery schemes will be different from those of traditional 

bioprocesses such as composting and anaerobic digestion, which needs to be considered when 

evaluating the feasibility of biorefinery configurations (Cattle et al., 2020; Sharma et al., 2019, 

Alvarenga et al., 2015). To this regard, ecotoxicological parameters can be used to determine more 

realistically the risk posed to ecosystems by complex and highly variable matrices. For these 

bioproducts, the approach proposed by Hennebert (2018), who suggested an array of 

ecotoxicological tests with aquatic and soil organisms, provides a good starting point. 

 

4. Waste biorefinery configurations 

4.1 Multi-platform waste biorefineries 

As shown in Section 3, a unique layout of the most suitable processes to be included in an organic 

waste biorefinery cannot be defined. The possible options on hand are related to the quantity and 

characteristics of the waste, the specific local conditions and constrains, market trends and 
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legislative constraints. Nonetheless, in the authors’ view, anaerobic digestion, being a well-

established biological process currently adopted for complex and heterogeneous waste at large 

scales, is regarded as a suitable candidate to play a central role in biorefinery schemes in the near 

future. Stemming from this, a potential process layout for a multi-platform, multi-product 

biorefinery integrating anaerobic digestion with other chemical, biochemical and thermochemical 

treatment units is presented in Figure 1. The proposed layout includes an initial separation of the 

individual components of the waste feed (carbohydrates, starch, cellulose, lignin, proteins and 

lipids), followed by dedicated treatments of each component to maximise the yield of biofuels and 

biomolecules recovery (Asunis et al., 2019; Girotto and Cossu, 2019; Alibardi and Cossu, 2016). 

The nature of the separation processes relies inherently on the composition and characteristics of 

the input waste, and may involve processes such as washing and extraction (Ao et al., 2020; 

Matharu et al., 2016), use of enzymes (Arbige et al., 2019; Escamilla-Alvarado et al., 2017) and 

solid-liquid or membrane separation processes (Abels et al., 2013; Huang et al., 2008). Waste 

fractionation by main chemical components enables parallel processing lines with a reliable supply 

with predictable composition, e.g. high carbohydrate-rich agro-food waste, protein-rich 

slaughterhouse waste, fat, oil and grease (FOG) waste from grease traps. 



 

 17 

  

Figure 1. Layout for a multi-platform anaerobic biorefinery producing biofuels and biomolecules. 

Dashed lines represent alternative options. Green blocks represent processes and brown blocks 

represent materials. 

 

The list of potential products presented in Figure 1 is not exhaustive, since further processing of 

intermediates and precursors may lead to additional products not specifically considered in the 

layout provided. Furthermore, in some cases (dashed lines in Figure 1), the bioproducts included in 

the proposed layout are considered alternative to each other, so that the individual treatment stages 

can be tailored towards the desired end products depending on the specific needs.  

Full implementation of a multi-platform, multi-product scheme such as the one depicted in Figure 1 

implies overcoming the bottlenecks associated with conversion processes from low-purity, 

heterogeneous materials such as organic residues. As a result, a transition period is unavoidable 

prior to the full development of the whole process chain. During the transition period, in the initial 

implementation stages the biorefinery concept can be applied and developed by adopting simplified 
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configurations based on technologies that have already been developed and demonstrated at the full 

scale, to reduce uncertainties on process performance. This is meant to form a processing platform 

basis whose complexity can be progressively increased as soon as other, more advanced options 

become available for implementation. Such configurations can step up in the longer term into an 

integrated high-performance scheme. In this regard, a number of simplified layouts representing 

treatment trains with a short- to medium-term application horizon can be defined, which are deemed 

to have the potential of being more easily implemented within the waste management sector. 

 

4.2 The role of dark fermentation in waste biorefineries 

Potential simplified waste biorefineries models, with dark fermentation (production of H2-based 

biogas and volatile fatty acids (VFAs) or alcohols) as the common initial stage followed by 

different treatment options depending on the target products, are outlined in Figures 2-6. Dark 

fermentation is the biohydrogen production option with the highest readiness for full-scale 

implementation (Lin et al., 2018; Chandrasekhar et al., 2015; Poggi Varaldo et al., 2014). The 

relatively short retention time of dark fermentation implies small reactors that can be easily 

retrofitted into existing single-stage digestion plants even with limited space availability. 

Regardless of whether H2 is the targeted product, fermentation is central to processing carbohydrate 

streams. Protein and lipid-rich waste streams could also be directed through a fermenter if the 

competing routes and products shown in Figure 1 are not economically viable. 

The layouts proposed in Figures 2-6 indicate the main (and most readily applicable) technological 

processes to maximise recovery of valuable products from the outflow of each stream, as well as the 

potential interconnections between treatment outflows. Dark fermentation plays the role of upfront 

treatment aimed at hydrolysing the complex starting waste materials, producing H2 and providing 

simpler soluble compounds for downstream processes (De Gioannis et al., 2013). More specifically, 

Option 1 (Figure 2) includes the following treatment stages: dark fermentation with H2 production; 

a second methanogenic stage for CH4 production; biogas treatment and upgrading to separate H2, 
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CO2 and CH4 for subsequent uses; liquid/solid separation of the digestate; biological stabilisation of 

the solid fraction of digestate to produce compost (or, alternatively, thermochemical treatment to 

produce either biochar or pyrolytic oil); and nutrient recovery from the liquid fraction of digestate. 

This represents the simplest and readily applicable waste biorefinery scheme that can benefit from 

the strong incentives that exist in several European countries to produce biomethane (Lombardi and 

Francini, 2020). The gaseous products (biohydrogen and biomethane) may then be used 

individually or as a mixture (hythane). Biomethane can also be used as a feedstock to more 

advanced processes, producing single-cell proteins or other high-value bioproducts (Strong et al., 

2016; Strong et al., 2015). 

The CO2 in the biogas can be captured and supplied to industry or biologically converted to 

methane (Bajón Fernández et al., 2015) by using hydrogen. Other promising alternatives include 

accelerated carbonation using alkaline industrial residues (Costa et al., 2007; Sanna et al., 2014) for 

both carbon sequestration and waste stabilisation purposes, biological reduction of CO2 to VFAs in 

microbial electrochemical systems (Batlle-Vilanova et al., 2017), or cultivation of autotrophic 

microorganisms such as cyanobacteria or algae which could be further exploited to produce 

pigments, lipids, biodiesel, bio-fertilisers or bioplastics (Duppeti et al., 2017; Venkata Mohan et al., 

2015). 

The liquid fraction of digestate can be treated to recover nutrients. The recovered nutrients can be 

used as fertilisers, in novel applications as the use of ammonium for biogas upgrading (Bavarella et 

al., 2019) or for further H2 production via chemical cracking (Lamb et al., 2019). 
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Figure 2. Simplified layout for an anaerobic waste biorefinery. Option 1: dark fermentation, 

methanogenesis, biogas (H2, CO2, CH4) upgrading and digestate processing. Dashed lines represent 

alternative options. Green blocks represent processes, brown blocks represent materials, light blue 

blocks represent final uses. 

 

In option 2 (Figure 3) the dark fermentation stage is specifically oriented to VFA (with concomitant 

H2 production) or bioethanol production and is therefore followed by a separation stage to 

fractionate and purify these compounds. Separation is the key challenge. The energy payback for 

alcohol is marginal if distillation is applied as a separation step. VFAs can also be directly extracted 

from the mixtures typically obtained via waste fermentation. Several technologies are commercially 

available for VFA purification from mixtures, including conventional (adsorption/desorption on ion 

exchange resins, liquid-liquid extraction), membrane-based (pertraction, nanofiltration) and 
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electrochemical (electrodialysis) processes (Rebecchi et al., 2016; Reyhanitash et al., 2016; Outram 

and Zhang 2018; Xiong et al., 2015; Jones et al., 2017). However, none of them simultaneously 

allows high extraction efficiencies and selectivity at competitive price. Innovative separation 

methods for selective extraction of individual VFAs from mixtures are thus required to foster the 

economic sustainability of waste biorefineries. Methanogenesis can then be applied to the residual 

effluent resulting from the separation stage. 

 

Figure 3. Simplified layout for an anaerobic waste biorefinery. Option 2: dark fermentation, 

ethanol/VFAs recovery, methanogenesis of the residual fermentate, biogas (H2, CO2, CH4) 

upgrading and digestate processing. Dashed lines represent alternative options. Green blocks 

represent processes, brown blocks represent materials, light blue blocks represent final uses. 
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Option 3 (Figure 4) presents an integrated process in which H2 becomes the main output of the 

biological treatment by coupling dark fermentation with photo-fermentation to enhance H2 yields 

up to 7 mol H2/mol glucose (Khetkorn et al., 2017; Zhang et al., 2017). In Option 4, (Figure 5), 

instead, the dark fermentation effluent, rich in VFAs, is further processed biologically to induce the 

accumulation of biopolymers (polyhydroxyalkanoates, PHA) within the bacterial cells, which are 

thereafter concentrated and extracted (Valentino et al., 2017). Biopolymers can then be used in the 

bioplastic industry for a range of uses. Another potential alternative (Option 5; see Figure 6) 

involves coupling dark fermentation with an electrochemical process, that may be aimed at further 

H2 production (through e.g. microbial electrolysis cells), or at electricity generation (through e.g. 

microbial fuel cells). 

 

 

 

Figure 4. Simplified layout for an anaerobic waste biorefinery. Option 3: dark fermentation, 

photofermentation, biogas (H2, CO2) upgrading and digestate processing. Dashed lines represent 
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alternative options. Green blocks represent processes, brown blocks represent materials, light blue 

blocks represent final uses. 

 

Figure 5. Simplified layout for an anaerobic waste biorefinery. Option 4: dark fermentation, 

biopolymer production, biogas (H2, CO2) upgrading and digestate processing. Dashed lines represent 

alternative options. Green blocks represent processes, brown blocks represent materials, light blue 

blocks represent final uses. 
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 521 

 

Figure 6. Simplified layout for an anaerobic waste biorefinery. Option 5: dark fermentation, 

electrochemical processing for enhanced H2 production or electricity generation, biogas (H2, CO2) 

upgrading and digestate processing. Dashed lines represent alternative options. Green blocks 

represent processes, brown blocks represent materials, light blue blocks represent final uses. 

 

4.3 Waste biorefinery output 

A rough estimation of the potential outcomes of waste biorefineries can be derived from the 

observed ranges of bioproducts generation documented by literature studies. To this aim, H2, CH4, 

ethanol and PHAs were considered as examples among the several products presented in the 

biorefinery layouts described above thanks to a large availability of data. Since the reported yields 

are largely variable with respect to the specific characteristics of the waste treated, the type of 

conversion process applied and the operating conditions adopted, average values and deviations 

from literature data are shown in Figure 7.  
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On the basis of the reported market prices for each product of concern (Moscoviz et al., 2018), the 

following ranges for the economic value of the products that can be obtained from food waste (FW) 

in a biorefinery application were estimated: 0.2415.5 €/t FW (average: 4.9) for H2, 1.911.6 €/t 

FW (average: 7.3) for CH4, 9.0540 €/t FW (average: 229) for ethanol and 224500 €/t FW 

(average: 1510) for biopolymers. The revenues achievable from biowaste in a biorefinery would 

require deducting the capital and operating costs of the plant. Nonetheless, given the amount of 

food waste generated (in Europe, 46.5 and 41.1 Mt/y from municipal and industrial sources, 

respectively), as well as the incentives for the production of green chemicals and energy, 

considerable financial benefits are expected from the wide implementation of organic waste 

biorefineries. 

 

 

Figure 7. Yield ranges for H2, CH4, ethanol and biopolymers derived from literature references 

(Akhlaghi et al., 2019; Braguglia et al., 2018; Rodriguez-Perez et al., 2018; Srisowmeya et al., 2019; 

Tsang et al., 2019; Uçkun Kiran et al., 2014; Yadav et al., 2020 and references therein). The cross 

and the line within the box show the average and median value, respectively, the box denotes the 

range of 50% of data, whiskers range from the lower to the higher value within 1.5 interquartile ranges 

and circles stand for outliers. 
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5. Conclusions and recommendations 

The concept of organic waste biorefinery has the potential to open up a wide array of possibilities 

that may enable the waste management sector to improve the overall environmental, economic and 

social sustainability. Nevertheless, there are still numerous barriers and bottlenecks to overcome 

before the full implementation of biorefineries for waste management, which encompass 

environmental, technical, economic, social, logistic and legislative implications. From the technical 

standpoint, the waste biorefinery concept more and more requires that waste treatment is designed 

and operated industrially, with a high degree of technological development. To this aim, pre-

treatments, bioreactors and downstream separation processes require development to produce 

bioproducts with consistent physical-chemical characteristics at feasible costs. 

Measures are needed from the point of view of policy making to foster sustainable bio-based 

solutions for waste management. In this regard, suitable strategies should be defined to support the 

development of the industrial sector in this field by identifying priority streamlines, introducing 

systematic and comprehensive regulatory measures, involving potential stakeholders, setting 

technical standards for bioproducts and, where necessary, defining new incentive schemes. The 

identification of specific targets for bioproducts production, in accordance with the circular 

economy principles set in the EU action plan (European Commission, 2015), could drive industries 

to focus on priority streamlines and technological advancement. This could be further supported by 

economic incentives such as carbon trading, excises on fossil-based products and more direct forms 

of subsidies. Inevitably, the economy will increasingly rely on sustainable sources of materials and 

fuels as non-renewable stocks are depleted and fossil sources will have to remain in the ground. 

Exploration of the diversity of products than can be derived from waste will therefore become 

increasingly important.   
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