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Abstract
We construct the complete network of tail risk spillovers among major cryptocurrencies using the
Least Absolute Shrinkage and Selection Operator (LASSO) quantile regression. We capture important
features of the network, including major risk-driving and major risk-receiving currencies, and the
evolution of the tail dependence among the currencies over time. Importantly, we reveal a striking
finding that the right tail dependence among the cryptocurrencies is significantly stronger than
the left tail counterpart. This unique characteristic may have contributed to the rise in popularity
of cryptocurrencies over the last few years. Our portfolio analysis reveals that diversification in
cryptocurrency investment can be accomplished simply by employing the naïve equal-weighted
scheme even when transaction costs are taken into account.
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1 Introduction

On Monday 5th January 2015, Bitstamp – the second largest Bitcoin exchange at the time
– suspended its operation following a security breach by a group of hackers who stole up to
$5.2 million worth of Bitcoin. The incident caused the BTC/USD exchange rate to plunge by
approximately 21% on 14th January 2015. The impact of the sell-off rippled through the entire
cryptocurrency markets, causing prices of other popular cryptocurrencies to crash. Data from
www.coinmarketcap.com show that more than ten cryptocurrencies saw their prices decline by
more than 20% on the day: Dash fell by 20%, Litecoin by 25%, and Monero by 28%, to name a
few.

Since the sharp decline in the cryptocurrency prices in 2015, there have been several more
similar episodes where prices moved sharply in either direction.1 These “tail events” as described
in the example above are – by definition – rare and high-impact events. They have a small
probability of manifesting.2 However, anecdotal and empirical evidence suggest that tail events in
the cryptocurrency markets occur quite frequently. Trading data point to unusually frequent price
jumps and crashes which could partly be explained by market participants’ lack of understanding
about fundamental factors that have potential to move prices. Traders therefore tend to overreact
to news, leading to dramatic price action.

Factors which have been documented to cause price jumps in the cryptocurrency markets
are illiquidity, order flow imbalance, and the dominance of aggressive traders. Study by Scaillet
et al. (2017), using tick data on the BTC/USD exchange rate, extracted from the Mt. Gox
database leak, identifies a total of 124 jump days out of 888 sample days between June 2011 and
November 2013 – an average of about one jump per week. The finding also reveals that positive
jumps occurred more frequently than negative jumps with about 1.3 positive jumps observed for
every negative jump. Papers by Osterrieder & Lorenz (2017), Phillip et al. (2018) and Chaim
& Laurini (2018) report that the distributions of returns on cryptocurrencies exhibit greater
volatility, a larger degree of non-normality, and much heavier tails than those of traditional fiat
currencies. Chaim & Laurini (2018) warn that cryptocurrencies are susceptible to sudden and
violent price swings and cite formative events, such as hacks and unsuccessful fork attempts, as
main drivers behind negative price crashes frequently observed in the cryptocurrency markets.

Despite strong evidence of frequent occurrences of discontinuous price jumps in the cryp-
tocurrency markets, little research has been conducted to investigate the contagious nature
of tail events among cryptocurrencies and the mechanism by which tail risk permeates the

1For example, the BTC/USD exchange rate rallied from $2,300 to $2,930 per Bitcoin on 20th July 2017 –
an increase of about 27% in one day. On the same day, Ethereum rose by 14% while Ripple went up by 12%.
Analysts cited improving outlook for Bitcoin’s technology which would see an upgrade to the cryptocurrency’s
infrastructure to accommodate more transactions as the main cause of the sharp rally.

2Research in the area of asset pricing has shown that several puzzling phenomena in financial markets can be
explained by incorporating probability of tail events in the analysis. For example, by taking into account the effect
of low-probability market crashes, Rietz (1988) demonstrates that the extreme event risk helps solve the equity
premium puzzle discussed in Mehra & Prescott (1985). Furthermore, Barro (2006) shows that high equity risk
premium, low risk-free rate, and volatile stock returns can be explained when data are calibrated with disaster
probabilities, associated with sharp contractions during World War I, the Great Depression, and World World II.
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cryptocurrency markets. This paper fills in the gap. Specifically, we examine the characteristics
of tail risk connectedness in the cryptocurrency markets by constructing a network of tail
risk spillovers among the most popular cryptocurrencies and identifying the most important
shock-driving and shock-sensitive currencies in the network. We employ the Least Absolute
Shrinkage and Selection Operator (LASSO) quantile regression technique to analyse how tail risk
is transmitted, received, and evolves over time. Our econometric strategy allows models of tail
risk for each of the cryptocurrencies in the sample to be identified in a data-driven way where
only relevant tail events with nontrivial impacts are included in the estimation of parameters,
thereby significantly reducing the number of parameters to be estimated and greatly simplifying
the interpretation of results.3 Related to our paper is research by Borri (2019) who employs
the Conditional Value-at-Risk (CoVaR), first proposed by Adrian & Brunnermeier (2016), to
estimate the conditional tail risk in the cryptocurrency markets, using data on Bitcoin, Ether,
Ripple, and Litecoin. The results in Borri (2019) indicate that cryptocurrencies are highly
exposed to tail risk within the cryptocurrency markets but are disconnected from other global
assets.

As a preview of our main results, we detect significant tail risk spillovers among cryptocurren-
cies. We find that tail connectedness is stronger at the less extreme tail thresholds – supporting
the findings reported in Gkillas et al. (2018). Thus, there is a tendency for idiosyncratic jumps
to occur at the more extreme tail thresholds. Importantly, we uncover overwhelming evidence
showing that the degree of tail risk spillovers at the right tail is more pronounced than that
at the left tail, pointing to a tendency for euphoria to spread during market upswings. Our
analysis also reveals the importance of Bitcoin as a major shock-driving cryptocurrency during
periods of positive market sentiments and Ethereum as a main tail risk driver during downturns.
Results from the rolling window analysis indicate that cryptocurrency markets have become
more segregated over time with the strength of the right tail connectedness continuing to outstrip
that of the left tail connectedness.

Evidence of the idiosyncratic nature of extremely large jumps and the dominance of co-jumps
at the right tail strongly hints at the diversification benefit in cryptocurrency investment. To
examine how diversification is achieved, we compare the performance of two cryptocurrency
portfolios: (i) the naïve, equal-weighted portfolio and (ii) the mean-conditional Value-at-Risk
(mean-CVaR) optimised portfolio whose objective is to minimise the portfolio’s expected loss
conditional on the loss exceeding the VaR.4 For the mean-CVaR optimisation, we adopt a
framework, developed by Rockafellar & Uryasev (2000, 2002), which simultaneously estimates
VaR and optimises CVaR to obtain the optimum allocation of cryptocurrencies .

Our portfolio analysis results show that, for almost all of the holding periods under examina-

3The Least Absolute Shrinkage and Selection Operator (LASSO) quantile regression technique is pioneered by
Belloni & Chernozhukov (2011) and subsequently employed by Hautsch et al. (2015) to study the network of tail
risk spillovers among the US financial institutions.

4The Conditional Value-at-Risk (CVaR) is also known as Mean Excess Loss, Mean Shortfall, Expected Shortfall
or Tail VaR. The CVaR measures the expected loss of a portfolio conditional on the loss exceeding the portfolio’s
VaR at a pre-specified probability level.
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tion, a hypothetical equal-weighted buy-and-hold portfolio that is formed every month earns
higher average returns than a corresponding buy-and-hold mean-CVaR portfolio. We further
examine the performance of hypothetical active portfolios with initial investment of $1 which are
periodically rebalanced using up-to-date information. Mimicking the real-world application, we
also incorporate transaction costs in the portfolio formation process. Four different cost scenarios
are assumed: 0, 10, 25, and 50 basis points (bps) per trade. Performance of the hypothetical
portfolios that are constantly rebalanced is assessed by their total returns, average returns,
volatility, CVaR, Sharpe ratios, and the modified Sharpe ratios, calculated as the excess returns
per one unit of CVaR. Our results indicate that the same diversification benefit delivered by
the mean-CVaR optimisation can be straightforwardly achieved by a naïve, equal-weighting
strategy. Under an assumption of no transaction fee, the mean-CVaR portfolios, which are
specifically designed to actively minimise the expected shortfalls, outperform the equal-weighted
portfolios by only a slim margin. When transaction costs are incorporated into the mean-CVaR
optimisation, however, the equal-weighted portfolios surpass the mean-CVaR portfolio in all of
the performance criteria.

Our paper contributes to research on cryptocurrencies in a number of ways. It confirms not
only the presence of tail dependence among cryptocurrencies but also the dominance of the right
tail connectedness over the left tail dependence. This unique characteristic of cryptocurrencies is
diametrical of the typical characteristics of traditional asset classes. In addition to their widely
reported high risk and returns, the discovery that cryptocurrencies possess a great degree of right
tail dependence should attract the attention of investors. Further, we provide strong evidence
demonstrating how benefits of diversification can be achieved through a naïve, simple investment
strategy of equal weighting. Our findings also corroborate the arguments in Corbet et al. (2018)
and Borri (2019) which suggest that cryptocurrencies are largely disconnected from mainstream
asset classes, making them excellent risk diversifiers in portfolios of conventional assets. Our
paper also complements growing research on return and volatility spillovers as well as literature
relating to speculative bubbles and co-explosivity in the cryptocurrency markets.5

This paper is organised as follows. We discuss our data in Section 2. The method of LASSO
quantile regression is explained in Section 3. In Sections 3.1–3.3, we report and discuss results
of the full sample analysis, the rolling window analysis, and the predictive connection of the
tail risk connectedness network, respectively. We dedicate Section 4 to the portfolio analysis.
Finally, Section 5 concludes the paper.

5See Yi et al. (2018), Koutmos (2018), and Ji et al. (2019), among others, for studies on return and volatility
spillovers in the cryptocurrency markets. The majority of the papers in this area of research employ the forecast-
error variance decomposition techniques, popularised by Diebold & Yilmaz (2009, 2012, 2014), to quantify the
degrees of volatility spillovers. Papers in the areas of co-explosivity and bubbles in the cryptocurrency markets
include Cheah & Fry (2015), Gkillas & Katsiampa (2018), Gkillas et al. (2018), and Bouri et al. (2018), among
others.
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2 Data

We download time series of cryptocurrency prices from www.coinmarketcap.com.6 To ensure
that cryptocurrencies in our sample are well established cryptocurrencies and can be reasonably
easily accessed by regular investors, we include in our sample only the cryptocurrencies that
have at least three years worth of daily price data and a minimum market capitalisation of 50
million USD as of 31st December 2019. We exclude all the stable coins – even if they satisfy the
above criteria – from our sample, since their prices are pegged to the values of fiat currencies
(e.g., USD or EUR).7 After the filtering process, our sample comprises 21 cryptocurrencies with
daily return observations available from November 2016.

Table 1 gives an overview of the 21 cryptocurrencies in our sample. The five most popular
cryptocurrencies are Bitcoin, Ethereum, XRP (Ripple), Litecoin and Stellar, all of which have
been extensively analysed in a number of studies.8 Ranked first in the list, Bitcoin is the most
popular cryptocurrency with market capitalisation of around 130 billion US dollars – almost 10
times that of the second most popular cryptocurrency, Ethereum. The market capitalisation of
the cryptocurrency at the bottom of the list, MonaCoin, is approximately 50 million US dollars –
around 0.03% of that of Bitcoin. Figure 1 shows the time series plots of prices and volumes (in
millions of US dollars) of the five most popular cryptocurrencies during November 2016 and
December 2019. It is clear from the plots that all five of them have enjoyed the same level of
popularity, moving together in tandem in both price and volume. It is worth noting how prices
of the other four currencies peaked at around the same time when Bitcoin hit the all-time high
of just over $20,000 on 17th December 2017.

While Bitcoin is the most popular cryptocurrency, its daily average return of 0.3% is slightly
below that of the daily average of all the cryptocurrencies in the sample of around 0.5%.
Interestingly, both Verge and Bytecoin have relatively large expected daily returns of 1.5%
and 1.1% with large return standard deviations of approximately 16% and 19%, respectively,
making them the riskiest cryptocurrencies in the sample. Zcash, however, has the largest left
tail risk with the lowest daily return ever recorded of −72% while ByteCoin emerges as the
cryptocurrency with the highest degree of right tail risk with the highest daily return of almost
400% realised sometime during 2016–2019.

3 The Least Absolute Shrinkage and Selection Operator (LASSO)
Quantile Regression

The use of quantile regression to explain the behaviour of asset returns at different quantiles of
the return distribution is ideal for examining tail risk and is one of the main tools commonly

6The website provides up-to-the-minute updates for all market data and all the price series are volume-weighted
averages of prices from different exchanges, where every minute, the various exchanges are queried for their most
recent market data. As of 23rd March 2020, www.coinmarketcap.com aggregates price data from a total of 322
exchanges. A full list of exchanges can be found on https://coinmarketcap.com/rankings/exchanges/.

7Noteable stable coins are Tether, USD Coin, Stasis Euro, among others.
8See Gkillas & Katsiampa (2018), Yi et al. (2018), and Ji et al. (2019), among others.
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employed by researchers to analyse the tail risk of asset returns (Adrian & Brunnermeier 2016,
Adams et al. 2014, Högholm et al. 2011). In fact, the Value-at-Risk (VaR) of an asset is by
definition a quantile of the asset’s return distribution and is widely used as a measure of tail risk.

Employing the quantile regression technique, this study examines how the tail risk of a
cryptocurrency, as measured by its VaR, is affected by tail events in the cryptocurrency markets.
Specifically, for each cryptocurrency in the sample, we model its VaR at the various tail thresholds
as a function of the loss exceedance, computed as returns lower than a pre-determined tail
threshold, of the other cryptocurrencies in the network. Our model has the following functional
form:

VaRi
q,t = αi + θiᵀE−it + ωiXi

t−1 (1)

where VaRi
q,t is the VaR (also called the conditional quantile function) of the return on cryp-

tocurrency i at the qth quantile at time t, Xi
t−1 is the return on cryptocurrency i at time t− 1,

and E−it is a vector whose elements are the loss exceedance of all the other cryptocurrencies in
the network except cryptocurrency i at time t, where, following Hautsch et al. (2015), the loss
exceedance of cryptocurrency j, denoted by E j

t , is defined as follows:

E j
t =

0, Xj
t ≥ the unconditional qth sample quantile of Xj

Xj
t , otherwise.

(2)

Thus, the jth element in the coefficient vector θi in Eq. (1), denoted by θij , shows the extent of
tail risk spillover from cryptocurrency j to cryptocurrency i when the return of cryptocurrency j
falls below the qth quantile of the return distribution. The higher value of θij implies that when
cryptocurrency j experiences a more severe shock (e.g., a large negative return), the VaR of
cryptocurrency i increases in absolute value by a larger amount. Since we define the VaR as the
quantile of returns rather than the quantile of loss value, therefore a lower value of VaR implies
a larger amount of tail risk and a higher value of θij implies a stronger tail risk spillover.

Even though the quantile regression technique is well suited for analysing the tail risk of asset
returns, the approach is not consistent in models with large numbers of regressors, small numbers
of observations, and more importantly when only some of the regressors in the model have
nonzero impacts on the dependent variable (Belloni & Chernozhukov 2011). These shortcomings
hinder the applicability of the traditional quantile regression technique to analyse the tail risk
dependence in a large network of assets where each of the assets can potentially influence and
be influenced by the other assets in the network. Belloni & Chernozhukov (2011) address
these drawbacks by introducing the Least Absolute Shrinkage and Selection Operator (LASSO)
method to the conventional quantile regression technique. By allowing “data to speak for
itself”, the LASSO approach selects only relevant regressors that have nonzero impacts on the
dependent variable in the final conditional quantile model in the data-driven way. By removing
covariates that have very little explanatory power from the model, the number of parameters to
be estimated in the network is reduced significantly.
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In implementing the LASSO quantile regression technique to obtain only the relevant drivers
of the VaR of a cryptocurrency, we follow the approach outlined in Hautsch et al. (2015). We
first standardise all the variables to eliminate the impact of scale on the coefficient values9 and
define

ξiᵀW i
t = αi + θiᵀE−it + ωiXi

t−1 (3)

where vectors W i
t and ξi contain all the standardised regressors for the VaR of cryptocurrency

i and their corresponding coefficients, respectively. The parameter vector ξi is estimated by
minimising the following term in the corresponding `1-penalised quantile regression model:

1
T

T∑
t=1

[
q − I

(
Xi
t ≤ ξiᵀW i

t

)] (
Xi
t − ξiᵀW i

t

)
+ λi

√
(q(1− q))

T

K∑
k=1

∣∣∣ξik∣∣∣ (4)

where I (·) is the indicator function which takes the value of 1 when Xi
t ≤ ξiᵀW i

t and 0 otherwise,
T is the number of observations in the sample, K is the number of regressors in W i, and ξik
is the kth element in the coefficient vector ξi. Following Hautsch et al. (2015), we set the
predetermined cut-off limit below which the coefficients in ξi along with their corresponding
regressors are removed from the model to 0.0001.

The cryptocurrency-specific penalty parameter λi in Eq. (4) governs the rate at which
irrelevant regressors are removed from the final model for cryptocurrency i. A higher penalty
value depresses the coefficient values to be closer to zero and therefore more regressors are likely
to be eliminated from the model.10 For each cryptocurrency, we determine the optimum value for
λi in a data driven way. Specifically, we obtain λi for a currency i to maximises the backtesting
performance of its estimated VaR in the following steps:

Step 1. For each c in the ν-equidistant grid C = {c1 < · · · < ch = c1 + (h− 1) ν < · · · < cL},
we determine the penalty parameter λi (c) using four sub-steps.11

Step 1a. Draw T i.i.d. observations from the uniform distribution U [0, 1] and denote
them as u1, u2, . . . , uT . These observations are independent from the timing of the
observations in the dataset. Calculate the following variable:

Λi = T ×max1≤k≤K
1
T

∣∣∣∣∣
T∑
t=1

W i
t,k (q − I (ut ≤ q))√

q (1− q)

∣∣∣∣∣ (5)

Step 1b. Repeat Step 1a for 500 times to obtain an empirical distribution of Λi

(conditional on W i). Given a confidence level 1 − α, the penalty parameter is
calculated as

λi (c) = c×Q
(
Λi, 1− α

)
(6)

9When the scale of a regressor is significantly larger than that of the dependent variable, the magnitude of the
estimated coefficient is small by construction regardless of the explanatory power of the regressor.

10When λi = 0, we revert to the traditional quantile regression model without any deselection of variables.
11We set c1 = 0.5, cL=20, and ν = 0.5.
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where Q
(
Λi, 1− α

)
is the 1−α quantile of the empirical distribution of Λi. We follow

Belloni & Chernozhukov (2011) recommendation to use α = 0.1 in this calculation.

Step 1c. Estimate the `1-penalized quantile regression according to Eq. (4) and
remove regressors in W i whose coefficient’s absolute value is smaller than 0.0001.
Estimate the post-LASSO quantile regression (to be defined below) with the remaining
regressors to obtain the post-LASSO estimated coefficients. The fitted value of the
regression is the estimated VaR of the currency i over time.

Step 1d. Backtest the estimated VaR with Hautsch et al. (2015) log likelihood
ratio test: estimate the logistic regression model for the VaR exceedance VEt =
I
(
Xi
t < V̂aRq,t

)
:

VEt = β0 +
(
VEt−1,VEt−2,VEt−3, V̂aRq,t−1

)
β + εt = β0 + V ᵀ

t β + εt (7)

The log likelihood ratio test statistic for the null hypothesis that the VaR exceedance
is i.i.d. Bernoulli distributed with success probability q is

LR = −2 (lnLr − lnLu) a∼ χ2
5 (8)

where

lnLu =
∑

[VEt lnFlog (β0 + V ᵀ
tβ) + (1−VEt) ln (1− Flog (β0 + V ᵀ

t β))] (9)

lnLr =
∑

VEt ln (q) +
(
T −

∑
VEt

)
ln (1− q) (10)

and Flog (β0 + V ᵀ
t β) is the fitted value of the logistic regression. Record the p-value

of the test p(c) corresponding to the current c value.

Step 2. Repeat Step 1 for all c in the C grid and select the c that produces the highest
p(c) to be the optimum value of c. The corresponding value of λi is the optimum penalty
parameter for the LASSO quantile regression.

We also examine different approaches of selecting the values of λ. In Appendix B, we test
the robustness of our results using either cross-validated λ for each currency or the same λ for
all currencies.

After regressors with negligible impacts are deselected from the model, the remaining
regressors are employed in the conventional quantile regression model – now referred to as the
post-LASSO quantile regression – to explain the VaR of the cryptocurrency at the specified
tail thresholds. The estimated coefficient of currency j in the post-LASSO quantile regression
is regarded as the spillover coefficient of that currency in θi in Eq. (1). The coefficients in θi

of the deselected currencies take the value of 0. The estimated spillover coefficients for every
cryptocurrency in the network obtained from the estimation of Eq. (1) are collected to form the
tail risk connectedness matrix, denoted by A = {Aij}. The entry {Aij} of row i and column j in
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A takes the value of θij . Using the information in the connectedness matrix, we calculate the tail
risk in-degree and the tail risk out-degree of cryptocurrency i as the number of cryptocurrencies
which transmit tail risk to i and the number of cryptocurrencies which receive i’s tail risk,
respectively. The difference between i’s tail risk out-degree and i’s tail risk in-degree is its tail
risk net-degree. Finally, the total degree of tail risk connectedness in the entire network is
computed as the number of nonzero entries in matrix A.

3.1 The Tail Risk Connectedness Network: Full Sample Analysis

Table 2 summarises the estimated total degrees of tail risk connectedness, calculated using the
full sample of 21 cryptocurrencies, at the 1%, 5%, 10% and the 20% VaR thresholds. It is worth
noting that while the thresholds at the left tails are the significance levels of the VaR, denoted
by q, in Eq. (1), those at the right tails equal 100% minus the corresponding VaR significance
levels. For example, the 1% threshold at the right tail is in fact the 99% VaR.

Several interesting features of the tail risk network can be highlighted. First, consistent with
Borri (2019), cryptocurrencies appear to be highly exposed to tail risk within the cryptocurrency
markets. At the 10% tail threshold, the VaR at the left tail of a cryptocurrency is found to be
affected by the tail events originating from an average of 140/21 ≈ 7 other cryptocurrencies in
the network whereas its right-tail VaR is also affected by at least 174/21 ≈ 8 other currencies
on average. Second, tail risk connectedness tends to be more popular at the less extreme tail
thresholds although this relation is not strictly monotonic. At the right tails, the number of
connections among the cryptocurrencies at the 20% tail threshold is more than double the
corresponding number at the 1% threshold while at the left tails, the same ratio is almost triple.
These findings suggest that drastic tail events – both positive and negative – are more likely
caused by the cryptocurrencies’ idiosyncratic shocks than from tail events originating from the
other cryptocurrencies in the system. Third, judging by the number of connections at both the
right and the left tails at all the tail thresholds under examination, the degree of connectedness
at the right tails is much more pronounced than that at the left tails. While we observe, at
the 10% VaR, 24% more connections at the right tails than those at the left tails, the figure
is as high as 114% at the 5% VaR threshold. These findings highlight the attractiveness of
investment in cryptocurrencies: investors benefit not only the segmentation of idiosyncratic tail
risk in the cryptocurrency markets during declines but also market-wide rallies during upswings.
These characteristics may have contributed to the impressive emergence of cryptocurrencies as
an alternative asset class over the last few years.

Table 3 shows additional results of the analysis of the degree of tail risk connectedness
network. The table lists the top five cryptocurrencies with the largest values of in-degree, out-
degree, and net-degree at the various tail thresholds. Cryptocurrencies with large out-degrees
or large in-degrees are refereed to as tail risk drivers and tail risk receivers, respectively, while
cryptocurrencies with both large out-degrees and in-degrees are referred to as tail risk connectors.
Tail risk drivers, receivers, and connectors all play important roles in the cryptocurrency network
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as they significantly contribute to the propagation of tail events across the system. In other
words, they account for the majority of the aggregate tail risk of the entire cryptocurrency
markets.

According to the results presented in Panel A of Table 3, Siacoin and NEM appear to be
the most prominent risk receivers as they consistently rank among the top five receivers for a
number of tail thresholds. Interestingly, Lisk is found to possess a desirable property as a right
tail risk receiver since it ranks among the top right tail risk receivers while never ranks among
the top left tail risk receivers. Meanwhile, as shown in Panel B of Table 3, the consistent tail
risk drivers in the network are Ethereum and Litecoin. In fact, Ethereum appears in the list of
top tail risk drivers at all the tail thresholds. The role of Bitcoin is also noticeable as it appears
in the list of top right tail risk drivers but not in the list of top left tail risk drivers. Across
all the right tail thresholds, Bitcoin is the biggest driver of right tail shocks with the average
out-degree of 13. Panel C lists the top five net tail risk drivers in the system as captured by their
net-degrees. We can see that Litecoin, Ethereum, NEM, Decred are among the most common
net tail risk drivers across the different tail levels. Ethereum is the most popular left tail risk
drivers, appearing in 3 out of 4 lists, at the 1%, 10%, and 20%. Bitcoin is, again, the most
popular right tail risk drivers, where it features in most of the lists of right tail drivers. Across
the lists of top drivers and receivers, Litecoin and Ethereum Classic tend to appear frequently
in multiple tail thresholds, suggesting that they are major tail connectors in the system, playing
key roles in both generating and receiving tail risk. Full results of the degree analysis for all
the cryptocurrencies in the network at all the tail thresholds are available in Tables A1–A3 in
Appendix A.

To illustrate graphically the extent to which tail risk in the cryptocurrency markets is
intertwined, Figure 2 depicts the tail risk connectedness of the entire network at the 5% and the
95% tail thresholds. Each node in the figures represents a cryptocurrency, whose out-degree
is signified by the node size. The directional tail risk connection from one cryptocurrency
to another is characterised by an arrow pointing from the risk-driving cryptocurrency to the
risk-receiving cryptocurrency. The magnitude of the spillover coefficient for each cryptocurrency
pair is portrayed by the width of the arrow. According to Figure 2, it is evident that the tail
risk network at the 95% VaR is noticeably denser than the network at the 5% VaR, indicating
much stronger connectedness and a larger number of relevant connections at the 95% VaR than
at the 5% VaR. Notably, the roles which the most popular cryptocurrencies play in the tail risk
networks are clearly visible in the figure: while Bitcoin and Litecoin are the cryptocurrencies
with the highest value of out-degree at the 95% tail threshold, Ethereum and Etherium Classic
appears to be the most prominent risk driver at the 5% threshold. To put it differently, Bitcoin
and Litecoin play a major role in the booming market while Ethereum and Etherium Classic
take the driving seat during turbulent periods

We present the distributions of the degree measures using histograms of the in-degrees, the
out-degrees, and the net-degrees at the various VaR thresholds in Figures 3 and 4. We observe
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from the histograms in Figure 3 that the majority of the cryptocurrencies in the sample have
very low left-tail in-degrees and out-degrees as depicted by the high frequencies of the first
few bins in most of the histograms. This finding points to the idiosyncratic nature of the tail
events in the cryptocurrency markets – which we have previously discussed. Furthermore, the
net-degree distributions reveal the popularity of small and moderate net tail risk receivers. In all
of the net-degree histograms, except for that at the 1% VaR threshold, there are more negative
net-degree currencies than positive net-degree currencies. Since the sum of all net-degrees in the
system must equal zero by definition, this finding suggests that, even though there are fewer risk
drivers in the system, they are likely to be major drivers with large, positive net-degrees.

Compared to the histograms for the left-tail networks, the histograms for the right-tail
networks shown in Figure 4 paint a different picture. First, the total number of connections
for the right-tail networks are higher than those of the corresponding left-tail counterparts,
indicating a larger degree of tail risk dependence at the right tails of the return distributions
than at the left tails. Second, as is visible from the shape of the histograms, we observe a higher
proportion of cryptocurrencies with large right-tail in-degrees and out-degrees. Especially in the
case of the 95% VaR, the number of cryptocurrencies with moderate and high degrees of spillover
is much larger than the number of currencies with low levels of spillover. These results show
that the network of cryptocurrencies contains a greater number of major right tail risk drivers
and risk receivers than the left tail counterparts. Third, the distributions of the net-degrees of
the right tail risk spillovers are, in general, less skewed than those of the left tail spillovers. Our
calculation shows that the average skewness of the right-tail spillover net-degree distributions
is 0.047 whereas the average skewness of the left-tail spillover net-degree distributions is 0.302.
We can also report a larger number of cryptocurrencies with positive right-tail net-degrees than
those with negative right-tail net-degrees after we exclude currencies with zero net-degrees,
suggesting that right-tail spillovers are more common among cryptocurrencies than left-tail
spillovers. These features confirm the dominance of the right-tail connectedness over the left-tail
connectedness.

To further examine if our findings hold in a larger network of cryptocurrencies, we expand
our sample to include currencies with at least two years of price data, taking the total number of
cryptocurrencies in the network up to 44. Our extended sample thus starts from November 2017.
We present the summary statistics of the currencies in the extended sample in Table 4 and the
LASSO quantile regression results for the tail risk network of the 44 cryptocurrencies in Table
5. Similar to our main results for the 21 cryptocurrencies previously reported, we continue to
observe that the number of significant left tail risk spillover coefficients increases monotonically
from the 1% VaR to the 20% VaR levels, implying that there is a tendency for the tail events at
the extreme tail thresholds to be idiosyncratic tail shocks. More importantly, tail risk spillover
at the right tails continues to dominate spillover at the left tails at all the VaR significance
levels. Taken together, the results for the extended sample of 44 cryptocurrencies confirm the
robustness of our previous findings.
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3.2 The Tail Risk Connectedness Network: Rolling Window Analysis

In this section, we employ a rolling window analysis to investigate whether the tail dependence
behaviour in the cryptocurrency markets is time varying. Specifically, using daily returns of
cryptocurrencies that came into existence and investible within each calendar quarter between
2017 and 2019, we estimate the LASSO quantile regression model for the currencies and construct
the connectedness matrices for the different tail thresholds.12 Thus, as shown in the second
column of Table 6, our sample size grows from 21 cryptocurrencies during the first quarter under
investigation (2017Q1) to 69 currencies in the last quarter ending December 2019 (2019Q4). It
is worth noting that since there are no observations with loss exceeding the 1% VaR thresholds
in each of the quarters within the sample period, we do not estimate the connectedness matrix
for the 1% VaR thresholds. Columns 3–11 of Table 6 show the number of connections in the tail
risk networks at the 5%, 10%, and 20% VaR thresholds from the first quarter of 2017 to the last
quarter of 2019. For each tail threshold, we report the number of connections at both the left
tails and the right tails along with their differences.

In general, we observe a downward trend in the total of connection level in the cryptocurrency
networks. During the first quarter of 2017, an average of 34.7 connections is observed in the
network across all the tail thresholds at both sides of the distributions. The figure accounts for
8.3% of the total number of possible connections among the 21 currencies.13 The corresponding
value in the fourth quarter of 2019 is 241 connections, accounting for 5.1% of the total number
of possible connections among the 69 currencies. These findings suggest that the cryptocurrency
markets have become more segregated over time. Interestingly, similar to the results for the full
sample analysis, the right tail dependence continues to dominate the left tail connectedness. In
the majority of cases, the total numbers of connections at the right tails are higher (in some
cases, more than double) than those at the left tails at all the tail thresholds. As this period
encompasses the bear market which started just before 2018, the findings that spillovers at the
right tails dominate those at the left tails during this period suggest that the dominance of the
right tail spillovers in the cryptocurrency markets is not a result of bubbles.

We further examine if the dominance of the right-tail connectedness over the left-tail connect-
edness over time are driven by positive skewness of the return distributions coupled with a “peso
problem” effect. We first compute the average skewness statistics of all the cryptocurrencies
in each quarter between 2017 and 2019 and present them in the last column of Table 6. It
can be seen that the average skewness of the return distributions of all the cryptocurrencies
follows a downward path from 2017Q1 to 2019Q4 – though the trend is not strictly monotonic.
This suggests that occurrences of extreme positive returns have become less frequent over time.
We then calculate the correlation coefficients between the average skewness and the differences
between the right-tail and the left-tail dependence at the 5%, 10%, and 20% VaR thresholds. The
correlation coefficients are found to be −0.12, −0.35, and −0.45 for the 5%, 10%, and 20% levels,

12This approach allows us to examine the robustness of our results to the variation in the network composition
as more currencies are added to the sample when they became available in the quarter under examination.

13The total number of possible connections in a network of 21 currencies is 21 × 20 = 420.
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respectively.14 These results indicate that right-tail spillovers in the cryptocurrency markets
continue to dominate left-tail spillovers even as the return distributions have become less skewed
over the sample period, providing strong evidence against the hypothesis that spillovers at the
right tails are a consequence of positively skewed return distributions coupled with a potential
peso problem. However, since the time series of the cryptocurrencies in our sample are relatively
short, we cannot completely rule out a possibility that our results are caused by a peso problem
and therefore they need to be interpreted with some caution.15

3.3 The Tail Risk Connectedness Network: The Predictive Connection be-
tween Cryptocurrencies

Thus far, our main results point to the contemporaneous tail risk linkages among the cryptocur-
rencies in the network. They also indicate that the tail fatness of the conditional distribution of
a cryptocurrency is affected by concurrent tail events originated from other cryptocurrencies.
Although the issue of endogeneity due to simultaneity of the model in Eq. (1) can be safely
ignored (Hautsch et al. 2015), we further test the robustness of our findings by using the lagged
tail events of other cryptocurrencies as the explanatory variables in Eq. (1) thereby completely
obviating simultaneity.16 Specifically, we estimate the following predictive LASSO quantile
regression model for each cryptocurrency:

VaRi
q,t = αi + θiᵀE−it−1 + ωiXi

t−1 (11)

where the only difference between Eq. (1) and Eq. (11) is that we use lagged loss exceedances,
denoted by E−it−1, instead of the contemporaneous values as the independent variables. This
setting allows us to examine if tail events of a cryptocurrency can be predicted using lagged loss
exceedances of the other cryptocurrencies in the network.

Results for the predictive tail connectedness at the different tail thresholds are reported in
Table 7. Similar to the results for the contemporaneous tail connectedness reported in Tables
2 and 5, the total number of connections at the right tails are found to be consistently higher
than those at the left tails. The differences between the number of tail connections at the right
tails and that at the left tails are even more prominent than the differences calculated under the
contemporaneous setting. Across all the VaR thresholds, the total number of connections at the
right tails approximately triples (doubles) that at the left tails in the 21 (44) currency network.
Therefore, our central finding that tail risk spillovers among the cryptocurrencies at the right
tails dominate that at the left tails remains robust under the predictive set-up. In comparing
the results in Table 7 with those in Tables 2 and 5, it is evident that the predictive tail risk

14We also obtain qualitatively similar results when using the ratios of the number of connections at the right
tails and the left tails instead of their differences to compute the correlation coefficients.

15We thank the referee for the suggestion regarding this investigation.
16The reason why Eq. (1) does not suffer from simultaneity is that although a highly negative return on

cryptocurrency j causes the VaR of cryptocurrency i to rise, it does not necessarily imply a higher loss exceedance
of cryptocurrency i because the relationship between a specific quantile and the conditional distribution of
exceedances, given a fixed threshold, is not known.
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networks are less connected than the contemporaneous tail risk networks since, in most cases,
the numbers of total connections of the predictive networks are less than half of those of the
contemporaneous networks. This is not surprising: as cryptocurrencies are traded round-the-
clock, a tail event affecting a cryptocurrency most likely impacts other cryptocurrencies in the
markets instantaneously.

We reach similar conclusions when applying rolling window analysis to the predictive quantile
regression model in Eq. (11). Judging by the results in Table 8, tail risk dependence at the
right tails is still much more popular than that at the left tails in almost all the connectedness
matrices for each of the quarters and at all the VaR significance levels under examination. In
fact, only two instances, observed in 2018Q4 and 2019Q4, point to the dominance of the left tail
risk dependence over the right tail risk dependence at the 5% VaR threshold. Lastly, consistent
with the results for the full sample investigation, we document a general reduction in the number
of connections in the connectedness matrices under the predictive framework as compared to
the contemporaneous setting.

4 Portfolio Analysis: Equal-Weighting versus Mean-Conditional
Value-at-Risk Optimisation (Mean-CVaR)

In this section, we compare the risk and return performance of a cryptocurrency portfolio,
constructed using the the naïve, equal weighting scheme to that of a portfolio, formed based
on a more advanced mean-Conditional Value-at-Risk (mean-CVaR) optimisation algorithm.
While the weights of currencies in the equal-weighted portfolio all equal 1/n where n is the
number of currencies, the weights of the constituent cryptocurrencies in the mean-CVaR portfolio
are calculated such that the trade off between reward and risk, as measured by the expected
returns and the CVaR, is optimised. The optimisation problem assumes extreme downside
risk as the relevant risk measure which is of much more concern to some investors than the
traditional dispersion risk as captured by the variance in the canonical mean-variance optimisation
framework.

The mean-CVaR problem can take a number of alternative representations, including min-
imising portfolio risk with a minimum portfolio expected return constraint, maximising portfolio
expected return with a maximum portfolio risk constraint, and maximising a utility function
defined as the portfolio expected return minus a penalty for risk. These three alternative
problems are equivalent in the sense that they generate the same efficient frontier when varying
the expected return constraint, the risk constraint and the risk aversion coefficient, respectively
(see Krokhmal et al. 2002, Brandtner 2013). A widely used framework for the mean-CVaR
optimisation problem is developed by Rockafellar & Uryasev (2000, 2002) where the optimisation
is transformed into a linear programming problem and therefore can be used to obtain optimised
weights for a large number of assets in the portfolio. Rockafellar & Uryasev (2000, 2002) show
that the loss value of CVaR of a portfolio, denoted here by CVaRυ, can be obtained through
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minimising a function with respect to the loss value of VaR, denoted as VaRυ, as follows:

Fα (w,VaRυ) = VaRυ + 1
α

∫
X∈RN

[−wᵀX −VaRυ]+ p (X) dX (12)

where α is the significance level of the VaR and CVaR; w = (w1, w2, . . . , wN )ᵀ and X =
(X1, X2, . . . , XN )ᵀ are the weights and returns of the N assets in the portfolio.17 The returns
are random variables distributed according to some multivariate distribution with probability
density function p (•) and [t]+, where [t]+ = max{t, 0}, is a function that takes the value of t
when t > 0 and 0 otherwise.

Rockafellar & Uryasev (2000, 2002) further show that minimising CVaRυ with respect to w
is equivalent to minimising Fα (w,VaRυ) over all (w,VaRυ):

min
w∈W

CVaRυ (w) = min
(w,VaRυ)∈W×R

Fα (w,VaRυ) (13)

where Fα (w,VaRυ) is convex with respect to (w,VaRυ) and CVaRυ (w) is convex with respect
to w. Given that W is also a convex set, which is generally true, minimising CVaRυ is a convex
programming problem. As a result, the full mean-CVaR optimisation problem can be formed
by combining the risk minimisation objective and the minimum expected return constraint as
follows:

min
(w,VaRυ)∈W×R

(
VaRυ + 1

α

∫
X∈RN

[−wᵀX −VaRυ]+ p (X) dX
)

(14)

subject to

N∑
i=1

wi = 1,

wᵀµ ≥ µ0,

0 ≤ wi ≤ 1,∀i = 1, 2, . . . , N.

Moreover, Rockafellar & Uryasev (2000, 2002) recommend transforming the above problem
into a linear programming problem via using asset return scenarios in order to eliminate the
probability density component and introduce the new variables {zj} to replace the values of the
[•]+ function in these return scenarios:

min
(w,VaRυ ,z)∈W×R×RJ+

VaRυ + 1
α

J∑
j=1

πjzj

 (15)

17CVaRυ and VaRυ are essentially equal to −1 times CVaR and VaR, respectively.
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subject to

zj ≥ −wᵀXj −VaRυ,∀j = 1, 2, . . . , J,

zj ≥ 0, ∀j = 1, 2, . . . , J,
N∑
i=1

wi = 1,

wᵀµ ≥ µ0,

0 ≤ wi ≤ 1,∀i = 1, 2, . . . , N

where Xj is a vector of the constituent asset returns in scenario j; J is the number of all
investigated scenarios which could be obtained from historical observations of asset returns;
πj is the probability that scenario j occurs; the components of z = (z1, z2, . . . , zJ)ᵀ are the
variables that replace the value of the unsmooth [•]+ function in each return scenario. We set
the minimum return constraint to the average risk-free rate interest rate over the sample period,
which is available in Kenneth French’s online database.18 We obtain similar results using other
minimum return constraints such as zero and the average return of the cryptocurrency market
over the sample period. It should be noted that we do not allow short-selling in this optimisation
by restricting the value of any weight to be bound between 0 and 1. This is to reflect the fact
that cryptocurrencies are an emerging risky alternative investment and short selling is restricted.

We first examine the difference between returns of the equal-weighted portfolio and the
mean-CVaR portfolio. In this exercise, the portfolio construction starts from 1st May 2017. To
construct the mean-CVaR portfolio, we compute the mean-CVaR optimal weights for each of the
cryptocurrencies in the portfolio at the beginning of each month using the currencies’ realised
daily returns over the last 6 months as input in the optimisation. We include only currencies
whose historical return data are available for the full six-month period prior to the portfolio
formation. Moreover, we allow the number of cryptocurrencies in the portfolio to increase over
time when new currencies became investible. We keep the optimisation problem parsimonious
and close the industry practice by calculating the expected returns of the cryptocurrencies on
the construction date as the simple historical averages. For the naïve, equal-weighted portfolio,
each currency in the portfolio is assigned a weight of 1/n where n is the number of currencies
which become investible on the portfolio construction date. In order to examine the portfolio
performance for different holding periods, portfolio returns are recorded for investment horizons
of one to twelve months. As a result, we obtain a series of post-formation holding period returns
for both the mean-CVaR portfolio and the equal-weighted portfolio.

Table 9 reports the average holding period returns for the naïve and the mean-CVaR portfolios
at the different investment horizons, ranging from one month to twelve months. We also report
the differences in the average returns as well as the corresponding t-statistics calculated using
Newey & West (1987) standard errors to account for overlapping holding period returns. For

18http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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brevity, we only report the results for the 5% CVaR.19 It can be seen in Table 9 that the naïve
portfolio generates higher expected returns than the mean-CVaR portfolio at all the investment
horizons except for the one-month holding period. Although the return differences are not
statistically significant at the conventional significance levels, we are able to conclude that the
equal-weighted portfolio performs no worse than the mean-CVaR portfolio.

To further investigate the relative performance of the two portfolio weighting schemes, we
construct a hypothetical equal-weighted portfolio and a hypothetical mean-CVaR portfolio with
$1 of intial investment each at the beginning of May 2017. Both portfolios are periodically
rebalanced based on their weighting strategy. While the naïve portfolio is rebalanced to maintain
the equal weight of 1/n for each currency at the beginning of each rebalancing period, the
mean-CVaR optimal weights are estimated using historical returns realised during the previous
six months prior to the portfolio formation regardless of the rebalancing frequency. This approach
differs from the above approach in that both portfolios are held for a period of one, three, or six
months, depending on the rebalancing period under examination, before they are rebalanced
on the last day of the holding period where allocation of cryptocurrencies in the portfolios are
obtained based on the portfolios’ composition on the rebalancing date. This approach not only
closely mimic real-world investing but also allows us to incorporate transaction costs into the
rebalancing process and backtest both weighting strategies.20

We modify the optimisation problem to factor in transaction costs based on the technique
discussed in Adcock & Meade (1994) where the cost is a linear function of the absolute weight
changes.21 Since it is in investors’ interest to minimise transaction costs, it is straightforward to
include the transaction cost term into the objective function. The modified mean-CVaR problem
is therefore specified as follows:

min
(w,VaRυ ,z)∈W×R×RJ+

VaRυ + 1
α

J∑
j=1

πjzj

+
N∑
i=1

P0ci |wi − w0i| (16)

subject to

zj ≥ −wᵀXj −VaRυ,∀j = 1, 2, . . . , J,

zj ≥ 0, ∀j = 1, 2, . . . , J,
N∑
i=1

wi = 1,

wᵀµ ≥ µ0,

0 ≤ wi ≤ 1,∀i = 1, 2, . . . , N

19Results for the other VaR levels are qualitatively similar and available upon request.
20In practice, an optimised portfolio may produce poor performance after trading costs are factored in if it

frequently needs rebalancing and therefore incurs large trading fees.
21Kolm et al. (2014) stress the necessity of incorporating transaction costs directly into the optimisation

problem to obtain the optimum asset allocation. The optimised weights in a frictionless condition is guaranteed
to be suboptimum in the world with transaction costs.
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where ci is the transaction cost (in decimals) incurred when trading cryptocurrency i, P0 is the
portfolio value before rebalancing, and w0i is the weight of cryptocurrency i in the portfolio just
before rebalancing. Thus, w0i is the weight after the holding period, and wi is the target weight
after rebalancing (i.e., at the beginning of the following holding period). Given that w0i is a
constant and is known before the optimisation, |wi − w0i| is therefore convex with respect to
wi. Since P0 > 0 and ci > 0, it follows that the transaction cost term in the objective function
is a convex function with respect to wi. Therefore, the modified mean-CVaR is still a convex
programming problem. As the average transaction cost for Bitcoin is reported to be 27 bps
Borri & Shakhnov (2018), we investigate the portfolio performance using transaction cost values
ranging from 0 bp (frictionless market) to a more conservative figure of 50 bps. Specifically,
ci ∈ {0, 0.001, 0.0025, 0.005}.

To compare the performance of the equal-weighed portfolio to that of the mean-CVaR portfolio,
we report portfolio total returns, average returns, volatility, CVaR, and two (annualised) Sharpe
ratios calculated using the volatility and the CVaR measures. To calculate the two Sharpe ratios,
we use the average of the daily yields on the one-month Treasury bills during the whole sample
period from November 2016 to December 2019.22

We report the performance of both portfolios for the rebalancing frequency of 1-, 3-, and
6-month in Table 10. Similar to the previous investigation, we report only the results for the 5%
tail threshold for the sake of brevity.23 First, the most striking finding is the stellar performance
of both cryptocurrency portfolios during 2017–2019. Assuming one-month holding period and
frictionless trading (i.e., no transaction cost), the equal-weighted portfolio and the optimised
mean-CVaR portfolio generate total returns of approximately 4,900% and 6,100%, respectively!
Both portfolios generate slightly lower returns when they are rebalanced less frequently. Without
trading costs, the risk-adjusted performance of the naïve, equal-weighted portfolio, as measured
by the traditional and the CVaR-adjusted Sharpe ratios, is slightly worse than that of the
mean-CVaR portfolio. The difference is, however, modest.

When trading costs are taken into account, even at a charge of only 10 bps per trade, the
equal-weighted portfolio easily outperforms the mean-CVaR portfolio. While the mean-CVaR
portfolio generates over 3,600% of total return between May 2017 and December 2019, the naïve
portfolio earns around 4,900% in the same period – a difference of 1,300%. The underperformance
of the mean-CVaR portfolio undoubtedly stems from frequent trading as a result of significant
changes in the target allocation of currencies at the beginning of each rebalancing period, causing
the portfolio performance to be heavily eroded by trading charges. When the transaction cost is
assumed to be 50 bps, the total returns of the naïve scheme are more than 9 times those of the
mean-CVaR. Interestingly, the impact of transaction costs on the portfolio performance of the
mean-CVaR portfolio appears to be flat as the costs become higher. This can be explained by
the fact that as trading in order to rebalance the portfolio becomes more costly, the “optimal”
strategy is to trade less frequently. All the conventional and the CVaR Sharpe ratios for the

22http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
23Results for the other tail thresholds are qualitatively similar and are available from the authors upon request.
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naïve portfolio are much larger than those of the mean-CVaR portfolio. The only performance
measure which ranks the mean-CVaR portfolio higher than the equal-weighted portfolio is the
tail risk measure – CVaR. This should not come as a surprise as the mean-CVaR portfolio is
constructed with the aim to minimise CVaR. However, when both portfolios are rebalanced
monthly, the equal-weighted portfolio of cryptocurrencies still succeeds in outperforming the
mean-CVaR portfolio as judged by this measure.

Figure 5 compares the value of the equal-weighted portfolio to the value of the mean-CVaR
portfolio over time between May 2017 and December 2019. Figure 5a shows the portfolio values
assuming no transaction cost while Figure 5b shows the portfolio values assuming a charge of 25
bps per trade. It is evident that without transaction costs, the performance of the equal-weighted
portfolio is almost identical to that of the mean-CVaR portfolio. When transaction cost is
accounted for, the equal-weighted portfolio outperforms the mean-CVaR portfolio for most of
the sample periods – even during the collapse of the cryptocurrency markets in 2018.24

Our portfolio analysis results suggest an important implication for cryptocurrency investors.
While the mean-CVaR optimisation strategy specifically aims to minimise tail risk, the equal
weighting of the cryptocurrencies in the equal-weighted portfolio is a naïve approach to diversifi-
cation. The finding that the simple, equal-weighting strategy succeeds in achieving similar or
better risk and return profile as the mean-CVaR optimisation which actively seeks to minimise
tail risk indicates that diversification can be straightforwardly accomplished by means of equally
weighting cryptocurrencies in the portfolio. This finding undoubtedly should be welcome by
regular, retail investors, given their disadvantages in the information processing and complex
portfolio construction capability.

5 Conclusions

In this article, we examine the nature of tail risk spillovers among the most actively traded
cryptocurrencies. We model the VaR of each cryptocurrency in the sample at various thresholds
as a function of loss exceedances of the other cryptocurrencies in the network. The model
is estimated using the LASSO quantile regression technique which permits the deselection
of explanatory variables with negligible impacts from the final model in a data-driven way,
thereby significantly reducing the number of parameters to be estimated and greatly easing
the interpretation of the results. Our findings show that Bitcoin and Litecoin is the major
risk-driving cryptocurrencies during the bull markets while Ethereum and Ethereum Classic
appear to drive down the entire markets during bearish periods. Results from the dynamic rolling
window analysis point to increasing segmentation of tail risk dependence in the cryptocurrency
markets over time.

Our results show that rare event risk becomes sparser at the more extreme tail thresholds,
pointing to the idiosyncratic nature of extreme tail risk among cryptocurrencies. Interestingly,

24In 2018, the naïve portfolio value falls by 83% while the mean-CVaR portfolio value drops by 90% for the
year.
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contrary to the phenomena typically observed in traditional assets, such as stocks and bonds, we
find that tail risk dependence at the right tails of the return distributions is more prominent than
that at the left tails, suggesting that portfolios of cryptocurrencies are less prone to collective
downside risk and should enjoy strong performance during positive market sentiments. Our
portfolio analysis further suggests that diversification in cryptocurrency investment can be
effectively and easily achieved by means of equal weighting of cryptocurrencies in the portfolio.

Our research has important implications for both cryptocurrency traders as well as policymak-
ers. We reveal different layers of the unique attractiveness of this asset class to both institutional
and retail investors. Even though markets for cryptocurrencies account for a small proportion
of the entire financial markets, it is a matter of time before they become more mainstream as
financial institutions start to offer products linked to cryptocurrencies (e.g., traditional passive
or active mutual funds or exchange-traded funds (ETFs) linked to the cryptocurrency markets).
Policymakers should therefore be aware of the potential risk, originating from the cryptocurrency
markets, which could destabilise the financial markets and affect the health of the economy as a
whole.
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Table 2

The Contemporaneous Total Tail Risk Connectedness of the Cryptocurrency Network
Full Sample Static Analysis: 21 Cryptocurrencies

This table presents the estimated degrees of tail risk connectedness in the network of 21 cryptocurrencies, computed
as the total number of relevant spillover coefficients in the connectedness matrix A at the 1%, the 5%, the 10%,
and the 20% tail thresholds. The thresholds at the left tails are the significance levels of the VaR in Eq. (1) while
those at the right tails equals 100% minus the corresponding VaR significance levels. This means that the 1%,
the 5%, the 10%, and the 20% right tail threshold are the 99%, the 95%, the 90%, and the 80% VaR thresholds,
respectively.

Right Tail Left Tail Difference

1% VaR 73 39 34
5% VaR 182 85 97
10% VaR 174 140 34
20% VaR 162 106 56
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Table 4

Descriptive Statistics
Extended Sample: 44 Cryptocurrencies

This table reports the descriptive statistics for the 44 cryptocurrencies in the sample. The market capitalisation
(MC) is shown in million of dollars. The table presents the means, the standard deviations (SD), the minima
(Min), the 5th percentile (5% VaR), the 10th percentile (10% VaR), the medians (Median), the 90th percentile
(90% VaR), the 95th percentile (95% VaR), and the maxima (Max) for each cryptocurrency. The sample period is
from November 2017 to December 2019.

Names MC(in millions $) Mean SD Min 5% VaR 10% VaR Median 90% VaR 95% VaR Max Skewness Kurtosis

Bitcoin 130446.00 0.001 0.042 -0.169 -0.066 -0.110 0.001 0.043 0.072 0.252 0.416 4.020
Ethereum 14139.77 0.000 0.051 -0.187 -0.081 -0.150 -0.001 0.056 0.085 0.265 0.075 2.642
XRP 8359.62 0.002 0.072 -0.298 -0.080 -0.144 -0.003 0.060 0.095 0.835 3.837 35.286
BitcoinCash 3723.64 0.000 0.070 -0.336 -0.105 -0.168 -0.003 0.065 0.106 0.512 1.221 8.831
Litecoin 2635.70 0.001 0.060 -0.191 -0.083 -0.130 -0.003 0.056 0.093 0.476 1.885 11.839
EOS 2443.24 0.003 0.072 -0.260 -0.099 -0.177 0.000 0.075 0.120 0.415 1.125 5.883
BinanceCoin 2135.15 0.005 0.065 -0.290 -0.081 -0.137 0.000 0.065 0.102 0.620 2.206 17.824
Tezos 938.73 0.002 0.077 -0.358 -0.103 -0.211 0.000 0.087 0.127 0.766 1.310 14.215
Stellar 906.96 0.002 0.068 -0.264 -0.093 -0.145 -0.004 0.069 0.107 0.587 1.891 11.953
TRON 887.25 0.007 0.104 -0.301 -0.108 -0.177 -0.002 0.084 0.125 1.196 5.328 52.643
Cardano 851.58 0.004 0.093 -0.251 -0.098 -0.148 -0.003 0.070 0.100 1.367 6.436 77.782
Monero 774.58 0.000 0.057 -0.228 -0.099 -0.148 -0.001 0.063 0.097 0.282 0.188 2.523
Chainlink 619.31 0.006 0.081 -0.272 -0.103 -0.180 -0.004 0.094 0.132 0.623 1.526 8.239
Neo 612.87 0.000 0.064 -0.233 -0.097 -0.150 -0.002 0.067 0.109 0.367 0.626 3.520
Ethereum Classic 523.06 0.000 0.059 -0.297 -0.095 -0.165 0.000 0.057 0.096 0.320 0.065 4.471
IOTA 445.10 0.000 0.068 -0.314 -0.098 -0.164 -0.002 0.067 0.102 0.468 1.148 8.238
Maker 430.96 0.002 0.063 -0.293 -0.089 -0.140 -0.001 0.068 0.099 0.582 1.531 12.884
Dash 380.82 -0.002 0.054 -0.195 -0.087 -0.153 -0.003 0.053 0.088 0.333 0.711 5.437
NEM 289.06 0.001 0.089 -0.303 -0.102 -0.168 -0.001 0.059 0.099 1.706 9.460 173.948
BasicAttentionToken 257.28 0.003 0.069 -0.298 -0.103 -0.171 0.000 0.084 0.118 0.316 0.294 2.203
Dogecoin 248.88 0.002 0.063 -0.308 -0.083 -0.151 -0.002 0.060 0.101 0.577 2.026 15.942
Zcash 230.20 -0.002 0.057 -0.210 -0.092 -0.146 -0.005 0.063 0.094 0.298 0.398 2.692
Decred 181.23 0.000 0.059 -0.225 -0.095 -0.144 -0.002 0.062 0.102 0.333 0.509 3.305
Qtum 155.02 0.000 0.077 -0.347 -0.102 -0.176 -0.003 0.065 0.099 0.751 2.374 20.005
Ox 109.91 0.002 0.071 -0.289 -0.103 -0.155 -0.004 0.078 0.122 0.404 0.848 3.572
Waves 101.72 0.000 0.063 -0.224 -0.093 -0.165 -0.002 0.067 0.093 0.466 1.032 7.516
Augur 98.35 0.001 0.073 -0.268 -0.100 -0.163 -0.002 0.070 0.113 0.922 3.052 34.436
BitcoinGold 92.77 -0.004 0.063 -0.290 -0.096 -0.167 -0.004 0.056 0.087 0.596 1.566 16.679
Nano 85.86 0.006 0.093 -0.306 -0.118 -0.182 -0.001 0.097 0.156 0.784 1.990 11.319
OmiseGO 85.01 -0.001 0.063 -0.248 -0.102 -0.161 -0.002 0.070 0.095 0.264 0.190 2.307
KuCoinShares 74.89 0.004 0.086 -0.245 -0.104 -0.176 0.000 0.080 0.133 0.962 3.606 32.702
Horizen 74.39 0.000 0.062 -0.230 -0.098 -0.156 -0.002 0.075 0.107 0.250 0.172 1.664
Lisk 67.62 -0.002 0.063 -0.244 -0.093 -0.153 -0.004 0.065 0.098 0.298 0.704 3.871
DigiByte 66.95 0.002 0.076 -0.286 -0.109 -0.168 -0.002 0.087 0.119 0.682 1.728 13.217
Bytom 65.82 0.002 0.081 -0.369 -0.104 -0.186 -0.002 0.075 0.122 0.938 2.664 27.646
MCO 63.57 0.002 0.076 -0.285 -0.101 -0.176 0.000 0.074 0.114 0.910 2.855 31.816
EnjinCoin 63.00 0.006 0.103 -0.333 -0.116 -0.171 -0.002 0.082 0.124 1.156 4.534 41.940
BitcoinDiamond 59.79 0.002 0.169 -0.692 -0.143 -0.323 -0.004 0.067 0.137 3.215 10.081 177.642
Komodo 58.59 0.000 0.067 -0.279 -0.103 -0.158 -0.001 0.077 0.110 0.437 0.586 3.784
ICON 58.19 0.000 0.083 -0.321 -0.124 -0.200 -0.002 0.081 0.123 0.592 1.298 8.248
Verge 55.73 0.004 0.101 -0.365 -0.118 -0.201 -0.003 0.079 0.121 1.158 3.806 34.086
Siacoin 54.37 0.001 0.079 -0.356 -0.108 -0.174 -0.002 0.067 0.114 0.794 2.322 18.813
Bytecoin 52.66 0.005 0.152 -0.314 -0.123 -0.191 -0.003 0.094 0.125 3.452 15.644 344.135
MonaCoin 50.17 0.001 0.094 -0.287 -0.093 -0.161 -0.007 0.052 0.093 1.046 5.302 45.958
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Table 5

The Contemporaneous Total Tail Risk Connectedness of the Cryptocurrency Network
Extended Sample Analysis: 44 Cryptocurrencies

This table presents the estimated degrees of tail risk connectedness in the network of 44 cryptocurrencies, computed
as the total number of relevant spillover coefficients in the connectedness matrix A at the 1%, the 5%, the 10%,
and the 20% tail thresholds. The thresholds at the left tails are the significance levels of the VaR in Eq. (1) while
those at the right tails equals 100% minus the corresponding VaR significance levels. This means that the 1%,
the 5%, the 10%, and the 20% right tail threshold are the 99%, the 95%, the 90%, and the 80% VaR thresholds,
respectively.

Right Tail Left Tail Difference

1% VaR 293 186 107
5% VaR 450 247 203
10% VaR 439 338 101
20% VaR 392 352 40
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Table 7

The Predictive Total Tail Risk Connectedness of the Cryptocurrency Network
Full Sample Static Analysis

This table presents the estimated degrees of tail risk connectedness in the network of 21 and 44 cryptocurrencies
respectively, computed as the total number of relevant spillover coefficients in the connectedness matrix A at the
1%, the 5%, the 10%, and the 20% tail thresholds. The thresholds at the left tails are the significance levels of the
VaR in Eq. (11) while those at the right tails equals 100% minus the corresponding VaR significance levels. This
means that the 1% right tail threshold is, in fact, the 99% VaR

21 Cryptocurrencies 44 Cryptocurrencies

Right Tail Left Tail Difference Right Tail Left Tail Difference

1% VaR 30 11 19 147 75 72
5% VaR 100 32 68 217 86 131
10% VaR 86 25 61 152 73 79
20% VaR 53 15 38 96 45 51
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Table 9

Buy-and-Hold Portfolio Performance at Different Holding Periods

This table reports the average holding period returns for the naïve, equal-weighted portfolio and the mean-CVaR
portfolio, optimised at the 5% VaR threshold, at the different investment horizons, ranging from one month to
twelve months. The table also reports the differences in the average returns as well as the corresponding t-statistics
calculated using Newey & West (1987) standard errors to account for overlapping holding period returns.

Holding period Equal-Weighted Mean-CVaR (5% VaR) Difference t-statistics

1 month 38.293 38.519 −0.226 −0.109
2 months 85.737 66.891 18.846 1.368
3 months 139.629 129.704 9.924 1.287
4 months 182.245 133.459 48.785 1.389
5 months 180.824 147.527 33.297 1.227
6 months 178.688 161.935 16.753 0.719
7 months 236.711 186.618 50.093 0.941
8 months 789.454 294.879 494.576 1.058
9 months 450.558 262.750 187.808 1.084
10 months 367.009 231.507 135.503 1.096
11 months 270.473 148.155 122.318 1.166
12 months 406.685 184.025 222.660 1.169
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Table 10

Portfolio Performance when Portfolios are Rebalance Periodically

This table reports the performance of a hypothetical equal-weighted portfolio and a hypothetical mean-CVaR
portfolio, optimised at the 5% VaR threshold, with $1 of intial investment each at the beginning of May 2017. Both
portfolios are periodically rebalanced based on their weighting strategy. While the naïve portfolio is rebalanced to
maintain the equal weight of 1/n for each currency at the beginning of each rebalancing period, the mean-CVaR
optimal weights are estimated using historical returns realised during the previous six months prior to the portfolio
formation regardless of the rebalancing frequency. For each of the balancing frequency of 1, 3, and 6 months, we
report the total returns, the average returns, portfolio volatility, CVaR, and the two (annualised) Sharpe ratios
calculated based on the volatility and the CVaR measures.

1 Month 3 Months 6 Months

Equal-Weighted Mean-CVaR Equal-Weighted Mean-CVaR Equal-Weighted Mean-CVaR

Transaction cost = 0 bps

Total return (%) 4,959.086 6,121.068 4,882.809 4,500.913 3,521.085 3,735.224
Average return (%) 0.576 0.586 0.596 0.564 0.575 0.566
Volatility (%) 5.916 5.726 6.284 5.890 6.465 6.235
CVaR (%) -12.588 -12.212 -13.414 -12.491 -14.011 -13.357
Sharpe ratio 1.840 1.935 1.793 1.809 1.682 1.715
CVaR Sharpe ratio 0.865 0.907 0.840 0.853 0.776 0.801

Transaction cost = 10 bps

Total return (%) 4,913.298 3,610.819 4,853.566 274.817 3,505.563 269.728
Average return (%) 0.575 0.708 0.595 0.337 0.575 0.333
Volatility (%) 5.915 8.442 6.285 6.445 6.465 6.378
CVaR (%) -12.588 -15.815 -13.416 -13.275 -14.011 -13.023
Sharpe ratio 1.837 1.588 1.791 0.982 1.681 0.980
CVaR Sharpe ratio 0.863 0.848 0.839 0.477 0.776 0.480

Transaction cost = 25 bps

Total return (%) 4,845.409 488.607 4,810.031 306.066 3,482.408 307.332
Average return (%) 0.573 0.395 0.594 0.348 0.574 0.350
Volatility (%) 5.915 6.602 6.285 6.481 6.465 6.496
CVaR (%) -12.589 -13.097 -13.420 -13.052 -14.011 -13.098
Sharpe ratio 1.832 1.125 1.788 1.010 1.679 1.011
CVaR Sharpe ratio 0.861 0.567 0.838 0.501 0.775 0.501

Transaction cost = 50 bps

Total return (%) 4,734.344 486.966 4,738.339 307.611 3,444.161 304.891
Average return (%) 0.571 0.396 0.593 0.349 0.573 0.349
Volatility (%) 5.915 6.628 6.286 6.483 6.466 6.499
CVaR (%) -12.591 -13.118 -13.425 -13.056 -14.011 -13.099
Sharpe ratio 1.825 1.124 1.784 1.011 1.675 1.009
CVaR Sharpe ratio 0.857 0.568 0.835 0.502 0.773 0.501
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Figure 1

Time Series of Prices And Trading Volumes

This figure shows the time series of prices (in US dollars) and trading volumes (in millions of US dollars) for
Bitcoin, Ethereum, Litecoin, Ripple, and Stella during November 2016 to December 2019. The prices are scaled
as follows: the price of Bitcoin is divided by 1,000, the price of Ethereum is divided by 100, the price of Ripple is
multiplied by 10,the price of Litecoin is divided by 10, and the price of Stella is divided by 10.
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Figure 2

The Tail Connectedness Network at the 5% and 95% VaR Thresholds

This figure shows the tail risk connectedness network of 21 cryptocurrencies at the 5% VaR and the 95% VaR
thresholds. Each node in the figure depicts a cryptocurrency, whose out-degree is signified by the size of the
node. The directional connection from one currency to another is illustrated by an arrow going from the source
cryptocurrency to the target cryptocurrency. The width of the arrow is proportional to the magnitude of the
spillover coefficient for the pair of the cryptocurrencies in the connectedness matrix.

(a) 5 VaR%

(b) 95 VaR%
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Figure 3

The Distributions of the Left Tail Spillovers

The histograms below show the distributions of the in-degrees, the out-degrees, and the net-degrees of all the 21
cryptocurrencies in the network at the left tails at the 1%, the 5%, the 10%, and the 20% tail thresholds.
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Figure 4

The Distributions of the Right Tail Spillovers

The histograms below show the distributions of the in-degrees, the out-degrees, and the net-degrees of all the 21
cryptocurrencies in the network at the right tails at the 1%, the 5%, the 10%, and the 20% tail thresholds.
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Figure 5

Portfolio Performance Over Time

The figure compares the value of the equal-weighted portfolio to the value of the mean-CVaR portfolio over time
between May 2017 and December 2019. Panel A shows the portfolio values assuming no transaction cost while
Panel B shows the portfolio values assuming a charge of 25 bps per trade.
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A In-Degrees, Out-Degrees, and Net-Degrees at the Different
VaR Thresholds

Table A1

In-Degrees at the Different VaR Thresholds

This table shows the details of in-degrees of all the 21 cryptocurrencies in the system at the various tail thresholds.
The thresholds at the left tails are the significance levels of the VaR in Eq. (1) while those at the right tails equal
100% minus the corresponding VaR significance levels. This means that the 1% right tail threshold is, in fact, the
99% VaR.

No. Cryptocurrency Left Tail Right Tail

1% 5% 10% 20% 20% 10% 5% 1%

1 Augur 6 3 7 2 7 6 0 7
2 Bitcoin 2 5 7 7 0 2 13 4
3 Bytecoin 0 8 10 8 11 0 9 2
4 Dash 0 11 8 7 2 7 11 0
5 Decred 0 0 0 8 7 0 1 1
6 DigiByte 0 0 6 1 9 10 3 8
7 Dogecoin 8 3 5 5 10 13 13 0
8 Ethereum 0 7 5 0 5 13 10 3
9 Ethereum Classic 7 0 8 9 1 2 9 9
10 Lisk 0 6 5 0 4 11 13 8
11 Litecoin 0 7 9 10 1 10 12 5
12 MonaCoin 0 5 2 3 14 12 9 2
13 Monero 7 4 8 10 7 9 9 1
14 NEM 0 7 9 1 16 16 13 0
15 Neo 4 0 8 1 10 10 10 0
16 Siacoin 0 12 12 12 11 7 13 5
17 Stellar 0 2 8 3 13 7 4 2
18 Verge 4 5 2 2 9 11 10 8
19 Waves 0 0 13 0 9 11 9 1
20 XRP 0 0 8 6 11 11 10 7
21 Zcash 1 0 0 11 5 6 1 0
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Table A2

Out-Degrees at the Different VaR Thresholds

This table shows the details of out-degrees of all the 21 cryptocurrencies in the system at the various tail thresholds.
The thresholds at the left tails are the significance levels of the VaR in Eq. (1) while those at the right tails equal
100% minus the corresponding VaR significance levels. This means that the 1% right tail threshold is, in fact, the
99% VaR.

No. Cryptocurrency Left Tail Right Tail

1% 5% 10% 20% 20% 10% 5% 1%

1 Augur 1 7 5 5 6 8 11 1
2 Bitcoin 2 3 4 4 15 15 15 7
3 Bytecoin 0 0 6 3 1 1 2 2
4 Dash 2 4 2 7 10 11 13 4
5 Decred 2 8 7 3 7 7 10 2
6 DigiByte 3 2 5 4 5 6 8 3
7 Dogecoin 0 3 7 5 5 8 7 3
8 Ethereum 3 7 16 11 18 13 12 5
9 Ethereum Classic 3 9 12 5 7 8 11 5
10 Lisk 1 3 5 4 15 17 12 8
11 Litecoin 3 6 12 6 13 14 16 2
12 MonaCoin 2 3 3 1 3 5 9 1
13 Monero 1 4 8 7 12 10 7 4
14 NEM 7 5 12 12 3 4 6 5
15 Neo 0 4 7 5 1 4 7 2
16 Siacoin 1 4 8 8 10 9 10 5
17 Stellar 3 3 7 3 8 9 5 2
18 Verge 0 1 1 1 3 3 5 2
19 Waves 3 7 8 5 14 14 9 6
20 XRP 2 0 2 3 3 3 3 3
21 Zcash 0 2 3 4 3 5 4 1
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Table A3

Net-Degrees at the Different VaR Thresholds

This table shows the details of net-degrees of all the 21 cryptocurrencies in the system at the various tail thresholds.
The thresholds at the left tails are the significance levels of the VaR in Eq. (1) while those at the right tails equal
100% minus the corresponding VaR significance levels. This means that the 1% right tail threshold is, in fact, the
99% VaR.

No. Cryptocurrency Left Tail Right Tail

1% 5% 10% 20% 20% 10% 5% 1%

1 Augur -5 4 -2 3 -1 2 11 -6
2 Bitcoin 0 -2 -3 -3 15 13 2 3
3 Bytecoin 0 -8 -4 -5 -10 1 -7 0
4 Dash 2 -7 -6 0 8 4 2 4
5 Decred 2 8 7 -5 0 7 9 1
6 DigiByte 3 2 -1 3 -4 -4 5 -5
7 Dogecoin -8 0 2 0 -5 -5 -6 3
8 Ethereum 3 0 11 11 13 0 2 2
9 Ethereum Classic -4 9 4 -4 6 6 2 -4
10 Lisk 1 -3 0 4 11 6 -1 0
11 Litecoin 3 -1 3 -4 12 4 4 -3
12 MonaCoin 2 -2 1 -2 -11 -7 0 -1
13 Monero -6 0 0 -3 5 1 -2 3
14 NEM 7 -2 3 11 -13 -12 -7 5
15 Neo -4 4 -1 4 -9 -6 -3 2
16 Siacoin 1 -8 -4 -4 -1 2 -3 0
17 Stellar 3 1 -1 0 -5 2 1 0
18 Verge -4 -4 -1 -1 -6 -8 -5 -6
19 Waves 3 7 -5 5 5 3 0 5
20 XRP 2 0 -6 -3 -8 -8 -7 -4
21 Zcash -1 2 3 -7 -2 -1 3 1
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B Robustness Check: the Impact of λ

In this appendix, we examine the robustness of our main results when the value of the penalty
parameter λi in Eq. (4) is determined using alternative methods. In the first robustness check,
we “cross-validate” the value of λi by replacing λi, the penalty parameter of currency i, with
the average of the optimised λ values calculated for all other currencies in the network. This
approach allows us to investigate if using sub-optimum values of λ values in the LASSO quantile
regression models has any significant impacts on our main findings – at least, qualitatively.

As can be seen in Table B1 which summarises the tail connectedness of the network of 21
cryptocurrencies, the robustness results remain qualitatively similar to our main results: we
observe smaller degrees of connectedness at more extreme tail thresholds and the dominance of
the right tail connectedness over the left tail counterpart. The numbers of right tail connections
are noticeably higher than the numbers of the left tail connections at all the VaR levels – except
at the 1% VaR where the number of connections at the left tail is only marginally higher than
that at the right tail.

In our second robustness exercise, we examine the sensitivity of our main results when the
same λ values are used for all the currencies in the sample in the estimation of the LASSO
quantile regression models. To identify a set of λ values which can be best used across all the
currencies, we do the following.

Step 1. We compute all the optimum values of λ for all the 21 cryptocurrencies in the
sample at the 1%, 5%, 10%, and 20% VaR significance levels for both the left and the
right tails. This step gives us a total of 21× 8 = 168 values of λ.

Step 2. Using each of the 168 values of λ calculated in Step 1 as the common λ value, we
estimate the LASSO quantile regression models for all the 21 currencies at the 1%, 5%, 10%,
and 20% VaR significance levels. We therefore estimate a total of 21× 8× 168 = 28,224
models with all the possible combinations of cryptocurrencies, the VaR significance levels,
and the values of λ.

Step 3. We backtest all the 28,224 estimated LASSO quantile regression models using
the log likelihood ratio test discussed in Hautsch et al. (2015).

Figure B1 plots, for each value of λ, the number of estimations that the log likelihood ratio
test of Hautsch et al. (2015) fails to reject the null hypothesis that the VaR exceedance is
identically and independently distributed following the Bernoulli distribution with the success
probability of q (i.e., they are models with good VaR estimations). According to the plot in
Figure B1, the reasonable λ values to be used in the LASSO quantile regression for all the
currencies are found to lie within a range of 17 and 20 where the numbers of cases that the
log likelihood ratio test fails to reject the null hypothesis peak. We therefore report results for
the networks of 21 cryptocurrencies estimated using the λ values of 17, 18, 19, and 20 in Table
B2. It can be seen that the robustness results and the main results, reported in Table 2, are
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qualitatively identical. In all four cases, we observe stronger tail risk connectedness at the less
extreme tail threshold levels. The right tail connectedness is also found to dominate the left tail
counterpart in all four networks.25

25We also obtain qualitatively similar results when applying the above robustness checks to the extended
network of 44 currencies, the rolling window analysis, and the predictive LASSO quantile regression analysis.
These results are available upon request.
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Table B1

Cross Validation of the Robustness of the Penalty Parameter λ

This table shows the LASSO quantile regression results when the value of λi, the penalty parameter for currency
i, is replaced with the average of the optimised λ values computed for all other currencies in the network.

Right tail Left tail Difference

1% VaR 70 78 -8
5% VaR 180 104 76
10% VaR 166 155 11
20% VaR 157 129 28
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Figure B1

The Performance of the LASSO Quantile Regression Model
at the Different Values of λ

The figure plots, for each value of λ, the number of estimations that the log likelihood ratio test of Hautsch et al.
(2015) fails to reject the null hypothesis that the VaR exceedance is identically and independently distributed
following the Bernoulli distribution with the success probability of q (i.e., they are models with good VaR
estimations).
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