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Abstract 

A significant question for forensic voice comparison, and for 

speaker recognition more generally, is the extent to which 
different input features capture complementary speaker-
specific information. Understanding complementarity allows us 
to make predictions about how combining methods using 
different features may produce better overall performance. In 
forensic contexts, it is also important to be able to explain to 
courts what information the underlying features are actually 
capturing. This paper addresses these issues by examining the 

extent to which MFCCs and LPCCs can predict F0, F1, F2, and 
F3 values using data extracted from the midpoint of the vocalic 
portion of the hesitation marker um for 89 speakers of standard 
southern British English. By-speaker correlations were 
calculated using multiple linear regression and performance 

was assessed using mean rho (𝜌) values. Results show that the 
first two formants were more accurately predicted than F3 or 
F0. LPCCs consistently produced stronger correlations with the 
linguistic features than MFCCs, while increasing cepstral order 
up to 16 also increased the strength of the correlations. There 
was, however, considerable variability across speakers in terms 

of the accuracy of the predictions. We discuss the implications 
of these findings for forensic voice comparison.  

Index Terms: cepstral-coefficients, formants frequencies, 
speaker recognition, speaker characterisation, forensic voice 

comparison 

1. Introduction 

1.1. Complementarity of features 

An important element in the development of any approach to 

speaker recognition is the choice of input features. For the past 

two or more decades, cepstral-coefficients (CCs) have been the 

industry standard within automatic speaker recognition (ASR) 

systems. Meanwhile, linguistic approaches to speaker 

recognition have typically focused on the componential 

analysis of a range of features, such as vowel formant 

frequencies and fundamental frequency (F0). There is now a 

growing trend towards the integration of ASR and linguistic 

approaches, with the ultimate aim of improving overall 

performance and some previous research has had success in this 

regard [1,2,3]. Implicit within such work is the question of 

whether different features capture complementary speaker-

specific information. 

Some relationships between features are predictable. CCs 

indirectly capture spectral information relating to the size and 

configuration of the supralaryngeal vocal tract. The smoothing 

involved in deriving CCs is claimed to decouple source from 

filter [4]. However, the extent of this decoupling is, in principle, 

determined by cepstral order, such that the more CCs extracted, 

the more harmonic information is modelled. Different types of 

CCs also provide different levels of spectral resolution. MFCCs 

capture more detail at the lower end of the frequency scale and 

are more sparse in higher frequencies. LPCCs, however, model 

the frequency scale in a linear way. As with CCs, formants, too, 

are related to the supralaryngeal vocal tract, but only capture 

partial information (relating to the peaks) about the entire 

spectrum. In principle, CCs should, in some way, also encode 

formant frequency information. This is consistent with the 

findings of [5], in which only marginal improvements in system 

performance were reported when fusing MFCCs with long-term 

formant distributions. Similarly, empirical data are consistent 

with the theoretical decoupling of source and filter in CCs. [6] 

reports potentially large improvements in system performance 

when combining MFCC-based ASR systems with laryngeal 

voice quality features. 

1.2. Forensic considerations 

The issue of the complementarity of features is more critical in 

the forensic context for two reasons. Firstly, it is essential that 

an expert’s conclusion is an accurate reflection of the strength 

of the voice evidence. If multiple correlated features are 

analysed, there is the potential for overstating evidential value. 

Secondly, an expert’s evidence must be understandable to a 

court, in order for them to make informed decisions about the 

ultimate issue of innocence or guilt. A key benefit of the 

linguistic approach to forensic voice comparison is that features 

are well-understood in terms of their mapping onto physical and 

anatomical properties of speech production. While CCs are 

known to be a representation of the spectrum, they are abstract 

mathematical values derived through various levels of 

processing (e.g. iFFT). As such, CCs do not map in any 

straightforward way onto physiological properties of speakers 

or the articulatory implementation of speech production, 

making ASR evidence more difficult to explain to courts. 

1.3. This study 

Previous work has attempted to directly predict formants and 

F0 from CCs. Performance has generally been assessed using 

the correlation between measured and predicted values for the 

linguistic features. Research has shown that correlations are 

strongest when using phoneme-specific and speaker-dependent 

modelling, with [7,8] reporting correlation coefficients of over 

0.9. Across studies, F1 and F2 are predicted more accurately 

than F3, while F0 produces the weakest correlations [9]. This is 

consistent with the theoretical decoupling of source and filter in 



deriving CCs. However, the fact that F0 is at all predictable 

indicates that some source information is captured. 

The present study continues this line of enquiry to better 

understand the relationship between CCs and linguistic 

features, but expands on previous work in a number of key 

ways: (i) We use spontaneous, more forensically realistic 

speech material rather than controlled, lab speech;  (ii) We 

analyse a vowel segment (the hesitation marker um) that has 

considerable speaker-discriminatory power and so is useful in 

forensic voice comparison; (iii) We directly compare the 

predictive power of LPCCs and MFCCs, using different 

cepstral orders. This is important because not all ASR systems 

use the same underlying features or the same number of CCs. 

Further, there are theoretical predictions associated with 

different types and orders of CCs, as outlined above; (iv) 

Finally, we also examine the performance of individual 

speakers and consider the implications of our results for 

forensic voice comparison. 

2. Method 

2.1. Database 

A total of 89 young, male speakers of Standard Southern British 

English (modern Received Pronunciation) from the Dynamic 

Variability in Speech (DyViS) database [10] were used (11 

speakers from the full 100 available were not included due to 

insufficient numbers of tokens). The database was collected for 

forensic phonetic research and speakers engaged in forensically 

realistic tasks: a mock police interview (Task 1) and a telephone 

conversation with an accomplice (Task 2). Both tasks involved 

spontaneous, conversational speech of between 9 and 30 

minutes in duration. For both tasks, we used high-quality, 

studio recordings (44.1kHz sampling rate, 16-bit depth) to 

remove confounding effects related to measurement error with 

poorer quality materials. 

2.2. Hesitation markers 

The hesitation marker um was analysed, principally because it 

has been shown to carry considerable speaker-specific 

information. Using good quality materials, [12] report equal 

error rates of as low as 4.08% and log LR cost (Cllr) values of 

as low as 0.12 using the acoustics of the vocalic portion of um 

alone (um, with the nasal /m/ following the vocalic portion, was 

found to perform better than uh, which is entirely vocalic). 

When fused with an MFCC-based ASR system, segmental 

analysis of um has also been shown to improve performance 

compared with the ASR system in isolation [1]. Alongside this, 

there are a number of reasons why hesitations are useful for the 

purposes of forensic voice comparison. Firstly, these hesitation 

phenomena occur frequently (around 3.7 occurrences per 

minute; [11]). Secondly, they are thought to be produced below 

the level of consciousness and so are relatively resistant to 

disguise. Thirdly, they often occur adjacent to silences, making 

their formants easy to measure and less susceptible to 

coarticulatory effects. This, in turn, helps to reduce the amount 

of within-speaker variability that they exhibit. 

2.3. Feature extraction 

A total of 6758 um tokens (median N tokens across recordings 

of both tasks = 70 per speaker, max = 159, min = 26) were 

analysed by manually marking the onset and offset of the 

vocalic portion. The first three formants were then extracted 

from a 20ms frame at the temporal midpoint of the vowel. 

Values were extracted in Praat [13] using the Formant: Burg 

function with an LPC order of between 10 and 12, determined 

on a speaker-by-speaker basis to ensure measurements were as 

reliable as possible. F0 was extracted within a frequency range 

of 75-200 Hz using the STRAIGHT algorithm [14] in VoiceSauce 

[15]. From the same 20ms midpoint frame, MFCC and LPCC 

vectors up to order 16 were extracted in MATLAB. This involved 

downsampling the recordings from 44.1 kHz to 8 kHz, such that 

CC extraction was performed within a 0-4000 Hz range. 

2.4. Cepstrum-to-F{0,1,2,3} mapping 

Cepstrum-to-F{0,1,2,3} mapping was performed by pooling 

the Task 1 and Task 2 data for each speaker. Although the two 

tasks were recorded in separate sessions, the channel 

characteristics are essentially identical and pooling data 

allowed us to maximise the number of tokens available. The 

MFCC and LPCC vectors were used to predict the univariate 

F{0,1,2,3} values by-speaker, using a multiple linear regression 

model based on the weighted sum of the CCs. The formulation 

of the regression model is: 

 

 𝐹 (𝑖) = 𝑎𝑖,0 + 𝑎𝑖,1x(1) +  ... +𝑎𝑖,𝑀x(𝑀) + 𝜀 (1) 

 

where 𝐹 (𝑖) is the dependent variable, i.e. F{0,1,2,3}, [𝑎𝑖,0, … , 

𝑎𝑖,𝑀 ]  are regression coefficients for the feature  𝑖 , x  is the 

vector of CCs of length 𝑀  and 𝜀  is an error term. The 

regression coefficients are determined using least squares 

estimation. The regression model can then be used to predict 

values for 𝐹 (𝑖). The correlation between the predicted values 

and the measured values was obtained and represented as a 

correlation coefficient (𝜌), whereby the closer the value to 1 the 

better the predictive power of the model.  

Regression models were trained and tested on the same data 

for two reasons. Firstly, it allowed us to maximise the amount 

of data available. Secondly, our aim was to understand and 

explore the relationships between the underlying features, not 

to build a system with the best predictive performance. We also 

used a speaker-dependent method, as this has been shown to 

generate stronger correlations than speaker-independent 

methods [7,8]. The overall strength of the cepstrum-to-

F{0,1,2,3} mapping was measured using mean 𝜌  across all 

speakers. This process was repeated for each linguistic feature 

(F{0,1,2,3}) using MFCCs and LPCCs of different orders. 

3. Results 

3.1. MFCCs vs. LPCCs 

Table 1 gives a summary of the mean 𝜌 values across all 89 

speakers for each of the linguistic features, using MFCCs and 

LPCCs as inputs to the best model with all 16 coefficients. 

Table 1: Mean 𝜌 for LPCC-to-F{0,1,2,3} and MFCC-
to-F{0,1,2,3} (both using 16 coefficients) 

 F1 F2 F3 F0 

LPCC 0.909 0.925 0.865 0.803 

MFCC 0.891 0.903 0.838 0.829 

 



 

Figure 1: Mean 𝜌 across the 89 speakers for 
F{0,1,2,3} using LPCCs and MFCCs as a function of 

the upper index of the cepstral-coefficient series. 

For all three formants, the LPCCs provide marginally better 

predictive performance than the MFCCs, while the MFCCs 

perform slightly better than the LPCCs for F0. The mean 𝜌 

values squared afford the further interpretation that the models 

explain 75% to 86% of the variability in the formants using the 

LPCCs, and 70% to 82% using the MFCCs. For F0, the models 

account for 69% of the variability using the MFCCs and 64% 

using the LPCCs. 

3.2. Effects of cepstral-coefficient order 

Figure 1 shows the effect of increasing cepstral order on the 

mean 𝜌 values for both LPCCs and MFCCs. There is continual 

improvement in the correlation between predicted and 

measured F{0,1,2,3} as the number of CCs increases. After 

around 10 CCs, the rate of improvement begins to decrease, 

although the 𝜌 values when using 16 CCs are still the highest. 

The MFCCs provide better performance when using smaller 

numbers of CCs, compared with LPCCs at least for F0 and F1. 

 

 

Figure 2: Distributions of 𝜌 values for the 89 speakers 
using LPCCs (above) and MFCCs (below) (based on 

vectors of 16 CCs) to predict F{0,1,2,3}. 

3.3. Individual features 

The best performance is achieved for F2, followed by F1, F3 

and finally F0. One explanation for why F1 and F2 outperform 

F3 in our data may be due to the accuracy of the original 

formant measurements. Formants are generally more 

problematic to estimate in the higher frequencies, as they often 

have lower amplitude and wider bandwidths. Further, the 

formant measurements here were automatically extracted using 

fixed settings by-speaker (i.e. settings differed from speaker to 

speaker). Thus, there was no hand correction of the formant data 

which would, undoubtedly, have improved the accuracy of the 

measurements [16]. For F2, the correlations for the MFCCs and 
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LPCCs are essentially the same across cepstral orders, while for 

F3 the LPCCs consistently produce the strongest correlations. 

3.4. Individual speakers 

Figure 2 shows the distributions of 𝜌 values across speakers 

using both LPCCs and MFCCs (using 16 CCs) to predict 

F{0,1,2,3}. Notably, there is considerable variation, with some 

speakers producing near perfect correlations between the 

predicted and measured F{0,1,2,3} values, and other producing 

much weaker correlations. In line with the findings in §3.3, the 

greatest variability is found for F0 and F3. Much narrower 

ranges of variability are found for F1 and F2. This pattern is 

consistent across both LPCCs and MFCCs. 

4. Discussion 

The results of this study have shown that F{0,1,2,3} can be 

predicted from vectors of LPCCs and MFCCs with a relatively 

high degree of accuracy. The mean 𝜌 values in Table 1 compare 

well with the speaker-dependent correlations reported in [7,8], 

with 𝜌  values of over 0.9 in some cases (meaning that the 

MFCCs and LPCCs were able to explain over 80% of the 

variability in some of the formant data. This performance is 

extremely impressive given the large number of tokens, the use 

of spontaneous speech, the degree of between-speaker 

variability displayed by the hesitation markers and the fact that 

formant data were automatically extracted. 

A number of general patterns were also found in our results. 

LPCCs marginally outperformed MFCCs when predicting the 

formants (although MFCCs performed best for F0). This is 

likely due to the fact that the LPCCs are based on the linear 

prediction (LP) model, which is particularly good at 

representing spectral peaks, due to the all-pole constraint. The 

hesitations markers examined here are, in many ways, an ideal 

case for the LP model, since they tend to display widely spaced, 

and therefore easily identifiable, formants (means across all 

speakers: F1 = 608Hz, F2 = 1378Hz, F3 = 2496Hz). The results 

in §3.2 reveal an interaction between the predictive strength of 

the input and cepstral order. For F1, higher correlations were 

found for the MFCCs when the upper index of the CC series 

was low, whereas the LPCCs performed better with larger 

numbers of CCs. This shows that while LPCCs may generally 

perform better at predicting formants, greater spectral 

resolution is needed to approach (and ultimately outperform) 

the MFCCs. No such interaction was found for F2 or F3. In 

terms of the individual linguistic features, F2 produced the 

largest 𝜌 values irrespective of the input, followed by F1, then 

F3, and finally F0. This ordering is also consistent with [7,8].  

These findings validate previously-reported findings that 

the linearity of cepstrum-to-F{0,1,2,3} mapping is more 

consistent within speakers and stronger within a reduced 

phonetic space, such as that which is spanned by um. The 

relationship with formants is expected given that they, along 

with CCs, in theory capture information about the 

supralaryngeal vocal tract. The finding that F0 can also be 

predicted from CCs suggests that, in practice, the decoupling of 

source and filter in deriving CCs is not absolute. The increase 

in the strength of the correlation for F0 as a function of cepstral 

order is consistent with the assertion in §1.1, that the degree of 

smoothing involved in deriving CCs affects the extent to which 

source and filter can be decoupled. Higher orders of CCs 

provide more detailed spectral resolution that also models some 

harmonic structure. 

An interesting finding, that has not been addressed in 

previous work, is that there is considerable between-speaker 

variability in the predictive power of the cepstrum-to-

F{0,1,2,3} mapping. This variability appears to be dependent 

on the linguistic feature being predicted. That is, speakers who 

produce large 𝜌 values for F0 do not necessarily produce large 

𝜌  values for formants. The same is true of the individual 

formants. As outlined above, one key factor determining the 

success of the cepstrum-to-F{0,1,2,3} mapping is the accuracy 

of the raw F{0,1,2,3} data. It is well known that formants are 

better tracked for some speakers than others. Using the same 

recordings as the present study, [17] showed that this proclivity 

towards formant measurement errors due to the settings used 

can have dramatic effects on a speaker’s performance within a 

formant-based speaker recognition system (and on the overall 

performance of the system). There is some overlap between the 

problematic speakers in [17] and the speakers who generally 

produce the weakest correlations in the present study. This 

highlights the importance of accurate measurement both in 

terms of providing reliable forensic evidence, but also for 

understanding what information our systems are actually 

capturing.  

5. Conclusions 

This study has demonstrated the existence of linear 

relationships between the cepstrum and each of the formants, 

using a large amount of automatically extracted data from a 

forensically valuable segment (um) and forensically realistic 

speaking tasks. A similar but weaker trend can be said about F0. 

The strong correlations resulting from the linear mappings have 

relevant implications for forensic voice comparison.  

First, they argue against the value of the formants in favour 

of the cepstrum in ASR. The lack of complementarity in our 

study is consistent with the findings of [5] that show no 

additional benefit of fusing formants may be expected with CC-

based ASR systems. Thus, we conclude that the improvements 

gained by fusing linguistic features with an ASR system in 

[1,2,3] are principally due to the segmental nature of the 

linguistic analysis, compared with the holistic approach 

employed by the ASR system, rather than the fundamental 

complementarity of the features. Perhaps more positively, the 

relationships observed here confirm that the cepstrum does 

encode the bulk of phonetic and articulatory information carried 

by the formants (as well as showing extremely good speaker 

discriminatory power; the value of segemental cepstra is shown 

in [18]). Forensic evidence based on cepstrum-based systems is 

therefore amenable, albeit indirectly, to phonetic and 

articulatory interpretations. Last but not least, the consistency 

of a linear cepstrum-to-formant mapping within speakers raises 

the possibility that the forensic practitioner might be able to 

estimate or to validate the formants for a speaker’s new 

segments from an existing predictive model for that speaker. 

Further work will be necessary to investigate this practical 

benefit.  
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