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Abstract

Best match graphs arise naturally as the first processing intermediate in algorithms for

orthology detection. Let T be a phylogenetic (gene) tree T and σ an assignment of

leaves of T to species. The best match graph (G, σ ) is a digraph that contains an arc

from x to y if the genes x and y reside in different species and y is one of possibly

many (evolutionary) closest relatives of x compared to all other genes contained in the

species σ(y). Here, we characterize best match graphs and show that it can be decided

in cubic time and quadratic space whether (G, σ ) derived from a tree in this manner.

If the answer is affirmative, there is a unique least resolved tree that explains (G, σ ),

which can also be constructed in cubic time.

Keywords Phylogenetic combinatorics · Colored digraph · Reachable sets ·

Hierarchy · Hasse diagram · Rooted triples · Supertrees

1 Introduction

Symmetric best matches (Tatusov et al. 1997), also known as bidirectional best hits

(BBH) (Overbeek et al. 1999), reciprocal best hits (RBH) (Bork et al. 1998), or recip-

rocal smallest distance (RSD) (Wall et al. 2003) are the most commonly employed

method for inferring orthologs (Altenhoff and Dessimoz 2009; Altenhoff et al. 2016).

Practical applications typically produce, for each gene from species A, a list of genes

found in species B, ranked in the order of decreasing sequence similarity. From

these lists, reciprocal best hits are readily obtained. Some software tools, such as

ProteinOrtho (Lechner et al. 2011, 2014), explicitly construct a digraph whose

arcs are the (approximately) co-optimal best matches. Empirically, the pairs of genes

that are identified as reciprocal best hits depend on the details of the computational
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method for quantifying sequence similarity. Most commonly, blast or blat scores

are used. Sometimes exact pairwise alignment algorithms are used to obtain a more

accurate estimate of the evolutionary distance, see Moreno-Hagelsieb and Latimer

(2008) for a detailed investigation. Independent of the computational details, how-

ever, reciprocal best match are of interest because they approximate the concept of

pairs of reciprocal evolutionarily most closely related genes. It is this notion that links

best matches directly to orthology: Given a gene x in species a (and disregarding

horizontal gene transfer), all its co-orthologous genes y in species b are by definition

closest relatives of x .

Evolutionary relatedness is a phylogenetic property and thus is defined relative to

the phylogenetic tree T of the genes under consideration. More precisely, we consider

a set of genes L (the leaves of the phylogenetic tree T ), a set of species S, and a map

σ assigning to each gene x ∈ L the species σ(x) ∈ S within which it resides. A gene

x is more closely related to gene y than to gene z if lca(x, y) ≺ lca(x, z). As usual,

lca denotes the last common ancestor, and p ≺ q denotes the fact that q is located

above p along the path connecting p with the root of T . The partial order � (which

also allows equality) is called the ancestor order on T . We can now make the notion

of a best match precise:

Definition 1 Consider a tree T with leaf set L and a surjective map σ : L → S. Then

y ∈ L is a best match of x ∈ L , in symbols x → y, if and only if lca(x, y) � lca(x, y′)

holds for all leaves y′ from species σ(y′) = σ(y).

In order to understand how best matches (in the sense of Definition 1) are approx-

imated by best hits computed by mean sequence similarity we first observe that best

matches can be expressed in terms of the evolutionary time. Denote by t(x, y) the

temporal distance along the evolutionary tree, as in Fig. 1. By definition t(x, y) is

twice the time elapsed between lca(x, y) and x (or y), assuming that all leaves of T

ti
m
e

Fig. 1 An evolutionary scenario (left) consists of a gene tree whose inner vertices are marked by the event

type (• for speciations, � for gene duplications, and × for gene loss) together with its embedding into a

species tree (drawn as tube-like outline). All events are placed on a time axis. The middle panel shows the

observable part of the gene tree (T , σ ); it is obtained from the gene tree in the full evolutionary scenario by

removing all leaves marked as loss events and suppression of all resulting degree two vertices (Hernandez-

Rosales et al. 2012; Hellmuth 2017). The r.h.s. panel shows the colored best match graph (G, σ ) that is

explained by (T , σ ). Directed arcs indicate the best match relation →. Bi-directional best matches (x → y

and y → x) are drawn as solid lines without arrow heads instead of pairs of arrows. Dotted circles collect

sets of leaves that have the same in- and out-neighborhood. The corresponding arcs are shown only once
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Best match graphs 2017

live in the present. Instead of Definition 1 we can then use “x → y holds if and only

if t(x, y) ≤ t(x, y′) for all y′ with σ(y′) = σ(y) �= σ(x).” Mathematically, this is

equivalent to Definition 1 whenever t is an ultrametric distance on T . For the temporal

distance t this is the case. Best match heuristics therefore assume (often tacitly) that

the molecular clock hypothesis (Zuckerkandl and Pauling 1962; Kumar 2005) is at

least a reasonable approximation.

While this strong condition is violated more often than not, best match heuristics

still perform surprisingly well on real-life data, in particular in the context of orthology

prediction (Wolf and Koonin 2012). Despite practical problems, in particular in appli-

cations to Eukaryotic genes (Dalquen and Dessimoz 2013), reciprocal best heuristics

perform at least as good for this task as methods that first estimate the gene phylogeny

(Altenhoff et al. 2016; Setubal and Stadler 2018). One reason for their resilience is that

the identification of best matches only requires inequalities between sequence similar-

ities. In particular, therefore they are invariant under monotonic transformations and,

in contrast e.g. to distance based phylogenetic methods, does not require additivity.

Even more generally, it suffices that the evolutionary rates of the different members

of a gene family are roughly the same within each lineage.

Best match methods are far from perfect, however. Large differences in evolutionary

rates between paralogs, as predicted by the DDC model (Force et al. 1999), for exam-

ple, may lead to false negatives among co-orthologs and false positive best matches

between members of slower subfamilies. Recent orthology detection methods recog-

nize the sources of error and complement sequence similarity by additional sources

of information. Most notably, synteny is often used to support or reject reciprocal

best matches (Lechner et al. 2014; Jahangiri-Tazehkand et al. 2017). Another class

of approaches combine the information of small sets of pairwise matches to improve

orthology prediction (Yu et al. 2011; Train et al. 2017). In the Concluding Remarks

we briefly sketch a simple quartet-based approach to identify incorrect best match

assignments.

Extending the information used for the correction of initial reciprocal best hits to

a global scale, it is possible to improve orthology prediction by enforcing the global

cograph of the orthology relation (Hellmuth et al. 2015; Lafond et al. 2016). This work

originated from an analogous question: Can empirical reciprocal best match data be

improved just by using the fact that ideally a best match relation should derive from a

tree T according to Definition 1? To answer this question we need to understand the

structure of best match relations.

The best match relation is conveniently represented as a colored digraph.

Definition 2 Given a tree T and a map σ : L → S, the colored best match graph

(cBMG) G(T , σ ) has vertex set L and arcs xy ∈ E(G) if x �= y and x → y. Each

vertex x ∈ L obtains the color σ(x).

The rooted tree T explains the vertex-colored graph (G, σ ) if (G, σ ) is isomorphic to

the cBMG G(T , σ ).

To emphasize the number of colors used in G(T , σ ), that is, the number of species in

S, we will write |S|-cBMG.

The purpose of this contribution is to establish a characterization of cBMGs as an

indispensable prerequisite for any method that attempts to directly correct empirical
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Fig. 2 Not every graph with

non-empty out-neighborhoods is

is a colored best match graph.

The 4-vertex graph (G, σ )

shown here is the smallest

connected counterexample:

there is no leaf-colored tree

(T , σ ) that explains (G, σ )

best match data. After settling the notation we establish a few simple properties of

cBMGs and show that key problems can be broken down to the connected components

of 2-colored BMGs. These are considered in detail in Sect. 3. The characterization of

2-BMGs is not a trivial task. Although the existence of at least one out-neighbor for

each vertex is an obvious necessary condition, the example in Fig. 2 shows that it is not

sufficient. In Sect. 3 we prove our main results on 2-cBMGs: the existence of a unique

least resolved tree that explains any given 2-cBMG (Theorem 2), a characterization

in terms of informative triples that can be extracted directly from the input graph

(Theorem 6), and a characterization in terms of three simple conditions on the out-

neighborhoods (Theorem 4). In Sect. 4 we provide a complete characterization of a

general cBMG: It is necessary and sufficient that the subgraph induced by each pair

of colors is a 2-cBMG and that the union of the triple sets of their least resolved tree

representations is consistent. After a brief discussion of algorithmic considerations we

close with a brief introduction into questions for future research.

2 Preliminaries

2.1 Notation

Given a rooted tree T = (V , E) with root ρ, we say that a vertex v ∈ V is an ancestor

of u ∈ V , in symbols u � v, v lies one the path from ρ to u. For an edge e = uv in

the rooted tree T we assume that u is closer to the root of T than v. In this case, we

call v a child of u, and u the parent of v and denote with child(u) the set of children

of u. Moreover, e = uv is an outer edge if v ∈ L(T ) and an inner edge otherwise. We

write T (v) for the subtree of T rooted at v, L(T ′) for the leaf set of some subtree T ′

and σ(L ′) = {σ(x) | x ∈ L ′}. To avoid dealing with trivial cases we will assume that

σ(L) = S contains at least two distinct colors. Furthermore, for |S| = 1, the edge-less

graphs are explained by any tree. Hence, we will assume |S| ≥ 2 in the following.

Without loosing generality we may assume throughout this contribution that all trees

are phylogenetic, i.e., all inner vertices of T (except possibly the root) have at least

two children. A tree is binary if each inner vertex has exactly two children.

We follow the notation used e.g. in Semple and Steel (2003) and say that T ′ is

displayed by T , in symbols T ′ ≤ T , if the tree T ′ can be obtained from a subtree

of T by contraction of edges. In addition, we will consider trees T with a coloring

map σ : L(T ) → S of its leaves, in short (T , σ ). We say that (T , σ ) displays or is a

refinement of (T ′, σ ′), whenever T ′ ≤ T and σ(v) = σ ′(v) for all v ∈ L(T ′).

We write TL ′ for the restriction of T to a subset L ′ ⊆ L . We denote by lca(A) the

last common ancestor of all elements of any set A of vertices in T . For later reference
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we note that lca(A ∪ B) = lca(lca(A), lca(B)). We sometimes write lcaT instead of

lca to avoid ambiguities. We will often write A � x , in case that lca(A) � x and

therefore, that x is an ancestor of all a ∈ A.

A binary tree on three leaves is called a triple. In particular, we write xy|z for the

triple on the leaves x, y and z if the path from x to y does not intersect the path from z

to the root. We write r(T ) for the set of all triples that are displayed by the tree T . In

particular, we call a triple set R consistent if there exists a tree T that displays R, i.e.,

R ⊆ r(T ). A rooted triple xy|z ∈ r(T ) distinguishes an edge (u, v) in T if and only

if x , y and z are descendants of u, v is an ancestor of x and y but not of z, and there

is no descendant v′ of v for which x and y are both descendants. In other words, the

edge (u, v) is distinguished by xy|z ∈ r(T ) if lca(x, y) = v and lca(x, y, z) = u.

By a slight abuse of notation we will retain the symbol σ also for the restriction of

σ to a subset L ′ ⊆ L . We write L[s] = {x ∈ L | σ(x) = s} for the color classes on

the leaves of (T , σ ) and denote by σ(x) = S\{σ(x)} the set of colors different from

the color of the leaf x .

All (di-)graphs considered here do not contain loops, i.e., there are no arcs of the

form xx . For a given (di-)graph G = (V , E) and a subset W ⊆ V , we write G[W ]

for the induced subgraph of G that has vertex set W and contains all edges xy of G

for which x, y ∈ W . A digraph G = (V , E) is connected if for any pairs of vertices

x, y ∈ V there is a path x = v1 − v2 − · · · − vk = y such that (i) vivi+1 ∈ E

or (ii) vi+1vi ∈ E , 1 ≤ i < k. The graph G(V , E) is strongly connected if for all

x, y ∈ V there is a sequence Pxy that always satisfies Condition (i). For a vertex x in

a digraph G we write N (x) = {z | xz ∈ E(G)} and N−(x) = {z | zx ∈ E(G)} for

the out- and in-neighborhoods of x , respectively. For any set of vertices A ⊆ L we

write N (A) :=
⋃

x∈A N (x) and N−(A) :=
⋃

x∈A N−(x).

2.2 Basic properties of best match relations

The best match relation → is reflexive because lca(x, x) = x ≺ lca(x, y) for all genes

y with σ(x) = σ(y). For any pair of distinct genes x and y with σ(x) = σ(y) we have

lca(x, y) /∈ {x, y}, hence the relation → has off-diagonal pairs only between genes

from different species. There is still a 1-1 correspondence between cBMGs (Definition

2) and best match relations (Definition 1): In the cBMG the reflexive loops are omitted,

in the relation → they are added.

The tree (G, σ ) and the corresponding cBGM G(T , σ ) employ the same coloring

map σ : L → S, i.e., our notion of isomorphy requires the preservation of colors. The

usual definition of isomorphisms of colored graphs also allows an arbitrary bijection

between the color sets. This is not relevant for our discussion: if (G ′, σ ′) and G(T , σ )

are isomorphic in the usual sense then there is—by definition—a bijective relabeling

of the colors in (G ′, σ ′) that makes them coincide with the vertex coloring of G(T , σ ).

In other words, if ϕ is an isomorphism from (G ′, σ ′) to G(T , σ ) we assume w.l.o.g.

that σ ′(x) = σ(ϕ(x)), i.e., each vertex x ∈ V (G ′) has the same color as the vertex

ϕ(x) ∈ V (G).
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2.3 Thinness

In undirected graphs, equivalence classes of vertices that share the same neighborhood

are considered in the context of thinness of the graph (McKenzie 1971; Sumner 1973;

Bull and Pease 1989). The concept naturally extends to digraphs (Hellmuth and Marc

2015). For our purposes the following variation on the theme is most useful:

Definition 3 Two vertices x, y ∈ L are in relation ∼• if N (x) = N (y) and N−(x) =

N−(y).

For each ∼• class α we have N (x) = N (α) and N−(x) = N−(α) for all x ∈ α.

It is obvious, therefore, that ∼• is an equivalence relation on the vertex set of G.

Moreover, since we consider loop-free graphs, one can easily see that G[α] is always

edge-less. We write N for the corresponding partition, i.e., the set of ∼• classes of G.

Individual ∼• classes will be denoted by lowercase Greek letters. Moreover, we write

Ns(x) = {z | z ∈ N (x) and σ(z) = s} and N−
s (x) = {z | z ∈ N−(x) and σ(z) = s}

for the in- and out-neighborhoods of x restricted to a color s ∈ S. For the graphs

considered here, we always have Nσ(x)(x) = N−
σ(x)

(x) = ∅. When considering sets

Ns(x) and N−
s (x) we always assume that s �= σ(x). Furthermore, Ns denotes the set

of ∼• classes with color s.

By construction, the function N : V (G) → P(V (G)), where P(V (G)) is the

power set of V (G), is isotonic, i.e., A ⊆ B implies N (A) ⊆ N (B). In particular,

therefore, we have for α, β ∈ N :

(i) α ⊆ N (β) implies N (α) ⊆ N (N (β))

(ii) N (α) ⊆ N (β) implies N (N (α)) ⊆ N (N (β)).

These observations will be useful in the proofs below.

By construction every vertex in a cBMG has at least one out-neighbor of every

color except its own, i.e., |N (x)| ≥ |S| − 1 holds for all x . In contrast, N−(x) = ∅ is

possible.

2.4 Some simple observations

The color classes L[s] on the leaves of T are independent sets in G(T , σ ) since arcs

in G(T , σ ) connect only vertices with different colors. For any pair of colors s, t ∈ S,

therefore, the induced subgraph G[L[s] ∪ L[t]] of G(T , σ ) is bipartite. Since the

definition of x → y does not depend on the presence or absence of vertices u with

σ(u) /∈ {σ(x), σ (y)}, we have

Observation 1 Let (G, σ ) be a cBMG explained by T and let L ′ :=
⋃

s∈S′ L[s] be

the subset of vertices with a restricted color set S′ ⊆ S. Then the induced subgraph

(G[L ′], σ ) is explained by the restriction TL ′ of T to the leaf set L ′.

It follows in particular that G[L[s]∪L[t]] is explained by the restriction TL[s]∪L[t] of T

to the colors s and t . Furthermore, G is the edge-disjoint union of bipartite subgraphs

corresponding to color pairs, i.e.,

E(G) =
˙⋃

{s,t}∈(S
2)

E(Gs,t ).
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T{u,v,w}G( ,σ )σ,(T )Gσ,(T ) σ,(T )G [u,v,w]T{u,v,w}( ,σ)

u v w x u v w

u w

v x

u w

v

u w

v

Fig. 3 T{u,v,w} is displayed by T but G(T{u,v,w}, σ ) is not isomorphic to the induced subgraph

G(T , σ )[{u, v, w}] of G(T , σ ), since G(T{u,v,w}, σ ) contains the additional arc w → v

In order to understand when arbitrary graphs (G, σ ) are cBMGs, it is sufficient,

therefore, to characterize 2-cBMGs. A formal proof will be given later on in Sect. 4.

Note the condition that “T explains (G, σ )” does not imply that (TL ′ , σ ) explains

(G[L ′], σ ) for arbitrary subsets of L ′ ⊆ L . Figure 3 shows that, indeed, not every

induced subgraph of a cBMG is necessarily a cBMG. However, we have the following,

weaker property:

Lemma 1 Let (G, σ ) be the cBMG explained by (T , σ ), let T ′ = TL ′ and let (G ′, σ ) be

the cBMG explained by (T ′, σ ). Then u, v ∈ L ′ and uv ∈ E(G) implies uv ∈ E(G ′).

In other words, (G[L ′], σ ) is always a subgraph of (G ′[L ′], σ ).

Proof If uv ∈ E(G) then lcaT (u, v) �T lcaT (u, z) for all z ∈ L[σ(v)], and thus the

inequality lcaT ′(u, v) �T ′ lcaT ′(u, z) is true in particular for all z ∈ L ′ ∩ L[σ(v)] =

L ′[σ(v)]. ⊓⊔

2.5 Connectedness

We briefly present some results concerning the connectedness of cBMGs. In particular,

it turns out that connected cBMGs have a simple characterization in terms of their

representing trees.

Theorem 1 Let (T , σ ) be a leaf-labeled tree and G(T , σ ) its cBMG. Then G(T , σ )

is connected if and only if there is a child v of the root ρ such that σ(L(T (v))) �= S.

Furthermore, if G(T , σ ) is not connected, then for every connected component C of

G(T , σ ) there is a child v of the root ρ such that V (C) ⊆ L(T (v)).

Proof For convenience we write Lv := L(T (v)). Suppose σ(Lv) = S holds for all

children v of the root. Then for any pair of colors s, t ∈ S we find for a leaf x ∈ Lv

with σ(x) = s a leaf y ∈ Lv with σ(y) = t within T (v); thus lca(x, y) is in T (v) and

thus lca(x, y) ≺ ρ. Hence, all best matching pairs are confined to the subtrees below

the children of the root. The corresponding leaf sets are thus mutually disconnected

in G(T , σ ).

Conversely, suppose that one of the children v of the root ρ satisfies σ(Lv) �= S.

Therefore, there is a color t ∈ S with t /∈ σ(Lv). Then for every x ∈ Lv there is an arc

x → z for all z ∈ L[t] since for all such z we have lca(x, z) = ρ. If L[t] = L\Lv , we

can conclude that G(T , σ ) is a connected digraph. Otherwise, every leaf y ∈ L\Lv

with a color σ(y) �= t has an out-arc y → z to some z ∈ L[t] and thus there is a path

y → z ← x connecting y ∈ L\Lv to every x ∈ Lv . Finally, for any two vertices
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y, y′ ∈ L\(Lv ∪ L[t]) there are vertices z, z′ ∈ L[t] such that arcs exist that form

a path y → z ← x → z′ ← y′ connecting z with z′ and both to any x ∈ Lv . In

summary, therefore, G(T , σ ) is a connected digraph.

For the last statement, we argue as above and conclude that if σ(Lv) = S for all

children v of the root (or, equivalently, if G(T , σ ) is not connected), then all best

matching pairs are confined to the subtrees below the children of the root ρ. Thus, the

vertices of every connected component of G(T , σ ) must be leaves of a subtree T (v)

for some child v of the root ρ. ⊓⊔

The following result shows that cBMGs can be characterized by their connected

components: the disjoint union of vertex disjoint cBMGs is again a cBMG if and only

if they all share the same color set. It suffices therefore, to consider each connected

component separately.

Proposition 1 Let (Gi , σi ) be vertex disjoint cBMGs with vertex sets L i and color

sets Si = σi (L i ) for 1 ≤ i ≤ k. Then the disjoint union (G, σ ) := ˙
⋃k

i=1(Gi , σi ) is a

cBMG if and only if all color sets are the same, i.e., σi (L i ) = σ j (L j ) for 1 ≤ i, j ≤ k.

Proof The statement is trivially fulfilled for k = 1. For k ≥ 2, the disjoint union

(G, σ ) is not connected. Assume that σi (L i ) = σ j (L j ) for all i, j . Let (Ti , σi ) be

trees explaining (Gi , σi ) for 1 ≤ i ≤ k. We construct a tree (T , σ ) as follows: Let

ρ be the root of (T , σ ) with children r1, . . . rk . Then we identify ri with the root of

Ti and retain all leaf colors. In order to show that (T , σ ) explains (G, σ ) we recall

from Theorem 1 that all best matching pairs are confined to the subtrees below the

children of the root and hence, each connected component of (G, σ ) forms a subset

of one of the leaf sets L i . Since each (Ti , σi ) explains (Gi , σi ), we conclude that the

cBMG explained by (T , σ ) is indeed the disjoint union of the (Gi , σi ), i.e., (G, σ ).

Thus (G, σ ) is a cBMG.

Conversely, assume that (G, σ ) is a cBMG but σi (L i ) �= σk(Lk) for some k �= i .

By construction, σ(L i ) = σi (L i ) and σ(Lk) = σk(Lk). In particular, for every color

t /∈ σ(L i ) and every vertex x ∈ L i , there is a j �= i with t ∈ σ(L j ) such that there

exists an outgoing arc form x to some vertex y ∈ L j with color σ(y) = t . Thus

(x, y) is an arc connecting L i with some L j , j �= i , contradicting the assumption that

each L i forms a connected component of (G, σ ). Hence, the color sets cannot differ

between connected components. ⊓⊔

The example (G(T{u,v,w}), σ ) in Fig. 3 already shows however that G(T , σ ) is not

necessarily strongly connected.

3 Two-colored best match graphs (2-cBMGs)

Through this section we assume that σ(L) = {s, t} contains exactly two colors.

3.1 Thinness classes

A connected 2-cBMG contains at least two ∼• classes, since all in- and out-neighbors y

of x by construction have a color σ(y) different from σ(x). Consequently, a 2-cBMG

123



Best match graphs 2023

is bipartite. Furthermore, if σ(x) �= σ(y) then N (x) ∩ N (y) = ∅. Since N (x) �= ∅

and all members of N (x) have the same color, we observe that N (x) = N (y) implies

σ(x) = σ(y). By a slight abuse of notation we will often write σ(x) = σ(α) for an

element x of some ∼• class α. Two leaves x and y of the same color that have the same

last common ancestor with all other leaves in T , i.e., that satisfy lca(x, u) = lca(y, u)

for all u ∈ L\{x, y} by construction have the same in-neighbor and the same out-

neighbors in G(T , σ ); hence x ∼• y.

Observation 2 Let (G, σ ) be a connected 2-cBMG and α ∈ N be a ∼• class. Then,

σ(x) = σ(y) for any x, y ∈ α.

The following result shows that the out-neighborhood of any ∼• class is a disjoint

union of ∼• classes.

Lemma 2 Let (G, σ ) be a connected 2-cBMG. Then any two ∼• classes α, β ∈ N

satisfy

(N0) β ⊆ N (α) or β ∩ N (α) = ∅.

Proof For any y ∈ β, the definition of ∼• classes implies that y ∈ N (α) if and only if

β ⊆ N (α). Hence, either all or none of the elements of β are contained in N (α). ⊓⊔

The connection between the ∼• classes of G(T , σ ) and the tree (T , σ ) is captured by

identifying an internal node in T that is, as we shall see, in a certain sense characteristic

for a given equivalence class (Fig. 4).

Definition 4 The root ρα of the ∼• class α is

ρα = max
x∈α

y∈N (α)

lca(x, y).

Fig. 4 Relationship between ∼•

classes and their roots. A tree

with two colors (red and blue)

and four ∼• classes α, α′ (red)

and β, β ′ (blue) together with

their corresponding roots ρα ,

ρα′ , ρβ and ρβ′ are shown

(color figure online)
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Corollary 1 Let ρα be the root of a ∼• class α. Then, for any y ∈ N (α) holds

ρα = max
x∈α

lca(x, y).

In particular, lca(x, y) = lca(x, z) for all y, z ∈ N (α).

Proof For any y ∈ N (α) it holds by definition of N (α) that lca(x, y) � lca(x, z) for

x ∈ α and any z with σ(z) = σ(y). This together with Observation 2 implies that

lca(x, y) = lca(x, z) for any two y, z ∈ N (α) and x ∈ α. ⊓⊔

The following lemma collects some simple properties of the roots of ∼• classes that

will be useful for the proofs of the main results.

Lemma 3 Let (G, σ ) be a connected 2-cBMG explained by (T , σ ) and let α, β be ∼•

classes with roots ρα and ρβ , respectively. Then the following statements hold

(i) ρα � lca(α, β) and ρβ � lca(α, β); equality holds for at least one of them if

and only if ρα, ρβ are comparable, i.e., ρα � ρβ or ρβ � ρα .

(ii) The subtree T (ρα) contains leaves of both colors.

(iii) N (α) � ρα .

(iv) If β ⊆ N (α) then ρβ � ρα .

(v) If ρα = ρβ and α �= β, then σ(α) �= σ(β).

(vi) N (α) = {y | y ∈ L(T (ρα)) and σ(y) �= σ(α)}

(vii) N (N (α)) � ρα .

Proof (i) By Condition (N0) in Lemma 2 we have either β ⊆ N (α) or β ∩

N (α) = ∅. By definition of N (β), we have lca(x ′, y) � lca(x, y) where

y ∈ β, x ′ ∈ N (β), and x ∈ α. Therefore, if β ⊆ N (α), then ρβ =

maxx ′∈N (β) lca(x ′, β) � maxx∈α lca(x, β) = lca(α, β). Moreover, Corollary 1

implies ρα = maxy∈N (α) lca(α, y) = maxy∈β lca(α, y) = lca(α, β).

If β ∩ N (α) = ∅, then lca(α, y) ≻ maxy′∈N (α) lca(α, y′) = ρα for all y ∈ β, i.e.,

lca(α, β) ≻ ρα . Moreover, by definition of ρβ , we have ρβ = maxx∈N (β) lca(x, β) �

maxx∈α lca(x, β) = lca(α, β).

Now assume that ρα and ρβ are comparable. W.l.o.g. we assume ρα � ρβ . Since

α � ρα and β � ρβ is true by definition, we obtain lca(α, β) = ρα � ρβ . Conversely,

if ρα = lca(α, β) � ρβ , then ρα and ρβ are necessarily comparable.

(ii) As argued above, N (x) �= ∅ for all vertices x . Let x ∈ α and y ∈ N (x) such that

ρα = lca(x, y). By definition, σ(x) �= σ(y). Since ρα is an ancestor of both x and y,

the statement follows.

(iii) Since T (ρα) contains leaves of both colors, there is in particular a leaf y with

σ(y) �= σ(x) within T (ρα). It satisfies lca(x, y) � ρα and thus all arcs going out

from x ∈ α are confined to leaves of T (ρα), i.e., N (α) � ρα .

(iv) is a direct consequence of (i) and (iii).

(v) Assume for contradiction that σ(α) = σ(β). There is some y ∈ N (α) with

lca(α, y) = ρα . Since ρα = ρβ = lca(α, β) by (i), we have lca(α, y) � lca(β, y).

By definition of ρβ , there is a z ∈ N (β) such that lca(β, z) = ρβ . Thus, lca(β, y) �

lca(β, z), which implies that y is a best match of β, i.e., y ∈ N (β). Hence, N (α) =
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N (β). On the other hand, since lca(α, β) = ρα , we have lca(α, y) = lca(β, y) for any

y with lca(α, y) � ρα . As a consequence, since ρα � lca(α, y′) for all y′ ∈ N−(α),

it is true that lca(y′, β) = lca(y′, α) � lca(y′, z), for all z with σ(z) = σ(α). Hence

y ∈ N−(α) if and only if y ∈ N−(β). It follows that α = β, a contradiction.

(vi) Let y ∈ N (α), then σ(y) �= σ(α) by definition. In addition, we have y � ρα by

(iii). Conversely, suppose that y ∈ L(T (ρα)) and σ(y) �= σ(α). Since y ∈ L(T (ρα)),

it is true that y, α � ρα and therefore, lca(α, y) � ρα . By definition of the root of α,

there exist x ′ ∈ α and y′ ∈ N (α) such that ρα = lca(x ′, y′) � lca(x ′, z) for all z with

σ(z) = σ(y′). Since lca(α, y) � ρα , this implies y ∈ N (α).

(vii) Lemma 2 and (iv) imply that N (α) is a disjoint union of ∼• classes γ with ργ � ρα

and σ(γ ) �= σ(α). Thus, N (N (α)) =
⋃

γ∈N

γ⊆N (α)

N (γ ) = N (
⋃

γ∈N

γ⊆N (α)

γ ). By (iii) and

(iv), we have N (γ ) � ρα for any such γ , thus N (N (α)) � ρα . ⊓⊔

(N0) implies that there are four distinct ways in which two ∼• classes α and β with

distinct colors can be related to each other. These cases distinguish the relative location

of their roots ρα and ρβ :

Lemma 4 If (G, σ ) is a connected 2-cBMG, and α, β are ∼• classes with σ(α) �= σ(β).

Then exactly one of the following four cases is true

(i) α ⊆ N (β) and β ⊆ N (α). In this case ρα = ρβ .

(ii) α ⊆ N (β) and β ∩ N (α) = ∅. In this case ρα ≺ ρβ .

(iii) β ⊆ N (α) and α ∩ N (β) = ∅. In this case ρβ ≺ ρα .

(iv) α ∩ N (β) = β ∩ N (α) = ∅. In this case ρα and ρβ are not �-comparable.

Proof Set σ(α) = s and σ(β) = t , s �= t , and consider the roots ρα and ρβ of the two

∼• classes. Then, there are exactly four cases:

(i) For ρα = ρβ , Lemma 3(i) implies ρα = ρβ = lca(α, β). By definition of ρα ,

y ∈ N (α) for all y ∈ L(T (ρα)) with σ(y) �= σ(α) by Lemma 3(vi). A similar result

holds for ρβ . It follows immediately that α ⊆ N (β) and β ⊆ N (α).

(ii) In the case ρα ≻ ρβ , Lemma 3(i) implies ρα = lca(α, β) and thus, similarly

to case (i), β ⊆ N (α). On the other hand, by Lemma 3(ii) and ρα ≻ ρβ , there is a

leaf x ′ ∈ L(T (ρβ))\α with σ(x ′) = s. Hence, lca(x ′, β) ≺ ρα = lca(α, β), which

implies α ∩ N (β) = ∅.

(iii) The case ρα ≺ ρβ is symmetric to (ii).

(iv) If ρα, ρβ are incomparable, it yields ρα, ρβ �= ρ and lca(α, β) = ρ, where ρ

denotes the root of T . Since β � ρβ , Lemma 2 implies β ∩ N (α) = ∅. Similarly,

α ∩ N (β) = ∅. ⊓⊔

3.2 Least resolved trees

In general, there are many trees that explain the same 2-cBMG. We next show that

there is a unique “smallest” tree among them, which we will call the least resolved

tree for (G, σ ). Later-on, we will derive a hierarchy of leaf sets from (G, σ ) whose

tree representation coincides with this least resolved tree. We start by introducing a

systematic way of simplifying trees. Let e be an interior edge of (T , σ ). Then the
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tree Te obtained by contracting the edge e = uv is derived by identifying u and v.

Analogously, we write TA for the tree obtained by contracting all edges in A.

Definition 5 Let (G, σ ) be a cBMG and let (T , σ ) be a tree explaining (G, σ ). An

interior edge e in (T , σ ) is redundant if (Te, σ ) also explains (G, σ ). Edges that are

not redundant are called relevant.

The next two results characterize redundant edges and show that such edges can be

contracted in an arbitrary order.

Lemma 5 Let (T , σ ) be a tree that explains a connected 2-cBMG (G, σ ). Then, the

edge e = uv is redundant if and only if e is an inner edge and there exists no ∼• class

α such that v = ρα .

Proof First we note that e = uv must be an inner edge. Otherwise, i.e., if e is an outer

edge, then v /∈ L(Te) and thus, (Te, σ ) does not explain (G, σ ). Now suppose that e

is an inner edge, which in particular implies L(Te) = L(T ), and that e is redundant.

Assume for contradiction that there is a ∼• class α such that v = ρα . Since (T , σ ) is

phylogenetic, T (u)\T (v) has to be non-empty. If there is a leaf y ∈ L(T (u)\T (v))

with σ(y) �= σ(α) in (T , σ ), then y /∈ N (α) by Lemma 3(vi). But then, contraction

of e implies y ∈ T (ρα) and therefore y ∈ N (α), thus (Te, σ ) does not explain (G, σ ).

Consequently, T (u)\T (v) can only contain leaves x with σ(x) = σ(α). Indeed, for

any y′ ∈ T (v) it is true that v = ρα = lca(α, y′) ≺ lca(x, y′), i.e., N−(x) �= N−(α)

and thus x /∈ α. By contracting e, we obtain lca(x, z) � uv = ρα which implies

N (x) = N (α) and N−(x) = N−(α), and therefore x ∈ α. Hence, (Te, σ ) does not

explain (G, σ ).

Conversely, assume that e is an inner edge and there is no ∼• class α such that

v = ρα , i.e., for each α ∈ N it either holds (i) v ≺ ρα , (ii) v ≻ ρα , or (iii) v

and ρα are incomparable. In the first and second case, contraction of e implies either

v � ρα or v � ρα . Thus, since L(T (w)) = L(Te(w)) is clearly satisfied if w and

v are incomparable, we have L(T (w)) = L(Te(w)) for every w �= v. Moreover,

N (α) = {y | y ∈ L(T (ρα)), σ (y) �= σ(α)} by Lemma 3(vi). Together these facts

imply for every ∼• class α with ρα �= v that N (α) remains unchanged in (Te, σ )

after contraction of e. Since the out-neighborhoods of all ∼• classes are unaffected

by contraction of e, all in-neighborhoods also remain the same in (Te, σ ). Therefore,

(T , σ ) and (Te, σ ) explain the same graph (G, σ ). ⊓⊔

Lemma 6 Let (T , σ ) be a tree that explains a connected 2-cBMG (G, σ ) and let e

be a redundant edge. Then the edge f �= e is redundant in (Te, σ ) if and only if f

is redundant in (T , σ ). Moreover, if two edges e �= f are redundant in (T , σ ), then

((Te) f , σ ) also explains (G, σ ).

Proof Let e = uv be a redundant edge in (T , σ ). Then, for any vertex w �= u, v in

(T , σ ) it is true that w is the root of a ∼• class α in (Te, σ ) if and only if w is the root

of α in (T , σ ). In particular, the vertex uv in (Te, σ ) is the root of a ∼• class α′ if and

only if u = ρα′ in (T , σ ). Consequently, f is redundant in (T , σ ) if and only if f is

redundant in (Te, σ ). ⊓⊔
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As an immediate consequence, contraction of edges is commutative, i.e., the order

of the contractions is irrelevant. We can therefore write TA for the tree obtained by

contracting all edges in A in arbitrary order:

Corollary 2 Let (T , σ ) be a tree that explains a 2-cBMG (G, σ ) and let A be a set of

redundant edges of (T , σ ). Then, (TA, σ ) explains (G, σ ). In particular, ((TA)B, σ )

explains (G, σ ) if and only if B is a set of redundant edges of (T , σ ).

Definition 6 Let (G, σ ) be a cBMG explained by (T , σ ). We say that (T , σ ) is least

resolved if (TA, σ ) does not explain (G, σ ) for any non-empty set A of interior edges

of (T , σ ).

We are now in the position to formulate the main result of this section:

Theorem 2 For any connected 2-cBMG (G, σ ), there exists a unique least resolved

tree (T ′, σ ) that explains (G, σ ). (T ′, σ ) is obtained by contraction of all redundant

edges in an arbitrary tree (T , σ ) that explains (G, σ ). The set of all redundant edges

in (T , σ ) is given by

ET = {e = uv | v /∈ L(T ) and there is no ∼• class α such that v = ρα}.

Moreover, (T ′, σ ) is displayed by (T , σ ).

Proof Any edge in a least resolved tree (T ′, σ ) is non-redundant and therefore, as

a consequence of Corollary 2, (T ′, σ ) is obtained from (T , σ ) by contraction of all

redundant edges of (T , σ ). According to Lemma 5, the set of redundant edges is

exactly ET . Since the order of contracting the edges in ET is arbitrary, there is a least

resolved tree for every given tree (T , σ ).

Now assume for contradiction that there exist colored digraphs that are explained

by two distinct least resolved trees. Let (G, σ ) be a minimal graph (w.r.t. the number

of vertices) that is explained by two distinct least resolved trees (T1, σ ) and (T2, σ )

and let v ∈ L with σ(v) = s. By construction, the two trees (T ′
1, σ

′) and (T ′
2, σ

′) with

T ′
1 := T1|L\{v}, T ′

2 := T2|L\{v} and leaf labeling σ ′ := σ|L\{v}, each explain a unique

graph, which we denote by (G ′
1, σ

′) and (G ′
2, σ

′), respectively. Lemma 1 implies that

(G ′, σ ′) := (G[L\{v}], σ ′) is a subgraph of both (G ′
1, σ

′) and (G ′
2, σ

′).

We next show that (G ′
1, σ

′) and (G ′
2, σ

′) are equal by characterizing the additional

edges that are inserted in both graphs compared to (G ′, σ ′). Assume that there is

an additional edge uy in one of the graphs, say (G ′
1, σ ). Since uy is not an edge in

(G, σ ), we have lcaT (u, y) ≻T lcaT (u, y′) for some y′ ∈ L(T ) with σ(y) = σ(y′).

However, uy ∈ E(G ′
1) implies that lcaT1(u, y) �T1 lcaT1(u, y′′) for all y′′ ∈ L\{v}

with σ(y) = σ(y′). Since T ′
1 := T1\{v}, we obtain lcaT (u, y′) ≺T lcaT (u, y) �T

lcaT (u, y′′), which implies that y′ = v and, in particular, uv ∈ E(G) and N (u) = {v}.

In particular, we have σ(u) = t �= s. In this case, u has no out-neighbors in (G ′, σ ′)

but it has outgoing arcs in (G ′
1, σ

′) and (G ′
2, σ

′). In order to determine these outgoing

arcs explicitly, we will reconstruct the local structure of (T1, σ ) and (T2, σ ) in the

vicinity of the leaf v. The following argumentation is illustrated in Fig. 5.

Since N (u) = {v}, there is a ∼• class α = {v}. Let β be the ∼• class of (G, σ )

to which u belongs. It satisfies N (β) = {v}. Therefore, L(T1(ρβ)) ∩ L[s] = {v}
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Fig. 5 Illustration of the proof of

Theorem 2, showing the local

subtrees of (T1, σ ) and (T2, σ ),

immediately above α = {v}. The

relevant portion extends to the

root ργ of the ∼• class γ that is

located immediately above of α

and has the same color as α, here

red. Clearly, the deletion of α

can affect only pairs of vertices

x, y with lca(x, y) below ργ .

Triangles denote the subtree that

consists of all leaves of the

corresponding class which are

attached to the root of the class

by an outer edge. Dashed

triangles and nodes denote

subtrees which may or may not

be present in (T1, σ ) and (T2, σ )

and L(T2(ρβ)) ∩ L[s] = {v}. In particular, this implies L(T1(ρα)) ∩ L[s] = {v}

and L(T2(ρα)) ∩ L[s] = {v}. The children of ρα in both T1 and T2 must be leaves:

otherwise, Lemma 3(ii) would imply that there are inner vertices ρα′ and ρβ ′ below ρα ,

which in turn would contradict to L(T1(ρα))∩L[s] = {v} and L(T2(ρα))∩L[s] = {v}.

Moreover, the subtrees T1(ρα) and T2(ρα) must contain leaves of both colors. Thus

there exists a ∼• class β ′ with color t whose root ρβ ′ coincides with ρα in both (T1, σ )

and (T2, σ ). More precisely, we have child(ρα) = α ∪ β ′. We now distinguish two

cases:

(i) If N−(β) ∩ {v} �= ∅ in (G, σ ), we have ρβ = ρα , i.e., β = β ′.

(ii) Otherwise if N−(β) ∩ {v} = ∅, then lca(v, β ′) ≺ lca(v, β), hence ρβ ≻ ρα . In

particular, since N (β) = {v}, Lemma 3(vi) implies that there cannot be any other ∼•

class α′ �= α of (G, σ ) with color s and ρβ � ρα′ . Moreover, there cannot be any

other class β ′′ of color t such that ρβ ′′ is contained in the unique path from ρβ to

ρα , otherwise it holds N (β ′′) = N (β) and N−(β ′′) = N−(β) by Lemma 3(vi), i.e.,

β ′′ ∼• β. Therefore, we conclude that ρβρα ∈ E(T1) as well as ρβρα ∈ E(T2).

If v is the only leaf of color s in (G, σ ), it follows from (i) and (ii) that (T ′
1, σ

′) =

(T1(ρβ), σ ′) = (T2(ρβ), σ ′) = (T ′
2, σ

′); a contradiction, hence there is a unique tree

representation for (G, σ ) if |L[s]| = 1..

Now suppose that L[s] > 1. Then, both in case (i) and case (ii) there is a parent of

par(ρβ), because otherwise (G ′
1, σ

′) and (G ′
2, σ

′) would not contain color s. In either

case the parent of ρβ is an inner node of the least resolved tree (T1, σ
′) and (T2, σ

′),

respectively. We claim that par(ρβ) is the root of ∼• class γ of color s. Suppose this

is not the case, i.e., σ(γ ) = t and there is no other γ ′ ∈ N such that σ(γ ′) = s and

par(ρβ) = ργ ′ . Then N (γ ) = N (β) and N−(γ ) = N−(β) by Lemma 3(vi), which

implies that β ∼• γ and ρβ is not the root of β; a contradiction.

We therefore conclude that the local subtrees of (T1, σ
′) and (T2, σ

′) immediately

above α, that is (T1(ργ ), σ ′
|L(T1(ργ ))

) and (T2(ργ ), σ ′
|L(T2(ργ ))

), as indicated in Fig. 5,
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are identical. Moreover, it follows that lca(u, γ ) � lca(u, w) for any w ∈ L[s]\{v}.

Hence, the additionally inserted edges in (G ′
1, σ ) and (G ′

2, σ ) are exactly the edges

uc for all c ∈ γ . We therefore conclude that (G ′
1, σ ) = (G ′

2, σ ), which implies

(T ′
1, σ

′) = (T ′
2, σ

′). Sincev has been chosen arbitrarily, this implies (T1, σ ) = (T2, σ );

a contradiction. ⊓⊔

Finally, we consider a few simple properties of least resolved trees that will be

useful in the following sections.

Corollary 3 Let (G, σ ) be a connected 2-cBMG that is explained by a least resolved

tree (T , σ ). Then all elements of α ∈ N are attached to ρα , i.e., ραa ∈ E(T ) for all

a ∈ α.

Proof Assume that ραa /∈ E(T ). Since by definition α ≺ ρα , there exists an inner

node v with ραv ∈ E(T ) such that v lies in the unique path from ρα to a. In particular

v �= a. Theorem 2 implies that each inner vertex (except possibly the root) of the least

resolved tree (T , σ ) must be the root of some ∼• class of (G, σ ). Hence, there is a

∼• class β ∈ N with ρβ = v. According to Lemma 3(ii), the subtree T (v) contains

leaves of both colors, i.e., there exists some leaf c ∈ L(T (v)) with σ(c) �= σ(a). It

follows that lca(a, c) ≺ ρα , which contradicts the definition of ρα . ⊓⊔

This result remains true also for 2-cBMGs that are not connected.

3.3 Characterization of 2-cBMGs

We will first establish necessary conditions for a colored digraph to be a 2-cBMG. The

key construction for this purpose is the reachable set of a ∼• class, that is, the set of all

leaves that can be reached from this class via a path of directed edges in (G, σ ). Not

unexpectedly, the reachable sets should forms a hierarchical structure. However, this

hierarchy does not quite determine a tree that explains (G, σ ). We shall see, however,

that the definition of reachable sets can be modified in such a way that the resulting

hierarchy defines the unique least resolved tree w.r.t. (G, σ ).

3.3.1 Necessary conditions

We start by deriving some graph properties of 2-cBMGs. We shall see later that these

are in fact sufficient to characterize 2-cBMGs.

Theorem 3 Let (G, σ ) be a connected 2-cBMG. Then, for any two ∼• classes α and β

of G holds

(N1) α ∩ N (β) = β ∩ N (α) = ∅ implies

N (α) ∩ N (N (β)) = N (β) ∩ N (N (α)) = ∅.

(N2) N (N (N (α))) ⊆ N (α)

(N3) α ∩ N (N (β)) = β ∩ N (N (α)) = ∅ and N (α) ∩ N (β) �= ∅ implies N−(α) =

N−(β) and N (α) ⊆ N (β) or N (β) ⊆ N (α).
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Proof (N1) For σ(α) = σ(β) this is trivial, thus suppose σ(α) �= σ(β). By Lemma

3(vi), α is not contained in the subtree T (ρβ) and β is not contained in the subtree

T (ρα). Therefore, ρα and ρβ must be incomparable. Since N (α), N (N (α)) � ρα and

N (β), N (N (β)) � ρβ by Lemma 3(iii) and (vii), we conclude that N (α)∩N (N (β)) =

N (β) ∩ N (N (α)) = ∅.

(N2) For contradiction, assume that there is q ∈ N (N (N (α)))\N (α). Since σ(q) =

σ(u) �= σ(x) for all x ∈ α and u ∈ N (α), any such q must satisfy lca(x, q) ≻

lca(x, u) for all x ∈ α and u ∈ N (α). Otherwise it would be contained in N (α). Since

N (x) � ρα by Lemma 3(iii), the definition of ρα implies that there is some pair x ∈ α

and y ∈ β ⊆ N (α) with lca(x, y) = ρα . Therefore lca(x, q) ≻ ρα .

Now consider β ⊆ N (α). Since σ(β) �= σ(α) and lca(α, β) � ρα , we infer that

N (N (α)) � ρα . Repeating the argument yields N (N (N (α))) � ρα and thus there

cannot be a pair of leaves x ∈ α and q ∈ N (N (N (α))) with lca(x, q) ≻ ρα .

(N3) We first note that (N3) is trivially true for α = β. Hence, assume α �= β and

suppose N (α)∩ N (β) �= ∅. Since T is a tree, Lemma 3(vi) implies that either N (α) ⊆

N (β) or N (β) ⊆ N (α). Assume N (β) ⊆ N (α). Hence, ρβ � ρα . Consequently,

for any γ ⊆ N−(α) holds lca(γ, β) � lca(γ, α) � lca(γ, x) for all x with σ(x) =

σ(α) and therefore, N−(α) ⊆ N−(β). Assume for contradiction that there is a γ ′ ⊆

N−(β)\N−(α). By definition, we have ρα � lca(γ ′, β) � ρβ in this case. But then,

Lemma 3(vi) implies N (γ ′) ⊆ N (α) and β ⊆ N (γ ′) ⊆ N (N (α)); a contradiction. ⊓⊔

Definition 7 For any digraph (G, σ ) we define the reachable set R(α) for a ∼• class

α by

R(α) = N (α) ∪ N (N (α)) ∪ N (N (N (α))) ∪ · · · (1)

Moreover, we write W := {α ∈ N | N−(α) = ∅} for the set of ∼• classes without

in-neighbors.

As we shall see below, technical difficulties arise for distinct ∼• classes that share

the same set of in-neighbors. Hence, we briefly consider the classes in W . An example

is shown Fig. 6.

1 2

3 4

5 6

7 8

9

10

1 2 3 4 5 6 8 9 107

Fig. 6 A 2-cBMG with |W | > 1 and its least resolved tree. The ∼• class α = {9, 10} consists of children of

the root without in-neighbors. There is a second ∼• class without in-neighbors, namely β = {7, 8}. Hence

W = {α, β}, R(α) = {1, . . . , 6} = L\(α ∪ β), while R(β) = {5, 6}
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Lemma 7 Let G(T , σ ) be a connected 2-cBMG explained by a tree (T , σ ). Then all

∼• classes in W have the same color and the cardinality of W distinguishes three types

of roots as follows:

(i) W = ∅ if and only if ρT = ρα = ρβ for two distinct ∼• classes α and β.

(ii) |W | > 1 if and only if there is a unique ∼• class α∗ ∈ W that is characterized

by R(α∗) = L\
⋃

β∈W β. Furthermore, ρα∗ = ρT .

(iii) If W = {α}, then ρα = ρT and R(α) = L\α.

Proof By Theorem 1 there is at least one child v of the root ρT of T that itself is the root

of a subtree with a single leaf color, i.e., σ(L(T (v))) = {s}. Assume for contradiction

that there are two ∼• classes α, β ∈ W with s = σ(α) �= σ(β) = t . Then by definition

lca(v, x) = ρT for all x ∈ β, and furthermore, ux ∈ E(G) for all u ∈ L(T (v)). Since

x ∈ β has an in-arc, β /∈ W , a contradiction. All leaves in W therefore have the same

color.

For the remainder of the proof we fix such a child v of the root ρT . By construction

all leaves below it belong to the same ∼• class, which we denote by ω = L(T (v)).

W.l.o.g. we assume σ(v) = s. Since ρω = ρT by construction, we have N (ω) = L[t].

(i) Suppose W = ∅. Then there is a β ∈ Nt such that β⊆N−(ω). For all b ∈ β

we have lca(b, ω) ≤ lca(b, x) for all x ∈ L[s]. Since lca(b, ω) = ρT we conclude

ρβ = ρT = ρω.

Conversely, suppose α and β are two distinct ∼• classes such that ρα = ρβ = ρT .

By Lemma 3(v), σ(α) �= σ(β). W.l.o.g. assume σ(α) = s and σ(β) = t . Since

L(T (ρα))= L(T (ρT )= L , Lemma 3(vi) implies that N (α)= L[t] and N (β)= L[s].

Therefore, α ∈ N−(γ ) for all γ ∈ Nt and β ∈ N−(γ ) for all γ ∈ Ns . Hence W =∅.

(ii) If W �= ∅, (i) implies ρβ �= ρT for all β ∈ Nt , and hence ρβ ≺ ρT . Thus, there

is no β ∈ Nt with ω ⊆ N (β), i.e., N−(ω) = ∅ and thus ω ∈ W .

Consider γ ∈ Ns . We have N−(γ ) �= ∅ if and only if there is ζ ∈ Nt such that

γ⊆N (ζ ), i.e., if and only if γ ⊆ N (L[t]). Since N (ω)= L[t] we have γ /∈ W if and

only if γ ⊆ N (N (ω)). In other words, N (N (ω)) = L[s]\
⋃

β∈W β. Using (N2) we

have

R(ω) = N (ω) ∪ N (N (ω)) = L[t] ∪
⋃

{γ ∈ Ns |N
−(γ ) �= ∅} = L\

⋃

γ∈W

γ .

Now suppose there is another α ∈ W with R(α) = L\
⋃

γ∈W γ . We already know

that σ(α) = s since all classes in W must have the same color. Hence L[t] ⊆ R(α).

Consequently, ζ ∈ N (ω) if and only if ζ ∈ N (α) and thus N (α) = N (ω). Since

α,ω ∈ W implies N−(α) = N−(ω) = ∅, α and ω share both in- and out-neighbors,

and thus α = ω. Therefore ω is unique.

(iii) From the proof of (ii), we know that if |W | = 1, then the unique member of W

is ω. We already know that ρω = ρT . ⊓⊔

3.3.2 Sufficient conditions

We now turn to showing that the properties obtained in Theorem 3 are already sufficient

for the characterization of 2-cBMGs. For this we show that the extended reach-
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able sets form a hierarchy whenever (G, σ ) satisfies the properties (N1), (N2), and

(N3).

Recall that a set system H ⊆ 2L is a hierarchy on L if (i) for all A, B ∈ H holds

A ⊆ B, B ⊆ A, or A ∩ B = ∅ and (ii) L ∈ H.

The following simple property we will be used throughout this section:

Lemma 8 If G is a connected two-colored digraph satisfying (N1), then for any two

∼• classes α and β holds

N (α) ∩ N (β) = ∅ implies N (N (α)) ∩ N (N (β)) = ∅ (2)

If G satisfies (N2), then R(α) = N (α) ∪ N (N (α)).

Proof For any γ ⊆ N (α) and any γ ′ ⊆ N (β), (N1) implies N (γ ) ∩ N (N (β)) =

N (γ ′) ∩ N (N (α)) = ∅. Recall that (N0) holds by definition of ∼• classes. Hence,

N (α) is the disjoint union of ∼• classes, i.e., N (α) =
⋃

γ⊆N (α) γ . Thus, N (N (α)) ∩

N (N (β)) = (
⋃

γ⊆N (α) N (γ )) ∩ N (N (β)) = ∅. The equation R(α) = N (α) ∪

N (N (α)) is an immediate consequence of (N2). ⊓⊔

Lemma 9 Let (G, σ ) be a connected two-colored digraph satisfying properties (N1),

(N2), and (N3). Then, H := {R(α) | α ∈ N } is a hierarchy on L\
⋃

α∈W α.

Proof First we note that R(α) = N (α) ∪ N (N (α)) by property (N2). Furthermore,

using (N0), we observe that β ∩ N (α) �= ∅ implies β ⊆ N (α) for all ∼• classes

α and β. In particular, therefore, N (α) is a disjoint union of ∼• classes, and thus

N (N (α)) =
⋃

β⊆N (α) N (β) is again a disjoint union of ∼• classes. Hence, for any ∼•

class β �= α, we have either β ⊆ R(α) or β ∩ R(α) = ∅. Note that the case α = β is

trivial.

Suppose first β ⊆ R(α). If β ⊆ N (α), then R(β) = N (β) ∪ N (N (β)) ⊆

N (N (α))∪N (N (N (α))) ⊆ N (N (α))∪N (α). On the other hand,β ⊆ N (N (α))yields

R(β) ⊆ N (N (N (α))) ∪ N (N (N (N (α))) ⊆ N (α) ∪ N (N (α)). Thus, R(β) ⊆ R(α).

Exchanging the roles of α and β, the same argument shows that α ⊆ R(β) implies

R(α) ⊆ R(β).

Now suppose that neither α ⊆ R(β) nor β ⊆ R(α) and thus, by the arguments

above, that α∩R(β) = β∩R(α) = ∅. In particular, therefore, α∩N (β) = β∩N (α) =

∅ and thus property (N1) implies R(α) ∩ R(β) = (N (α) ∩ N (β)) ∪ (N (N (α)) ∩

N (N (β))). If N (α) ∩ N (β) = ∅, then R(α) ∩ R(β) = ∅ by Lemma 8. If N (α) ∩

N (β) �= ∅, then property (N3) and α ∩ R(β) = β ∩ R(α) = ∅ implies either

N (α) ⊆ N (β) or N (β) ⊆ N (α). Isotony of N thus implies N (N (α)) ⊆ N (N (β)) or

N (N (β)) ⊆ N (N (α)), respectively. Hence we have either R(α) ⊆ R(β) or R(β) ⊆

R(α). Therefore H is a hierarchy.

Finally, we proceed to show that there is a unique set R(α∗) that is maximal w.r.t.

inclusion and in particular, satisfies R(α∗) = L\
⋃

α∈W α.

Assume, for contradiction, that there are two distinct elements R(α), R(α∗) ∈

H that are both maximal w.r.t. inclusion. Thus, R(α) ∩ R(α∗) = ∅ and α �= α∗.

Moreover, since H is a hierarchy, for each β ∈ N with R(β) ⊆ R(α), we must

have R(β) ∩ R(α∗) = ∅. In particular, this implies β ⊆ R(α) for any β ∈ N
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A B C

Fig. 7 a The two-colored digraph (G, σ ) satisfies (N1), (N2) and (N3). All αi are ∼• classes of (G, σ ) and

belong to color “blue”, the ∼• classes β j form the “red” color classes. Red (blue) triangles indicate subtrees

that only contain red (blue) leaves. Note that N−(α1) = N−(α5) = N−(α6). b The tree obtained from the

hierarchy H = {R(α) | α ∈ N } by attaching to the corresponding tree the elements of α as leaves to R(α)

does not explain (G, σ ). It would imply N−(α1) = N−(α5) = N−(α6) and N (α1) = N (α5) = N (α6),

i.e., α1 ∼• α5 ∼• α6. c The tree defined by the hierarchy H′ = {R′(α) | α ∈ N } with elements of α attached

as leaves to R′(α) is the unique least resolved tree that explains G (cf. Lemma 11) (color figure online)

with R(β) ⊆ R(α). As a consequence there is no β ⊆ R(α) and β ′ ⊆ R(α∗) such

that β ⊆ N (α∗) and β ′ ⊆ N (α), respectively. Therefore, R(α) and R(α∗) are not

connected; a contraction to the connectedness of G. Hence, R(α) = R(α∗), i.e., the

there is a unique set R(α∗) in H that is maximal w.r.t. inclusion. It contains all ∼•

classes of G that have non-empty in-neighborhood. Since by definition, all vertices of

G are assigned to exactly one ∼• class, we conclude that R(α∗) = L\
⋃

α∈W α. ⊓⊔

Note that while R(α) is unique for a given ∼• class α, there may exist more than

one ∼• class that have the same reachable set (see for instance α2 and β2 in Fig. 7c).

In particular, there may even be ∼• classes with different color giving rise to the same

element of H. More generally, we have R(α) = R(β) for α �= β if and only if

α ∈ R(β) and β ∈ R(α).

A hierarchy H corresponds to a unique tree T (H) defined as the Hasse diagram of

H, i.e., the vertices of T (H) are sets of H, and R2 is a child of R1 iff R2 ⊂ R1 and

there is no R3 such that R2 ⊂ R3 ⊂ R1. In particular, thus, two ∼• classes belong to

the same interior vertex if R(α) = R(β). It is tempting to use this tree to construct a

tree T explaining (G, σ ) by attaching the elements of α as leaves to the node R(α) in

T (H). The example in Fig. 7a, b shows, however, that this simply does not work. The

key issue arises from groups of distinct ∼• classes that share the same in-neighborhood

because they will in general be attached to the same node in T (H), i.e., they are

indistinguishable. We therefore need a modification of the definition of reachable sets

that properly distinguishes such ∼• classes in order to construct a hierarchy with the

appropriate resolution for the least resolved tree specified in Theorem 2. To this end

we define for every ∼• class the auxiliary leaf set

123



2034 M. Geiß et al.

Q(α) = {x ∈ L | ∃β ∈ N : x ∈ β, N−(β) = N−(α) and N (β) ⊆ N (α)} (3)

Note that α ⊆ Q(α). For later reference we list several simple properties of Q.

Lemma 10 (i) β ⊆ Q(α) implies σ(β) = σ(α).

(ii) β ⊆ Q(α) implies Q(β) ⊆ Q(α).

(iii) β ⊆ Q(α) implies R(β) ⊆ R(α).

(iv) α ∩ N (β) = ∅ implies Q(α) ∩ N (β) = ∅.

(v) α ∩ N (N (β)) = ∅ implies Q(α) ∩ N (N (β)) = ∅.

Proof (i) follows directly from the definition.

(ii) Let β ⊆ Q(α), γ ∈ N and γ ⊆ Q(β). Then, N−(γ ) = N−(β) = N−(α) and

N (γ ) ⊆ N (β) ⊆ N (α), hence γ ⊆ Q(α) and therefore Q(β) ⊆ Q(α).

(iii) By definition, N (β) ⊆ N (α). Monotonicity of N implies N (N (β)) ⊆ N (N (α))

and therefore, R(β) ⊆ R(α).

(iv) Assume that α ∩ N (β) = ∅, but γ ⊆ Q(α) ∩ N (β) �= ∅. Thus, β ⊆ N−(γ ) =

N−(α), i.e., α ⊆ N (β); a contradiction.

(v) Assume that α ∩ N (N (β)) = ∅, but γ ⊆ Q(α) ∩ N (N (β)) �= ∅. Thus, there is

a ∼• class ξ ⊆ N (β) such that ξ ⊆ N−(γ ) = N−(α) and therefore, α ⊆ N (N (β)); a

contradiction. ⊓⊔

Finally we define, for any two-colored digraph (G, σ ), its extended reachable set

as

R′(α) := R(α) ∪ Q(α). (4)

Note that α ∈ R′(α). Furthermore, the extended reachable set R′(α) contains vertices

with both colors for every ∼• class α. Thus |R′(α)| > 1. We show next that for any

2-cBMG the extended reachable sets form the hierarchy that yields the desired least

resolved tree.

Lemma 11 Let (G, σ ) be a connected two-colored digraph satisfying properties (N1),

(N2), and (N3). Then, H′ := {R′(α) | α ∈ N } is a hierarchy on L.

Proof Consider two distinct ∼• classes α, β ∈ N . By definition Q(α) is the disjoint

union of ∼• classes. The same is true for R(α) as argued in the proof of Lemma 9,

hence R′(α) = R(α) ∪ Q(α) is also the disjoint union of ∼• classes. Thus we have

either β ⊆ R′(α) or β ∩ R′(α) = ∅.

First assume β ⊆ R′(α). Thus we have β ⊆ R(α) or β ⊆ Q(α). If β ⊆ Q(α),

i.e., N (β) ⊆ N (α) and consequently R(β) ⊆ R(α), then Lemma 10(ii) + (iii) implies

that R′(β) ⊆ R′(α). If β ⊆ R(α) then R(β) ⊆ R(α) ⊆ R′(α), shown as in the

proof of Lemma 9. It remains to show that Q(β) ⊆ R′(α). By definition, we have

N−(γ ) = N−(β) for any γ ⊆ Q(β). Therefore, β ⊆ N (α) ∪ N (N (α)) implies

γ ⊆ N (α) ∪ N (N (α)). Hence, γ ⊆ R(α) ⊆ R′(α). In summary, for all β ⊆ R′(α)

we have R′(β) ⊆ R′(α).

The implication “α ⊆ R′(β) �⇒ R′(α) ⊆ R′(β)” follows by exchanging α and

β in the previous paragraph.

Now suppose β ∩ R′(α) = α ∩ R′(β) = ∅. In particular, it then holds α ∩ N (β) =

β ∩ N (α) = ∅ and α ∩ N (N (β)) = β ∩ N (N (α)) = ∅. Applying property (N1)
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and Lemma 10(iv) + (v) yields R′(α) ∩ R′(β) =
(

N (α) ∩ N (β)
)

∪
(

N (N (α)) ∩

N (N (β))
)

∪
(

Q(α) ∩ Q(β)
)

. First, let N (α) ∩ N (β) = ∅. This immediately implies

Q(α) ∩ Q(β) = ∅ and from Lemma 8 follows N (N (α)) ∩ N (N (β)) = ∅. Hence,

R′(α) ∩ R′(β) = ∅. Now assume N (α) ∩ N (β) �= ∅. By property (N3) we conclude

N−(α) = N−(β) and either N (α) ⊆ N (β) or N (β) ⊆ N (α). Consequently, either

N (N (α)) ⊆ N (N (β)) and Q(α) ⊆ Q(β), or N (N (β)) ⊆ N (N (α)) and Q(β) ⊆

Q(α). Hence, it must either hold R′(α) ⊆ R′(β) or R′(β) ⊆ R′(α).

It remains to show that L ∈ H′. Similar arguments as in the proof of Lemma 9 can

be applied in order to show that there is a unique element R′(α∗) that is maximal w.r.t.

inclusion in H′. Since for any α ∈ N it is true that α ∈ R′(α), every ∼• class of G

is contained in at least one element of H′. Moreover, any vertex of G is contained in

exactly one ∼• class. Hence, L = R′(α∗) ∈ H′. ⊓⊔

Since H′ is a hierarchy, its Hasse diagram is a tree T (H′). Its vertices are by

construction exactly the extended reachable sets R′(α) of (G, σ ). Starting from T (H′),

we construct the tree T ∗(H′) by attaching the vertices x∈ α to the vertex R′(α) of

T (H′). The tree T ∗(H′) has leaf set L . Since |R′(α)| > 1 as noted below Eq. (4),

T ∗(H′) is a phylogenetic tree.

Theorem 4 Let (G, σ ) be a connected 2-colored digraph. Then there exists a tree T

explaining (G, σ ) if and only if G satisfies properties (N1), (N2), and (N3). The tree

T ∗(H′) is the unique least resolved tree that explains (G, σ ).

Proof The “only if”-direction is an immediate consequence of Lemma 2 and Theo-

rem 3. For the “if”-direction we employ Lemma 11 and show that the tree T ∗(H′)

constructed from the hierarchy H′ explains (G, σ ).

Let x ∈ L and α be the ∼• class of (G, σ ) to which x belongs. Denote by Ñ (x) the

out-neighbors of x in the graph explained by T ∗(H′). Therefore y ∈ Ñ (x) if and only

if σ(y) �= σ(x) and lcaT ∗(H′)(x, y) is the interior node to which x is attached in T (H′),

i.e., R′(α). Therefore, y ∈ Ñ (x) if and only if σ(y) �= σ(x) and y ∈ R′(α). By (N2)

this is the case if and only if y ∈ N (x). Thus Ñ (x) = N (x). Since two digraphs are

identical whenever all their out-neighborhoods are the same, the tree T ∗(H′) indeed

explains (G, σ ).

By construction and Theorem 2, (T ∗(H′), σ ) is a least resolved tree. ⊓⊔

3.4 Informative triples

An inspection of induced three-vertex subgraphs of a 2-cBMG (G, σ ) shows that

several local configurations derive only from specific types of trees. More precisely,

certain induced subgraphs on three vertices are associated with uniquely defined triples

displayed by the least resolved tree (T , σ ) introduced in the previous section. Other

induced subgraphs on three vertices, however, may derive from two or three distinct

triples. The importance of triples derives from the fact that a phylogenetic tree can

be reconstructed from the triples that it displays by a polynomial time algorithm

traditionally referred to as BUILD (Semple and Steel 2003).

BUILD makes use of a simple graph representation of certain subsets of triples:

Given a triple set R and a subset of leaves L ′ ⊆ L , the Aho-graph [R, L ′] has vertex set
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Fig. 8 Each of the three-vertex induced subgraphs X1, X2, X3 and X4 gives a triple ab|c. If vertex c i n

the drawing has two colors, then the color σ(c) does not matter

L ′ and there is an edge between two vertices x, y ∈ L ′ if and only if there exists a triple

xy|z ∈ R with z ∈ L ′ (Aho et al. 1981). It is well known that R is consistent if and

only if [R, L ′] is disconnected for every subset L ′ ⊆ L with |L ′| > 1 (Bryant and Steel

1995). BUILD uses Aho-graphs in a top-down recursion: First, [R, L] is computed

and a tree T consisting only of the root ρT is initialized. If [R, L] is connected and

|L| > 1, then BUILD terminates and returns “R is not consistent”. Otherwise, BUILD

adds the connected components C1, . . . , Ck of [R, L] as vertices to T and inserts the

edges (ρT , Ci ), 1 ≤ i ≤ k. BUILD recurses on the Aho-graphs [R, Ci ] (where vertex

Ci in T plays the role of ρT ) until it arrives at single-vertex components. BUILD

either returns the tree T or identifies the triple set R as “not consistent”. Since the

Aho-graphs [R, L ′] and their connected components are uniquely defined in each step

of BUILD, the tree T is uniquely defined by R whenever it exists. T is known as the

Aho tree and will be denoted by Aho(R).

It is natural to ask whether the triples that can be inferred directly from (G, σ )

are sufficient to (a) characterize 2-cBMGs and (b) to completely determine the least

resolved tree (T , σ ) explaining (G, σ ).

Definition 8 Let (G, σ ) be a two-colored digraph. We say that a triple ab|c is infor-

mative (for (G, σ )) if the three distinct vertices a, b, c ∈ L induce a colored subgraph

G[a, b, c] isomorphic (in the usual sense, i.e., with recoloring) to the graphs X1, X2,

X3, or X4 shown in Fig. 8. The set of informative triples is denoted by R(G, σ ).

Lemma 12 If (G, σ ) is a connected 2-cBMG, then each triple in R(G, σ ) is displayed

by any tree T that explains (G, σ ).

Proof Let (T , σ ) be a tree that explains (G, σ ). Assume that there is an induced

subgraph X1 in (G, σ ). W.l.o.g. let σ(c) = σ(b). Since there is no arc (a, c) but an

arc (a, b), we have lca(a, b) ≺ lca(a, c), which implies that T must display the triple

ab|c. By the same arguments, if X2, X3 or X4 is an induced subgraph in (G, σ ), then

T must display the triple ab|c. ⊓⊔

In particular, therefore, if (G, σ ) is 2-cBMG, then R(G, σ ) is consistent. It is

tempting to conjecture that consistency of the set R(G, σ ) of informative triples is

already sufficient to characterize a 2-cBMG. The example in Fig. 9 shows, however,

that this is not the case.
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Fig. 9 The four-vertex graph (G, σ ) on the l.h.s. cannot be a 2-cBMG because there is no out-arc from

a′. The four induced subgraphs are of type X1, X2, X3 (with red and blue exchanged) and arc-less,

respectively resulting in the set R(G, σ ) = {ab|b′, ab|a′, ab′|a′} of informative triples. This set is consistent

and displayed by the Aho tree T shown in the middle. It is not difficult to check that every edge of

T is distinguished by one informative triple. Therefore R(G, σ ) identifies the leaf-colored tree (T , σ )

(Grünewald et al. 2007). However, the graph G(T , σ ) explained by the tree (T , σ ) is not isomorphic to the

graph (G, σ ) from which the triples were inferred (color figure online)

Lemma 13 Let (T , σ ) be a least resolved tree explaining a connected 2-cBMG (G, σ ).

Then every inner edge of T is distinguished by at least one triple in R(G, σ ).

Proof Let (T , σ ) be a least resolved tree w.r.t. to (G, σ ) and e = uv be an inner edge

of T . Since (T , σ ) is least resolved for (G, σ ), Theorem 2 implies that the edge e is

relevant, and hence, there exists a α ∈ N such that v = ρα . By Corollary 3, we have

a ∈ child(v) for any a ∈ α. Lemma 3(ii) implies that T (v) contains a ∼• class β with

σ(α) �= σ(β) and b ∈ β.

Case A: Suppose that ρβ = ρα and therefore, ab, ba ∈ E(G). If u is the root of

some ∼• class with c ∈ γ , then Lemma 3(vi) implies ca ∈ E(G), cb /∈ E(G) for

σ(c) = σ(b) and cb ∈ E(T ), ca /∈ E(T ) for σ(c) = σ(a). In all cases, we have

neither bc ∈ E(G) nor ac ∈ E(G), since ab, ba ∈ E(G). Therefore, we always obtain

a 3-vertex induced subgraph that is isomorphic to X2 (see Fig. 8) and ab|c ∈ R(G, σ ).

On the other hand, if there is no ∼• class γ such that u = ργ , then u is the root of (T , σ )

by Corollary 3. Since (T , σ ) is phylogenetic and u is no root of any ∼• class, there

must be an inner vertex w ∈ child(u)\{v} such that w = ργ for some γ ∈ N . Since

T (ργ ) contains leaves of both colors by Lemma 3(ii), for any leaf c ∈ L(T (ργ )) there

is no edge between c and b as well as between c and a. Taken together, we obtain the

induced subgraph X1 and the triple ab|c.

Case B: Now assume ρβ ≺ ρα and there is no other β ′ ∈ N with σ(β ′) = σ(β)

and ρα = ρβ ′ . By definition of ρβ , we have lca(b, a′) ≺ lca(b, a) for some a′ with

σ(a) = σ(a′), i.e., ba /∈ E(G). Moreover, Lemma 3(vi) implies b ∈ N (a), thus

ab ∈ E(G). Similar to Case A, first suppose that u is the root of some ∼• class of

(G, σ ). Since e is relevant, there is a γ ∈ N with u = ργ and σ(γ ) �= σ(α).

Otherwise, if σ(γ ) = σ(α) and there is no other γ ′ ∈ N with u = ργ ′ , Lemma 3(vi)

implies N (α) = N (γ ) and N−(α) = N−(γ ), i.e., α and γ belong to the same ∼• class

with root u. Hence, v is not the root of any ∼• class; a contradiction. Consequently,

we have σ(γ ) �= σ(α), thus ca ∈ E(G) by Lemma 3(vi) but ac /∈ E(G). This yields

the triple ab|c that is derived from the subgraph X4. If u is no root of any ∼• class,

analogous arguments as in Case A show that there is an inner vertex w ∈ child(u)\v

such that the tree T (w) contains leaves of both colors. In particular, there exists a leaf
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c ∈ L(T (w)) and since u is not the root of α, β or the ∼• class that c belongs to, there

is no arc between c and a or b in (G, σ ). Hence, we again obtain the triple ab|c which

in this case is derived from X3.

In every case we have v = lca(a, b) ≺ lca(a, c) = u, i.e., the triple ab|c distin-

guishes uv. ⊓⊔

Lemma 13 suggests that the leaf-colored Aho tree (Aho(R(G, σ )), σ ) of the set of

informative triples R(G, σ ) explains a given 2-cBMG (G, σ ). The following result

shows that this is indeed the case and sets the stage for the main result of this section,

a characterization of 2-cBMGs in terms of informative triples.

Theorem 5 Let (G, σ ) be a connected 2-cBMG. Then (G, σ ) is explained by the Aho

tree of the set of informative triples, i.e., (G, σ ) = G(Aho(R(G, σ )), σ ).

Proof Let (T̃ , σ ) be the unique least resolved tree that explains (G, σ ). For a fixed

vertex v ∈ L we write (G ′, σ ′) = (G\{v}, σ|L\{v}). Let (T̃ ′, σ ′) be the unique least

resolved tree that explains (G ′, σ ′) and let (T ′, σ ′) := (Aho(R(G ′, σ ′)), σ ′) be the

leaf-colored Aho tree of the informative triples of (G ′, σ ′).

First consider the case L = {x, y}. Since (G, σ ) is a connected 2-cBMG, we have

σ(x) �= σ(y) and xy, yx ∈ E(G). It is easy to see that both the least resolved tree

w.r.t. (G, σ ) and Aho(R(G, σ )) correspond to the path x − ρT − y with end points x

and y. Thus (G, σ ) = G(Aho(R(G, σ )), σ ).

Now let |L| > 2 and assume that the statement of the proposition is false. Then there

is a minimal graph (G, σ ) such that (G, σ ) �= G(T , σ ), i.e., (G ′, σ ′) = G(T ′, σ ′)

holds for every choice of v ∈ V (G). Since (G, σ ) is connected, Theorem 1 implies

that there is a ∼• class α of (G, σ ) such that ρα = ρ
T̃

. We fix a vertex v in this class

α and proceed to show that (G, σ ) = G(T , σ ), a contradiction. Let σ(α) = s and

let (T̃ − v, σ ′) be the tree that is obtained by removing the leaf v and its incident

edge from (T̃ , σ ). Clearly, the out-neighborhood of every leaf of color s is still the

same in (T̃ − v, σ ′) compared to (T̃ , σ ). Moreover, Lemma 3(vi) implies that N (x)

remains unchanged in (T̃ − v, σ ′) for any x ∈ L[t]\{v} that belongs to a ∼• class β

with ρβ �= ρ
T̃

. If ρβ = ρ
T̃

, then N (x) = L[s] in (T̃ , σ ) by Lemma 3(vi) and thus

N (x) = L[s]\{v} in (T̃ − v, σ ′). We can therefore conclude that (T̃ − v, σ ′) explains

the induced subgraph (G ′, σ ′) of (G, σ ).

Now, we distinguish two cases:

Case A: Let |child(ρ
T̃
)∩L| > 1, which implies |child(ρ

T̃ −v
)∩L| ≥ 1. Hence, the root

of (T̃ − v, σ ′) has at least two children and, in particular, G(T̃ − v, σ ′) is connected

by Theorem 1. Since (T̃ , σ ) is least resolved, Theorem 2 implies that any inner edge

of (T̃ − v, σ ′) is non-redundant, and hence (T̃ ′, σ ′) = (T̃ − v, σ ′). Consequently,

we can recover (T̃ , σ ) from (T̃ , σ ′) by inserting the edge ρ
T̃ ′v. If N−(α) = ∅, then

vx ∈ E(G) but xv /∈ E(G) for any x ∈ L[t]. Hence, any informative triple that

contains v is induced by X2 or X4, and is thus of the form xy|v with σ(x) �= σ(y).

This implies v ∈ child(ρT ). On the other hand, if there is a β ∈ N with σ(β) = t

and ρβ = ρ
T̃

, we have vu ∈ E(G) and uv ∈ E(G) with u ∈ L[t] if and only if u ∈ β

by Lemma 4(i). Then, there is no 3-vertex induced subgraph of (G, σ ) of the form

X1, X2, X3, or X4 that contains both u and v, and any informative triple that contains

either u or v is again of the form xy|v and xy|v respectively. As before, this implies
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v ∈ child(ρT ). Hence, (T , σ ) is obtained from (T ′, σ ′) by insertion of the edge ρT ′v.

Since (G ′, σ ′) = G(T ′, σ ′), we conclude that (T , σ ) explains (G, σ ), and arrive to

the desired contradiction.

Case B: If |child(ρ
T̃
) ∩ L| = 1, then (T̃ − v, σ ′) is not least resolved since either (a)

the root is of degree 1 or (b) there exists no u ∈ child(ρ
T̃
)\{v} such that σ(u) �= {s, t}

(see Theorem 1). In the latter case, the graph (G ′, σ ′) is not connected. To convert

(T̃ −v, σ ′) into the least resolved tree (T̃ ′, σ ′), we need to contract all edges ρ
T̃

u with

u ∈ child(ρT ′)\{v}. Clearly, we can recover (G, σ ) from (G ′, σ ′) by reverting the

prescribed steps. Analogous arguments as in Case A show that again any informative

triple in R(G, σ ) that contains v is of the form xy|v with σ(x) �= σ(y). If (G ′σ ′) is

connected, then any triple in R(G, σ )\R(G ′, σ ′) is of this form and hence as above,

we conclude that v ∈ child(ρT ) and (G, σ ) = G(T , σ ). If (G ′σ ′) is not connected,

then R(G, σ )\R(G ′, σ ′) contains also all triples xy|z induced by X1 and X3 that

emerged from connecting all components of (G ′, σ ′) by insertion of v. However,

since lca(x, y, z) = ρ
T̃

, we conclude that v ∈ child(ρT ) and thus (G, σ ) = G(T , σ )

again yields the desired contradiction. ⊓⊔

We finally arrive at the main result of this section.

Theorem 6 A connected 2-colored digraph (G, σ ) is a 2-cBMG if and only if (G, σ ) =

G(Aho(R(G, σ )), σ ).

Proof If (G, σ ) is a 2-cBMG, then Theorem 5 guarantees that (G, σ ) = G(Aho(R

(G, σ )), σ ). If (G, σ ) is not a 2-cBMG, then either R(G, σ ) is inconsistent or its

Aho tree Aho(R(G, σ )) explains a different graph G(T , σ ) �= (G, σ ) because by

assumption (G, σ ) cannot be explained by any tree. ⊓⊔

If (G, σ ) is not connected, then the informative triples of Definition 8 are not

sufficient by themselves to infer a tree that explains (G, σ ). However, it follows from

Theorems 1 and 6, that the desired tree (T , λ) can be obtained by attaching the Aho

trees of the connected components as children of the root of (T , λ). It can be understood

as the Aho tree of the triple set

R(G, σ ) =
⋃

i

R(Gi , σi ) ∪ RC (G, σ ) (5)

where the R(Gi , σi ) are the sets of informative triples of the connected components

and RC (G, σ ) consists of all triples of the form xy|z with x, y ∈ L(Gi ) and z ∈ L(G j )

for all pairs i �= j . The triple set RC (G, σ ) simply specifies the connected components

of (G, σ ). Note that with this augmented definition of R, Theorem 6 remains true also

for 2-cBMGs that are not connected.

4 n-Colored best match graphs

In this section we generalize the results about 2-cBMGs to an arbitrary number of

colors. As in the two-color case, we write x ∼• y if and only if x and y have the same

123



2040 M. Geiß et al.

in- and out-neighbors. Moreover, for given colors r , s, t ∈ S we write (Gst , σst ) :=

G[L[s] ∪ L[t]] and (Grst , σrst ) := G[L[r ] ∪ L[s] ∪ L[t]] for the respective induced

subgraphs. Since G is multipartite and every vertex has at least one out-neighbor

of each color except its own, we can conclude also for general cBMGs that x ∼• y

implies σ(x) = σ(y). Denote by x ∼• st y the thinness relation of Definition 3 on

(Gst , σst ) := G[L[s] ∪ L[t]].

Observation 3 If σ(x) = σ(y) = s, then x ∼• y holds if and only if x ∼• st y for all

t �= s.

We can therefore think of the relation ∼• as the common refinement of the relations ∼• st

based on the induced 2-cBMGs for all colors s, t . In particular, therefore, all elements

of a ∼• class of an n-cBMG appear as sibling leaves in the different least resolved trees,

each explaining one of the induced 2-cBMGs. Next we generalize the notion of roots.

Definition 9 Let (G, σ ) be an n-cBMG and suppose σ(α) = r �= s. Then the root ρα

of the ∼• class α with respect to color s is

ρα,s = max
x∈α

y∈Ns (α)

lca(x, y).

Observation 4 Consider an n-cBMG (G, σ ) that is explained by a tree (T , σ ). By

Observation 1, the subgraph (Gst , σst ) induced by any two distinct colors s, t ∈ S is a

2-BMG and thus explained by a corresponding least resolved tree (Tst , σst ). Unique-

ness of this least resolved tree implies that the tree (T , σ ) must display (Tst , σst ). In

other words, (T , σ ) is a refinement of (Tst , σst ).

Observation 5 Let (G, σ ) be an n-cBMG that is explained by a tree (T , σ ), and

a, b, c ∈ L leaves of three distinct colors. Then the 3-cBMG (G(T{a,b,c}), σ ) is the

complete graph on {a, b, c} with bidirectional edges.

Therefore, no further refinement can be obtained from triples of three different colors.

Thus, the two-colored triples inferred from the induced 2-cBMGs for all color pairs

may already be sufficient to construct (T , σ ). This suggests, furthermore, that every

n-cBMG is explained by a unique least resolved tree. An important tool for addressing

this conjecture is the following generalization of condition (vi) of Lemma 3.

Lemma 14 Let (G, σ ) be a (not necessarily connected) n-cBMG explained by (T , σ )

and let α be a ∼• class of (G, σ ). Then Ns(α) = L(T (ρα,s))∩L[s] for all s ∈ S\{σ(α)}.

Proof The definition of ρα,s implies Ns(α) ⊆ L(T (ρα,s)) ∩ L[s]. In particular, there

is a leaf y ∈ Ns(α) such that lca(y, α) = ρα,s . Now consider an arbitrary leaf x ∈

L(T (ρα,s))∩ L[s]\Ns(α). By construction we have lca(x, α) � ρα,s = lca(y, α) and

therefore x ∈ Ns(α). ⊓⊔

We are now in the position to characterize the redundant edges.

Lemma 15 Let (G, σ ) be a (not necessarily connected) n-cBMG explained by (T , σ ).

Then the edge e = uv is redundant in (T , σ ) if and only if (i) e is an inner edge of

T and (ii) for every color s ∈ σ(L(T (u)\T (v))), there is no ∼• class α ∈ N with

v = ρα,s .
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Proof Let (Te, σ ) be the tree that is obtained from (T , σ ) by contraction of the edge

e = uv and assume that (Te, σ ) explains (G, σ ). First we note that e is an inner

edge and thus, in particular, L(Te) = L(T ). Otherwise, i.e., if e is an outer edge,

then v /∈ L(Te); (Te, σ ) does not explain (G, σ ). Now consider an inner edge e.

Since (T , σ ) is phylogenetic, there exists a leaf y ∈ L(T (u)\T (v)) of some color

s ∈ σ(L(T (u)\T (v))). Assume that there is a ∼• class α of G such that v = ρα,s . Note

that s �= σ(α) by definition of ρα,s . Lemma 14 implies that y /∈ N (α) in (G, σ ). After

contraction of e, we have lca(α, y) = ρα,s , thus y ∈ N (α) by Lemma 14. Hence,

(Te, σ ) does not explain G; a contradiction.

Conversely, assume that e is an inner edge and for every s ∈ σ(L(T (u)\T (v))),

there is no α ∈ N such that v = ρα,s , i.e., for every α ∈ N and every color s �= σ(α)

we either have (i) v ≻ ρα,s , (ii) v ≺ ρα,s , or (iii) v and ρα,s are incomparable.

In the first two cases, contraction of e implies v � ρα,s or v � ρα,s in (Te, σ ),

respectively. Therefore, since L(T (w)) = L(Te(w)) for any w incomparable to v, we

have L(T (w)) = L(Te(w)) for any node w �= v. Moreover, it follows from Lemma

14 that Ns(α) = {y | y ∈ L(T (ρα,s)), σ (y) = s}. This implies that the set Ns(α)

remains unchanged after contraction of e for all ∼• classes α and all color s ∈ S. In

other words, the in- and out-neighborhood of any leaf remain the same in (Te, σ ).

Hence, we conclude that (T , σ ) and (Te, σ ) explain the same graph (G, σ ). ⊓⊔

Before we consider the general case, we show that 3-cBMGs like 2-cBMGs are

explained by unique least resolved trees.

Lemma 16 Let (G, σ ) be a connected 3-cBMG. Then there exists a unique least

resolved tree (T , σ ) that explains (G, σ ).

Proof This proof uses arguments very similar to those in the proof of uniqueness result

for 2-cBMGs. In particular, as in the proof of Theorem 2, we assume for contradiction

that there exist 3-colored digraphs that are explained by two distinct least resolved

trees. Let (G, σ ) be a minimal graph (w.r.t. the number of vertices) that is explained

by the two distinct least resolved trees (T1, σ ) and (T2, σ ). W.l.o.g. we can choose a

vertex v and assume that its color is r ∈ S, i.e., v ∈ L[r ]. Using the same notation as

in the proof of Theorem 2, we write (T ′
1, σ

′) and (T ′
2, σ

′) for the trees that are obtained

by deleting v from (T , σ ). These trees explain the uniquely defined graphs (G ′
1, σ

′)

and (G ′
2, σ

′), respectively. Again, Lemma 1 implies that (G ′, σ ′) := (G[L\{v}], σ ′)

is a subgraph of both (G ′
1, σ

′) and (G ′
2, σ

′). Similar to the case of 2-cBMGs, we

characterize the additional edges that are inserted into (G ′
1, σ

′) and (G ′
2, σ

′) compared

to (G ′, σ ′) in order to show that (G ′
1, σ

′) = (G ′
2, σ

′). Assume that uy is an edge in

(G ′
1, σ

′) but not in (G ′, σ ′). By analogous arguments as in the proof of Theorem 2,

we find that uv ∈ E(G) and in particular Nr (u) = {v}, i.e., u has no out-neighbors of

color r in (G ′, σ ′).

Moreover, we have u ∈ L[s], where s ∈ S\{r}. Similar to the 2-color case, we now

determine the outgoing arcs of u in (G ′
1, σ

′) and (G ′
2, σ

′) by reconstructing the local

structure of (T1, σ ) and (T2, σ ) in the vicinity of v.

Observation 1 implies that the least resolved tree (Trs, σrs) explaining (Grs, σrs)

is displayed by both (T1, σ ) and (T2, σ ). The local structure of (Trs, σrs) around v is

depicted in Fig. 5. Using the notation in the figure, {v} is a ∼• class by itself, α = {v},
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there is a ∼• class β ′ ⊆ L[s] with Nr (β
′) = {α} and Ns(α) = {β ′}, and there may

or may not exist a β ⊆ L[s] with Nr (β) = Nr (β
′) = {α} and Ns(α) ∩ β ′ = ∅.

In addition, we have γ ⊆ L[r ], which is the �-minimal ∼• class of color r such that

ργ ≻ ρβ , ρβ ′ . Recall that uc with c ∈ γ are all the edges on L[r ]× L[s] that have been

additionally inserted in both (G ′
1, σ

′) and (G ′
2, σ

′). Since every ∼• class has at least one

out-neighbor of each color and given the relationship between α and β ′, there exists a

∼• class δ ⊆ L[t], where t ∈ S\{r , s}, with α ⊆ Nr (δ) and β ′ ⊆ Ns(δ) such that there

is no other δ′ ⊆ L[t] with ρδ′ ≺ ρδ . If Nr (δ)\{α} �= ∅, then ρδ � ργ by Lemma 14,

and in particular there is no additional edge of the form wa with w ∈ L[t] and a ∈ L[r ]

that is contained in (G ′
1, σ

′) and/or (G ′
2, σ

′) but not in (G ′, σ ′). Therefore, only edges

of the form uc with c ∈ γ are additionally inserted into (G ′
1, σ

′) and (G ′
2, σ

′), and we

conclude that (G ′
1, σ

′) = (G ′
2, σ

′), which implies (T ′
1, σ

′) = (T ′
2, σ

′) and therefore,

since v was arbitrary, (T1, σ
′) = (T2, σ

′); a contradiction.

Now consider the case Nr (δ)\{α} = ∅. Since γ /∈ Nr (δ), Lemma 14 ensures that

ρδ � ργ . The roots ργ and ρδ are comparable since α is an out-neighbor of both γ

and δ. Thus ρδ ≺ ργ and hence Nr (δ) = {γ } in (T ′
1, σ

′) as well as in (T ′
2, σ

′) after

deletion of v. We still need to distinguish two cases: either we have Ns(δ) = {β ′}

or Ns(δ) = {β ′, β}. In the first case, we have ρδ = ρβ ′ = ρα in (T ′
1, σ

′) as well

as in (T ′
2, σ

′). In the second case, we obtain ρδ = ρβ , again this holds for both

(T ′
1, σ

′) and (T ′
2, σ

′). As before, we can conclude that (T ′
1, σ

′) = (T ′
2, σ

′) and therefore

(T1, σ
′) = (T2, σ

′); a contradiction. ⊓⊔

If (G, σ ) is not connected, we can build a least resolved tree (T , σ ) analogously to

the case of 2-cBMGs: we first construct the unique least resolved tree (Ti , σi ) for each

component (Gi , σi ). Using Theorem 1 we then insert an additional root for (T , σ ) to

which the roots of the (Gi , σi ) are attached as children. We proceed by showing that

this construction corresponds to the unique least resolved tree.

Theorem 7 Let (G, σ ) be a (not necessarily connected) n-cBMG with n ∈ {2, 3}.

Then there exists a unique least resolved tree (T , σ ) that explains (G, σ ).

Proof Denote by (Gi , σi ) the connected components of (G, σ ). By Theorem 2 and

Lemma 16 there is a unique least resolved tree (Ti , σi ) that explains (Gi , σi ). Hence,

if (G, σ ) is connected, we are done.

Now assume that there are at least two connected components. Let (T , σ ) be a

least resolved tree that explains (G, σ ). Theorem 1 implies that there is a vertex

u ∈ child(ρT ) such that L(Gi ) ⊆ L(T (u)) for each connected component (Gi , σi ).

Hence, the subtree (T (u), σL(T (u))) displays the least resolved tree (Ti , σi ) explaining

(Gi , σi ). Moreover, since (T , σ ) is least resolved, ρT u is a relevant edge, i.e., there

must be a color s ∈ σ(L(T \T (u))) and a ∼• class α such that u = ρα,s by Lemma 15.

This implies in particular that there exists a leaf x ∈ L(T (u))∩L[s]. Lemma 14 now

implies that the elements of α are connected to any element of color s in the subtree

(T (u), σL(T (u))). Furthermore, any leaf y ∈ L(T (u)) has at least one out-neighbor of

color s in L(T (u)). Hence, we can conclude that the graph G(T (u), σL(T (u))) induced

by the subtree (T (u), σL(T (u))) is connected.

Since L(Gi ) ⊆ L(T (u)) and (T (u), σL(T (u))) explains the maximal connected

subgraph (Gi , σi ), we conclude that G(T (u), σL(T (u))) = (Gi , σi ). By construction,
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both (T (u), σL(T (u))) and (Ti , σi ) are least resolved trees explaining the same graph,

hence Theorem 2 and Lemma 16 imply (T (u), σL(T (u))) = (Ti , σi ). In particular, thus,

ρTi
= u.

As a consequence, any least resolved tree (T , σ ) that explains (G, σ ) must be

composed of the disjoint trees (Ti , σi ) that are linked to the root via the relevant edge

ρT ρTi
. Since every (Ti , σi ) and the construction of the edges ρT ρTi

is unique, (T , σ )

is unique. ⊓⊔

The characterization of redundant edges in trees explaining 2-cBMGs together with

the uniqueness of the least resolved trees for 3-cBMGs can be used to characterize

redundant edges in the general case, thereby establishing the existence of a unique

least resolved tree for n-cBMGs.

Theorem 8 For any connected n-cBMG (G, σ ), there exists a unique least resolved

tree (T ′, σ ) that explains (G, σ ). The tree (T ′, σ ) is obtained by contraction of all

redundant edges in an arbitrary tree (T , σ ) that explains (G, σ ). The set of all redun-

dant edges in (T , σ ) is given by

ET =
{

e = uv | v /∈ L(T ), v �= ρα,s for all s ∈ σ(L(T (u)\T (v))) and α ∈ N
}

.

Moreover, (T ′, σ ) is displayed by (T , σ ).

Proof Using arguments analogous to the 2-color case one shows that there is a least

resolved tree (T ′, σ ) that can be obtained from (T , σ ) by contraction of all redundant

edges. The set of redundant edges is given by ET by Lemma 15. By construction,

(T ′, σ ) is displayed by (T , σ ). It remains to show that (T ′, σ ) is unique. Observation

1 implies that for any pair of distinct colors s and t the corresponding unique least

resolved tree (Tst , σst ) is displayed by (T ′, σ ). The same is true for the least resolved

tree (Trst , σrst ) for any three distinct colors r , s, t ∈ S. Since for any 2-cBMG as well

as for any 3-cBMG, the corresponding least resolved tree is unique (see Theorem 2

and Lemma 16), it follows for any three distinct leaves x, y, z ∈ L[r ] ∪ L[s] ∪ L[t]

that there is either a unique triple that is displayed by (Trst , σrst ) or the least resolved

tree (Trst , σrst ) contains no triple on x, y, z. Note that we do not require that the

colors r , s, t are pairwise distinct. Instead, we use the notation (Trst , σrst ) to also

include the trees explaining the induced 2-cBMGs. Observation 1 then implies that

R∗ :=
⋃

r ,s,t∈S r(Trst ) ⊆ r(T ′). Now assume that there are two distinct least resolved

trees (T1, σ ) and (T2, σ ) that explain (G, σ ). In the following we show that any triple

displayed by T1 must be displayed by T2 and thus, r(T1) = r(T2).

Figure 10 shows that there may be triples xy|z ∈ r(T1)\R
∗. Assume, for contra-

diction, that xy|z /∈ r(T2)\R
∗. Fix the notation such that z ∈ α, σ(x) = r , σ(y) = s,

and σ(z) = t . We do not assume here that r , s, t are necessarily pairwise distinct.

In the remainder of the proof, we will make frequent use of the following

Observation: If the tree T is a refinement of T ′, then we have u �T ′ v if and only if

u �T v for all u, v ∈ V (T ′).
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Fig. 10 A connected graph (G, σ ) and the corresponding least resolved tree (T , σ ) on five vertices of

four colors: blue (1 and 1’), yellow (2), red (3), and green (4). The triple 23|4 is displayed by (T , σ ) but

it is not displayed by the least resolved tree (T ′, σ ′) that explains the induced subgraph (G′, σ ′) with

V (G′) = {2, 3, 4} since (T ′, σ ′) is simply the star tree on {2, 3, 4}. Hence, 23|4 /∈ R∗ =
⋃

r ,s,t∈S r(Trst )

(color figure online)

In particular, u ≺T ′ v (i.e., u �T ′ v and u �= v) implies u ≺T v. The converse of the

latter statement is still true if u is a leaf in T ′ but not necessarily for arbitrary inner

vertices u and v.

Let u = lcaT1(x, y, z). The assumption xy|z ∈ r(T1) implies that there is a vertex

v ∈ child(u) such that v � lcaT1(x, y). Since (T1, σ ) is least resolved the charac-

terization of relevant edges ensures that there is a color p ∈ σ(L(T1(u)\T1(v))) and

a ∼• class β with σ(β) = q such that v = ρβ,p . In particular, there must be leaves

a ∈ L(T1(v)) and a∗ ∈ L(T1(u)\T1(v)) with σ(a) = σ(a∗) = p. As a consequence

we know that a∗ /∈ Np(b) for any b ∈ β.

We continue to show that the edge uv must also be contained in the least resolved tree

(Tpq , σpq) that explains the (not necessarily connected) graph (G pq , σpq). By Theo-

rem 7, (Tpq , σpq) is unique. Assume, for contradiction, that uv is not an edge in Tpq .

Recalling the arguments in Observation 4, the tree (T1, σ ) must display (Tpq , σpq).

Thus, if uv is not an edge in Tpq , then v∗ := u = v in Tpq . By construction, we

therefore have v∗ = ρβ,p in (Tpq , σpq). Since (Tpq , σpq) is least resolved, it follows

from Corollary 3 that b ∈ child(v∗) for all b ∈ β in (Tpq , σpq). The latter, together

with a, a∗ �Tpq v∗, implies that lcaTpq (a, β) = lcaTpq (a
∗, β) = v∗. However, this

implies a∗ ∈ Np(β), a contradiction.

To summarize, the edge uv must be contained in the least resolved tree (Tpq , σpq).

Moreover, by Observation 4, (Tpqo, σpqo) is a refinement of (Tpq , σpq) for every color

o ∈ S. Hence, we have v ≺Tpqo u, which is in particular true for the color o ∈ {r , s, t}.

Moreover, we know that x ≺Tpqr v and y ≺Tpqs v because (T1, σ ) is a refinement of

both (Tpqr , σpqr ) and (Tpqs, σpqs).

Since (T2, σ ) is also a refinement of both (Tpqr , σpqr ) and (Tpqs, σpqs), we have

x, y ≺T2 v ≺T2 u. Furthermore, v ≺T1 lcaT1(v, z) = u and z �T1 implies that

z ≺Tpqt u and z �Tpqt v. Therefore, z ≺T2 u and z �T2 v. Combining these facts

about partial order of the vertices v, u, x, y and z in T2, we obtain xy|z ∈ r(T2); a

contradiction.

Hence, r(T1) = r(T2). Since r(T1) uniquely identifies the structure of T1 (cf.

Semple and Steel 2003, Theorem 6.4.1), we conclude that (T1, σ ) = (T2, σ ). The

least resolved tree explaining (G, σ ) is therefore unique. ⊓⊔
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Corollary 4 Every n-cBMG (G, σ ) is explained by the unique least resolved tree (T , σ )

consisting of the least resolved trees (Ti , Gi ) explaining the connected components

(Gi , σi ) and an additional root ρT to which the roots of the (Ti , Gi ) are attached as

children.

Proof It is clear from the construction that (T , σ ) explains (G, σ ). The proof that his

is the only least resolved tree parallels the arguments in the proof of Theorem 7 for

2-cBMGs and 3-cBMGs. ⊓⊔

Since a tree is determined by all its triples, it is clear now that the construction of a

tree that explains a connected n-cBMG is essentially a supertree problem: it suffices

to find a tree, if it exists, that displays the least resolved trees explaining the induced

subgraphs on 3 colors. In the following, we write

R :=
⋃

s,t∈S

r(T ∗
s,t )

for the union of all triples in the least resolved trees (T ∗
st , σst ) explaining the 2-colored

subgraphs (Gst , σst ) of (G, σ ). In contrast, the set of all informative triples of (G, σ ),

as specified in Definition 8, is denoted by R(G, σ ). As an immediate consequence of

Lemma 12 we have

R(G, σ ) ⊆ R (6)

Theorem 9 A connected colored digraph (G, σ ) is an n-cBMG if and only if (i) all

induced subgraphs (Gst , σst ) on two colors are 2-cBMGs and (ii) the union R of all

triples obtained from their least resolved trees (Tst , σst ) forms a consistent set. In

particular, Aho(R) is the unique least resolved tree that explains (G, σ ).

Proof Let (G, σ ) be an n-cBMG that is explained by a tree (T , σ ). Moreover, let s and

t be two distinct colors of G and let L ′ := L[s] ∪ L[t] be the subset of vertices with

color s and t , respectively. Observation 1 states that the induced subgraph (G[L ′], σ ) is

a 2-cBMG that is explained by (TL ′ , σ ′). In particular, the least resolved tree (T ∗
L ′ , σ

′)

of (TL ′ , σ ′) also explains (G[L ′], σ ) and T ∗
L ′ ≤ TL ′ ≤ T by Theorem 8, i.e., r(T ∗

L ′) ⊆

r(T ). Since this holds for all pairs of two distinct colors, the union of the triples

obtained from the set of all least resolved 2-cBMG trees R is displayed by T . In

particular, therefore, R is consistent.

Conversely, suppose that (G[L ′], σ ) is a 2-cBMG for any two distinct colors s, t

and R is consistent. Let Aho(R) be the tree that is constructed by BUILD for the

input set R. This tree displays R and is a least resolved tree (Aho et al. 1981) in the

sense that we cannot contract any edge in Aho(R) without loosing a triple from R.

By construction, any triple that is displayed by (Tst , σst ) is also displayed by Aho(R),

i.e. (Tst , σst ) ≤ Aho(R). Hence, for any α ∈ N and any color s �= σ(α) the out-

neighborhood Ns(α) is the same w.r.t. (Tst , σst ) and w.r.t. Aho(R). Since this is true

for any ∼• class of G, also all in-neighborhoods are the same in Aho(R) and the

corresponding (Tst , σst ). Therefore, we conclude that Aho(R) explains (G, σ ), i.e.,

(G, σ ) is an n-cBMG.

123



2046 M. Geiß et al.

In order to see that Aho(R) is a least resolved tree explaining (G, σ ), we recall

that the contraction of an edge leaves at least on triple unexplained, see Semple (2003,

Prop. 4.1). Since R consists of all the triples r(Tst ) that in turn uniquely identify

the structure of (Tst , σst ) (cf. Semple and Steel 2003, Theorem 6.4.1), none of these

triples is dispensable. The contraction of an edge in Aho(R) therefore yields a tree that

no longer displays (Tst , σst ) for some pair of colors s, t and thus no longer explains

(G, σ ). Thus, Aho(R) contains no redundant edges and we can apply Theorem 8 to

conclude that Aho(R) is the unique least resolved tree that explains (G, σ ). ⊓⊔

Figure 11 summarizes the construction of the least resolved tree from the 3-colored

digraph (G, σ ) shown in Fig. 11b. For simplicity we assume that we already know

A

B

C

D

Fig. 11 Construction of the least resolved tree explaining the colored best match graph. a Recalls the event-

labeled gene tree of the evolutionary scenario shown in Fig. 1. There are three ∼• classes with more than one

element: α = {a2, a3, a4}, β = {b3, b4} and γ = {c3, c4} in the 3-cBMG graph (G, σ ) shown in (b). For

simplicity of presentation, the ∼• classes are already collapsed into single vertices. c Lists the three induced

subgraphs of (G, σ ) on two colors together with their least resolved trees. By construction, (G, σ ) is the

union of the three subgraphs on two colors. d The Aho-Tree for the set of all triples obtained from the least

resolved trees shown in (c). This tree explains the graph (G, σ ) and is the unique least resolved tree w.r.t.

(G, σ )
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that (G, σ ) is indeed a 3-cBMG. For each of the three colors the example has four

genes. In addition to singleton there are three non-trivial ∼• classes α = {a2, a3, a4},

β = {b3, b4} and γ = {c3, c4}. Following Theorem 9, we extract for each of the three

pairs of colors the induced subgraphs (Gst , σst ) and construct the least resolved trees

that explain them (Fig. 11c). Extracting all triples from these least resolved trees on two

colors yields the triple set R, which in this case is consistent. Theorem 9 implies that

the tree Aho(R) (shown in the lower right corner) explains (G, σ ) and is in particular

the unique least resolved tree w.r.t. (G, σ ).

We close this section by showing that in fact the informative triples of all (Gst , σst )

are already sufficient to decide whether (G, σ ) is an n-cBMG or not. More precisely,

we show

Lemma 17 If (G, σ ) is an n-cBMG then Aho(R(G, σ )) = Aho(R).

Proof We first observe that the two triple sets R and R := R(G, σ ) have the same Aho

tree Aho(R) = Aho(R) if, in each step of BUILD, the respective Aho-graphs [R, L ′]

and [R, L ′], as defined at the beginning of this section, have the same connected

components. It is not necessary, however, that [R, L ′] and [R, L ′] are isomorphic. In

the following set T = Aho(R).

If T is the star tree on L , then R ⊆ R = ∅, thus [R, L] = [R, L] is the edgeless

graph on L , hence in particular Aho(R) = Aho(R).

Now suppose T is not the star tree. Then there is a vertex w ∈ V 0(T ) such that

L(T (w)) = child(w). For simplicity, we write Lw := L(T (w)). Since (T (w), σLw )

is a star tree, we can apply the same argument again to conclude that [R|Lw , Lw] =

[R|Lw , Lw], hence both Aho-graphs have the same connected components. Now let

u = ρT and assume by induction that [R|Lu′ , Lu′ ] and [R|Lu′ , Lu′ ] have the same

connected components for every u′ ≺T u, and thus, in particular, for v ∈ child(u).

Consequently, for any vi ∈ child(v) the set Lvi
is connected in [R|Lv , Lv]. Since

R|Lv ⊆ R|Lu , the set Lvi
must also be connected in [R|Lu , Lu] for every vi ∈ child(v)

(cf. Prop. 8 in Bryant and Steel 1995). It remains to show that all Lvi
are connected

in [R|Lu , Lu].

Since (T , σ ) is least resolved w.r.t. (G, σ ), it follows from Theorem 8 that v = ρα,s

for some color s ∈ σ(L(T (u)\T (v))) and an ∼• class α with σ(α) �= s. In particular,

therefore, s /∈ σ(Lvi
) if α ∈ Lvi

(say i = 1). By definition of s, there must be a

v j ∈ child(v)\{v1} (say j = 2) such that s ∈ σ(Lv2). Let y ∈ Lv2 ∩ L[s]. Lemma

14 implies y ∈ Ns(α), i.e., αy ∈ E(G). Moreover, by definition of s, there must be a

leaf y′ ∈ L(T (u)\T (v)) ∩ L[s]. Since lca(α, y) ≺T lca(α, y′), we have αy′ /∈ E(G),

whereas y′α may or may not be contained in (G, σ ). Therefore, the induced subgraph

on {αyy′} is of the form X1, X2, X3, or X4 and thus provides the informative triple

αy|y′. It follows that Lv1 and Lv2 are connected in [R|Lu , Lu]. In particular, this

implies that any Lv j
with σ(Lv j

) ⊆ σ(Lv) containing s is connected to any Lvi

that does not contain s. Since (G, σ ) is connected, such a set Lvi
always exists by

Theorem 1. Now let L1 := {Lv j
| v j ∈ child(v), s ∈ σ(Lv j

)} and L2 := {Lvi
| vi ∈

child(v), s /∈ σ(Lvi
)}. It then follows from the arguments above that L1 and L2 form

a complete bipartite graph, hence [R|Lu , Lu] is connected. ⊓⊔

As an immediate consequence, Theorem 9 can be rephrased as:
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Corollary 5 A connected colored digraph (G, σ ) is an n-cBMG if and only if (i) all

induced subgraphs (Gst , σst ) on two colors are 2-cBMGs and (ii) the union R of

informative triples R(Gst , σst ) obtained from the induced subgraphs (Gst , σst ) forms

a consistent set. In particular, Aho(R) is the unique least resolved tree that explains

(G, σ ).

5 Algorithmic considerations

The material in the previous two sections can be translated into practical algorithms

that decide for a given colored graph (G, σ ) whether it is an n-cBMG and, if this is

the case, compute the unique least resolved tree that explains (G, σ ). The correctness

of Algorithm 1 follows directly from Theorem 9 (for a single connected component)

and Theorem 1 regarding the composition of connected components. It depends on

the construction of the unique least resolved tree for the connected components of the

induced 2-cBMGs, calledLRTfrom2cBMG() in the pseudocode of Algorithm 1. There

are two distinct ways of computing these trees: either by constructing the hierarchy

T (H) from the extended reachable sets R′ (Algorithm 2) or via constructing the Aho

tree from the set of informative triples (Algorithm 3). While the latter approach seems

simpler, we shall see below that it is in general slightly less efficient. Furthermore,

we use a function BuildST() to construct the supertree from a collection of input

trees. Together with the computation of Aho() from a set of triples, it will be briefly

discussed later in this section.

Algorithm 1 Unique least resolved tree of n-cBMG

Require: Vertex colored digraph (G(L, E), σ ).

if there is xy ∈ E with σ(x) = σ(y) then

exit(“not a BMG”)

determine connected components (Gi (L i , Ei ), σi )

if σ(L i ) �= σ(L j ) for some components i , j then

exit(“not a BMG”)

for all connected components (Gi (L i , Ei ), σi ) do

for all colors s, t ∈ S, s �= t do

determine the induced subgraph (Gst (Lst , Est ), σst ) with colors s, t

determine connected components (Gst,i , σst,i )

for all connected components (Gst,i , σst,i ) do

(Tst,i , σst,i ) ← LRTfrom2cBMG(Gst,i , σst,i )

if (Tst,i , σst,i ) = ∅ then

exit(“not a BMG”)

(Tst , σst ) ← root rst with children (Tst,i , σst,i )

(Ti , σi ) ← BuildST(
⋃

s,t (Tst , σst ))

if (Ti , σi ) = ∅ then

exit(“not a BMG”)

(T , σ ) ← root r with children (Ti , σi )

return (T , σ )

Let us now turn to analyzing the computational complexity of Algorithms 1, 2, and

3. We start with the building blocks necessary to process the 2-cBMG and consider

performance bounds on individual tasks.
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Algorithm 2 Unique least resolved tree of connected 2-cBMG

Require: Two-colored connected bipartite digraph (G(L, E), σ ).

compute ∼• classes

compute N (α) and N (N (α)) for all α

if (N2) does not hold for all α then

return ∅
if (N3) does not hold for all α, β then

return ∅
compute table Yαβ = 1 iff N (α) ∩ N (N (β)) �= ∅

if (N1) does not hold for all α, β then

return ∅
compute R(α), Q(α), and R′(α) = R(α) ∪ Q(α) for all α

tabulate Pα,β = 1 iff R′(α) ⊆ R′(β).

compute Hasse T (H) diagram by transitive reduction

if T (H) is not a tree then

return ∅
if there are siblings R′(α) and R′(β) in T (H) with non-empty intersection then

return ∅
construct T ∗(H) by attaching the leaves to T (H)

return T ∗(H)

Algorithm 3 Unique least resolved tree of connected 2-cBMG via triples

Require: Two-colored connected bipartite digraph (G(L, E), σ ).

extract informative triple set R from (G, σ )

(T , σ ) ← Aho(R, σ )

compute G(T , σ )

if G(T , σ ) = (G, σ ) then

return (T , σ )

else

return ∅

From (T , σ ) to (G, σ ). Given a leaf-labeled tree (T , σ ) we first consider the construc-

tion of the corresponding cBMG. The necessary lowest common ancestor queries

can be answered in constant time after linear time preprocessing, see e.g. (Harel

and Tarjan 1984; Schieber and Vishkin 1988). The lca() function can also be used

to express the partial orders among vertices since we have x � y if and only if

lca(x, y) = y. In particular, therefore, lca(x, y) � lca(x, y′) is true if and only if

lca(lca(x, y), lca(x, y′)) = lca(lca(x, y), y′) = lca(x, y′). Thus (G, σ ) can be con-

structed from (T , σ ) by computing lca(x, y) in constant time for each leaf x and each

y ∈ L[s]. Since the last common ancestors for fixed x are comparable, their unique

minimum can be determined in O(|L[s]|) time. Thus we can construct all best matches

in O(|L| + |L|
∑

s |L|) = O(|L|2) time.

Thinness classes Recall that each connected component of a cBMG (G, σ ) has vertices

with all |S| ≥ 2 colors (we disregard the trivial case of the edge-less graph with

|S| = 1) and thus every x ∈ V has a non-zero out-degree. Therefore |E | ≥ |L|, i.e.,

O(|L| + |E |) = O(|E |)=O(|L|2).

Consider a collection F of n = |F | subsets on L with a total size of m =
∑

A∈F |A|. Then the set inclusion poset of F can be computed in O(nm) time and

O(n2) space as follows: For each A ∈ F run through all elements x of all other

sets B ∈ F and mark B � A if x /∈ A, resulting in a n × n table PF storing the
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set inclusion relation. More sophisticated algorithms that are slightly more efficient

under particular circumstances are described in Pritchard (1995) and Elmasry (2010).

In order to compute the thinness classes, we observe that the symmetric part of

PF corresponds to equal sets. The classes of equal sets can be obtained as connected

components by breadth first search on the symmetric part of PF with an effort of

O(n2). This procedure is separately applied to the in- and out-neighborhoods of the

cBMG. Using an auxiliary graph in which x, y ∈ L are connected if they are in the

same component for both the in- and out- neighbors, the thinness classes can now be

obtained by another breath first search in O(n2). Since we have n = |L| and m = |E |

and thus the sets of vertices with equal in- and out-neighborhoods can be identified in

O(|L| |E |) total time.

Recognizing 2-cBMGs Since (N0) holds for all graphs, it will be useful to construct the

table X with entries Xα,β = 1 if α ⊆ N (β) and Xα,β = 0 otherwise. This table can be

constructed in O(|E |) time by iterating over all edges and retrieving (in constant time)

the ∼• classes to which its endpoints belong. The N (N (α)) can now be obtained in

O(|E | |L|) by iterating over all edges αβ and adding the classes in N (β) to N (N (α)).

We store this information in a table with entries Qα,β = 1 if α ∈ N (N (β)) and

Qα,β = 0 otherwise, in order to be able to decide membership in constant time later

on.

A table Yαβ with Yαβ = 0 if N (α) ∩ N (N (β)) = ∅ and Yαβ = 1 if there is

an overlap between N (α) and N (N (β)) can be computed in O(|L|3) time from the

membership tables X and Q for neighborhoods N ( . ) and next-nearest neighborhoods

N (N ( . )), respectively. From the membership table for N (N (α)) and N (γ ) we obtain

N (N (N (α))) in O(|E | |L|) time, making use of the fact that
∑

α |N (α)| = |E |. For

fixed α, β ∈ N it only takes constant time to check the conditions in (N1) and

(N3) since all set inclusions and intersections can be tested in constant time using the

auxiliary data derived above. The inclusion (N2) can be tested directly in O(|L|) time

for each α. We can summarize considerations above as

Lemma 18 A 2-cBMG can be recognized in O(|L|2) space and O(|L|3) time with

Algorithm 2.

Reconstruction of T ∗(H). For each α ∈ N , the reachable set R(α) can be found by a

breadth first search in O(|E |) time, and hence with total complexity O(|E | |L|). For

each α, we can find all β ∈ N with N−(β) = N−(α) and N (β) ⊆ N (α) in O(|L|)

time by simple look-ups in the set inclusion table for the in- and out-neighborhoods,

respectively. Thus we can find all auxiliary leaf sets Q(α) in O(|L2|) time and the

collection of the R′(α) can be constructed in O(|E | |L|).

The construction of the set inclusion poset is also useful to check whether the

{R′(α)} form a hierarchy. In the worst case we have a tree of depth |L| and thus

m = O(|L|2). Since the number of ∼• classes is bounded by O(|L|), the inclusion

poset of the reachable sets can be constructed in O(|L|3). The Hasse diagram of

the partial order is the unique transitive reduction of the corresponding digraph. In

our setting, this also takes O(|L|3) time (Gries et al. 1989; Aho et al. 1972), since

the inclusion poset of the {R′(α)} may have O(|L|2) edges. It is now easy to check

whether the Hasse diagram is a tree or not. If the number of edges is at least the number

of vertices, the answer is negative. Otherwise, the presence of a cycle can be verified
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e.g. using breadth first search in O(|L|) time. It remains to check that the non-nested

sets R(α) are indeed disjoint. It suffices to check this for the children of each vertex

in the Hasse tree. Traversing the tree top-down this can be verified in O(|L|2) time

since there are O(|L|) vertices in the Hasse diagram and the total number of elements

in the subtrees is O(|L|).

Summarizing the discussion so far, and using the fact that the vertices x ∈ α can

be attached to the corresponding vertices R′(α) in total time O(|L|) we obtain

Lemma 19 The unique least resolved tree T ∗(H′) of a connected 2-cBMG (G, σ ) can

be constructed in O(|L|3) time and O(|L|2) space with Algorithm 2.

Informative triples Since all informative triples R(G, σ ) come from an induced sub-

graph that contains at least one edge, it is possible to extract R(G, σ ) for a connected

2-cBMG in O(|E | |L|) time. Furthermore, the total number of vertices and edges in

R(G, σ ) is also bounded by O(|E | |L|), hence the algorithm of Deng and Fernández-

Baca can be used to construct the tree Aho(R(G, σ )) for a connected 2-cBMG in

O(|E | |L| log2(|E | |L|)) time (Deng and Fernández-Baca 2018). The graph (G ′, σ )

explained by this tree can be generated in O(|L|3) time, and checking whether

(G, σ ) = (G ′, σ ) requires O(|L|2) time. Asymptotically, the approach via infor-

mative triples, Algorithm 3, is therefore at best as good as the direct construction of

the least resolved tree T ∗(H′) with Algorithm 2.

Effort in the n-color case For n-cBMGs it is first of all necessary to check all

pairs of induced 2-cBMGs. The total effort for processing all induced 2-cBMGs is

O(
∑

s<t (|L[s]| + |L[t]|)3) ≤ O(|S| |L| ℓ2 + |L|2ℓ) with ℓ := maxs∈S |L[s]|, as

shown by a short computation.

The 2-cBMG for colors s and t is of size O(L[s] + L[t]) hence the total size of all

|S|(|S| − 1)/2 2-cBMGs is O(|S| |L|). The total effort to construct a supertree from

these 2-cBMGs is therefore only O(|L| |S| log2(|L| |S|)) (Deng and Fernández-Baca

2018), and thus negligible compared to the effort of building the 2-cBMGs.

Using Lemma 5 it is also possible to use the set of all informative triples directly. Its

size is bounded by O(|L| |E |), hence the algorithm of Rauch Henzinger et al. (1999)

can used to construct the supertree on O(|L| |E | log2(|L| |E |). This bound is in fact

worse than for the strategy of constructing all 2-cBMGs first.

We note, finally, that for practical applications the number of genes between dif-

ferent species will be comparable, hence O(ℓ) = O(|L|/|S|). The total effort of

recognizing an n-cBMG in a biologically realistic application scenario amounts to

O(|L|3/|S|). In the worst case scenario with O(ℓ) = O(|L|), the total effort is

O(|S| |L|3).

6 Reciprocal best match graphs

Several software tools implementing methods for tree-free orthology assignment are

typically on reciprocal best matches, i.e., the symmetric part of a cBMG, which we will

refer to as colored Reciprocal Best Match Graph (cRBMG). Orthology is well known

to have a cograph structure (Hellmuth et al. 2013; Hellmuth and Wieseke 2018, 2016).

The example in Fig. 12 shows, however, that cRBMG in general are not cographs.
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w v ux
w x

u v

Fig. 12 Colored Reciprocal Best Match Graphs are not necessarily cographs. This simple counterexample

contains the path u −v−x −w as symmetric part. It corresponds to a species tree of the form (�(•�)) and a

duplication pre-dating the two speciations, with the speciation of • and � being followed by complementary

loss of one of the two copies

A B

Fig. 13 a A symmetric graph on three colors. b Each induced subgraph on two colors is a reciprocal Best

Match Graph and a disjoint union of complete bipartite graphs. However, the corresponding symmetric

graph on three colors shown in (a) does not have a tree representation

It is of interest, therefore to better understand this class of colored graphs and their

relationships with cographs.

Definition 10 A vertex-colored undirected graph G(V , E, σ ) with σ : V → S is a

colored reciprocal best match graph (cRBMG) if there is a tree T with leaf set V such

that xy ∈ E if and only if lca(x, y) � lca(x, y′) for all y′ ∈ V with σ(y′) = σ(y)

and lca(x, y) � lca(x ′, y) for all x ′ ∈ V with σ(x ′) = σ(x).

By definition G(V , E, σ ) is a cRBMG if and only if there is a cBMG (G ′, σ ) with

vertex set V and edges xy ∈ E(G) if and only if both (x, y) and (y, x) are arcs in

(G ′, σ ). In particular, therefore, a cRBMG is the edge-disjoint union of the edge sets

of the induced cRBMGs by pairs of distinct colors s, t ∈ S.

Corollary 6 Every 2-cRBMG is the disjoint union of complete bipartite graphs.

Proof By Lemma 4 there are arcs (x, y) and (y, x) if and only if x ∈ α ⊆ N (β)

and y ∈ β ⊆ N (α). In this case ρα = ρβ . By Lemma 3(v) then σ(α) �= σ(β). The

same results also implies in a 2-cRBMG there are at most two ∼• classes with the

same root. Thus the connected components of a 2-cRBMG are the complete bipartite

graphs formed by pairs of ∼• classes with a common root, as well as isolated vertices

corresponding to all other leaves of T . ⊓⊔

The converse, however, is not true, as shown by the counterexample in Figure 13. The

complete characterization of cRBMGs does not seem to follow in a straightforward

manner from the properties of the underlying cBMGs. It will therefore be addressed

elsewhere.
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7 Concluding remarks

The main result of this contribution is a complete characterization of colored best

match graphs (cBMGs), a class of digraphs that arises naturally at the first stage of

many of the widely used computational methods for orthology assignment. A cBMG

(G, σ ) is explained by a unique least resolved tree (T , σ ), which is displayed by the

true underlying tree. We have shown here that cBMGs can be recognized in cubic time

(in the number of genes) and with the same complexity it is possible to reconstruct the

unique least resolved tree (T , σ ). Related graph classes, for instance directed cographs

(Crespelle and Paul 2006), which appear in generalizations of orthology relations

(Hellmuth et al. 2017), or the Fitch graphs associated with horizontal gene transfer

(Geiß et al. 2018), have characterizations in terms of forbidden induced subgraphs.

We suspect that this not the case for best match graphs because they are not hereditary.

Reciprocal best match graphs, i.e., the symmetric subgraph of (G, σ ), form the link

between cBMGs and orthology relations. The characterization of cRBMGs, somewhat

surprisingly, does not seem to be a simple consequence of the results on cBMGs

presented here. We will address this issue in future work.

Several other questions seem to be appealing for future work. Most importantly,

what if the vertex coloring is not known a priori? What are the properties of BMGs

in general? For connected 2-cBMGs the question is simple, since the bipartition is

easily found by a breadth first search. In general, however, we suspect that—similar

to many other coloring problems—it is difficult to decide whether a digraph G admits

a coloring σ with n = |S| colors such that (G, σ ) is an n-cBMG. In the same vein, we

may ask for the smallest number n of colors, if it exists, such that G can be colored as

an n-cBMG.

As discussed in the introduction, usually sequence similarities are computed. In

the presence of large differences in evolutionary rates between paralogous groups,

maximal sequence similarity does not guarantee maximal evolutionary relatedness.

It is often possible, however, to identify such problematic cases. Suppose the three

species a, b, and c form a triple ab|c that is trustworthy due to independent phylogenetic

information. Now consider a gene x in a, two candidate best matches y′ and y′′ in

b, and a candidate best match z in c. To decide whether lca(x, y′) ≺ lca(x, y′′) or

not, we can use the support for the three possible unrooted quadruples formed by

the sequences {x, y′, y′′, z} to decide whether lca(x, y′) ≺ lca(x, y′′), which can be

readily computed as the likelihoods of the three quadruples or using quartet-mapping

(Nieselt-Struwe 2001). If the best supported quadruples is (xy′|y′′z) or (xy′′|y′z) it is

very likely that lca(x, y′) ≺ lca(x, y′′) or lca(x, y′′) ≺ lca(x, y′), respectively, while

(xz|y′y′′) typically indicates lca(x, y′′) = lca(x, y′). This inference is correct as long

a z is correctly identified as outgroup to x, y′, y′′, which is very likely since all three

of y′, y′′, z are candidate best matches of x in the first place. Aggregating evidence

over different choices of z thus could be used to increase the confidence. An empirical

evaluation of this approach to improve blast-based best hit data is the subject of

ongoing research.

From a data analysis point of view, finally, it is of interest to ask whether an n-

colored digraph (G, σ ) that is not a cBMG can be edited by adding and removing

arcs to an n-cBMG. This idea has been used successfully to obtain orthologs from
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noisy, empirical reciprocal best hit data, see e.g. Hellmuth et al. (2013), Lafond and

El-Mabrouk (2014), Hellmuth et al. (2015) and Lafond et al. (2016); Dondi et al.

(2017). We propose that a step-wise approach could further improve the accuracy

of orthology detection. In the first step, empirical (reciprocal) best hit data obtained

with ProteinOrtho or a similar tool would be edited to conform to a cBMG or a

cRBMG. These improved data are edited in a second step to the co-graph structure of

an orthology relation. Details on cRBMGs and their connections with orthology will

be discussed in forthcoming work.
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