
This is a repository copy of Towards efficient comparison of change-based models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/163903/

Version: Published Version

Article:

Yohannis, Alfa, Rodriguez, Horacio Hoyos, Polack, Fiona orcid.org/0000-0001-7954-6433
et al. (1 more author) (2019) Towards efficient comparison of change-based models.
Journal of Object Technology. pp. 1-21. ISSN 1660-1769

https://doi.org/10.5381/jot.2019.18.2.a7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Journal of Object Technology

Published by AITO — Association Internationale pour les Technologies Objets
http://www.jot.fm/

Towards Efficient Comparison of

Change-Based Models

Alfa Yohannisac Horacio Hoyos Rodrigueza Fiona Polackb

Dimitris Kolovosa

a. Department of Computer Science, University of York, United Kingdom

b. School of Computing and Maths, Keele University, United Kingdom

c. Department of Computer Science, Kalbis Institute, Indonesia

Abstract Comparison of large models can be time-consuming since every
element has to be visited, matched, and compared with its respective
element in other models. This can result in bottlenecks in collaborative
modelling environments, where identifying differences between two versions
of a model is desirable. Reducing the comparison process to only the
elements that have been modified since a previous known state (e.g.,
previous version) could significantly reduce the time required for large
model comparison. This paper presents how change-based persistence can
be used to localise the comparison of models so that only elements affected
by recent changes are compared and to substantially reduce comparison and
differencing time (up to 90% in some experiments) compared to state-based
model comparison.

Keywords Model Comparison; Change-based Persistence; State-based
Persistence; Partial Model.

1 Introduction

In modelling and model management, it is common to find that many versions or
variants of a model exist. These versions are commonly persisted as snapshots of
the model at a given point in time, in a state-based format such as XMI. Model
comparison activities can be applied to the different versions of a model to highlight
their differences: changes in properties values, new elements, etc. However, comparing
versions of large file-based1 models in a state-based format can be computationally
expensive since both versions of the model need to be loaded in memory in their
entirety before their elements can be matched and diffed.

1Persisting models in databases involves its own challenges which have been discussed extensively
in the literature. For the rest of the paper, we are only concerned with file-based models and we
return to database-backed model representations in Section 6.

Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, Dimitris Kolovos. Towards Efficient Comparison

of Change-Based Models. Licensed under Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0). In Journal of Object Technology, vol. 18, no. 2, 2019, pages 7:1–21.
doi:10.5381/jot.2019.18.2.a7

2 · Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, Dimitris Kolovos

In our previous work [YKP17, YRPK18a, YRPK18b], we proposed change-based
persistence (CBP) as an alternative approach to state-based persistence of EMF
models [SBMP08]. Instead of persisting models as XMI snapshots, in the proposed
approach models are persisted as a complete history of changes. We demonstrated
the substantial performance benefits of CBP in terms of saving changes to large
models [YKP17] as well as the method for reducing model loading time compared to
naively replaying all recorded change events [YRPK18b] to reconstruct the state of a
change-based model. In this paper, we demonstrate how a change-based representation
also enables much more efficient and performant model comparison between versions
of the same model. Our experiments, presented in Section 5, demonstrate savings of
the order of 90% for (relatively) small changes made to large models.

This paper is structured as follows. Section 2 provides an overview of our previous work
on change-based model persistence. Section 3 discusses state-based model comparison.
Section 4 presents our change-based approach to speed up model comparison and its
implementation. Section 5 reports on the results of evaluation experiments used to
evaluate the proposed approach. Section 6 provides an overview of related work, and
Section 7 concludes with a discussion on directions for future work.

2 Change-based Persistence

CBP is an alternative approach to state-based persistence (SBP) of models. Instead
of persisting snapshots of the state of a model – which is the default behaviour of
frameworks such as EMF – CBP persists the entire history of change events of a
model [YRPK18a]. For example, in the SBP approach, when we save the UML class
diagram in Fig. 1a in standard XMI format, we only record the last state of the model,
as shown in List. 1. In contrast, when we develop the same model in the CBP approach,
all the events generated from modifying the model are captured and persisted in the
model file as shown in List. 22. Each change event contains information about the
type of the operation applied as well as the as values, elements, or features involved.
Replaying the change events in List. 2 produces the same eventual model as in Fig.
1a.

1 <uml:Class id="x" name="Math">

2 <operation id="a" name="abs"/>

3 <operation id="b" name="mean"/>

4 <operation id="c" name="pow"/>

5 </uml:Class>

Listing 1 – The simplified XMI of the model in Fig.
1a.

(a) origin (b) left (c) right

Figure 1 – Different versions of a model.

1create x type Class

2set x.name to "Math"

3create a type Operation

4set a.name to "abs"

5create b type Operation

6set b.name to "mean"

7create c type Operation

8set c.name to "pow"

9add a to x.operations at 0

10add b to x.operations at 1

11add c to x.operations at 2

Listing 2 – The pseudo-
formatted CBP of the
model in Fig. 1a.

2In our implementation, the change-based format is XML-based.

Journal of Object Technology, vol. 18, no. 2, 2019

Towards Efficient Comparison of Change-Based Models · 3

3 State-based Model Comparison

In a collaborative modelling setting, a model can have different versions. Consider
the case where an initial version of a model exists in a Version Control System (VCS)
server (Fig. 2). Two modellers, Bob and Alice, check out the original model (steps
1 and 2) to their local machines and modify it (steps 3 and 4). Alice then commits
her work (original + Alice’s changes) to the VCS. Since there is no newer commit on
the VCS, the commit process is straightforward (step 5). Bob then decides to also
commit his work (original + Bob’s changes) to the VCS. However, he needs to merge
his work with the current updated version at the VCS since his last checkout. His
machine downloads the latest version from the server (step 6), i.e. Alice’s version. To
merge his and Alice’s changes, Bob needs to perform model comparison to check their
differences, resolve possible conflicts between the models, and then merge them (step
7). After that, he can push it back to the VCS server.

Figure 2 – A usecase of CBP in a collaborative modelling.

In a SBP setting, Bob produces the model in Fig. 1b (the left model), and Alice the
model in Fig. 1c (the right model) producing XMI files as shown in List. 3 and List.
4 respectively. Before Bob can merge, he must compare the right model with the
left model. In state-based comparison, comparing models commonly consists of two
steps: matching and diffing. The matching process establishes matches between the
elements of both models, to determine the elements in the left model that correspond
to elements in the right model. Generally, the matching process iterates through all
the elements of the models being compared and matches them by their identifiers or
through a similarity mechanism [BKL+12,EMF].

The diffing process identifies differences between the matched elements [BKL+12,
EMF].Differences between the matched elements and all their features is usually done
using a Longest Common Subsequence (LCS) algorithm, e.g., [Mye86].

1 <uml:Class id="x" name="MathLib">

2 <operation id="a" name="abs/>

3 <operation id="d" name="sqrt"/>

4 <operation id="c" name="pow"/>

5 </uml:Class>

Listing 3 – The simplified XMI of the
left model in Fig. 1b.

1 <uml:Class id="x" name="MathUtil">

2 <operation id="b" name="mean"/>

3 <operation id="c" name="pow"/>

4 <operation id="a" name="abs"/>

5 </uml:Class>

Listing 4 – The simplified XMI of the
right model in Fig. 1c.

In our example, the matching process in state-based comparison – as performed by
EMF Compare [EMF] – iterates through all the elements of both models and matches
them using their identifiers. The matching process yields 3 matches: m1 = (x, x), m2

= (a, a), and m3 = (c, c), and 2 unmatched elements, um1 = (d, -) and um2 = (-, b).

The diffing process then iterates through all the matches and unmatched elements and
uses an LCS algorithm to identify their differences. In the first match, it identifies

Journal of Object Technology, vol. 18, no. 2, 2019

4 · Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, Dimitris Kolovos

Figure 3 – A model comparison of the left and right models in Listings 3 and 4.

that the elements x are different in their name and operations features. The left x’s
name is “MathLib” while the other x’s name is “MathUtil” (diff ds1). The operations

features are different in their contents – the left operations feature does not contain
element b (diff ds2), the left operations feature contains element d that does not exist
in the right operations (diff ds3), and the indexes of element c are different in both
features (diff ds4). It is important to note that the employed LCS algorithm does
not detect the different position of element A as a difference; it only identifies the
minimum number of differences which if all are resolved unidirectionally can make
both models equal. Otherwise, the number becomes less optimal – not minimum.

Differences are commonly expressed as a list of changes that must be applied to a
target model so that it is made equal to a reference model. This paper treats the
left model as a reference model and the right model as the target model. This means
that differences are expressed as changes applied to the right model so that it equals
the left model. To express differences, we use the following terms: LeftContainer,
RightContainer, LeftFeature, RightFeature, LeftIndex, RightIndex, LeftValue, RightValue,
and Kind. The *Container, *Feature, and *Value are the target element, feature, and
value involved in a difference (* symbol can be replaced with Left and Right). *Index is
the index of a value in a feature. Kind is the type of difference. It can be one of these
types: CHANGE, ADD, DELETE, and MOVE. CHANGE means a pair of single-valued
features have different values. ADD indicates that a value does not exist in the right
model, thus it requires the addition of the value. DELETE is the opposite of ADD.
MOVE indicates that matched elements differ in terms of their containers, containing
features, or indexes. A Container is an element that contains a value. A containing
feature is a feature owned by a container in which a value is contained. An index is
the position of a value in a containing feature.

Based on these definitions, we can express the result of the diffing process as: dsn

= [LeftContainern, RightContainern, LeftFeaturen, RightFeaturen, LeftIndexn,
RightIndexn, LeftV aluen, RightV aluen, Kindn]. Thus, ds1 = [x, x, name, name, 0,
0, “MathLib”, “Mathutil”, CHANGE], ds2 = [x, x, operations, operations, null, 0, null,
b, DELETE], ds3 = [x, x, operations, operations, 1, null, d, null, ADD], and ds4 = [x, x,
operations, operations, 2, 1, c, c, MOVE]. We can use this information to represent the
differences visually as depicted in Fig. 3. Applying these differences as changes to the
right model will transform it into the left model.

Journal of Object Technology, vol. 18, no. 2, 2019

Towards Efficient Comparison of Change-Based Models · 5

Figure 4 – A class diagram showing the core components of the change-based approach to
speed up model comparison.

4 Change-based Approach for Comparing Models

Now let’s consider the same example in a CBP setting. The changes made by Bob
and Alice are appended to their local original CBP producing two different CBP
representations as displayed in Listings 5 and 63 – capturing different courses of
modification made by the two modellers. Then, the example is the same with Alice
committing her changes and Bob wanting to merge Alice’s work with his.

12 set x.name from "Math" to "MathLib"

13 create d type Operation

14 set d.name to "sqrt"

15 add d to x.operations at 1

16 remove b in x.operations at 2

17 delete b

Listing 5 – The appended changes made
by Bob to produce the model in Fig.
1b (left version).

12 move a in x.operations from 0 to 2

13 set x.name from "Math" to "MathUtil"

Listing 6 – The appended changes made
by Alice to produce the model in
Fig. 1c (right version).

In CBP, comparison has three phases: event loading, element tree construction, and
diff computation. Further, comparison is not performed over all the elements of the
model; instead, we only need to compare the last set of changes from the source and
reference model. The last set of changes can be identified easily by finding their last
common change. A simplified class diagram of our approach’s implementation4 is
depicted in Fig. 4. Next, we describe the three phases in detail.

4.1 Event Loading

In the event loading phase, our implementation loads change events recorded in two
CBP files into memory. The most important aspect of this phase is the partial loading
as only lines starting from the position where the two files are different are loaded.
Thus, not the whole model needs to be traversed and loaded. In this case, lines 1-11
in List. 2 are skipped.

3Both CBPs only present the changes after the last line of the original version (start from line 12).
4The source can be found at https://github.com/epsilonlabs/emf-cbp.

Journal of Object Technology, vol. 18, no. 2, 2019

6 · Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, Dimitris Kolovos

Only lines starting from line 12 in Listings 5 and 6 are loaded, yielding two partial –
left and right – change-event models.

4.2 Element Tree

Figure 5 – The elementTree after processing
all left change events.

Figure 6 – The elementTree after processing
all left and right change events.

An element tree is a representation of
the changes of model elements in the
source and reference models. It contains
detailed information about elements and
their properties. It contains similar in-
formation to that captured in change
lists in SBP, but also provides more in-
formation about the changes. For exam-
ple, the element tree can keep track of a
feature’s old value and element/value’s
indexes inside multi-valued properties.
The element tree only contains the par-
tial states of affected elements of the
original, left, and right models as de-
picted in Figures 5 and 6.

To better understand the construction
of an element tree from change events,
we use the following running example
using both change events in the Listings
5 and 6. We start from the left change
events.

4.2.1 Left Side

From the first event [set x.name from

"Math" to "MathLib"] at line 12, we
can identify that an element with id x

has existed from the original model. It
has a feature name with a value “Math”
in the original model that has been
changed to “MathLib” in the left model.
Since the element x does not already
exist in the elementTree, we create its
instance of Element and also its feature
name. We set the value of the feature
name to “MathLib” and also set it to
“Math” in the partial state of the origi-
nal model – it has not been set before. As this feature on the right side also has not
been set, we set it to “Math” as well.

At line 13, in the event [create d type Operation], we can identify that an element
with id d has been created. We also update the elementTree to include this element and
set the element’s flag leftIsCreated to true. In the event [set d.name to "sqrt"] at

Journal of Object Technology, vol. 18, no. 2, 2019

Towards Efficient Comparison of Change-Based Models · 7

line 14, we can identify that element d’s feature name has been set to “sqrt”. Thus, we
update d’s feature name in the elementTree. From the event [add d to x.operations

at 1] at line 15, we can deduce that element d is added to index 1 in the element x’s
feature operations. Thus, we assign d to element x’s feature operations at index 1 in
the elementTree. As d is a new element that only exists in the left model, we do not
update changes of this element to the original and right models.

From the event [remove b in x.operations at 2] at line 16, we can identify that
there is element b in the original model, but it is deleted in the left model. The index
of element b in the original model can be calculated back through the previous change
events that have been applied to its feature. Since the previous event is adding element
d to index 1 and the index of b is at 2 at the time it is removed, we can deduce that
before element d is added, the index of element b is at 1 and is shifted to 2 because
of the addition of element d. Therefore, we can conclude that the original index of
element b is at 1. Thus, we update the original state of the elementTree by adding
element b into the element x’s feature operations at index 1.

We perform the same procedure to also add element b to the right state of the
elementTree. However, since no change event has been applied to the right side of
element x’s feature operations, the calculation of element b’s index should return the
same value as in the original state (line 13, Alg. 1), and thus element b has the same
index as in the original state. It is important to notice, in this step, the flag isRightSet

(class Feature, Fig. 4) is not set to true since we want the value to be able to be
overridden during processing of the right change events. The last event [delete b],
removes the element b from the left model. Hence, we set the flag leftIsDeleted of
element a to true.

Fig. 5 illustrates the state of the elementTree after all left change events have been
processed. As can be seen, the elementTree exhibits the partial states of the original,
left, and right models at once.

4.2.2 Right Side

From the first event [move a in x.operations from 0 to 2] at line 12, we can
infer that in the right model there is an element with id a positioned at index 2 in
the element x’s feature operations. Thus, element a – an instance of class Element in
4 – is added to the elementTree and positioned at index 2 of the element x’s feature
operations. Since the event is a move type and the new index is larger than its previous
index, elements that are between its previous and new indexes are shifted one place
down. As element b has already existed in the same feature (the element was added
during the process of the left change events) and its index is between element a’s
movement, the index of element b is shifted down from 1 to 0.

Also, since the event’s type is move and its previous index is 0 and it is the first event
that changes the index of element a, these conditions imply that element a in the
original model is positioned at index 0 in the element x’s feature operations. Therefore,
we add the element a to element x’s feature operations in the original state of the
elementTree. Since the index 0 in the element x’s feature operations has not been set,
we also add element a to that index in the right state of the elementTree. From the
last event [set a.name from "Math" to "MathUtil"] at line 13, we can infer that
in the right model, the value of element a’s feature name is “MathUtil”. Hence, we set

Journal of Object Technology, vol. 18, no. 2, 2019

8 · Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, Dimitris Kolovos

Figure 7 – Steps in Element Tree construction.

the feature name to “MathUtil” in the right state. We do not apply this operation to
the original and left states as they have been set before. Fig. 6 exhibits the state of
the elementTree after both sides’ change events have been processed.

The construction of the elementTree that we have just explained follows the steps
shown in Fig. 7. First, the partial state SL of the left model in the elementTree is
constructed based on the information retrieved from the left change events (step 1).
We denote this information as ILL. We can also construct the partial state SO of
the original model using the information related to the original state contained in
the left change events IOL (step 2). The information IOL allows us to construct the
initial partial state SR of the right model (step 3). Similarly, using the information
from the right change events IRR, we update the partial right state SR that has been
initialised before using the information IOL (step 4), implying that IOL ∪ IRR → SR.
Also, information related to the state of the original model from the right change
events IOR is used to update the original state (step 5). Thus, we have a partial state
of the original model constructed using information from both left and right sides,
IOL ∪ IOR → SO. Finally, we also use the information IOR to update the partial state
of the left model (step 6), implying that ILL ∪ IOR → SL.

Alg. 1 describes the steps presented in Fig. 7 in a generic fashion. It iterates through
all of a model’s change events and uses the information contained in them to construct
the relevant partial state. The selection of side, left or right change events, that are
executed first depends on the Side enumeration value – left or right – passed through
the parameter side (the second input parameter). In our implementation, we process
the left side first by default. The algorithm also receives an input of the change
events events that are to be iterated and the element tree elementTree that has been
instantiated before, and then returns the elementTree as output after updating it.

For each event in the events, we collect information needed to build up the elementTree

(lines 3-9), such as targetElement, feature, value, previousValue, index, and previousIndex.
The targetElement is the element modified by a change event (e.g., x and d in List. 5).
This targetElement – an instance of class Element in Fig. 4 – is retrieved from the
elementTree if it already exists. Otherwise, a new element is created and added to the
elementTree (line 3). In this step we also set the flags *IsCreated and *IsDeleted of the
element in Fig. 4. For example, if the type of the event is create then *IsCreated is set
to true. The feature – an instance of class Feature in Fig. 4 – represents the target
element’s feature (e.g., name and operations in List. 5) modified by a change event. It
is retrieved from the targetElement’s feature list, and a new one is created and added
to the targetElement’s feature list if the feature does exist (line 5).

The value is the value assigned to the feature in a change event (line 5, Alg. 1). The

Journal of Object Technology, vol. 18, no. 2, 2019

Towards Efficient Comparison of Change-Based Models · 9

value can be the type of Element (e.g., elements b and d, lines 17-18, List. 5) or
primitive (e.g., the string “MathLib” at line 14 in the List. 5). The previousValue

represents the previous value of the modified feature (line 6, Alg. 1). The previousValue

is not defined if no previous value has been assigned. For value and previousValue with
type Element, the elements that they represent are retrieved from the elementTree,
and if they do not exist, new instances are created. If the type is primitive, the value
is treated as it is. Not every change event has a value, particularly events with type
create or delete which only modify a target element not the element’s feature.

Algorithm 1: Algorithm to construct an element tree from events.
input : a list of ChangeEvent events

input : an enumeration of Side side

input : an instance of ElementTree elementT ree

output : an instance of ElementTree elementT ree

1 begin

2 foreach event in events do

3 targetElement ← getOrCreateNewTargetElement(event, elementT ree);
4 feature ← getOrCreateNewFeature(event, targetElement);
5 value ← getValue(event);
6 previousV alue ← getPreviousValue(event);
7 index ← getIndex(event);
8 previousIndex ← getPreviousIndex(event);
9 featureEventList ← getFeatureEventList(feature, side);

// put all values to their proper indexes

10 updateTree(targetElement, feature, value, index, side);
11 oldIndexes ← calculateOldIndex(featureEventList, previousIndex, side);
12 if not isCreated(value, side) and not isOldValueSet(feature, previousV alue,

previousIndex, side) then

13 setOldValue(feature, previousV alue, oldIndex, side);
14 oppositeF eatureEventList ← getOppositeFeatureEventList(feature, side);
15 oppositeIndex ← calculateOppositeIndex(oppositeF eatureEventList, oldIndex,

side);
16 if not isDeleted(value, side) and not isOppositeSideValueSet(feature, value,

oppositeIndex, side) then

17 setOppositeSideValue(feature, value, oppositeIndex, side);
18 end

19 end

20 addEventToFeatureEventList(event, featureEventList);

21 end

22 return elementT ree;

23 end

The index is the index assigned by a change event to a value in a feature, while
previousIndex is the previous index of the value (lines 7-8, Alg. 1). In one change event,
we can get both index and previousIndex or only one of them depending on the type of
the change event. For example, we can only obtain that the index of d is 1 (line 17
in List. 5) as the change event type is add. In a remove change event, we can only
get the previousIndex of b, that is 2 (line 17 in List. 5), as the element does not exist
anymore in the left model. We can obtain both of them only in a move change event
as an element is moved from a previous index to a new one (line 14 in List. 6). For a
single-valued feature, the index and previousIndex are always 0 as the feature can only
contain a single value.

At line 9, we retrieve the featureEventList from the feature to be added later with the
current event (line 19). The featureEventList is a list – a history – of change events
that have been processed that are specific to the feature on the selected side. Using the

Journal of Object Technology, vol. 18, no. 2, 2019

10 · Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, Dimitris Kolovos

obtained targetElement, feature, value, and index, the process then updates the state
of the elementTree on the selected side (line 10). After that, it calculates back the
original index of a value using the featureEventList and previousIndex (line 11). If the
value at oldIndex in the feature has not been set, then the algorithm sets the feature

with the previousValue at the oldIndex in the partial state of the original model (lines
12-13). At lines 14-18, the algorithm also does the same thing to the opposite side – if
the current side is left then it is right.

4.3 Diff Computation

Using the elementTree presented in Fig. 6, we can determine the difference between
the left and right models without having to compare all their elements and features.
After the elementTree has been constructed, we iterate through elements and features
of the elementTree and use the flags, containers, containing features, and indexes on
both sides of each element and value to identify differences between both left and
right models. We follow the steps in Alg. 2. The algorithm visits each element and
every index of each feature (lines 3-5). At every index, it retrieves the leftValue and
rightValue (lines 5-7), passing these, together with the element, feature, and index to a
function identifyDiffUsingRules (line 8). The function identifies differences using a set
of pre-defined rules which determines differences diffs based on the states of flags of
an element, flags and attributes of the element’s feature, values of the feature, and
indexes of the values. The obtained diffs are then added to the overall list of differences
diffList which is output (line 8-9, 13).

Algorithm 2: Algorithm to determine differences.
input : an instance of ElementTree elementT ree

1 begin

2 diffList ← DiffList();
3 foreach element in elementT ree do

4 foreach feature in getFeatures(element) do

5 foreach index in getIndexes(feature) do

6 leftV alue ← getLeftValue(feature, index);
7 rightV alue ← getRightValue(feature, index);

// rules starts from here

8 diffs ← identifyDiffUsingRules(element, feature, leftV alue, rightV alue,
index);

9 addToDiffList(diffs,diffList);

10 end

11 end

12 end

13 return diffList;

14 end

We illustrate the principles and use of rules by discussing the rules used to identify
differences in the running example, which can be found in Alg. 3. The algorithm is
the breakdown of the function identifyDiffUsingRules in Alg. 2. As previously stated,
it is important to remember that we use the left model as a reference which means
the differences are presented as changes that transform the right model to become
equal to the left model.

The first rule (Rule 1) in Alg. 3 is to identify changes in single-valued attributes.
A feature has to be of type attribute, both side values have to be different, and the

Journal of Object Technology, vol. 18, no. 2, 2019

Towards Efficient Comparison of Change-Based Models · 11

element should have not been created or deleted in both models. The second rule
(Rule 2) identifies whether an element is in a different location in both models. The
element must not have been deleted and must exist from the previous version – the
original model. Also, its containers, containing features, or indexes of the element
have to be different on both sides.

Algorithm 3: Some rules to determine differences.
input : an Element element, a Feature feature, a variable leftV alue, a variable rightV alue,

an Integer index

output : a List of Diff diffs

1 diffs ← createDiffList();
// ...

// Rule 1: a rule to determine a change of a single-valued attribute

2 if getType(feature) is Attribute and isSingleValued(feature) and leftValue <> rightValue
and not leftIsCreated(element) and not leftIsDeleted(element) and not

rightIsCreated(element) and not rightIsDeleted(element) then

3 diff ← createNewDiff(element, element, feature, feature, index, index, leftV alue,
rightV alue, DifferenceType.CHANGE);

4 addDiffToDiffList(diff , diffs);

5 end

// Rule 2: one of rules to determine movement of an element

6 if getType(feature) is Containment and not leftIsCreated(leftV alue) and not

leftIsDeleted(leftV alue) and not rightIsCreated(leftV alue) and not

rightIsDeleted(leftV alue) and (getLeftContainer(leftV alue) <>
getRightContainer(leftV alue) or getLeftFeature(leftV alue) <> getRightFeature(leftV alue)
or getLeftIndex(leftV alue) <> getRightIndex(leftV alue)) then

7 diff ← createNewDiff(getLeftContainer(leftV alue), getRightContainer(leftV alue),
getLeftFeature(leftV alue), getRightFeature(leftV alue), getLeftIndex(leftV alue),
getRightIndex(leftV alue), leftValue, leftValue, DifferenceType.MOVE);

8 addDiffToDiffList(diff , diffs);

9 end

// Rule 3: one of rules to determine deletion of an element

10 if getType(feature) is Containment and not leftIsCreated(rightV alue) and

leftIsDeleted(rightV alue) and not rightIsCreated(rightV alue) and not

rightIsDeleted(rightV alue) then

11 createNewDiff(getLeftContainer(rightV alue), getRightContainer(rightV alue),
getLeftFeature(rightV alue), getRightFeature(rightV alue), getLeftIndex(rightV alue),
getRightIndex(), rightValue, null, DifferenceType.DELETE);

12 addDiffToDiffList(diff , diffs);

13 end

// Rule 4: one of rules to determine addition of an element

14 if getType(feature) is Containment and leftIsCreated(leftV alue) and not

leftIsDeleted(leftV alue) and not rightIsCreated(leftV alue) and not

rightIsDeleted(leftV alue) then

15 diff ← createNewDiff(getLeftContainer(leftV alue), getRightContainer(leftV alue),
getLeftFeature(leftV alue), getRightFeature(leftV alue), getLeftIndex(leftV alue),
getRightIndex(leftV alue), null, rightValue, DifferenceType.ADD);

16 addDiffToDiffList(diff , diffs);

17 end

// ...

18 return diffs

The third rule (Rule 3) identifies the deletion of an element. If an element in the left
model is not created but exists in the model, it means that the element has been there
from the previous version – the original model. This also means that the element
also exists in the right model, unless it has been deleted. Thus, in order to make the
right model equal to the left model, the element has to be deleted also in the right
model. The fourth rule (Rule 4) identifies the need for an addition of an element. If

Journal of Object Technology, vol. 18, no. 2, 2019

12 · Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, Dimitris Kolovos

an element is created in the left model and has not been deleted, it means that the
element should be added also to the right model to make both models equal.

In the running example, when the iteration of the elementTree (Fig. 6) returns feature
name, the type of the feature is a single-valued attribute and both sides of the feature
are different in their values, this means that the condition of the first rule is met.
Thus, we can conclude that in order to make the left value of the feature equal to
the right value, we must override the value “MathUtil” with “MathLib”; the type of
this difference is CHANGE. When the iteration is at index 0 in the element x’s feature
operations, we have two values: the leftValue is element a, and the rightValue is element
b. As a exists on both sides – all *Created and *Deleted flags are false, and it also
has a different index, at 0 in the left state and 2 in the right state. This meets the
condition of the second rule. Thus, we can conclude that in order to make the index
of element a in the right model equal its index in the left model, element a should be
moved from index 2 to 0. Thus, the type of this difference is MOVE.

Element b used to exist but has been deleted from the left model (flags leftIsCreated =
false, leftIsDeleted = true); it still exists in the right state (flags rightIsCreated = false,
rightIsDeleted = false). This condition satisfies the third rule. Therefore, the element
b should be deleted from the right model; the type of this difference is DELETE. We
can get only one value when the iteration is at index 1 in the element x’s feature
operations; the leftValue is element d, but the rightValue is unidentified. Thus, we only
process the leftValue. Element d is only created in the left model (flags leftIsCreated =
true, leftIsDeleted = false, rightIsCreated = false, rightIsDeleted = false). This meets
the condition of the fourth rule. Thus, to make element d also exist in the right state,
we must add it into element x’s feature operations at index 1. Therefore, the type
of this difference is ADD. At index 2, the element a is skipped because it has been
processed already.

Similar to the state-based approach in Section 3, we express identified differences as dcn

= [LeftContainern, RightContainern, LeftFeaturen, RightFeaturen, LeftIndexn,
RightIndexn, LeftV aluen, RightV aluen, Kindn]. Thus, dc1 = [x, x, name, name,
0, 0, “MathLib”, “Mathutil”, CHANGE], dc2 = [x, x, operations, operations, ?, 0, ?,
b, DELETE], dc3 = [x, x, operations, operations, 1, ?, d, ?, ADD], and dc4 = [x, x,
operations, operations, 0, 2, a, a, MOVE]. This change-based approach might produce
differences that are distinct from differences identified using state-based approach.
This can be seen between by comparing ds4 and dc4 (ds4 6= dc4, [x, x, operations,
operations, 2, 1, c, c, MOVE] 6= [x, x, operations, operations, 0, 2, a, a, MOVE]). In the
state-based approach, element c has a MOVE difference – it has different index (ds4),
while in the change-based approach, this difference is attributed to element a (dc4).
However, in both approaches, if we resolve their differences by performing all-left-
to-right merging – making the right model equal to the left model, both approaches
produce two models that are equivalent. In this way, we can check the correctness of
the identified differences produced by the change-based approach.

5 Evaluation

In this section, we present the method that we employed to evaluate our change-based
comparison approach and discuss the results. We also present the limitations and
threats to the validity of the evaluation.

Journal of Object Technology, vol. 18, no. 2, 2019

Towards Efficient Comparison of Change-Based Models · 13

5.1 Method

In order to assess the performance benefits of the change-based approach in terms
of model comparison, we have evaluated it against a mature and widely-used state-
based comparison tool (EMF Compare [EMF, Eclb]). Since there are no manually
developed, large models persisted in our change-based format yet, the dataset for our
experiments was constructed from a large model reverse-engineered from the Eclipse
Epsilon project [Ecld,Eclc]. This model conforms to the Java metamodel [Ecle] and
consists of more than 1.6 million elements with a size of 224 MBs when persisted in
XMI.

We cloned the original model to produce two new (left and right) models and perform
operations (add, remove, move, set with random elements, features, indexes, and
values) on both models to create differences. We made 1.1 million artificial changes to
each model, generating over 1.1 million events (one operation can generate more than
one event, e.g., a move between features generates remove and add events). Events
generated by the changes were persisted in our change-based format (to be used later in
change-based model comparison). After every 50,000 changes, we made a measurement
point. We persisted the last state of the models in state-based format (to be used later
in state-based model comparison) and then performed change-based and state-based
model comparison and measured their execution time and memory footprint. We
created 22 measurement points to capture their trends in one experiment.

We conducted five experiments. In the first experiment, the ratio of occurrence between
add, remove, move, and set changes is set to 1:1:20:40 intuitively in assumption that
in a mature model modification – move and set events – occurs more frequent than
addition and deletion. Since we wanted the change of total elements not to affect our
measurement, the number of total elements should be kept constant. For example, it is
difficult to tell an increase of time in comparison is caused by an increase in the number
of elements or by the number of change events. One way to do this was to exclude add

and remove operations. However, excluding both operations made measurement less
representative. Thus, we still included both operations but made their probabilities
equal so that the number of total elements remain largely unchanged. In the rest of
the experiments, we only performed homogeneous type operations – isolated from
other types – per experiment (e.g., add-only, move-only operations). In the end, we
obtained 5 results of the experiments: mixed, add-only, remove-only, move-only, and
set-only measurement results. We did this to asses whether operations of different
types have a different impact on model comparison.

For the change-based approach, the comparison time comprises loading change events,
constructing an element tree, and identifying differences. The memory footprint is
the space used to hold the change events, element tree, and differences in memory.
For the state-based approach, the comparison time comprises matching elements and
identifying differences, and the memory footprint is the space required to hold the
matches and differences in memory. All measurements were performed on the same
machine with the following specification: AMD Opteron(tm) Processor 6386 SE @
2.8 GHz cache size 2 GBs (64 processors), 528 GBs main memory, Ubuntu 16.04.6
LTS operating system, and Java(TM) SE Runtime Environment (build 1.8.0_201-b09)
with JVM InitialHeapSize 2GBs and MaxHeapSize 32 GBs.

Since the change-based and state-based approaches can produce a different number of

Journal of Object Technology, vol. 18, no. 2, 2019

14 · Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, Dimitris Kolovos

syntactically equivalent differences, in order to evaluate the correctness of the change-
based approach, we reconciled all the differences by performing all-left-to-right merging
– making the right model identical to the left model – based on the identified differences.
If the all-left-to-right merging of change-based approach produces a model that is
identical to the model produced by the all-left-to-right merging of the state-based
approach then it can be said that differences identified by the change-based approach
are correct. We performed this correctness checking at every measurement point.

5.2 Results and Discussion

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.00 0.50 1.00 1.50 2.00 2.50
C

ou
n
t

(x
1M

)

Number of Events (x1M)

Total Element Affected Element Diff

Figure 8 – total elements, affected elements,
and diffs

0

10

20

30

40

50

60

70

80

90

0.00 0.50 1.00 1.50 2.00 2.50

C
om

p
ar

is
on

 T
im

e
(s

ec
on

d
s)

Number of Events (x1M)

Change-based State-based

(a) execution time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.00 0.50 1.00 1.50 2.00 2.50

C
om

p
ar

is
on

 M
em

or
y
 (

G
B

s)

Number of Events (x1M)

Change-based State-based

(b) memory footprint

Figure 9 – Change-based vs. state-based
model comparison as differences increase.

In this section, we report on the ob-
tained results in terms of comparison
time and memory footprint for the
mixed and homogeneous operation ex-
periments.

5.2.1 Mixed Operations

In the mixed operation measurement,
we modify two identical models differ-
ently by applying random operations.
As the number of change events gen-
erated by the modification grows, the
numbers of affected elements and dif-
ferences also increase in a logarithmic
manner. The patterns can be seen in Fig.
8. The growth is logarithmic since the
probability that the random operations
modify the same elements also increases.
Thus, some change events might not con-
tribute to the addition of new affected
elements and differences. In other words,
more events are required to increase the
number of affected elements or differ-
ences. In Fig. 8, the total number of
elements remains largely unchanged due
to the equal probabilities of addition
and deletion as has been set in Section
5. The figure gives us an insight about
the characteristics of the modification
caused by the random operations in the
mixed operation measurement; it sup-
ports explaining the implication of the
changes on execution time and memory
footprints of model comparison.

After applying some random changes on
both models, the modification produces
100,000 change events at the first mea-
surement point. Using this amount of

Journal of Object Technology, vol. 18, no. 2, 2019

Towards Efficient Comparison of Change-Based Models · 15

events, our change-based comparison only takes 5 seconds to identify around 90,000
differences, in contrast to the state-based comparison that takes 66 seconds (see the
first measurement points in Figures 8 and 9a). If the modification continues, more
change events are generated. This growing number of change events has to be loaded
into memory and thus slows down the change-based comparison. Nevertheless, the
change-based comparison is still faster than the state-based comparison even though
the number of change events reaches 2.37 million – more than 1 million differences
at that point; the change-based comparison outperforms the state-based comparison
in execution time (Figure 9a). Fig. 10a breaks down the comparison time in detail.
It exhibits that the event loading time is the dominant contributor to the slowdown
compared to the element tree’s construction time and diffing time.

0

10

20

30

40

50

60

70

0.00 0.50 1.00 1.50 2.00 2.50

E
x
ec

u
ti

on
 T

im
e

(s
ec

on
d
s)

Number of Events (x1M)

Event Load Element Tree Change Diff

(a) change-based comparison time

0

10

20

30

40

50

60

70

0.00 0.50 1.00 1.50 2.00

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

o
n
d
s)

Number of Events (x1M)

Matching State Diff

(b) state-based comparison time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.00 0.50 1.00 1.50 2.00 2.50

M
em

or
y
 F

oo
tp

ri
n
t

(G
B

s)

Number of Events (x1M)

Event Load Element Tree Change Diff

(c) change-based memory footprint

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.00 0.50 1.00 1.50 2.00

M
em

or
y
 F

oo
tp

ri
n
t

(G
B

s)

Number of Events (x1M)

Matching State Diff

(d) state-based memory footprint

Figure 10 – Breakdown view of comparison time and memory footprint in Figure 9.

For the state-based comparison in Fig. 10b, the comparison time only experiences a
slight increase as the number of identified differences also grows. This slight increase is
contributed mainly by the diffing time, while the matching time tends to be constant
due to the very small increase of the total elements (Figures 8).

Nevertheless, change-based comparison generally consumes more memory than the
state-based comparison (see Figure 9b). It only consumes less memory than its state-
based counterpart when the number of events is less than 0.3 million (around less
than 0.25 million identified differences at that moment). Fig. 10c breaks down the
memory footprint of change-based comparison into three factors: the loaded change
events, element tree, and diffs. As modification continues, an increasing number of
events is generated. These events have to be loaded into memory since they contain

Journal of Object Technology, vol. 18, no. 2, 2019

16 · Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, Dimitris Kolovos

the required information for the construction of an element tree. The amount of space
to keep these change events in memory grows linearly with their number.

In contrast, the memory used for the element tree grows logarithmically. As the number
of events increases, the probability that events modify already affected elements also
increases. Thus, no additional memory allocation is required for the element tree. We
can also notice that the element tree occupies most of the memory footprint since it
mirrors the partial states – elements, features, and values – of the models that are
affected by the changes. Moreover, in our technical implementation, a feature can
have many instances – one instance for each element (As a comparison, in the EMF
implementation, there is only one instance for a feature. The feature is used as a key
so that different elements can have the same feature that maps to different values
simultaneously). This contributes to the large memory footprint used by the element
tree. The identified change-based diffs, the third factor, are the smallest factor that
contributes to the memory footprint of the change-based comparison.

For the state-based comparison in Fig. 10d, the memory footprint only grows slightly
along the increase of differences. A large part of the memory footprint is used to
represent the identified differences, while the memory used for matches tends to be
constant as the changes of the total elements are very small – less new elements means
less memory needs to be allocated for new matches (Figures 8).

5.2.2 Homogeneous Operations

0

10

20

30

40

50

60

70

80

90

100

0.0 1.0 2.0 3.0 4.0

C
om

p
ar

is
on

 T
im

e
(s

ec
on

d
s)

Number of Events (x1M)

Change-based State-based

(a) add-only

0

20

40

60

80

100

120

0.0 1.0 2.0 3.0 4.0

C
om

p
ar

is
on

 T
im

e
(s

ec
on

d
s)

Number of Events (x1M)

Change-based State-based

(b) delete-only

0

10

20

30

40

50

60

0.0 0.5 1.0 1.5 2.0 2.5

C
om

p
a
ri

so
n
 T

im
e

(s
ec

on
d
s)

Number of Events (x1M)

Change-based State-based

(c) move-only

0

10

20

30

40

50

60

0.0 0.5 1.0 1.5 2.0

C
om

p
a
ri

so
n
 T

im
e

(s
ec

on
d
s)

Number of Events (x1M)

Change-based State-based

(d) change-only

Figure 11 – Comparison time for homogeneous operations.

Journal of Object Technology, vol. 18, no. 2, 2019

Towards Efficient Comparison of Change-Based Models · 17

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 1.0 2.0 3.0 4.0

C
o
m

p
a
ri

so
n
 M

em
o
ry

 (
G

B
s)

Number of Events (x1M)

Change-based State-based

(a) add-only

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 1.0 2.0 3.0 4.0

C
om

p
ar

is
on

 M
em

or
y
 (

G
B

s)

Number of Events (x1M)

Change-based State-based

(b) delete-only

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5

C
om

p
ar

is
on

 M
em

or
y
 (

G
B

s)

Number of Events (x1M)

Change-based State-based

(c) move-only

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0

C
om

p
ar

is
on

 M
em

or
y
 (

G
B

s)

Number of Events (x1M)

Change-based State-based

(d) change-only

Figure 12 – Memory footprint for homogeneous operations.

Figures 11 and 12 exhibit the comparison time and memory footprint of models that
have been modified using homogeneous operations – add, remove, move, or set only.
We can notice that in all figures change-based comparison outperforms its state-based
counterpart, particularly when the number of change events is small relative to the
size of the model. As the number of modifications grows, eventually change-based
comparison becomes slower than state-based comparison. In our experiments, this
happens when the number of events is greater than 4 million (Fig. 11a). Change-based
comparison also becomes slower when the size of models shrinks (due to a large number
of delete events) as depicted in Fig. 12b as the change-based comparison still needs to
load these change events and construct its element tree; in contrast, deletion means
less work for state-based comparison. In terms of memory footprint, change-based
comparison only performs better than state-based comparison when the number of
change events is less than 0.3 millions as depicted in Fig. 12.

Based on the findings, we argue that the change-based comparison approach works at
its best for large models that have been modified a moderate number of times. Models
that have been excessively modified and experience significant reduction on model
size could impair the performance of change-based comparison as a great number of
change records have to be read and loaded into memory.

Journal of Object Technology, vol. 18, no. 2, 2019

18 · Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, Dimitris Kolovos

5.3 Limitations and Validity

The evaluation of the proposed change-based comparison is limited to the Java meta-
model only. Thus, there is no guarantee it will perform in a consistent manner on
models conforming to different metamodels. Although, we have tried to cover as much
as common changes made in EMF models (e.g., performing add/remove/set/move

operations on single/multi-valued features, attribute/reference features, or contain-

ment/non-containment references), the random modification made in the evaluation
does not largely reflect the evolution of models in the real world. This is challenging as
different domains can have their own patterns of model evolution – different problems,
metamodels, modellers, etc.

6 Related Work

We are not aware of any other work that targets comparison and diffing of change-based
models persisted as files. However, there are several existing tools for state-based model
comparison. Beyond EMFCompare, which we used for our comparative evaluation
due to its maturity and ongoing development activity, tools such as SiDiff [TBWK07]
and DSMDiff [LGJ07] also provide language-agnostic graph-based model comparison,
with some room for configuration (e.g., assigning different weights to features of types
in the language). Additional expressive power – at the cost of increased complexity
and configuration effort – is offered by dedicated comparison languages such as the
Epsilon Comparison Language, which can be used to compare both homogeneous
and heterogeneous models [Kol09]. We refrain from a more detailed discussion on
state-based comparison tools as they all require upfront loading of both versions of
the model into memory, which is the main cost that we aspire to reduce with the
presented change-based approach.

Database-backed model persistence and version control solutions such as CDO [Ecla]
and EMFStore [KH10] also provide diffing capabilities between different versions of
the same model without requiring models to be fully loaded into memory, however
they present integration challenges with mainstream software engineering tools (e.g.,
continuous integration systems, backup and restore facilities) which are typically
file-based, and their performance can degrade as more models/users are added to a
repository, since all models are effectively stored in a single database [KRM+13].

7 Conclusions and Future Work

In this paper, we have presented a novel approach to model comparison by exploiting
the nature of change-based persistence which allows us to find differences between
versions of a model by only comparing the last set of changes between the source
and reference model. Our evaluation results suggest that using this approach, we
can produce model comparison that is faster than traditional, state-based model
comparison. However, the change-based comparison approach needs to load change
events from a change-based persistence into main memory and thus may requires more
memory than for state-based comparison. In our evaluation, this occurs when the
number of change events exceeds 400,000. Arguably, diff and merge operations are
usually performed on smaller deltas than our evaluation. The next challenge for future

Journal of Object Technology, vol. 18, no. 2, 2019

Towards Efficient Comparison of Change-Based Models · 19

work is to identify strategies to merge models optimally and persist the merging in
the change-based way.

References

[BKL+12] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad
Wieland, and Manuel Wimmer. An introduction to model version-
ing. In Formal Methods for Model-Driven Engineering - 12th In-
ternational School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2012, Bertinoro, Italy,
June 18-23, 2012. Advanced Lectures, pages 336–398, 2012. URL:
https://doi.org/10.1007/978-3-642-30982-3_10, doi:10.1007/
978-3-642-30982-3_10.

[Ecla] Eclipse. Eclipse CDO The Model Repository. https://www.eclipse.org/
cdo/documentation/. Accessed: 2019-04-02.

[Eclb] Eclipse. EMF Compare. https://www.eclipse.org/emf/compare/.
Accessed: 2018-01-15.

[Eclc] Eclipse. Epsilon. https://www.eclipse.org/epsilon/. Accessed: 2018-02-
12.

[Ecld] Eclipse. Epsilon Git. http://git.eclipse.org/c/epsilon/org.eclipse.epsilon.
git/commit/?id=ebd0991c279a1f0df1acb529367d2ace5254fe87. Accessed:
2018-02-19.

[Ecle] Eclipse. Java Metamodel. https://help.eclipse.org/neon/index.
jsp?topic=%2Forg.eclipse.modisco.java.doc%2Fmediawiki%2Fjava_
metamodel%2Fuser.html. Accessed: 2019-01-08.

[EMF] EMFCompare. Emf compare developer guide. https://www.eclipse.org/
emf/compare/documentation/latest/developer/developer-guide.html.
Accessed: 2018-11-01.

[KH10] Maximilian Koegel and Jonas Helming. Emfstore: a model repository
for EMF models. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010, pages 307–308, 2010. URL: http:
//doi.acm.org/10.1145/1810295.1810364, doi:10.1145/1810295.
1810364.

[Kol09] Dimitrios S. Kolovos. Establishing correspondences between models with
the epsilon comparison language. In Richard F. Paige, Alan Hartman,
and Arend Rensink, editors, Model Driven Architecture - Foundations
and Applications, pages 146–157, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[KRM+13] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos Matragkas,
Richard F. Paige, Esther Guerra, Jesús Sánchez Cuadrado, Juan
de Lara, István Ráth, Dániel Varró, Massimo Tisi, and Jordi Cabot.
A research roadmap towards achieving scalability in model driven engi-

Journal of Object Technology, vol. 18, no. 2, 2019

20 · Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, Dimitris Kolovos

neering. In Proceedings of the Workshop on Scalability in Model Driven
Engineering, Budapest, Hungary, June 17, 2013, page 2, 2013.

[LGJ07] Yuehua Lin, Jeff Gray, and Frédéric Jouault. Dsmdiff: a differentiation
tool for domain-specific models. European Journal of Information Sys-
tems, 16(4):349–361, 2007. URL: https://doi.org/10.1057/palgrave.ejis.
3000685, arXiv:https://doi.org/10.1057/palgrave.ejis.
3000685, doi:10.1057/palgrave.ejis.3000685.

[Mye86] Eugene W. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, 1(2):251–266, 1986. URL: https://doi.org/10.1007/
BF01840446, doi:10.1007/BF01840446.

[SBMP08] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse
Modeling Framework. Eclipse Series. Pearson Education, 2008. URL:
https://books.google.co.uk/books?id=sA0zOZuDXhgC.

[TBWK07] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. Dif-
ference computation of large models. In Proceedings of the the 6th
Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC-FSE ’07, pages 295–304, New York, NY, USA,
2007. ACM. URL: http://doi.acm.org/10.1145/1287624.1287665,
doi:10.1145/1287624.1287665.

[YKP17] Alfa Yohannis, Dimitris S. Kolovos, and Fiona Polack. Turning mod-
els inside out. In Proceedings of MODELS 2017 Satellite Events
co-located with ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2017), Austin,
TX, USA, September, 17, 2017., pages 430–434, 2017. URL: http:
//ceur-ws.org/Vol-2019/flexmde_8.pdf.

[YRPK18a] Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, and Dimitris S.
Kolovos. Towards efficient loading of change-based models. In Modelling
Foundations and Applications - 14th European Conference, ECMFA
2018, Held as Part of STAF 2018, Toulouse, France, June 26-28, 2018,
Proceedings, pages 235–250, 2018. URL: https://doi.org/10.1007/
978-3-319-92997-2_15, doi:10.1007/978-3-319-92997-2_15.

[YRPK18b] Alfa Yohannis, Horacio Hoyos Rodriguez, Fiona Polack, and Dimitris S.
Kolovos. Towards hybrid model persistence. In Proceedings of MODELS
2018 Workshops co-located with ACM/IEEE 21st International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS
2018), Copenhagen, Denmark, October, 14, 2018., pages 594–603, 2018.
URL: http://ceur-ws.org/Vol-2245/me_paper_3.pdf.

About the authors

Alfa Yohannis is a PhD Student in the Department of Computer
Science at the University of York, United Kingdom (alfa.yohannis@
merahputih.id).

Journal of Object Technology, vol. 18, no. 2, 2019

Towards Efficient Comparison of Change-Based Models · 21

Horacio Hoyos Rodriguez is a Research Associate in the De-
partment of Computer Science at the University of York, United
Kingdom (horacio_hoyos_rodriguez@ieee.org).

Fiona Polack is a Professor of Software Engineering in the School
of Computing and Maths at the Keele University, United Kingdom
(f.a.c.polack@keele.ac.uk).

Dimitris Kolovos is a Professor of Software Engineering in the
Department of Computer Science at the University of York, United
Kingdom (dimitris.kolovos@york.ac.uk).

Acknowledgments This work was partly supported through a scholarship managed
by Lembaga Pengelola Dana Pendidikan Indonesia (Indonesia Endowment Fund for
Education).

Journal of Object Technology, vol. 18, no. 2, 2019

	Introduction
	Change-based Persistence
	State-based Model Comparison
	Change-based Approach for Comparing Models
	Event Loading
	Element Tree
	Left Side
	Right Side

	Diff Computation

	Evaluation
	Method
	Results and Discussion
	Mixed Operations
	Homogeneous Operations

	Limitations and Validity

	Related Work
	Conclusions and Future Work
	Bibliography
	About the authors

