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Abstract

In the applied mathematical modelling of heat transfer systems, the heat transfer coefficient

(HTC) is one of the most important parameters. This paper proposes a combination of the Method

of Fundamental Solutions (MFS) with particle filter Sequential Importance Resampling (PF-SIR)

to estimate the time-dependent HTC in two-dimensional transient inverse heat conduction prob-

lems from non-standard boundary integral measurements. These measurements ensure the unique

solvability of the boundary coefficient identification problem. Numerical results show high perfor-

mance on several test cases with both linear and nonlinear Robin boundary conditions, supporting

the synergy between the MFS and simulation-based particle filter sequential analysis methods.

Keywords: Particle filter; method of fundamental solutions; inverse heat conduction; heat transfer

coefficient.

1 Introduction

Several applications in science and engineering produce insufficient data to be fully described

as direct problems, but can be treated as inverse problems [1]. When the main problem is related

to the estimation of unknown quantities appearing in the mathematical formulation of physical

processes in thermal sciences, it is called an inverse heat transfer problem. Within this frame-

work, the estimation of the heat transfer coefficient (HTC) is a common task [2, 3, 4, 5, 6]. In

thermo-metallurgical applications [7, 8], the HTC represents the most important process param-

eter associated with quench severity since it is closely related to the micro-structure and residual

stress levels after quenching [9].
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In the iterative solution of an inverse problem, the direct problem must be called repeatedly

many times. This makes methods that do not require tedious domain discretisation, called meshless

methods, more attractive. In this regard and in comparison to the more established boundary

element method (BEM), the Method of Fundamental Solutions (MFS) [10] does not need any

boundary discretisation and integration.

The MFS is a collocation method in which no complicated mesh needs to be generated, and

this makes it relatively easy to program and computationally inexpensive. The MFS has predom-

inantly been applied to stationary heat conduction problems governed by the Laplace or modified

Helmholtz PDEs [11, 12], and it has produced accurate and stable results. The MFS for the time-

dependent linear parabolic heat equation was proposed in [13], in which time-dependent funda-

mental solutions for parabolic PDEs were used. This approach can also be found in [14, 15, 16].

For the determination of the HTC in a two-dimensional transient heat conduction problem,

Masson et al. [17] and Yang et al. [18] used the iterative conjugate gradient regularization method.

The same method was used by Lu et al. [19] for predicting the HTC at the inner wall of a pipeline

transporting a mixture of cold and hot fluids in a nuclear power plant. However, especially for

nonlinear coefficient identification problems, such gradient methods requiring minimization of the

distance between the estimated and the measured data can get stuck in a local minimum and,

therefore, they require a good initial guess close to the true solution.

Alternatively, Yan et al. [20] used the Markov chain Monte Carlo (MCMC) algorithm [21] for

the solution of the inverse transient heat conduction problem concerning the determination of the

HTC. MCMC was shown to be a reliable method for offline problems, but it also resulted in some

negative values for the HTC which are physically unrealistic. The same happened with the results

of [22, 23, 24] obtained using the BEM with no positivity constraint or regularization imposed. In

addition, in higher dimensions, MCMC incurs a high computational cost.

An alternative is the Bayesian filter, which has relatively low computational demands com-

pared to the MCMC algorithm. The most widely known Bayesian filter is the Kalman filter (KF)

[25], which is, however, limited to linear models with additive Gaussian noise. Extensions of the

KF were developed in the past for less restrictive cases by using linearization techniques [26].

Similarly, sequential Monte Carlo methods have been developed in order to represent the posterior

density in terms of random samples and associated weights. Such methods, usually denoted as

particle filters, do not require the restrictive hypotheses of KF. Furthermore, particle filters can be

applied to non-linear systems contaminated with any kind of noise errors [26, 27, 28, 29].

A recursive technique that uses recursive Bayesian filters, along with Monte Carlo simulations,

was presented by Hammersley and Hanscomb [30]. In this approach, called the Sequential Impor-

tance Sampling (SIS), the posterior probability function is represented as a set of random samples

associated with some weights. Gordon et al. [31] added an extra step, named re-sampling, into

the SIS method to avoid a problem known as degeneration of particles leading to the Sequential

Importance Re-sampling (SIR) algorithm. For the application of the particle filters to inverse heat

conduction problems we refer the reader to [32, 33].

The sequential particle filter reconstruction of the HTC at the ends of a one-dimensional finite

slab has recently been investigated by the authors in [34], and in this paper we consider the more re-

alistic, but at the same time more involved and computationally complicated two-dimensional case

of a heat conducting plate. Therefore, we study the sequential estimation of the time-dependent

HTC in a multi-dimensional nonlinear inverse heat conduction problem, as formulated in section

2. The MFS is used to solve the direct problem sequentially for the SIR filter, as described in sec-
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tions 3 and 4. Numerical results presented and discussed in section 5 indicate that this combination

shows good performance in terms of robustness, stability and accuracy. Finally, section 6 presents

the conclusions of our investigation.

2 Mathematical formulation

In this section, we formulate the mathematical model for the inverse problem of determin-

ing a time-dependent Robin HTC. We formulate the problem in two-dimensions, with essen-

tially the same statements holding also in three-dimensions, but with an increase in numerical

complexity of computational implementation. Given a final time of interest t f > 0 and a two-

dimensional bounded domain Ω ⊂ R
2 with sufficiently smooth boundary ∂Ω, the aim is to find

the pair (ρ(t),T (x1,x2, t)), where T (x1,x2, t) represents the temperature for (x1,x2) ∈ Ω, t ∈ [0, t f )
and ρ(t)≥ 0 is the time-dependent HTC, satisfying:

∂T

∂ t
(x1,x2, t) =

∂ 2T

∂x2
1

(x1,x2, t)+
∂ 2T

∂x2
2

(x1,x2, t), (x1,x2, t) ∈ Ω× (0, t f ), (1a)

T (x1,x2,0) = T 0(x1,x2), x ∈ Ω, (1b)

∂T

∂n
(x1,x2, t)+ρ(t)g(T (x1,x2, t)) = h(x1,x2, t), (x1,x2, t) ∈ ∂Ω× [0, t f ), (1c)

where n is the outward unit normal to the boundary ∂Ω. Also, g, T 0 and h are given functions. For

simplicity, the heat capacity and thermal conductivity were taken to be constant and equal to unity,

whilst the heat source was assumed to be absent. In order to compensate for the missing HTC ρ(t),
we consider some additional information given by the non-local measurement [22, 23]

E(t) =
∫

∂Ω
Φ(T (x1,x2, t))ds(x1,x2), t ∈ ×[0, t f ), (2)

where Φ(T ) =
∫

g(T )dT is a primitive of the function g governing the linear (g(σ) = σ) or non-

linear (e.g. radiative g(σ) = σ3 |σ |) boundary heat transfer law. The objective is to evaluate the

performance of the MFS+SIR filter for estimating the time dependent HTC ρ(t) at each time t for

the inverse HTC identification problem (1a)-(1c) and (2). We seek the temperature T (x1,x2, t) in

the admissible set T :=
{

T ∈ L2((0, t f ); H1(Ω));∂tT ∈ L2((0, t f ); L2(Ω))
}

and the HTC ρ(t) in

the admissible set

∑ =

{

L2((0, t f )) ∋ ρ(t)≥ 0 a.e. in [0,T ], if g(T ) is linear,

0 ≤ ρ ∈C1([0, t f ]);
|ρ ′(t)|
ρ(t) ≤C0, ∀t ∈ [0, t f ], if g(T ) is nonlinear,

(3)

for some given constant C0 ≥ 0. We assume that the given input data satisfy:

(i) T 0 ∈ H2(Ω), h and ∂th ∈ L2((0, t f ); L2(∂Ω));

(ii) g ∈C1(R2), g(0) = 0, g′ ≥ 0, |g(s)| ≤C1(|s|
α +1), ∀s ∈ R,
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for some given constants C1 ≥ 0 and α ≥ 0. Condition (ii) includes the case of linear convection

g(s) = s and the nonlinear radiation g(s) = s3 |s| for α = 1 and α = 4, respectively.

We have the following definition of a weak solution to the direct problem (1a)-(1c).

Definition 1. Let the input data T 0, h and g satisfy conditions (i) and (ii). Then, for any ρ ∈ ∑, a

function Tρ ∈ T is called a weak solution to the direct problem (1a)-(1c) if Tρ satisfies the initial

condition (1b) and

〈

∂tTρ ,ϕ
〉

Ω
+
〈

∇Tρ ,∇ϕ
〉

Ω
+ρ
〈

g(Tρ),ϕ
〉

∂Ω
=
〈

h,ϕ
〉

∂Ω
, ∀ϕ ∈ H1(Ω), a.e. in (0, t f ), (4)

where
〈

,
〉

denotes the inner product in the corresponding L2-spaces. Using classical mathematical

techniques from [35], if can be shown that the direct problem (1a)-(1c) has a unique weak solution

in the context of Definition 1.

The uniqueness of the solution to the inverse problem (1a)-(1c) and (2) is given by the follow-

ing theorem, [22, 23, 36].

Theorem 1. Let the input data T 0, h and g satisfy conditions (i) and (ii). Let ρ and ρ̃ be in ∑ and

let Tρ and Tρ̃ be the corresponding weak solutions in T of (1a)-(1c) according to Definition 1.

Assume further that Tρ and Tρ̃ also belong to C([0, t f ]; L2(Ω)). Then, if the data (2) coincide, i.e.

0 < E(t) =
∫

∂Ω
Φ(Tρ(x, t))ds(x) =

∫

∂Ω
Φ(Tρ̃(x, t))ds(x), ∀t ∈ [0, t f ],

then Tρ = Tρ̃ and ρ = ρ̃ .

The existence of solutions to the inverse problem (1a)-(1c) and (2) is also of interest. Since the

time-dependent HTC ρ = ρ(t)is sought as being independent of the curvilinear coordinate along

the boundary ∂Ω, the following compatibility condition between (1a)-(1c) is needed:

(iii) assume that there exist a constant ρ∗ ≥ 0 and ∂tTρ∗(·,0) ∈C(Ω), such that

〈

∂tTρ∗(·,0),ϕ
〉

Ω
+
〈

∇Tρ∗(·,0),∇ϕ
〉

Ω
+ρ∗

〈

g(Tρ∗(·,0)),ϕ
〉

∂Ω
=
〈

h(·,0),ϕ
〉

∂Ω
, ∀ϕ ∈H1(Ω).

Then, we have the following theorem establishing the existence of a solution to the inverse problem

(1a)-(1c) and (2), [22, 23, 36].

Theorem 2. Let the input data T 0, h and g satisfy conditions (i) and (ii). Assume also that

condition (iii) holds and that E ∈ C2([0, t f ]), E ′(t) ≥ C2 > 0, |E ′(t)| ≤ C3 for all t ∈ [0, t f ], for

some given constants C2 and C3, and

0 < E(t)≤
∫

∂Ω
Φ(T0(x, t))ds(x), ∀t ∈ [0, t f ], (5)

where T0 ∈ T is the unique weak solution of the direct problem (1a)-(1c) for ρ = 0. Then, there

exists a solution (ρ(t),T (x1,x2, t)) ∈ ∑×T , which in addition satisfies this condition that T ∈
C([0, t f ]; L2(Ω)).
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3 The method of fundamental solutions (MFS)

The fundamental solution to the two-dimensional heat equation (1a) is given by

F(x, t;y,τ) =
H(t − τ)

4π(t − τ)
e−(x−y)2/(4(t−τ)), (6)

where H is the Heaviside function, which is introduced to emphasize that the fundamental solution

is zero for t < τ , and when t = τ . Then, based on the MFS, an approximation to the solution of

Equations (1a)-(1c) can be sought as, [37, 38],

TM,N(x, t) =
2M

∑
m=1

N

∑
j=1

c
( j)
m F(x, t;y j,τm), (x, t) ∈ Ω× [0, t f ]. (7)

We consider, for simplicity, that Ω is a two-dimensional disk of radius r0 > 0, centred at the

origin, and let us place the source points (y j) j=1,N on a circle of radius r0 + h with h > 0, also

centred at the origin. The parameter h > 0 can be chosen such that the error on the lateral and base

surfaces is minimized [37].

We take the time points (τm)m=1,2M (each in the interval (−t f , t f )), as given by

τm =
2(m−M)−1

2M
t f , m = 1, ...,2M, (8)

and using polar coordinates, we place the source points in space at

y j = (r0 +h,θ j), θ j =
2π j

N
, j = 1, ...,N. (9)

In polar coordinates, (7) is now represented by

TM,N(r,θ , t) =
2M

∑
m=1

N

∑
j=1

c
( j)
m F(r,θ , t;r0 +h,θ j,τm). (10)

For collocating the boundary condition (1c) we choose tk =
k
M

t f , for k = 0, ...,M, whilst for

collocating the initial condition (1b) we choose rl = r0

√

l/M for l = 1, ...,M−1, where the square

root has been introduced to spread the points out within the domain, and not to cluster them at the

centre.

We now impose the boundary and initial conditions (1b) and (1c) so that we can determine the

unknown coefficients c
( j)
m in (10). We obtain the following equations:

TM,N(rl,θi,0)=
2M

∑
m=1

N

∑
j=1

c
( j)
m F(rl,θi,0;r0+h,θ j,τm)=T 0(rl,θi,0), l = 1, ...,M−1, i= 1, ...,N,

(11)

2M

∑
m=1

N

∑
j=1

c
( j)
m

∂F

∂ r
(r0,θi, tk;r0 +h,θ j,τm)+ρkg

(

2M

∑
m=1

N

∑
j=1

c
(i)
m F(r0,θi, tk;r0 +h,θ j,τm)

)

= h(r0,θi, tk),

i = 1, ...,N, k = 0, ...,M,

(12)
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where ρk = ρ(tk) for k = 0, ...,M. The above system can be written in a generic form as:

A(c) = b, (13)

where c = ((c
(1)
m )m=1,...,2M, ...,(c

(N)
m )m=1,...,2M) is the vector of 2MN unknowns and b is a known

right-hand side vector containing the (M−1)N initial values (T 0(rl,θi,0))l=1,...,M−1, i=1,...,N , and

the N(M+1) boundary values (h(r0,θi, tk))i=1,...,N, k=0,...,M.

A well-known issue with the MFS, [13], is that the resulting system of Eq. (13) is ill-conditioned

and a straightforward inversion will produce unstable results. In order to stabilize the solution, it

is usual to apply the Tikhonov regularization method and solve:

minc

{

‖A(c)−b‖2 +λ‖c‖2
}

, (14)

where λ ≥ 0 is a regularization parameter to be prescribed.

Note that when the boundary function is linear, e.g. g(T ) = T , as in the Newton’s law of

cooling, the resulting system of Eq. (13) is linear, i.e.

Ac = b, (15)

where A is a matrix. In this case, the minimization problem (14) can be solved exactly to yield the

regularized solution:

cλ = (ATA+λ I)−1ATb, (16)

where T denotes the transpose of a matrix and I is the identity matrix of order 2MN.

In the inverse problem, the vector ρ = (ρ(tk))k=1,...,M is also unknown and the system of Eqs.

(11) and (12) is supplemented with the additional information (2) given by

E(tk) =
∫ 2π

0
Φ(T (1,θ , tk))dθ ≈

2π

N

N

∑
j=1

Φ
(

T (1, θ̃ j, tk)
)

, k = 1, ...,M, (17)

where θ̃ j =
π(2 j−1)

N
for j = 1, ...,N. Note that at the initial time t = t0 = 0 the compatibility

condition between (1b) and (2) requires E(0) =
∫ 2π

0 Φ(T0(1,θ))dθ , so there is no need to impose

(17) for k = 0. Instead of Eqs. (13) and (14) we have the extended versions

Ã(c,ρ) = b̃, (18)

and

min(c,ρ)

{

‖A(c,ρ)− b̃‖2 +λ (‖c‖2 +‖ρ‖2)
}

, (19)

where the vector b̃ contains the vector b along with (E(tk))k=1,...,M, and Ã is the extended operator

governing Eqs. (11), (12) and (17).

4 The particle filter for the inverse problem

The solution of the inverse problem within the Bayesian framework is tackled in the form of

statistical inference using the posterior density, based on Bayes’ theorem. Let us consider the
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measurement (2) (or its discretized version (17)). Then, since the data E = (Ek := E(tk))k=1,...,M

contains information about the vector of unknowns ρ = (ρk)k=1,...,M, it can be used to update ρ
by determining the conditional probability distribution of the unknown states ρ given the measure-

ments E.

For each k = 1, ...,M, Bayes’ theorem is stated as:

π(ρk|E1, ...,Ek) =
π(E1, ...,Ek|ρk)πprior(ρk)

π(E1, ...,Ek)
, (20)

where π(ρk|E1, ...,Ek) is the posterior density, which is the conditional probability distribution

of the unknown parameters given the measurements, πprior(ρk) is the prior density, which is the

model for the unknowns that reflects all the uncertainty of the parameters without the informa-

tion conveyed by the measurements, π(E1, ...,Ek|ρk) is the likelihood function, which is the mea-

surement model incorporating the related uncertainties, that is, the conditional probability of the

measurements given the unknown parameters, and π(E1, ...,Ek) is the marginal probability density

of the measurements, which plays the role of a normalizing constant. If the measurement errors

present in (2) are additive and independent Gaussian random variables, with zero mean and known

covariance matrix W , the likelihood function can be expressed as in [26].

4.1 State estimation problem

Non-stationary, or state estimation, inverse problems [26] may be defined in the form of evo-

lution and observation models, comprising stochastic processes. In the nonlinear problem frame-

work, the parameter estimation procedure is often based on an approximation of the optimal filter

[39]. The extended Kalman filter and its various alternatives can give good results in practice,

but it suffers from lack of theoretical rigour. The particle filter offers a good alternative; in many

practical cases giving better results, and its theoretical properties are becoming increasingly well-

understood [39, 40]. It is particularly appealing to use particle filtering to estimate parameters in

partially observed systems. For a review, see [41] where a non-Bayesian approach that consists

of minimizing a given cost function, like the conditional least-squares criterion, or by maximizing

the likelihood function, was employed. This approach is usually performed in batch processes,

but it can also be extended to recursive procedures. In [42], the authors proposed a Bayesian ap-

proach where an augmented state variable, together with the unknown parameters, are processed

by a filtering procedure. However, this method supposes that a prior law is given for the unknown

parameters.

Another possibility is to use particle filter algorithms that rely on deterministic values of the

model parameters. If these parameters are to be estimated simultaneously with the state variables,

one option is to apply the SIR filter by mimicking the parameters as state variables with an evolu-

tion model, for example, in the form of a random walk process. The parameters are then estimated

sequentially along with the state variables. Such an approach can result in accurate estimates of the

parameters, even for physically complicated nonlinear problems such as in fire propagation [43].

This work applies the SIR filter to the estimation of the temperature evolution at the space

points ((rl,θ j)l=1,..,M−1; j=1,...,N) in addition to the boundary Robin coefficient. Thus, the aug-

mented state vector of dimension N is given by xk = (T (rl,θ j, tk),ρ(tk))l=1,..,M−1; j=1,...,N for each

k = 1, ...,M. These variables are related by means of the mathematical model given in section 2,

which has to be solved for each sample particle sequentially.
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The estimation problem, through the particle filter, follows the procedure stated in [44]. For

each k = 1, ...,M, it proceeds as follows: using the measured data Ek = (Ei)i=1,...,k, Npart particles

for the states
{

x
(i)
k

}N part

i=1
are drawn from a prior probability density function (PDF). Such particles

are propagated using the state evolution model and updated with the observation model in order to

give the measurement estimates
{

z
(i)
k

}N part

i=1
of data (2). Afterwards, a likelihood function assigns

an importance weight, w
(i)
k ∼ π(z

(i)
k |Ek) for i = 1, ...,Npart . The set of the updated states and the

weights
{

x
(i)
k ,w

(i)
k

}N part

i=1
represents the approximation of the posterior density.

In the current inverse problem, the evolution model for the temperature is the numerical ap-

proximation of the solution of the direct problem (1a)-(1c) through the MFS and the evolution

model for the boundary Robin coefficient is a random walk. Since the measurement estimates are

observations of the respective estimated states, we have the following evolution and observation

models:

ρk = ρk−1 +σρek, k = 1, ...,M, (21)

T (rl,θ j, tk) =MFS(T (rl,θ j, tk−1),ρk)+vk, k = 1, ...,M, l = 1, ...,M−1, j = 1, ...,N, (22)

zk = nk +E(tk), k = 1, ...,M, (23)

where ek is a random variable drawn from a normal distribution with zero mean and unitary stan-

dard deviation, vk and nk are process and measurement noise, respectively, and σρ = σρ(k) is a

positive constant to be prescribed at each time step tk for k = 1, ...,M. The subscript k on ρ de-

notes that the parameter will be sequentially estimated along with the state variables. To initiate the

above procedure we prescribe x0 = (T (rl,θ j,0),ρ(0))l=1,..,M−1; j=1,...,N . This is obtained by noting

that at t = t0 = 0, we already know (T (rl,θ j,0) = T 0(rl,θ j)) for l = 1, ..,M − 1 and j = 1, ...,N
from the initial condition (1b). From the compatibility condition between (1b) and (1c) at t = 0 we

can also infer that ρ0 = ρ(0) = (h(1,0,0)−∂rT
0(1,0))/g(T 0(1,0)).

4.2 Particle filter algorithm

The particle filter method is a Monte Carlo technique for the solution of state estimation prob-

lems, in which the posterior density is represented by a set of particles with associated weights.

After assigning the importance weights, they are normalized, so that ∑
Npart

i=1 wi
k = 1. In this regard,

the Sequential Importance Sampling (SIS) algorithm estimates the posterior distribution from a

set of particles representative of the system variables [27, 45]. The prior distribution provides the

necessary information for the initial step: it is the basis for the first particle draw. The likelihood

function is then used to compare the initial information with the experimental measurements, and

incorporates more information, via particle weights, in order to determine the posterior distribution.

However, the sequential application of the particle filter may result in a degeneracy phenomenon:

after a few time iterations, all but a few particles have negligible weight. The degeneracy implies

that a large computational effort is devoted to update particles whose contribution to the approx-

imation of the posterior density is practically zero [27, 45]. This problem can be overcome with
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a resampling step in the particle filter algorithm. Resampling involves a mapping of the random

pair
{

xi
k,w

i
k

}

into
{

xi∗
k ,N

−1
part

}

, with uniform weights. It deals with the elimination of particles

originally with low weights and the replication of particles with high weights (xi∗
k ). This can be

performed if the number of effective particles (particles with large weights) falls below a certain

threshold number. Alternatively, resampling can also be applied indiscriminatly at each instant tk,

as in the Sampling Importance Resampling (SIR) algorithm [33, 43, 44, 46, 47].

5 Numerical results and discussion

In this section, we illustrate the efficiency and accuracy of the MFS combined with the particle

filter SIR algorithm. To evaluate the filter performance, the maximum width of the credible interval

(MWCI) [46] was determined for each estimated variable, considering the entire period of time

[0, t f ]. In order to assess the performance of the particle filter we introduce the root-mean-square

error (RMSEρ ) and the relative error Rel(ρ) in the HTC, defined by

RMSEρ =

√

√

√

√

1

M

M

∑
k=1

(ρk − ρ̂k)2, Rel(ρ) =

√

∑
M
k=1(ρk − ρ̂k)2

√

∑
M
k=1 ρ2

k

×100%, (24)

where ρk is the true value of the HTC and ρ̂k is the estimated HTC.

The following 95% credible interval (CI), denoted as I95% and defined in the parameter space,

was used as an additional diagnostic of the performance of the particle filter:

I95% = ρ̂k ±1.96σ̂k, k = 1, ...,M, (25)

where ρ̂k represents the estimated variable and σ̂k represents the estimated uncertainty of the par-

ticles.

It is worth stating that a narrow maximum width CI (MWCI) generally means more accurate

particle filter estimation since the particles are closer to the true value. However, the MWCI should

be used with caution. A narrow width could also mean that the particles approximating the poste-

rior density are constrained to a small range of values which do not encompass the true solution.

In this sense, when particle degeneration occurs, the width of the credible interval decreases dras-

tically since all but a few particle have negligible weight. If this issue occurs frequently, the values

of MWCI will be seriously compromised and will lead to erroneous conclusions about the estima-

tion quality. One way to circumvent this detrimental effect is to consider the effective sample size

[27, 48], that is, the number of particles with non-zero weight, defined by Ne f fk =
1

∑
Npart
i=1 (wi

k
)2

, for

k = 1, ...,M. If Ne f fk is a low value, it indicates severe degeneration of the particle filter. Thus,

this quantity was also evaluated, along with the MWCI, to ensure the best performing particle filter

is identified.

In this work, the simulated measurements were defined by (2), to which additive and uncorre-

lated errors were applied:

Ea(tk) = E(tk)+ εk, k = 1, ...,M, (26)

where (εk)k=1,...,M are random variables drawn from a Gaussian distribution with mean zero and

the standard deviation, in which p represents the percentage of noise, given by

σ = p×maxk=1,...,M |E(tk)| . (27)
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The computational studies for the direct and inverse problems were performed in MATLAB on

a computer with Processor Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz, 1800 Mhz, 4 Core, 8

Logical Processor.

5.1 Example 1 (linear law)

We consider first a benchmark test example, given by equations (1a)-(1c) and (2), we take t f = 1,

r0 = 1, T 0(r,θ) = r2 +1, h(r,θ , t) = 2+ t(2+4t), the linear law g(T ) = T and the measurements

(2) given by

E(t) = π(2+4t)2, t ∈ [0, t f = 1). (28)

It can be seen that these data satisfy the conditions of uniqueness of solution given by Theorem

1. In fact, it can be verified through direct substitution that, for the above input data, the analytical

solution of the inverse problem (1a)-(1c) and (2) is given by

T (r,θ , t) = r2 +4t +1 (29)

and

ρ(t) = t. (30)

Similar examples have been tested in [34] in one spatial dimension.

The MFS was applied with M = 10, N = 20 and h = 10. First, for verification, we solve the

direct problem given by equations (1a)-(1c) when the HTC is assumed to be known and given by

(30). Figure 1(a) compares the analytical solution for E(t) given by (28) with the corresponding

MFS numerical solution obtained from (7), (16) and (17) with a small regularization parameter

λ = 10−12. We can see the high accuracy when the MFS is used to solve the direct problem.

Next, we investigate the inverse problem (1a)-(1c) and (2). First, we consider the choice of

σρ(k) in the random walk iteration (21). The number of particles Npart was set arbitrarily to be in

increasingly doubling numbers 50, 100, 200 and 400, which led to average computational times

of 95, 185, 459 and 980 seconds, respectively, to filter sequentially the measurements (26). It is

important to highlight that the time to propagate each particle through the MFS was approximately

0.27 seconds.

To avoid sample degeneracy it is sufficient to keep the effective sample size over a certain

threshold such as Ne f f > 0.5 ·Npart , [27]. In this regard, we propose that σρ is drawn from a

uniform distribution between 0.05 and 0.2. This hypothesis was adopted assuming that we know

a priori that the maximum value of the HTC (30) is equal to unity, such that the lower limit

corresponds to 5% of it. On the other hand, if the HTC suddenly changes over time, the parameter

search field should be broaden, so that 20% of the maximum allowable value is used as an upper

limit.

Figure 2(c) shows the behaviour of σρ(k) over the time steps tk for k = 1, ...,M. It is possible

to observe that, for all particle numbers tested, σρ converges to approximately 0.125.

Table 1 shows the results of the evaluation criteria (24) for p ∈ {1%,5%} noise, in which

Ne f f [%] denotes the average percentage ratio between the effective sample size Ne f f and the

total number of particles Npart . From, this table it can be seen that accurate numerical results
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are obtained with relative errors Rel(ρ) < 5%. Throughout the simulations there was no sample

degeneration, since Ne f f [%] was greater than or equal to 50% for all Npart . Besides that, the errors

(24) decrease substantially with the increase in the number of particles. Since in the behaviour of

the random walk model (21) we allow σρ to vary piecewisely over time, the filter is able to draw

particles close to the actual HTC with suitable performance even for small numbers of particles.

The numerical results for Example 1 with Npart = 400 and p ∈ {1%,5%} noise in the data (26)

are shown in Figures 2 and 3, respectively. The shaded region denotes the 95% credible intervals,

which quantifies the uncertainty of the mean. We can see that the posterior distribution mean is

in excellent agreement with the true solution (30) and the credible interval shrinks as the noise

level p decreases. Furthermore, the results presented in Figures 2 and 3 show clearly that the SIR

particle filter approach provides stable numerical solutions to the inverse Robin problem for the

heat conduction inverse problem in higher dimensions with convective boundary conditions.

5.2 Example 2 (nonlinear law)

In the second example, given by equations (1a)-(1c), we take t f = 1 and T 0(r,θ) = r2, h(r,θ , t) =
2+(1+ t)(1+4t)4, the nonlinear law, g(T ) = T 3 |T | corresponding to radiation, and the measure-

ments (2) given by

E(t) =
2π(1+4t)5

5
, t ∈ [0, t f = 1). (31)

In this example, the inverse problem has the analytical solution

T (r,θ , t) = r2 +4t (32)

and

ρ(t) = t +1. (33)

We applied the MFS with M = 10, N = 10 and h = 1. The solution was obtained using the

lsqnonlin function in MATLAB with the trust-region-reflective method in order to solve the non-

linear least-squares problem caused by the nonlinearity from boundary conditions.

Figure 1(b) shows the MFS solution in comparison to the analytical solution for E(t) when

solving the direct problem (1a)-(1c) for Example 2 with ρ(t) given by (33). We can see that the

MFS produces very accurate numerical results for the direct problem.

Next, in the inverse problem, for the determination of the HTC in Example 2, we have used

50, 100, 200 and 400 particles, which led to average computational times of 710, 852, 1507 and

3357 seconds, respectively, using the measurements (26). It is important to highlight that the time

to propagate each particle through the MFS was approximately 0.83 seconds. Note that CPU time

has increased due to the non-linearity g(T ) in the boundary condition (1c).

Table 2 and Figure 4 present the numerical results obtained by inverting the data (2) contam-

inated with p ∈ {1%,5%} noise (26). It can be seen that the evaluation error criteria (24) are

consistent with the error in the data and the estimated HTC lies within a credible interval of rea-

sonable width. Figures 4(a) and 4(b) show that the behaviour of σρ over the time steps tk for

k = 1, ...,M. It is possible to observe that, for all particle numbers tested, σρ converges to ap-

proximately 0.135. The results presented in Figure 4 show clearly that of the SIR particle filter

approach provides stable numerical solutions to the inverse Robin problem for heat conduction

inverse problem in higher dimensions with radiative boundary conditions.
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5.3 Example 3 (physical example)

We end the numerical investigation of Section 5 by considering a physical example consisting of

a circular disk Ω = Br0
(0) centred at the origin of radius r0 = 591.43× 10−4m made of copper

with heat capacity C = 3439.205kJ/(K ·m3) and thermal conductivity κ = 401W/(K ·m) at room

temperature [49]. This yields the thermal diffusivity α = κ/C = 1.1660× 10−4m2/s. The heat

conduction experiment consists of heating the circular disk for t f = 30s from the oscillatory initial

temperature

T 0(x1,x2) = T a

[

1+ sin

(

x1

r0
+

x2

r0

)]

, (x1,x2) ∈ Br0
(0),

where T a = 27◦C = 300K is equal to the ambient temperature. The dimensional HTC that we have

to reconstruct is given by

ρ(t) =
ρ0t

t f

,

where ρ0 = 104W/(K ·m2). This HTC is involved in the Robin linear boundary condition (1c)

with g(T ) = T −T a. This data gives rise to the physical model











∂T
∂ t

= α∇2T in Br0
(0)× (0, t f ),

T
∣

∣

t=0
= T

0
in Br0

(0),

κ ∂T
∂n

+ρ(t)(T −T a) = h on ∂Br0
(0)× (0, t f ),

(34)

where the heat flux (in W/m2) is given by

h(x1,x2, t) =

[

κ(x1 + x2)

r2
0

cos

(

x1

r0
+

x2

r0

)

+ρ0

t

t f

sin

(

x1

r0
+

x2

r0

)]

T ae−2t/t f .

We also take the measured data (in m ·K2) in (2) as

E(t) = 1.8795r0T
2
ae−4t/t f , t ∈ (0, t f ). (35)

Before performing any numerical implementation, all physical quantities in this heat conduction

model are non-dimensionalised as follows:

t = t/t f , x1 = x1/r0, x2 = x2/r0, r0 = (x2
1 + x2

2)
1/2/r0,

T =
T −T a

T a

, ρ =
ρr0

κ
, E =

E

r0T
2
a

, h =
hr0

(T aκ)
, g(T ) =

g(T )

T a

= T.

With these changes of variables, the system of equations (34) and (35) becomes in non-dimensional

form as follows:

∂T

∂ t
(x1,x2, t) = Λ∇2T (x1,x2, t), (x1,x2, t) ∈ B1(0)× (0,1), (36)
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T (x1,x2,0) = T 0(x1,x2) = sin(x1 + x2), (x1,x2) ∈ B1(0),

∂T

∂n
+ρ(t)T = h(x1,x2, t) = [(x1 + x2)cos(x1 + x2)+1.4749t sin(x1 + x2)]e

−2t ,

(x1,x2, t) ∈ ∂B1(0)× (0,1),

1

2

∫

∂B1(0)
T 2(x1,x2, t)ds(x1,x2) = E(t) = 1.8795e−4t , t ∈ (0,1),

where Λ = αt f /r2
0 ≈ 1 is the Fourier number. The inverse problem (36) has the analytical solution

T (x1,x2, t) = e−2t sin(x1 + x2), ρ(t) = 1.4749t. (37)

When the Fourier number Λ appears in the governing equation (36), then the fundamental solution

(6) changes to:

F(x, t;y,τ) =
H(t − τ)

4πΛ(t − τ)
e−|x−y|2/(4Λ(t−τ)).

Next, we investigate the inverse problem (1a)-(1c) and (2). The number of particles Npart was

set arbitrarily to be 50, 100, 200 and 400, which led to average computational times of 63, 114,

285 and 560 seconds, respectively, to filter sequentially the data (26). The time to propagate each

particle through the MFS was approximately 0.13 seconds. The numerical results presented in

Table 3 and Figure 5 show the same trend and conclusions about good accuracy and stability of the

estimates as those obtained from Table 1, and Figures 2 and 3 for Example 1.

6 Conclusions

In this paper, we have combined the SIR particle filter algorithm and the MFS to estimate the

time-dependent HTC in a multi-dimensional nonlinear inverse heat conduction problem. Overall,

the approach SIR + MFS has produced accurate and stable results. When radiation is present,

the computational cost increases due to the nonlinearity in the corresponding boundary condition.

The influence of the number of particles, as well as the measurement noise have been analysed.

As expected, as the noise decreases or as the number of particles increases, the results improve,

with narrow credible intervals. Also, as the number of particles increases, the results become more

concentrated around the true value of the HTC. Future work will be concerned with the validation

of the inverse model for the reconstruction of time-dependent HTCs from real measured data.

Acknowledgements

The Brazilian authors acknowledge the financial support provided by the Brazilian sponsoring

agencies Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq) and Fundação
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Table 1. Results for p ∈ {1,5}% noise for Example 1.

Npart p RMSEρ Rel(ρ)% MWCI Ne f f [%]
50 1% 0.021 3.56 0.33 54.30

100 1% 0.015 2.66 0.32 50.00

200 1% 0.012 2.03 0.32 63.86

400 1% 0.009 1.56 0.34 58.40

50 5% 0.020 4.72 0.28 51.87

100 5% 0.027 3.54 0.30 50.16

200 5% 0.010 2.53 0.31 50.37

400 5% 0.015 1.70 0.32 51.41

Table 2. Results for p ∈ {1,5}% noise for Example 2.

Npart p RMSEρ Rel(ρ)% MWCI Ne f f [%]

50 1% 0.080 5.24 0.38 93.88

100 1% 0.080 5.22 0.39 92.37

200 1% 0.066 4.35 0.39 92.98

400 1% 0.066 4.32 0.41 93.91

50 5% 0.093 6.09 0.39 95.17

100 5% 0.083 5.45 0.37 94.51

200 5% 0.065 4.26 0.40 94.66

400 5% 0.059 3.58 0.40 94.55

Table 3. Results for p ∈ {1,5}% noise for Example 3.

Npart p RMSEρ Rel(ρ)% MWCI Ne f f [%]

50 1% 0.052 5.97 0.58 99.61

100 1% 0.039 4.53 0.55 99.72

200 1% 0.039 4.48 0.56 99.49

400 1% 0.029 3.43 0.55 99.62

50 5% 0.111 12.72 0.56 97.38

100 5% 0.087 10.01 0.57 96.71

200 5% 0.056 6.45 0.55 96.60

400 5% 0.048 5.58 0.55 97.06
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Figure 1: The analytical and MFS numerical solutions for E(t), obtained when solving the direct

problem for (a) Example 1, (b) Example 2 and (c) Example 3.

19



(a) (b)

(c)

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ
ρ
(t

)

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

NP=50

NP=100

NP=200

NP=400

Figure 2: (a) Estimated ρ(t) and (b) the filtered measurements (26) contaminated with p = 1%

noise, obtained using the particle filter with Npart = 400 particles, along with (c) the behaviour of

σρ over time, for Example 1.
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(a) (b)

(c)

Figure 3: (a) Estimated ρ(t) and (b) the filtered measurements (26) contaminated with p = 5%

noise, obtained using the particle filter with Npart = 400, along with (c) the behaviour of σρ over

time, for Example 1.
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Figure 4: (a) The behaviour of σρ over time for (a) p = 1% and (b) p = 5%, estimated ρ(t) from

the measurements (26) with (c) p = 1% and (d) p = 5% noise filtered as shown in (e) and (f),

respectively, obtained using the particle filter with Npart = 400 particles, for Example 2.
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Figure 5: (a) The behaviour of σρ over time for (a) p = 1% and (b) p = 5%, estimated ρ(t) from

the measurements (26) with (c) p = 1% and (d) p = 5% noise filtered as shown in (e) and (f),

respectively, obtained using the particle filter with Npart = 400 particles, for Example 3.
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