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1 ABSTRACT

2

3 An understanding of how movement competency, strength, and power interacts with natural growth 

4 and maturation is required in order to determine meaningful changes with developing athletes. 

5 Isometric and dynamic testing in youth athletes provide insight into the natural development of the 

6 force-velocity (F-V) spectrum. Two-hundred and six young male athletes, aged 9-17 years of age 

7 were grouped according to stage of maturation based on their maturity offset which was determined 

8 as number of years from peak height velocity (PHV). All participants performed the back-squat 

9 assessment (BSA), isometric mid-thigh pull (IMTP), countermovement jump (CMJ) and squat jump 

10 (SJ) tests. Absolute and scaled force-time variables were collected from the IMTP, CMJ, and SJ. No 

11 significant differences were observed between maturational groups for squat movement competency 

12 (p > 0.05). One-way ANOVA with Bonferroni post-hoc analysis revealed that increasing maturity led 

13 to significant, moderate to large increases in allometrically scaled peak force (PFallo) for all tests (p < 

14 0.05). Multiple stepwise linear regression models revealed IMTP PFallo significantly predicted 34.8% 

15 and 41.3% of variance in SJ and CMJ jump height, respectively (p < 0.05). Natural growth and 

16 maturation induces positive adaptations to movement competency as well as isometric and dynamic 

17 strength and power. Trends from the IMTP, SJ, and CMJ tests indicate the largest differences in 

18 strength and power may occur around the adolescent growth spurt despite the large variation in rates 

19 of change within the circa-PHV group.

20

21

22 Key words: Growth, maturation, countermovement, squat, jump

23
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24 INTRODUCTION

25 Position statements on the long-term athletic development of youth highlight the importance 

26 of movement competency, strength, and power for young athletes competing in sport 1,2. The natural 

27 development of such qualities has been reported to typically increase in a non-linear fashion with 

28 advancing growth and maturation 3-6. Additionally, maturation has been purported to be a key 

29 determinant for improved overall athleticism in young males for many sports 6-9. In the absence of 

30 physical training, the greatest improvements for strength and power arise during adolescence due to 

31 natural physical and physiological changes which lead to increased muscle mass and force producing 

32 capabilities 4,10. As a result, boys that mature earlier than their age-group peers gain both a physical 

33 advantage in sport and are more likely to be selected in talent-identification processes over later 

34 maturing individuals 11. Therefore, an understanding of how movement competency, strength, and 

35 power interacts with natural growth and maturation is required in order to determine meaningful 

36 changes with developing athletes.

37 Studies comparing youth athletes commonly evaluate groups by chronological age which can 

38 be a limitation when interpreting athletic performance 12-14. Because the timing of growth and 

39 maturation is highly individualized, large discrepancies in size and strength can arise in youth within 

40 the same chronological age 13. As such, evaluating young athletes based on chronological age is likely 

41 to advantage mature children because of their size advantage during tests for movement competency 

42 as well as isometric and dynamic force production. Studies that examine developmental data by 

43 grouping athletes according to biological maturity provide more meaningful insights 15.

44  Movement competency reflects the proficiency displayed by an individual during goal-

45 directed movements and this ability has been cited as an underlying determinant for athletic 

46 performance in youth athletes 3,16. Previous literature comparing differences between children and 

47 adolescents report that more developed individuals generally display greater performance in 

48 movement competency, strength, and power tests 4,10,12,17,18. When comparing squat movement 

49 competency between untrained pre- and post-peak height velocity (PHV) males, Dobbs et al. 17 

50 reported more mature boys had greater levels of movement competency than their less mature 

51 counterparts. Maturation enhances movement competency due to a more developed neuromuscular A
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52 system which leads to greater kinesthetic awareness during athletic movements 16. The onset of 

53 puberty also brings about increased physical size and muscle mass, which enable the greater absolute 

54 strength typically seen in adolescents 1,4. 

55 Isometric and dynamic testing in youth athletes provide insight into the natural development 

56 across the force-velocity (F-V) spectrum. Determining maximal strength requires an isometric 

57 contraction with maximal force with the absence of velocity. Literature on isometric force production 

58 has reported that more mature athletes tend to display greater absolute strength than younger athletes 

59 primarily due to increased size 4,5,10,19. Allometric scaling provides a normalized methodological 

60 approach for performance tests 20 and has been previously used in measurements of full body strength 

61 for youth of different body size 21. Brownlee et al. 21 reported significant increases in strength with 

62 maturity between pre-, mid-, and post-PHV youth soccer players, indicating that maturation likely 

63 improves force producing capabilities even when data are controlled for body mass. Despite increases 

64 in body mass, maturation appears to also improve movement speed and contraction velocity in male 

65 youth which contributes to greater power outputs 19,22. Across different team sports, dynamic tests 

66 such as the 30 m sprints, countermovement jump (CMJ), and standing long jump have displayed that 

67 more mature individuals perform better than less mature individuals 6,11,13,23. Yet, the kinetic strategy 

68 used to outperform less mature individuals is unknown.

69 Existing data investigating differences between pre- and post- PHV athletes often use field-

70 based or laboratory-controlled tests which only provide absolute measures of strength and power. 

71 Data from field-based tests (e.g. 1RM or vertical jumps) are practical for coaches; however, they 

72 provide little insight into the mechanical variables which might explain increases in strength and 

73 power performance. Alternatively, laboratory-based isokinetic strength testing provides kinetic data, 

74 but generally has limited external validity with protocols limited to single-joint movements 22. Few 

75 studies have assessed force-time variables across multiple strength and power tests that span the 

76 force-velocity spectrum within youth populations. Such data could help determine specific force-time 

77 variables that drive athletic performance in youth populations at different stages of maturity and 

78 identify those variables that could be targeted synergistically with maturation to more effectively 

79 enhance athleticism. A
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80 Therefore, the main aim of the present study was to examine differences in movement 

81 competency and force-time variables with a range of strength and power tests both between and 

82 within cohorts of pre-, circa-, and post-PHV male athletes. A secondary aim was to determine the 

83 predictive ability of various force-time variables on squat jump (SJ) and countermovement jump 

84 (CMJ) height. It was hypothesized that movement competency, strength, and power would improve 

85 with advanced maturity; while jump height would be driven by kinetic variables related to absolute 

86 force production and velocity, regardless of maturity status. 

87

88 MATERIALS & METHODS

89 Participants

90 Two-hundred and six young male cricketers, aged 9-17 years at a first-class county cricket 

91 club academy in the United Kingdom agreed to participate in the study. No participants had previous 

92 experience with strength and conditioning training, screening, or testing prior to the study. Biological 

93 maturity status and anthropometric measures are displayed in Table 1. Players were grouped into 

94 discrete bands according to their stage of maturation based on their maturity offset 15 which was 

95 determined as number of years from peak height velocity (PHV) according to the following 

96 thresholds: pre- PHV= < -1.0; circa- PHV= -0.5 to 0.5; and post- PHV= > 1.0. Participants who 

97 recorded a maturity offset between -1 and -0.5 and 0.5 to 1.0 were subsequently removed from the 

98 data set to account for the ~6 month reported error in the regression equation 15; therefore, the final 

99 sample consisted of 206 players (n = 130 pre-PHV, n = 33 circa-PHV, and n = 43 post-PHV). No 

100 injuries were reported during testing and all participants were informed of the risks and benefits of 

101 taking part in the study. Parental consent and participant assent were obtained following ethical 

102 approval from the Cardiff Metropolitan University research ethics committee in accordance with the 

103 Declaration of Helsinki. 

104

105 Study design
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106 This study used a cross-sectional design to determine differences in movement competency, 

107 isometric and dynamic strength and power in young male athletes. Participants were classified into 

108 one of three maturational groups; pre- PHV, circa- PHV, and post- PHV. 

109

110 Procedures

111 Back squat assessment (BSA)

112 During the BSA, participants were instructed to perform ten continuous squat repetitions in 

113 place with a wooden dowel on their back as per previously published guidelines 24. Participants were 

114 instructed to position their feet slightly wider than hip-width and to descend until thighs were parallel 

115 to the ground. Aside from the standardized script proposed by Myer and colleagues 24, no other verbal 

116 cues or advice were given to participants before or during the testing sessions. All ten repetitions were 

117 recorded at 30 f/s using two 2D high definition cameras (Apple iPad, California, USA) positioned at a 

118 height of 0.70 m and a distance of 5 m from the center of the capture area in both frontal and sagittal 

119 planes. Scoring of BSA performance was conducted retrospectively by the investigator using video 

120 analyses. The BSA is scored using a 10-point criteria, with one point given for each technical fault 24. 

121 The 10-point criteria consisted of: head position, thoracic position, trunk position, hip position, frontal 

122 knee position, tibial progression angle, foot position, descent, depth, and ascent. During the scoring 

123 process, each of the 10 criteria were analyzed and a deficit was scored if present during two or more 

124 repetitions. Total number of deficits are tallied to provide a total score, with higher total scores 

125 indicative of poorer squat technique. Acceptable intra-rater reliability has been previously reported for 

126 the BSA in youth athletes 17. 

127

128 Isometric mid-thigh pull

129 The isometric mid-thigh pull (IMTP) test was performed on a custom built IMTP testing 

130 device using dual Kistler force plates sampling at a frequency of 1000 Hz (type 9287BA, Kistler 

131 Instruments AG, Winterthur, Switzerland). In line with previous research, participants were 

132 positioned where: feet were hip-width apart, the bar was positioned at mid-thigh, the torso was 

133 upright with a neutral spine, hand straps were wrapped around the bar at hip-width, and knee and hip 

134 angles were approximately 140° 25,26. The customized IMTP rig allowed for incremental bar height A
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135 adjustments of 1 cm to accommodate athletes of different leg length. Once in position, participants 

136 were instructed to remove slack from the bar without applying any force into the ground 25. All 

137 participants received the same instructions, “pull as hard and as fast as you can in 3, 2, 1, go”. 

138 Following familiarization, three maximal effort trials were recorded from each participant with a 

139 minimum of 90 seconds rest between each trial for recovery. Each trial was collected for eight 

140 seconds, which included a three second countdown and the participants pulling on the bar for five 

141 seconds. During the three second countdown, participants were instructed to remain still to optimize 

142 stabilization of body weight in order to identify the initiation of the pull. Trials were discounted if 

143 participants were unable to remain still or if a countermovement prior to the pull was displayed within 

144 the force tracing. All trials and data were analysed on a customized IMTP LabView program. Force-

145 time variables calculated from the customized software included: absolute peak force (PFabs), 

146 allometric scaling (N/kg0.67) of peak force (PFallo) 20, time to peak force (tPF), peak rate of force 

147 development (PRFD), relative peak rate of force development (PRFDrel), peak force at time periods of 

148 0-50 ms (PF50), 0-90 ms (PF90), 0-150 ms (PF150), 0-200 ms (PF200), and 0-250 ms (PF250). 

149 Acceptable within- and between-session reliability has previously been reported for this IMTP 

150 protocol using young athletes 27. 

151

152 Squat jump

153 The squat jump (SJ) test was recorded on an AMTI force plate with a sampling rate of 1000 

154 Hz (Accupower, AMTI, Boston, MA, USA). All data were processed using a Butterworth filter. 

155 Participants were required to assume a squat position with 90° of knee flexion 28,29 which was visually 

156 observed by the researcher. Once in the squat position, participants were instructed to remain still for 

157 three seconds, keep hands on hips, and to not perform a countermovement prior to jumping. 

158 Following familiarization, participants performed three maximal trials with 60 seconds rest between 

159 jumps. Trials were discounted and repeated if any of the following errors occurred: failure to remain 

160 still during countdown, hands were removed off hips, or a visible countermovement was observed 

161 from firstly watching the athlete and secondly analyzing the force trace. All trials and data were 

162 analyzed using a customized LabVIEW program and the variables measured included: PFabs, PFallo, 

163 jump height, average RFD (RFDavg), relative RFDavg, peak velocity (PV), peak power (PP), relative A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

164 peak power (PPrel), impulse, PRFD, and time to peak rate of force development (tPRFD). Acceptable 

165 reliability has previously been reported for the SJ protocol using youth athletes 30.

166

167 Countermovement jump

168 Countermovement jumps (CMJ) were recorded using an AMTI force plate sampling at 1000 

169 Hz (Accupower, AMTI, Boston, MA, USA). All data were processed using a Butterworth filter. In 

170 line with previous research, participants were instructed to perform maximal effort jumps with hands 

171 remaining on hips throughout to limit the influence of the upper body on jump performance 31. 

172 Participants were able to descend to a self-selected depth during the eccentric portion of the jump. 

173 The same verbal cues were given before each trial, “jump as high as you can in 3, 2, 1, go”. Three 

174 maximal effort trials were recorded per participant with a minimum of 60 seconds rest between trials. 

175 During the countdown participants remained still to optimize stabilization of body weight and 

176 establish a baseline prior to the jump. All trials and data were exported from the Accupower software 

177 (Accupower 3.0, Accupower solutions, Boston, MA, USA) and analyzed using a validated automated 

178 spreadsheet 32. The variables measured for CMJ analyses were; jump height, reactive strength index 

179 modified (RSImod), PFabs, PFallo, eccentric impulse (ECCimp), duration of eccentric phase (ECCdur), 

180 concentric impulse (CONimp), duration of concentric phase (CONdur), PP, PPrel, eccentric power 

181 (ECCpow), concentric power (CONpow), and time to take off. Acceptable reliability has previously 

182 been reported for the CMJ protocol using youth athletes 33.

183

184 Statistical analyses

185 Descriptive statistics (means ± SD) were calculated for all performance variables for each 

186 group (Table 1). The Shapiro-Wilk test was used to examine normal distribution for all test variables 

187 and BSA total score was determined to be non-parametric across all cohorts. Therefore, a Kruskal-

188 Wallis H test with Bonferroni post-hoc analysis was used to determine differences between groups 

189 and median BSA total score was subsequently reported. To ensure that ratio scaling had adequately 

190 controlled for the effect of body mass on force production, Pearson correlation coefficients (r) were 

191 calculated between PFrel and body mass. Correlations between PFrel and body mass was low for the SJ 

192 and CMJ tests (r < 0.12), suggesting that allometric ratio scaling had adequately controlled for the A
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193 effect of size on force production. One-way analysis of variance (ANOVA) with Bonferroni post-hoc 

194 analysis was used to determine the differences between the three maturity groups for the IMTP, SJ, 

195 and CMJ variables. Homogeneity of variance was determined using Levene’s test for equality of 

196 variances, and where violated, Welch-ANOVA with a Games-Howell post-hoc was subsequently 

197 used. Effect sizes were calculated to interpret the magnitude of between-group effects according to 

198 Cohen’s d statistic, using the following thresholds: <0.20 (trivial), 0.20-0.59 (small), 0.60-1.19 

199 (moderate), 1.20-1.69 (large), and >1.70 (very large) 34. Regression slopes describing the rate of 

200 change were calculated within each maturity group for PFabs and PFallo from the IMTP, SJ, and CMJ 

201 test performance with advancing maturity using Microsoft Excel (v. 2016, Redmond, Washington, 

202 USA). One-way ANOVA were used to determine any significant between-group differences for the 

203 regression slopes of each test variable. With data pooled across all participants multiple stepwise 

204 linear regressions were used to determine predictor variables for both CMJ and SJ height. The 

205 Durbin-Watson statistic was used to detect autocorrelation in residuals from the regression analyses 

206 and multicollinearity was determined using variation inflation factor (VIF) and tolerance diagnostics. 

207 All statistical analyses were computed using SPSS (V.24 Chicago, IL, USA), with statistical 

208 significance for all tests set at an alpha level of p < 0.05.

209

210 RESULTS

211 Back squat assessment

212 Analysis revealed a small difference for median BSA total scores between the post-PHV 

213 group (3.0) and the pre-PHV group (4.5) (p < 0.001, d = 0.34). No significant differences were 

214 observed between the circa-PHV group (3.5) and either the pre- or post-PHV groups.

215

216 Isometric mid-thigh pull

217 Results for all IMTP variables are displayed in Table 2. Analysis showed that PFabs, PRFD, 

218 PF50, PF90, PF150, PF200, and PF250 all significantly increased with advancing maturity (p < 

219 0.001). All absolute force values during the IMTP increased between each maturity group, and 

220 differences tended to be large from both pre- to circa-PHV and circa- to post-PHV, and very large 

221 differences between pre to post-PHV (p < 0.05). PRFD also significantly increased with maturity but A
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222 with moderate effects between consecutive groups and a large effect from pre- to post-PHV (p < 

223 0.05). PFallo significantly increased between each group with moderate to large effect sizes. However, 

224 non-significant, trivial differences were reported between all maturity groups for both tPF and 

225 PRFDrel (p > 0.05).

226

227 Squat jump

228 Results for all SJ variables are displayed in Table 3. Analysis revealed that PFabs, jump height, 

229 RFDavg, PV, PP, PPrel, impulse, PRFD, and tPRFD all significantly increased with advancing maturity 

230 (p < 0.05). Very large increases were revealed in PFabs and PP with increasing maturity status (p < 

231 0.05). There were moderate differences observed for jump height between the pre- (12.81 cm) to 

232 circa-PHV (15.45 cm) groups and the circa- to post-PHV (19.10 cm) groups; however, a very large 

233 difference was observed between the pre- to post-PHV group (p < 0.05, d = 1.90). Moderate 

234 differences were also revealed between the pre- to circa-PHV groups and circa- to post-PHV groups 

235 for PFallo, RFDavg, PV, relative power, impulse, PRFD, and tPRFD (p < 0.05). However, differences 

236 when comparing the pre- to post-PHV groups often became large or very large, with the exception of 

237 relative RFDavg, PRFD and tPRFD which showed a significant and moderately difference (p < 0.05).

238

239 Countermovement jump

240 Results for all CMJ variables are displayed in Table 4. Analysis of CMJ variables revealed 

241 that PFabs, jump height, RSImod, ECCimp, CONimp, peak landing force, PP, PPallo, ECCpow, and CONpow 

242 all increased with advancing maturity status (p < 0.05). Large to very large differences were observed 

243 in PFabs, ECCimp, CONimp, PP, ECCpow, and CONpow between the pre- to circa-PHV and pre- to post-

244 PHV groups (p < 0.05). Also, large and very large differences were seen for ECCimp, PP, ECCpow, and 

245 CONpow between the circa- to post-PHV groups (p < 0.05). Increases for jump height were revealed 

246 moderate differences between the pre- (17.45 cm) to circa- PHV (21.31 cm) and the circa- to post-

247 PHV (25.43 cm) groups; however, there was a very large difference between the pre- to post- PHV (p 

248 < 0.001, d = 2.03) groups. Moderate differences were also observed for RSImod for all comparisons 

249 between the pre- (0.24), circa- (0.28) and post-PHV (0.32) groups. Moderate differences for PFallo and 

250 PPrel were observed between consecutive maturity groups; however, comparisons between pre- to A
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251 post-PHV groups revealed large and very large differences (p < 0.05). Between-group differences for 

252 time to take off, ECCdur and CONdur were either trivial to small or non-significant for.

253

254 Regression analyses

255 Mean rates of change (+95% CI) for stature and body mass are displayed in Figure 1. 

256 Analyses revealed a significant difference between regression slopes for stature (p < 0.05), but not for 

257 body mass (p > 0.05). The greatest within-group variability for both stature and body mass were 

258 observed by the circa-PHV groups. 

259 Mean rates of change for PFabs and PFallo in the IMTP, SJ and CMJ within each maturity group 

260 are displayed in Figure 2. The circa-PHV group were consistently experiencing the greatest rate of 

261 change in both PFabs and PFallo in each of the IMTP, SJ and CMJ; however, given the large variability 

262 in the circa-PHV group regression slope analyses revealed no significant differences between groups 

263 for rate of change for PFabs and PFallo in any protocol (p > 0.05). Of note, the slopes for IMTP PFabs (p 

264 = 0.069), SJ PFabs (p = 0.063) and SJ PFallo (p = 0.080) were approaching significance. 

265 Across all participants, multiple stepwise linear regression models significantly predicted 45% 

266 and 48% of variance in SJ height and CMJ jump height, respectively (p < 0.05). Regression analyses 

267 determined that IMTP PFallo was the strongest predictor of SJ and CMJ jump height, explaining 

268 34.8% and 41.3% of the total explained variance, respectively (Table 5). Maturity offset was the next 

269 greatest predictor of jump height within both regression models. BSA total score had a negative 

270 relationship for both SJ and CMJ jump height; however, BSA total score was only included in the 

271 final linear regression model for the SJ. For all stepwise multiple regression models, there was no 

272 evidence of multicollinearity (r <0.70), along with acceptable values for tolerance (>0.1) and VIF 

273 (<10).

274

275 DISCUSSION

276 The main aim of the present study was to examine how movement competency, strength, and 

277 power differed between pre-, circa- and post-PHV male athletes with no prior experience of strength 

278 and conditioning. The post-PHV group displayed better overall movement competency in the BSA 

279 than the pre-PHV group, but not the circa-PHV group. IMTP data revealed PFabs, and PF at all time A
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280 epochs all significantly increased with advanced maturity with large to very large between group 

281 differences. Similar findings were observed in the SJ and CMJ test, where analysis of the force-time 

282 variables revealed more mature athletes were able to produce a greater amount of force (e.g. PFabs and 

283 PFallo). This was particularly evident for peak power in both the SJ and CMJ tests, where very large 

284 differences were displayed between consecutive maturity groups. RFDavg and PRFD within the SJ 

285 also displayed very large increases with advancing maturity. Between-group differences can be 

286 partially explained by the different rates of change experienced within each group; the period of circa-

287 PHV was associated with the largest rates of changes, although the high variability of change during 

288 this period meant that differences to other groups were not significant.  Across all participants IMTP 

289 PFallo was the strongest predictor of both SJ and CMJ height, suggesting the importance of absolute 

290 strength relative to allometrically scaled body weight for achieving a high jump height. 

291 Analysis of the median BSA total scores revealed a small significant decrease in the number 

292 of technical deficiencies between the pre-PHV and post-PHV groups (4.5 to 3.0); however, there were 

293 no significant differences between consecutive maturity groups. These findings indicate that 

294 movement competency increases non-linearly across maturity groups; however, more sizeable 

295 changes may take longer to manifest following the adolescent growth spurt. This aligns with previous 

296 cognitive and motor skill development literature in youth which suggests that more meaningful 

297 movement competency improvements can be made prior to the adolescent growth spurt 3,16,35. 

298 Cumulatively, the data indicate that small improvements in movement competency appear to occur 

299 naturally as a result of growth and maturation. Since the participants in the current study had no 

300 formal training background, conceivably further improvements in their movement competency could 

301 be made by introducing a developmentally-appropriate training programme. 

302 Findings from the IMTP analyses revealed that advanced maturity improves not only maximal 

303 force production, but also the ability to produce force quickly. This notion is based on the large to 

304 very large effect size differences between maturity groups for PFabs and PF at all time epochs (d 

305 >1.20) as well as the moderate differences observed for peak RFD (d = 0.63 to 1.16) between 

306 maturity groups. Interestingly, effect sizes were consistently greater for nearly all variables between 

307 pre- and circa-PHV groups compared to circa- to post-PHV. More mature athletes tend to have greater 

308 mass in comparison to children, which gives an advantage for absolute measures of strength; akin to A
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309 those observed in the present study for PFabs, PRFD, and PF at all time epochs. Previous literature 

310 comparing differences in force producing capabilities between children and adolescents noted that 

311 adolescents display a heightened neural drive, greater muscle size, and improved muscle activation 

312 patterns which aid in more notable increases in force production at this stage of development 4,19,22,36. 

313 In the current study, differences for IMTP PFallo revealed moderate effect sizes between the circa- vs. 

314 post-PHV (d = 0.65) groups and a slightly larger but still moderate difference between the circa- vs. 

315 pre-PHV groups (d = 1.14). This would indicate that the rate of adaptation for force production is 

316 slightly greater during the pre-adolescent to pubertal period of maturation. However, regression 

317 analyses for rate of change with respect to maturity offset revealed a near-significant between-group 

318 difference in the regression slopes of the IMTP PFabs. Similarly, the confidence intervals for mean rate 

319 of change demonstrated larger variations within the circa-PHV group compared to the pre- and post-

320 PHV groups. Therefore, it should be acknowledged that while the period of rapid growth within the 

321 circa-PHV group likely resulted in greater absolute force production, the level of within-group 

322 variation affected maturational between-groups values for PFabs.

323 The overall findings from the SJ test were that PFabs, PFallo, jump height, average RFD, peak 

324 velocity, and PP all increased significantly with advancing maturity status. Regression analyses in all 

325 maturity groups for PFabs and PFallo revealed non-significant differences in slopes, however, they were 

326 approaching significance (p = 0.063 and p = 0.080, respectively). Similar to IMTP PFabs, the near-

327 significant differences in slopes suggest that increased rates of adaptation for absolute and 

328 allometrically-scaled force production are likely a result of growth and maturation during the period 

329 around PHV. However, caution is warranted due to the larger confidence intervals observed in mean 

330 scores by the circa-PHV group, which inherently leads to greater between-group comparisons. Very 

331 large between-group differences were reported for PP between all groups. Meanwhile, moderate 

332 effect size differences were evident for peak velocity and PFallo which suggests that increases in SJ PP 

333 during maturation are driven by greater force production and changes in velocity. In comparison to 

334 children, adolescent athletes have physiological advantages for producing high-velocity concentric 

335 force 10,19. A review on muscle power by Van Praagh et al. 10 suggested that adolescents increase 

336 lower body velocity through longer limb length and faster muscle contractile properties, allowing for 

337 greater angular velocity around joints and quicker force production, respectively. This likely A
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338 influenced the peak power scores for the circa- and post-PHV groups but did not increase absolute 

339 force production during the SJ. In conclusion, our results indicate that changes to peak power in the 

340 SJ as a result of maturation are driven from increases in velocity and force. 

341 Overall findings from CMJ analysis were that PFabs, jump height, ECCimp, CONimp, PP, PPrel, 

342 ECCpow, and CONpow all increased with advanced maturity based off the moderate to very large 

343 between-group differences. Therefore, it appears that the onset of puberty also brings about slightly 

344 greater adaptations in CMJ kinetic variables for producing force quickly. Analysis of the force-time 

345 variables within the CMJ indicate that the post-PHV group had a moderately longer duration in the 

346 eccentric phase than both the circa- and pre-PHV groups (d = 0.46). Despite a longer eccentric phase, 

347 there were no differences between groups for duration in the concentric phase and time to take off, 

348 which indicates that the post-PHV group utilizes a longer eccentric phase during the SSC in order to 

349 produce greater force. The longer eccentric phase duration might indicate that the more mature group 

350 were more effective at relying on cross-bridge formation as the primary stretch-shortening cycle 

351 mechanism for CMJ performance, which is indicative of slow-SSC activities  4,10,37,38. This 

352 explanation is supported by the significantly greater RSImod observed by the post-PHV group over 

353 both the pre- and circa-PHV cohorts despite having a greater time to takeoff. Higher RSImod values 

354 typically reflect explosive jump performance and are characterized by greater absolute force, power, 

355 and velocity within the eccentric phase 39. Therefore, the data indicate that maturity improves the 

356 eccentric phase-specific qualities relevant to CMJ performance.

357 Between group differences in the IMTP, SJ, and CMJ tests appear to be driven by the variance 

358 in rates of change by the circa-PHV group. The regression slopes between the maturational groups 

359 were significantly different for stature but not body mass. The largest variance for rates of change was 

360 observed in the circa-PHV cohort and were much lower in the pre- and post-PHV groups. These 

361 differences within the circa-PHV group reflects the variable timing and tempo of maturation. 

362 Similarly, the significant differences in stature likely influenced force producing capabilities during 

363 the isometric and dynamic performance tests. This aligns with previous literature which indicates that 

364 morphological increases as a result of maturation increase strength and power 4,10.
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365 Stepwise linear regression models identified that IMTP PFallo explained most of the variance in 

366 both the SJ (34.8%) and CMJ (41.3%) regression models, followed by a small predictive contribution 

367 from maturity status. This indicates that allometrically scaled force production during isometric 

368 actions appears to be an important variable of those measured for explosive vertical jump 

369 performance in young male athletes and should therefore be targeted within strength and conditioning 

370 programs for young athletes. These findings are in accordance with previous pediatric literature that 

371 has advocated the development of a foundation of strength in order to significantly increase power 40. 

372 Both linear regression models also identified maturity status as predictors for SJ and CMJ jump 

373 height, suggesting that a more mature status will facilitate jumping higher. These findings reflect 

374 existing literature that that has shown advanced maturity being influential to both jump height and 

375 lower body power 6,11,13,14,37.

376

377 PERSPECTIVE

378 The overall findings indicate that natural growth and maturation induces positive adaptations 

379 to movement competency as well as isometric and dynamic strength and power. Squat movement 

380 competency improves with maturation, however, the current study did not control for behavioral 

381 factors such as physical activity levels which are also likely to enhance overall movement 

382 competency. Furthermore, it is unclear whether natural improvements to movement competency are 

383 noticeable towards the beginning or end stages of the adolescent growth spurt. Maturity resulted in 

384 significant improvements for PFabs and PFallo in the IMTP, SJ, and CMJ, suggesting that adaptations to 

385 force producing qualities accompany natural physical growth and development. However, it cannot be 

386 determined if greater adaptations occur during the pre- to circa-PHV period or the circa- to post-PHV 

387 period due to the large variation in rates of change from the circa-PHV group. Thus, it is difficult to 

388 identify when the greatest period of increased force production occurs. Linear regression analyses 

389 revealed that IMTP PFallo positively influences jump height in both the SJ and CMJ. This finding 

390 highlights the importance of greater force production in relation to body mass for young athletes 

391 during lower body power movements. While natural growth improves force production, resistance 
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392 training aimed at improving muscle strength levels can improve force producing capabilities in young 

393 athletes regardless of maturity status. 
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Figure 1. Mean rate of change and 95% CI for stature and body mass.

Figure 2. Mean rate of change and 95% CI for within-group scores for PFabs and PFallo in the IMTP, 

SJ, and CMJ tests.
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Table 1. Mean (± SD) values for descriptive details of each maturity groups anthropometric data.

N Standing height (cm) Mass (kg)
Maturity offset 

(years from PHV)

Pre-PHV 130 148.02 ± 7.72 41.22 ± 7.98 -2.17 ± 0.65

Circa-PHV 33 164.12 ± 5.74* 55.48 ± 8.06* -0.01 ± 0.36*

Post-PHV 43 175.94 ± 6.96** 70.15 ± 10.54** 1.92 ± 0.68**

* significantly greater than pre-PHV group (p < 0.001)

** significantly greater than circa-PHV group (p < 0.001)
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Table 2. Group means (± SD) for IMTP kinetic force-time variables and effect-sizes (ES) with 95% confidence intervals (CI) for between-

group differences.

Pre-PHV Circa-PHV Post-PHV
Pre- vs. Circa- (d)

(95% CI)

Circa- vs. Post- (d) 

(95% CI)

Pre- vs. Post- (d) 

(95% CI)

Absolute PF (N) 1216.70 ± 238.89 1766.99 ± 306.04 2244.77 ± 362.99 2.00** (1.71 – 2.59) 1.42** (0.91 – 1.88)  3.34** (3.19 – 4.20) 

Allometric Scaled 

PF (N/kg0.67)
102.16 ± 13.96 120.35 ± 17.59 131.98 ± 17.78 1.14** (0.83 – 1.62) 0.65* (0.20 – 1.10) 1.86** (1.58 – 2.36) 

Time to PF (ms) 2820.16 ± 1137.16 2554.55 ± 948.88 2793.58 ± 1110.29 0.25 (-0.13 – 0.61) 0.23 (-0.21 – 0.67) 0.02 (-0.31 – 0.36)

Peak RFD (N·s-1) 4621.23 ± 1450.88 6624.94 ± 1956.78 7891.94 ± 2054.74 1.16** (0.87 – 1.67) 0.63** (0.18 – 1.07) 1.83** (1.60 – 2.39)

Relative Peak 

RFD (N·s-1/kg)
114.53 ± 38.11 119.58 ± 39.17 114.25 ± 33.80 0.13 (-0.24 – 0.50) 0.14 (-0.29 – 0.58) 0.00 (-0.33 – 0.34)

PF 50ms (N) 391.56 ± 89.06 550.66 ± 108.98 726.58 ± 153.77 1.59** (1.28 – 2.11) 1.32** (0.80 – 1.76) 2.66** (2.58 – 3.5)

PF 90ms (N) 444.11 ± 95.15 640.45 ± 123.58 833.42 ± 155.50 1.78** (1.49 – 2.35) 1.37** (0.86 – 1.82) 3.02** (2.91 – 3.88)

PF 150ms (N) 547.81 ± 127.03 815.59 ± 151.74 1034.79 ± 192.87 1.91** (1.58 – 2.44) 1.26** (0.75 – 1.71) 2.98** (2.81 – 3.77)

PF 200ms (N) 624.27 ± 146.48 961.61 ± 209.94 1178.00 ± 215.41 1.86** (1.64 – 2.51) 1.01** (0.54 – 1.47) 3.00** (2.81 – 3.77)

PF 250ms (N) 742.95 ± 193.13 1142.23 ± 241.90 1416.22 ± 257.85 1.82** (1.52 – 2.37) 1.09** (0.61 – 1.55) 2.95** (2.69 – 3.63)
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* significant between-group differences (p < 0.05)

** significant between-group differences (p < 0.001)
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Table 3. Group means (± SD) for SJ kinetic force-time variables and effect-sizes (ES) with 95% confidence intervals (CI) for between-

group differences.

Pre-PHV Circa-PHV Post-PHV
Pre- vs. Circa- (d)

(95% CI)

Circa- vs. Post- (d) 

(95% CI)

Pre- vs. Post- (d) 

(95% CI)

Absolute PF (N) 842.64 ± 176.01 1184.62 ± 216.77 1530.87 ± 271.90 1.73** (1.41 – 2.26) 1.40** (0.89 – 1.86) 3.00** (2.85 – 3.81)

Allometric Scaled PF 

(N/kg0.67)
71.57 ± 10.41 81.26 ± 10.31 91.04 ± 13.78 0.93** (0.54 – 1.31) 0.80** (0.33 – 1.23) 1.59** (1.32 – 2.08)

Jump height (cm) 12.81 ± 2.67 15.45 ± 3.76 19.10 ± 4.64 0.80** (0.51 – 1.28) 0.86** (0.39 – 1.30) 1.66** (1.51 – 2.28)

Average RFD (N·s-1) 1492.97 ± 713.15 2358.66 ± 845.68 3440.58 ± 1543.09 1.10** (0.77 – 1.55) 0.86** (0.37 – 1.28) 1.62** (1.55 – 2.33)

Relative Avg. RFD 

(N·kg-1)
35.44 ± 14.37 42.30 ± 13.66 49.56 ± 22.39 0.48** (0.10 – 0.86) 0.39 (0.07 – 0.82) 0.75* (0.49 – 1.18)

Peak Velocity (m·s-1) 1.97 ± 0.16 2.09 ± 0.22 2.30 ± 0.23 0.62** (0.31 – 1.07) 0.93** (0.46 – 1.38) 1.66** (1.43 – 2.20)

Peak Power (W) 1340.14 ± 274.51 1961.58 ± 371.74 2896.05 ± 567.01 1.90** (1.64 – 2.52) 1.94** (1.35 – 2.40) 3.49** (3.59 – 4.68)

Relative Power 

(W·kg-1)
32.71 ± 3.94 35.74 ± 6.26 41.41 ± 6.56 0.57* (0.29 – 1.05) 0.88** (0.42 – 1.33) 1.60** (1.43 – 2.20)

Impulse (Ns) 1.69 ± 0.23 1.89 ± 0.22 2.10 ± 0.25 0.88** (0.49 – 1.26) 0.89** (0.42 – 1.33) 1.70** (1.35 – 2.11)

Peak RFD (N·s-1) 4066.91 ± 1965.92 5641.72 ± 2147.30 7170.99 ± 3370.60 0.76** (0.40 – 1.16) 0.54* (0.08 – 0.96) 1.12** (0.92 – 1.64)

Relative Peak RFD 

(BW(N)·s-1)
10.18 ± 4.79 10.36 ± 3.80 10.52 ± 5.09 0.04 (-0.33 – 0.41) 0.03 (-0.40 – 0.47) 0.06 (- 0.26 – 0.40)

Time to Peak RFD 

(ms)
211.69 ± 121.08 153.12 ± 74.52 119.13 ± 60.85 0.58** (0.14 – 0.89) 0.49** (0.06 – 0.95) 0.96* (0.50 – 1.19)
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* significant between-group differences (p < 0.05)

** significant between-group differences (p < 0.001)
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Table 4. Group means (± SD) for CMJ kinetic force-time variables and effect-sizes (ES) with 95% confidence intervals (CI) for between-

group differences.

Pre-PHV Circa-PHV Post-PHV
Pre- vs. Circa- (d)

(95% CI)

Circa- vs. Post- (d) 

(95% CI)

Pre- vs. Post- (d) 

(95% CI)

Absolute PF (N) 473.20 ± 122.27 723.58 ± 172.51 930.81 ± 212.01 1.67** (1.43 – 2.28) 1.07** (0.58 – 1.51) 3.01** (2.56 – 3.47)

Allometric Scaled PF 

(N/kg0.67)
40.08 ± 8.93 49.05 ± 9.35 54.77 ± 12.01 0.98** (0.60 – 1.38) 0.53* (0.07 – 0.96) 1.38** (1.12 – 1.85)

Jump Height (cm) 17.45 ± 3.39 21.31 ± 5.23 25.43 ± 5.10 0.87** (0.61 – 1.39) 0.79** (0.34 – 1.25) 1.84** (1.64 – 2.42)

RSI modified 

(JH/time to take off)
24.40 ± 6.74 28.90 ± 7.66 32.92 ± 7.61 0.62** (0.27 – 1.02) 0.52* (0.08 – 0.97) 1.18** (0.86 – 1.57)

Eccentric Impulse 

(Ns)
36.01 ± 8.49 55.28 ± 9.76 73.85 ± 16.70 2.10** (1.75 – 2.63) 1.35** (0.82 – 1.78) 2.85** (2.87 – 3.83)

Concentric Impulse 

(Ns)
76.10 ± 15.67 114.43 ± 20.13 154.49 ± 26.20 2.12** (1.84 – 2.73) 1.71** (1.16 – 2.17) 3.63** (3.56 – 4.63)

Peak Power (W) 1414.04 ± 303.29 2208.77 ± 451.33 3152.05 ± 650.70 2.06** (1.88 – 2.78) 1.76** (1.12 – 2.13) 3.62** (3.55 – 4.63)

Relative Peak Power 

(W/kg)
34.94 ± 4.77 39.38 ± 5.83 45.03 ± 6.45 0.83** (0.50 – 1.27) 0.91** (0.44 – 1.36) 1.77** (1.52 – 2.30)

Eccentric Power (W) -168.79 ± 41.52 -249.30 ± 56.83 -345.99 ± 91.80 1.61** (1.36 – 2.19) 1.26** (0.74 – 1.69) 2.48** (2.53 – 3.44)

Concentric Power 

(W)
759.25 ± 173.09 1193.44 ± 238.79 1675.19 ± 359.28 2.08** (1.84 – 2.74) 1.57** (1.03 – 2.02) 3.24** (3.33 – 4.37)

* significant between-group differences (p < 0.05)

** significant between-group differences (p < 0.001)
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Table 5. Stepwise multiple linear regression equations explaining the variables that significantly (p < 0.05) 

contributed to SJ and CMJ jump height for all maturity groups.

Dependent variable Independent variables Regression equation Adjusted R2 value

SJ jump height Constant 10.08

IMTP PFallo 0.05 0.348

Maturity Offset 1.48 0.417

IMTP PRFDrel 0.04 0.430

IMTP PRFD 0.0006 0.445

BSA Total Score -0.24 0.452

CMJ jump height Constant 9.56

IMTP PFallo 0.10 0.415

Maturity Offset 1.87 0.458

IMTP PRFDrel 0.06 0.468
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