
This is a repository copy of TEA-Cloud: A formal framework for testing cloud computing
system.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/163550/

Version: Accepted Version

Article:

Nunez, A., Canizares, P., Nunez, M. et al. (1 more author) (2020) TEA-Cloud: A formal
framework for testing cloud computing system. IEEE Transactions on Reliability. ISSN
0018-9529

https://doi.org/10.1109/TR.2020.3011512

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/327988093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON RELIABILITY 1

TEA-Cloud : A formal framework for testing cloud
computing systems

Alberto Núñez, Pablo C. Cañizares, Manuel Núñez and Robert M. Hierons

Abstract—The validation of a cloud system can be complicated by the size of the system, the number of users that can concurrently

request services, and the virtualisation used to give the illusion of using dedicated machines. Unfortunately, it is not feasible to use

conventional testing methods with cloud systems. This paper proposes a framework, called TEA-Cloud, that integrates simulation with

testing methods for validating cloud system designs. Testing is applied on both functional and non-functional aspects of the cloud,

like performance and cost. The aim of the framework is to provide a complete methodology to help users to model both software and

hardware parts of cloud systems and automatically test the validity of these clouds using a cost-effective approach. Metamorphic testing

is used to overcome the lack of an oracle that checks whether the behaviour observed in testing is allowed. Metamorphic testing is based

on metamorphic relations (MRs). We define three families of MRs, which target issues such as performance, resource provisioning and

cost. TEA-Cloud was evaluated through an empirical study that used fault seeding (mutation) and ten MRs for testing different cloud

configurations. The results were promising, with TEA-Cloud finding all seeded faults.

Index Terms—Cloud computing, Metamorphic testing, Simulation, Mutation testing

✦

1 INTRODUCTION

Computing architectures based on cloud computing sys-
tems are currently the most cost-effective solution for
many end-users: enterprises and scientists. However, a
range of factors have to be managed when providing
a system with features such as 24/7 availability, world-
wide utilisation, and easy access for every user.

While a cloud system should provide the expected
functionality, aspects like performance and resource pro-
visioning are also important since a data center will
contain a vast number of computers and communication
networks. The importance of this issue is only likely to
grow since cloud systems are designed to be scalable,
with it being possible to add resources in order to
increase the overall system capacity. In particular, the
problem of resource provisioning in cloud computing
environments is complicated by the need for end-users
to not notice a performance loss.

One of the main problems that we have to over-
come when developing cloud computing systems is to
ensure that the behaviour of the system is consistent
with expectations. Here, the behaviour of the system
includes factors such as performance and user man-
agement. Currently, testing [1], [2] is the most widely
used technique to validate the correctness of systems.

• A. Núñez, P. C. Cañizares and M. Núñez are with Design and Testing
of Reliable Systems research group, Universidad Complutense de Madrid,
Madrid, 28040, Spain.
E-mail: alberto.nunez@pdi.ucm.es, pablocc@ucm.es, mn@sip.ucm.es

• R. Hierons is with Department of Computer Science, The University of
Sheffield, Sheffield, SD1 4DP, UK.
E-mail: r.hierons@sheffield.ac.uk

This work has been supported by the Spanish MINECO-FEDER (grant
number FAME, RTI2018-093608-B-C31) and the Region of Madrid (grant
number FORTE-CM, S2018/TCS-4314).

If we start the development of a system from a formal
model, then testing can be used to perform more rig-
orous analysis [3]. However, the development of formal
testing methodologies for cloud systems is a significant
challenge [4].

A cloud system will normally contain many elements
that interact and are distributed, which makes it diffi-
cult to apply formal testing approaches. In testing it is
normal to use an oracle that checks that the behaviour
observed during testing, with a given test case, is al-
lowed/acceptable. An oracle can be a realisation of a
formal specification of the system or a set of properties
that the system has to fulfill. However, in some situations
an oracle is not available or is computationally too
expensive to apply, and alternative approaches must
be used [5], [6]. This is particularly problematic when
testing complex systems, where many test cases must be
generated and executed if we are going to completely
check the behaviour of the system. These problems arise
in cloud computing, where there is rarely an oracle and
large test suites are required to check the critical parts
of the system.

This paper presents a simulation-based framework,
called TEA-Cloud, designed to alleviate these issues.
TEA-Cloud integrates simulation – to represent the be-
haviour of cloud computing systems – with testing
methods for checking the correctness of cloud systems.
The main goal is to provide a methodology, supported
by a tool, that allows users to model both the software
and hardware parts of cloud systems, design new cloud
systems and automatically test these systems using a
cost-effective approach that considers both functional
and non-functional aspects of the cloud.

The main advantages of TEA-Cloud can be sum-
marised as follows:

IEEE TRANSACTIONS ON RELIABILITY 2

• Flexibility: users can model and simulate a wide
range of cloud computing systems, configuring both
the hardware parts, like computers, network topol-
ogy and racks management, and software parts, like
hypervisors, virtual machines and user policies.

• Scalability: the size of the simulated cloud can vary
from several computers to thousands of machines
grouped in racks.

• Costless: using the proposed framework does not
require specific hardware to be executed. Also, a
cloud is not required for experiments.

• Automatic testing: the validity of each cloud environ-
ment can be automatically checked to increase the
confidence in it functioning properly.

It is important to note that TEA-Cloud uses techniques
for testing cloud computing models, which is different
from testing in the cloud. We analyse complete cloud
configurations and then check whether these designs are
appropriate or not. A real cloud system is not needed
because this process can be executed in any regular
computer. In contrast, testing in the cloud uses a cloud
system to execute tests, which may be related (or not) to
checking the underlying cloud system where these tests
are executed.

Virtualisation is one of the key aspects of cloud com-
puting environments, since it is the component that
allows the separation of physical and logical resources.
Therefore, this part needs to be simulated accurately. In
order to reach this goal, we provide several methods
to design, with enough flexibility and accuracy, a cloud
computing environment.

Metamorphic testing (MT) [7], [8], [9], [10] uses ex-
pected properties of the target functions to alleviate
the oracle problem. These properties relate multiple
test-inputs/observed-outputs obtained from the tested
system using metamorphic relations (MRs). Consider, for
example, the (much simpler) problem of testing an im-
plementation sin of the trigonometric sine function. Any
implementation of this function will be an approxima-
tion and the process of determining the expected value
for a given input is complicated, expensive and error-
prone. However, we do have expected properties such
as sin(x) = − sin(−x). If we were to use this property
as an MR, then we would start with a test input such
as 0.3 and call the function with it. We would then
use the follow-up test input −0.3 and check whether the
two resultant outputs were related as expected (one was
the negation of the other). If the expected relation does
not hold then we know that there has been a failure.
Additionally, we use the constraints defined in the MRs
to automatically generate test suites. This is especially
important because the generated test cases check the
specific features of the system that are reflected in the
MRs.

We will provide an example to motivate the need for
novel testing approaches, and why the combination of
MT and simulation is a promising approach. Let us sup-
pose that we are interested in validating the performance

of a cloud system, which can be represented by, amongst
other metrics, the average CPU utilisation, the number
of deployed VMs per hour and the data transmitted
through the network. Note that, in all these cases, the
result is represented by a single value (e.g. the time
needed to complete a certain task). It is important to
emphasise that cloud systems consist of a wide variety
of heterogeneous sub-systems. For example, they will
normally contain computing, networking, storage and
virtualisation facilities. Thus, in order to estimate, or
predict, the result that should be provided by a test it
is necessary to analyse a range of different aspects of
the many components of the studied cloud system and
how they interact. As a result, it is typically infeasible to
determine the performance that a cloud system should
have with a given test case; there is an oracle problem.

The cost of building a large cloud system means
that testing should initially happen within a simulation
because we do not want to build the system and then
find that it has deficiencies that could be found through
simulation. Coming back to our example, the tester will
run the task in the chosen cloud (either in the real cloud
or, as we propose, in a simulation of it) and obtain the
time needed to complete the task. At this point the
tester faces the following problem: how can they decide
whether this is the expected time? They do not have an
oracle (that is, an automatic procedure to decide whether
this is the expected time) and it is infeasible for an expert,
even after a careful study of the most relevant features
of the cloud, to predict the performance of the cloud. In
conclusion, it is not possible to decide whether the result
of a single experiment is good or not.

MT does not solve the above specific problem, that is,
it does not tell us whether a specific test shows a failure,
but it does provide us with an elegant solution. Instead
of analysing the correctness of a single output for a single
input, MT tells us to put together a set of inputs, and
their corresponding outputs, and jointly analyse them.
In our running example, if we have two tasks and the
first one is simpler to solve than the second one, then
the time needed to complete the first task should be less
than that needed to complete the second one. Moreover,
MT also allows us to validate one model using another
one. Let us assume that we have two different clouds
with the same amount of resources (we can quantify this
either in computational terms or in monetary ones), we
run different tasks and we find that the performance of
the first cloud is always better than the performance of
the second one. In this case, using MT, we know that we
can discard the second cloud.

In addition to the lack of oracle, in order to validate
any complex system, it is desirable to run many tests
so that we can explore a range of scenarios. Simulation
allows us to launch them in parallel, thus reducing
the total execution time. However, test automation is
typically hampered by the absence of a test oracle or
a separate specification that can act as an oracle. In the
proposed framework, the above problem is addressed

IEEE TRANSACTIONS ON RELIABILITY 3

by using MT to replace the oracle, allowing a large
number of test executions to be run within a simulation.
Importantly, as we will see, it is possible to use MT to
check a number of different types of properties including
some non-functional properties.

Initially, a set of default relations is provided by TEA-
Cloud. However, due to the scalable design of TEA-Cloud,
new relations can be added by end-users, increasing the
functionality of the framework.

In addition to the previously described capabilities
provided by TEA-Cloud, the main contributions of our
research can be summarised as follows:

• In contrast to existing work, focusing only on simu-
lating cloud systems, TEA-Cloud also provides tech-
niques for automatically checking the correctness of
the cloud. This includes the automatic generation of
test cases that focus on critical parts of the system
and test the appropriateness of both software and
hardware components. This is achieved by integrat-
ing MT techniques in the proposed framework.

• Due to the scalable and flexible design of TEA-
Cloud, each user may increase its functionality by
adding and modifying MRs. The benefits of this
feature are two-fold. First, the power of the frame-
work can be increased through additional aspects
of the cloud being tested. Second, the spectrum
of cloud configurations to be tested by TEA-Cloud
can be increased. The more MRs defined, the wider
spectrum of configurations can be tested.

• We report on the results of a set of experiments
in which we used mutation testing [11], [12], [13]
techniques to inject faults in the studied systems.

This paper builds on top of preliminary work [14] that
presented the basic guidelines of the approach. The main
contributions of this paper with respect to our previous
work are:

• We provide a language to fully model cloud sys-
tems. This allows users not only to represent cloud
architectures but also to formally analyse them.

• We have extended and categorised the collection of
MRs. We currently provide a structured approach to
use different relations and understand the obtained
results. It is important to note that, while previous
work provided MRs describing basic aspects of the
cloud, the work presented in this paper provides
a more detailed collection of MRs dealing with
monetary cost, user management and performance,
amongst others. Moreover, different resource alloca-
tion and user management policies are analysed.

• We report on the results of experiments that inves-
tigated the proposed MRs. Within the experiments,
we considered two aspects. First, we were interested
in whether the MRs are valid, in the sense that they
do not (incorrectly) suggest that a correct system is
faulty. Second, we used fault injection to assess the
fault detection effectiveness of the MRs.

• In previous work we used simple systems that

contain manually inserted faults. In contrast, in this
paper we model and analyse complex systems and
use mutation testing to inject faults. The testing
process is automatically carried out in the sense that
i) test cases focusing on critical parts of the cloud are
automatically generated using the provided MRs;
and ii) we use the MRs to automatically check the
outputs generated by the execution of the test cases.

• We report on an experimental study where up to
450,000 test cases were automatically generated and
executed for testing 27 different cloud configura-
tions. After a careful analysis of resultant data,
we can conclude that TEA-Cloud can be used to
analyse non-trivial properties over cloud systems.
In particular, all the injected faults were detected by
the MRs provided.

The rest of the paper is structured as follows. Section 2
presents related work. Section 3 describes the motivation
for integrating a simulation platform and MT in TEA-
Cloud. Section 4 describes the architecture of TEA-Cloud
and Section 5 shows how MT is integrated into TEA-
Cloud. Section 6 describes the experiments performed us-
ing TEA-Cloud. Section 7 discusses the potential threats
to the validity of the experiments. Finally, Section 8
presents our conclusions and some directions for future
work.

2 RELATED WORK

In this section we review some existing work related to
this paper. First, we review previous work on simulation
and testing of cloud systems. Next, we briefly review the
main characteristics of MT.

2.1 Testing of cloud systems

Cloud systems are built out of tens of thousands of
commodity machines and a simple failure in the system
may produce catastrophic consequences. Therefore, it is
important to ensure the good functioning of these sys-
tems. As an example, in 2011 Amazon EC2 suffered an
unexpected crash during network reconfiguration [15].
This crash affected more than 70 organisations, including
FourSquare, the New York Times, Quora and Reddit, in
some cases causing sites to be off-line for many hours.

Testing [1], [2] is the most widely used technique
for checking the validity of complex systems. Therefore,
testing should play an important role when deploying
and configuring cloud systems.

There are several proposals for testing different parts
of cloud systems, like symbolic execution [16], fault
injection in the target system [17] and random test-
ing [18], [19]. These approaches can be categorised into
two major groups: testing the cloud and testing in the
cloud (also known as cloud-based testing or cloud test-
ing). The former targets the validation of applications,
environments and infrastructures that are available on
a cloud environment. This ensures the correct operation

IEEE TRANSACTIONS ON RELIABILITY 4

of each part of the cloud system against the expectations
of the cloud computing business model. Cloud testing,
or Testing as a Service (in short, TaaS), involves using
cloud infrastructures in testing products and services.

There are not many proposals for using a formal
approach in testing cloud architectures, and we have to
look either at proposals for formal testing in the dis-
tributed architecture [20], [21] or of systems with asyn-
chronous communications [22], [23], [24] and approaches
that focus on Web applications [25], [26]. Although a Web
application can be executed in a cloud environment, and
a cloud system is inherently distributed and communi-
cations are usually asynchronous, in these lines of work
the underlying architecture of the cloud is not the target
of the testing process. One of the few exceptions dealing
with (formal) testing of cloud systems presents a formal-
ism where a computing cloud is modelled as a graph,
computing resources, such as services and intellectual
property access rights, are attributes of a graph node,
and the use of a resource is modelled as a predicate
on an edge of the graph [27]. There are other research
lines related to testing, like reliability and fault tolerance,
amongst others, where we can find work focusing on
analysing faults in cloud systems [28], [29].

Another approach for testing cloud systems executes
a real virtual machine instead of a model that mimics
its underlying behaviour. D-Cloud [30] is a software
testing environment that manages virtual machines and
includes fault injection capabilities. Basically, D-Cloud
sets up a test environment on cloud resources using a
given system configuration file and automatically ex-
ecutes several tests according to a given scenario. D-
Cloud has been built on top of Eucalyptus and uses
QEMU [31] to build virtual machines that simulate faults
in parts of the hardware including disk, network and
memory. PreFail [17] is a programmable and efficient
failure testing framework where testers can express a
variety of failure exploration policies, skip redundant
fault-injection tests, run failure testing in parallel, and
reduce the time to debug failed test runs. Unlike D-
Cloud, which provides simulated actual faults, PreFail
inserts a failure surface between the target system and
the OS library.

As previously mentioned, there is very little work on
formal approaches to testing cloud systems. Automated
test generation for cloud systems has clear potential
benefits such as quality improvement, the possibility
of executing more tests in less time, and easy reuse of
test-ware. However, there are significant costs associated
with developing test automation, especially in dynamic
customised environments [32]. As a result, testing is
normally a manual activity.

In recent years, simulation has become a widely
adopted loosely formalised approach for testing cloud
systems. There are several advantages that make sim-
ulation very suitable for testing complex systems like,
among others, the possibility of analyzing a system
without requiring access to its underlying hardware

architecture, the reproducibility of the experiments and
the overall performance for executing the experiments,
which can be improved by using parallel execution
techniques. The developer builds a simulation model
that imitates the behaviour of the target system and then
different measures, like performance and cost, are gath-
ered by running simulations. Researchers have designed
cloud models and then performed ad-hoc testing by
manually simulating different scenarios and comparing
obtained results. Among the available simulation tools
that can be used to model and simulate cloud comput-
ing environments are CloudAnalyst [33], CloudSim [34],
[35], CloudSim-Plus [36], DCSim [37], EMUSIM [38],
GreenCloud [39], GroudSim [40], iCanCloud [41], [42]
and SimGrid [43], [44]. Although TEA-Cloud has been
developed focusing on simulation to validate designs
of cloud systems, ad-hoc test cases are not manually
created, but large test suites are automatically generated
using MT techniques instead.

2.2 Metamorphic testing

The complexity of a cloud system makes it very difficult
to ensure that its behaviour is consistent with what the
designers had in mind. Therefore, it is of the utmost im-
portance to use sound engineering techniques to validate
the behaviour of these systems. As already mentioned,
testing is the most widely used method to increase the
confidence in the correctness of systems. Testing has tra-
ditionally been a manual activity but there is increasing
interest in the development of techniques to automate,
as much as possible, the different testing activities. One
important approach to test automation is to use formal
testing methods [3]. These methods constitute a type of
Model-Based Testing in which automation is based on
either a complete model of the required behaviour of
the system under test or on some specific aspect of this
behaviour. In addition to supporting test automation,
formal testing techniques were found to be significantly
more cost effective than manual testing in an industrial
study involving hundreds of testers [45].

Formal testing approaches usually assume the exis-
tence of an oracle to check whether the outputs returned
by the system under test are the expected ones. However,
often there is no oracle and it is then necessary to use
alternative approaches to classical testing. This does not
mean that we should not use formal methods at all,
but that we need to combine formal approaches (in
particular, use formal languages to design systems) with
semi-formal ones for testing. In the frontier between
formal and semi-formal approaches we find MT [8], [9].
MT is based on properties, called MRs [46], of related test
inputs and the resultant test outputs. Given an initial test
input x, typically a follow-up test case x′ is produced
such that some relationship between the outputs in
response to x and x′ should hold. For example, if we
consider the trigonometric cosine function cos we have
that cos(x) = cos(−x); if we initially test with input 0.1

IEEE TRANSACTIONS ON RELIABILITY 5

then we test with the follow-up test input −0.1 and check
that the two outputs are the same. Experienced users
are responsible for providing relevant MRs. MT is cost
effective because the process of checking that the MRs
hold can be automated.

MT has been used in very different application do-
mains such as Web services [47], machine learning [48]
and compilers [49], among others. Remarkably, MT was
able to detect new faults [50], [51] in three out of seven
programs in the Siemens suite [52], which has been
studied in major software testing research projects for 20
years, and discover over one hundred faults [49] in two
popular C compilers (GCC and LLVM). This versatility
led us to use MT in our framework.

3 MOTIVATION

In recent years cloud computing has gained significant
attention due to its flexible and on-demand computing
infrastructure. This interest has a significant impact in
both the IT industry and the research community. On
the one hand, leading companies such as IBM, Microsoft,
Google and Amazon have spent valuable resources on
cloud computing [53]. On the other hand, researchers
are continuously developing tools and techniques to
improve this emerging technology [54], [55].

Several factors make reasoning about the underlying
architecture of a cloud system particularly challenging.
First, cloud systems are very large and this hampers
the analysis and study of these systems. Second, the
resources of the cloud provided to end-users are virtual
and this complicates analysis since different Virtual Ma-
chines (VMs) can be hosted in a single machine, sharing
a resource among different users. Finally, we cannot
oversee the vast number of users that are concurrently
using a cloud system.

It can be difficult for researchers to access cloud
structures. Researchers deal with two different types of
clouds: public and private. Public clouds are charac-
terised by their ease of use and ability to scale com-
puting resources on demand. They provide the illu-
sion of infinite resources and 24/7 availability. Hence,
researchers are able to purchase virtual machines to
perform experiments. Amazon EC2 is a good example
of public cloud [56]. This platform allows users to pay
only for the capacity that their applications actually
need (pay-as-you-go model). However, this platform
does not allow the low-level architecture to be config-
ured for experiments. For instance, users do not know
the network topology and researchers are not able to
modify internal structures like hypervisors. Moreover,
public clouds present significant variations in the overall
performance depending on which machines are exe-
cuted in the experiments [57]. In contrast, private clouds
are operated solely within a single organisation. These
clouds are typically much smaller than public clouds.
Private clouds are often built in universities and research
laboratories for research and teaching purposes. There-
fore, researchers can fully customise and configure the

underlying cloud architecture to perform experiments
but even here there can be significant costs associated
with running experiments. These factors motivate our
interest in providing a tool for designing and testing
cloud computing architectures that does not require
access to a real cloud system.

When developing cloud systems it is important to
have a tool that allows the developer to configure and
test a wide range of scenarios. The proposed framework
does not focus on a specific simulator, allowing any
cloud simulation tool to be used to provide a model
of the cloud under study and to simulate the required
scenarios. A designed model is an abstraction of the
underlying cloud system that contains the most relevant
properties. This model can be fully parameterised, which
provides enough flexibility to customise the configu-
ration of the cloud to be simulated. Our interest in
simulation was motivated by the following facts:

• Running simulations is cheaper than performing ex-
periments in a real cloud. Renting machines from a
public cloud requires a monetary investment, while
executing a simulation requires a standard desktop
computer.

• Simulation provides more flexibility. While in real
clouds the users have to deal with the specific
configuration of the system, simulation allows users
to quickly set up a wide spectrum of configurations.
These configurations may involve network topol-
ogy, cost policies, hypervisors, etc.

• Scalability. In general, the number of VMs that a
single user may rent in public clouds is limited. In
contrast, in a simulation the number of machines
can be fully customisable.

• Simulation models can be shared with other re-
searchers in the community. Since the framework is
Open Source, it can be shared with other researchers
who can also modify it.

However, the use of simulation does entail some draw-
backs. The main one is that simulation does not provide
real data since we only simulate the performance of a
cloud system during a given experiment, in contrast to
executing the experiment in a cloud system. It is impor-
tant to note that our work does not intend to replace
experiments in real clouds. Instead, TEA-Cloud has been
designed to help researchers to find, and then improve
further, configurations that obtain better results and
discard those that are invalid. However, the final stage of
the research must consist of executing the corresponding
experiments in a real cloud system. In addition, one
of the main objectives of TEA-Cloud is to provide a
methodology to systematically test the designed cloud
systems. This is not trivial because the number of tests
may range from a few hundred to millions, depending
on the level of detail in the model of the cloud.

There are three main reasons for our interest to ap-
ply MT for checking the correctness of cloud systems.
First, it has been shown that MT can overcome the

IEEE TRANSACTIONS ON RELIABILITY 6

oracle problem in a range of scenarios and typically there
will be no oracle when testing cloud systems. Second,
the functionality of the proposed framework can be
increased by adding new MRs. MRs can also be shared
among different research groups. Third, it is possible
to accelerate the execution of the testing process by
concentrating the testing effort on a particular feature
of the system by using specific MRs, targeting either a
specific characteristic or a part of the system. This can
be easily done because we will group MRs into sections,
each section responsible for a specific feature of the cloud
system and, therefore, we can use a reduced number of
test cases for testing a specific part of the cloud.

In conclusion, MT is the most appropriate approach
to validate cloud systems, especially since usually there
is no oracle. Having an oracle is usually a prerequi-
site for model-based testing techniques [3], [4]. Let us
illustrate this claim with a simple example. A typical
cloud environment consists of thousands of physical
machines, each of them containing a CPU, storage de-
vices, memory and network interface(s), several config-
urations for virtual machines and a large number of
users concurrently requesting resources to the cloud.
Therefore, it is impossible to know beforehand the per-
formance, for example in terms of time, of such a cloud
when processing a specific workload (that is, we do
not have an oracle). However, it is feasible to predict
whether such a cloud system should be better or worse
than another cloud system. For example, if we replace
CPUs by faster/slower versions then we should obtain
a better/worse performance in terms of time (even if
we cannot predict the exact time values). Therefore, it is
feasible to define MRs.

4 DESCRIPTION OF TEA-Cloud

This section describes the architecture of the TEA-Cloud
framework. Basically, TEA-Cloud can be divided into
three main parts: the catalogue of MRs, the testing
engine, and simulation (see Figure 1).

Initially, an expert with deep knowledge in cloud
computing systems designs a catalogue of MRs 1 ,
which formally represents aspects of the behaviour of
the cloud. Once the expert considers that the catalogue is
complete, that is, the most relevant features of the cloud
are accurately reflected in the properties of the MRs, each
MR in the catalogue is coded by an expert programmer.
The code representing each MR is included into TEA-
Cloud using a hierarchical organisation. Let us emphasise
that this architectural design makes it possible to easily
and efficiently increase the functionality of TEA-Cloud
by including new MRs into the system. It is important to
remark that it is crucial to have an appropriate catalogue
of MRs in order to carry out the testing process with pre-
cision and effectiveness. Also note that the cost required
to provide accurate MRs does not only rely upon the
effort associated with its development, but also requires
an expert with deep knowledge on cloud systems.

MRF1	

MRF2	

MRFi	 MRP1	

MRP2	

MRPj	

MRC1	

MRC2	

MRCk	

Functional	 Non-Functional	

Performance	 Cost	

Catalog	of	MRs	

Expert

MRs	

Design	

Select	subset	of	MRs	

Check		

Results	
Non-Expert

user

Tests	Tests	Follow-up		

test	cases	

Testing	engine	

Variant	generator	

(cloud	models)	

Report	

Simulation	

RAW		

results	

1	

Workload	

generator	

Cloud	

model	

Tests	Tests	Test	cases	

2	

3	

4	
5	

6	
7	

8	

9	

Fig. 1. Architecture of the TEA-Cloud framework

Users may create the cloud model to be tested and
a workload 2 . A cloud model is, essentially, the con-
figuration of the components defining a cloud system.
This configuration includes, among others, the network
topology, aggregation of physical machines in racks,
definition of physical machines, virtual machines and
software pieces like managers and schedulers. A work-
load represents the operations that must be processed
by the cloud. In essence, these operations consist of
deploying the VMs requested by the users and executing
applications over the VMs. Additionally, the user selects
a subset of MRs, from the catalogue provided by TEA-
Cloud, focusing on those parts of the system to be
tested 3 .

The test engine receives as input a cloud model, a
workload and a set of MRs, previously selected by the
user, in order to automatically test the cloud. Essentially,
this module carries out the testing process. Hence, the
following processes are automatically executed.

Initially, a collection of workloads is created. These
workloads are automatically generated from the work-
load initially provided by the user. Once the workloads
are created, the testing engine proceeds to generate the
tests. First, a test suite is automatically generated by
using both the cloud model generated by the user and
the collection of workloads 4 . A test case consists of
a cloud model and a workload to be processed by the
cloud. Second, a large collection of variants (clouds) are
created by slightly modifying the cloud model provided
by the user. Next, a large collection of follow-up test
case is automatically created by combining the variants
(clouds) and the workloads. Each test case, generated
in 4 , and each follow-up test case, generated in 5 ,
must fulfill the input part of the MRs involved in the
testing process. Third, all the test cases are executed over
a simulation platform (see steps 6 and 7). TEA-Cloud
does not require a specific simulator, making it possible
to include any simulation platform, like CloudSim [34],

IEEE TRANSACTIONS ON RELIABILITY 7

[35] or CloudSim-Plus [36], that simulates the behaviour
of the cloud.

Next, the testing engine processes the provided re-
sults 8 . This step is particularly relevant because the
results corresponding to each test case are automatically
checked without the intervention of a human. This is
achieved by applying the chosen MRs to both the test
cases and the results.

Finally, a report containing the result of the testing
process is generated 9 .

The concept of variant will be very important when
defining our MRs since we will compare the results of
different models, that is, the cloud model m provided
by the user and a variant m′. In essence, a variant is
generated by applying a slight modification over an
original cloud model so that we create a mutant. In
Section 4.1 we explain in detail how the variants are
generated.

4.1 Formal modelling of cloud infrastructures

Each cloud system must provide a data center to allocate
physical resources, like computing machines, storage
servers, switches and communication networks. These
hardware parts can be modelled using the simulation
platform, which basically provides a repository that con-
tains a collection of hardware components. Users can use
and combine these to build customised models of phys-
ical machines, which rely on four main systems: CPU,
memory, network and storage. In a typical cloud system,
there are two different types of physical machines: com-
puting nodes and storage servers. A computing node
is a machine used to host one or several VMs. These
VMs are provided to users that request cloud services,
while storage servers are in charge of managing remote
data access. First, we assume that there are partial orders
over the sets of CPUs, memories, network components
and storage systems. These partial orders indicate which
entities provide better performance.

Definition 1. We represent a cpu as a pair
(speed, ncores), where speed ∈ N is the speed of
cpu, measured in MIPS, and ncores ∈ N is the number
of cores.

We denote by CPU the set of available processing
systems (CPUs). We assume that there exists a partial
order ≤cpu⊆ CPU × CPU such that c1 ≤cpu c2 indicates
that the CPU c2 is preferable to c1.

We represent a memory as a tuple
(size, rspeed, wspeed), where size ∈ N is the size
of memory, measured in MBytes, and rspeed, wspeed ∈ N

are the read and write speeds in Mbps, respectively
We denote by MEM the set of available memories. We

assume that there exists a partial order ≤mem⊆ MEM×
MEM such that m1 ≤mem m2 indicates that the memory
device m2 is preferable to m1.

We represent a network as a pair (bw , lat), where bw ∈
N is the bandwidth of network, measured in Mbps, and
lat ∈ N is the latency measured in µs.

We denote by NET the set of available network
interfaces. We assume that there exists a partial order
≤net⊆ NET × NET such that n1 ≤net n2 indicates that
the network interface n2 is preferable to n1.

We represent a storage device as a tuple
(size, rspeed, wspeed), where size ∈ N denotes the
size of storage device in GBytes, and rspeed, wspeed ∈ N

are the read and write speeds, measured in Mbps,
respectively.

We denote by ST O the set of available storage sys-
tems. We assume that there exists a partial order ≤sto⊆
ST O × ST O such that s1 ≤sto s2 indicates that the
storage device s2 is preferable to s1.

We represent a switch as a tuple (cpu, bw, dela), where
cpu ∈ CPU denotes the processing system of switch, bw ∈
N+ denotes the bandwidth of switch, measured in Mbps,
and dela ∈ N+ is the average delay per packet of switch
measured in microseconds.

We denote by SWI the set of available switches. We
assume that there exists a partial order ≤swi⊆ SWI ×
SWI such that s1 ≤swi s2 indicates that the switch s2 is
preferable to s1.

For instance, given two different storage devices,
disk1 = (500, 110.2, 106.8) that models a Western Digital
Black SATA3 HDD drive and disk2 = (500, 3500, 2500)
that models a Samsung 970 Evo SDD drive, we can say
that disk2 is better than disk1, formally, disk1 ≤sto disk2.

Next we introduce the formal definition of one of
the basic components of a cloud system: the concept of
physical machine.

Definition 2. A physical machine p is a tuple
(cpu,mem, net, sto, type), where cpu ∈ CPU denotes
the CPU processor of p, mem ∈ MEM denotes the
memory system of p, net ∈ NET denotes the network
system of p, sto ∈ ST O denotes the storage system of
p, and type ∈ {stoSer, cmpNode}, where stoSer indicates
that p is a storage server and cmpNode indicates that
p is a computing node. In order to access the different
components of the tuple, we will use a subindex
notation. For example, pcpu denotes the first component
of p, that is, its CPU.

Next we present additional terminology regarding
devices that connect physical machines.

Definition 3. A hardware collection is a set H = P ∪ S,
where P is a set of physical machines and S is a set of
switches. We assume that P and S are disjoint.

Let H = P∪S be a hardware collection. A data center is
a connected graph 〈H,E〉 where E ⊆ ((S×S)∪(S×P)∪
(P × S)) is a symmetric anti-reflexive relation denoting
the set of network links between the elements of H .

Since virtualisation facilitates the separation of physi-
cal and logical resources, it has became one of the major
aspects in cloud computing environments. Hence, the
behaviour of virtual resources needs to be appropriately
simulated in order to obtain accurate results. A virtual

IEEE TRANSACTIONS ON RELIABILITY 8

machine (VM) is a set of physical resources that users
rent to execute their applications. VMs are intended
to provide users with the functionality of a complete
computing node.

Definition 4. A virtual machine v is a tuple
(cpu, pc,mem, pm, sto, ps, c) where cpu ∈ CPU denotes
the requested CPU, mem ∈ MEM denotes the
requested memory device, sto ∈ ST O denotes the
requested storage system, 0 < pc, pm, ps ≤ 1 denote,
respectively, the percentage of the CPU, memory and
storage system requested, and c denotes the cost to rent
– for one hour – the virtual machine.

For example, a virtual machine (Intel i7 Quad-Core 3.4
Ghz, 0.5, (4 GB of RAM, 10667 Mbps), 0.3, (500 GB disk,
960 Mbps read, 900 Mbps write), 0.1, 5) indicates that
we would like to use a machine providing a CPU as
least as good as an Intel i7 Quad-Core and having at least
50% of its use, providing 4 GB of RAM or more with
access rate of 10667 Mbps or better and having at least
30% of its use, and at least 10% of a storage system of
500 GB or better (960 Mbps or better read, 900 Mbps or
better write). Additionally, we are required to pay 5e for
each hour using this virtual machine. It is important to
note that while the capacity of each virtualised device
is exclusively used by each VM, the physical features of
these devices, like bandwidth, are shared by all the VMs
that use them.

From now on, the term user denotes a person who
uses the TEA-Cloud framework while tenant refers to a
person who purchases services of the modelled cloud
in a simulated environment. Initially, each tenant has a
budget. The amount and quality of each purchased VM
directly depends on this budget. Basically, a tenant is
defined by a set of purchased VMs, each of them pur-
chased for a specific time-slot, and a set of applications
that are executed in these VMs.

Definition 5. Let v be a VM. Given an application a,
we denote by a(v) the execution of the application a on
the virtual machine v. We denote by a↑(v) the successful
execution of a on v, that is, a is completely executed
without being aborted by the expiration of any time slot
of v.

Let V be a set of VMs and A be a set of applications.
A tenant t is a pair (V,A), where the first element of the
pair represents the virtual machines purchased by t and
the second element represents a set of applications that
must be executed in V .

Finally, the cloud manager module is the master key
of the simulation core. This module is directly linked to
the resource manager module and to each VM in the
cloud. The main objective of the cloud manager is to
map the VMs requested by tenants to the available phys-
ical machines in the cloud. Thus, each cloud manager
must implement its own mapping function. Also, this
module can apply, in real-time, intelligent scheduling

algorithms for optimising the trade-offs between cost
and performance. An interesting feature of the proposed
framework is that users of our framework are able to
check models of single components, like hypervisors,
CPUs and scheduling policies, to test both performance
and functional aspects in different cloud environments.

Definition 6. Let V be a set of VMs and P be a set of
physical machines. A cloud manager is a partial function
Φ : V → P that represents the assignment of a physical
machine p ∈ P to each virtual machine v ∈ V . This
function must satisfy the following constraints:

• For all v = (cpu, pc,mem, pm, sto, ps, c) ∈ V we have
that cpu ≤cpu Φ(v)cpu, mem ≤mem Φ(v)mem and
sto ≤sto Φ(v)sto. That is, each virtual machine gets
a physical machine having devices as least as good
as the requested ones.

• For all p ∈ P we have:
∑

{v∈V |Φ(v)=p}

vpc
≤ 1

• For all p ∈ P we have:
∑

{v∈V |Φ(v)=p}

vpm
≤ 1

• For all p ∈ P we have:
∑

{v∈V |Φ(v)=p}

vps
≤ 1

Let D be a data center, V be a set of VMs and M be
a cloud manager. A cloud model m is a tuple (D,V,M).

A worklet w is a pair (t, ts), where t is a tenant and ts
is a timestamp representing the exact time when the ten-
ant t arrives to the cloud. Thus, each worklet represents
the execution of applications in the VMs requested by a
tenant.

A workload ω is a sequence of worklets to be pro-
cessed by the cloud system. We denote by lenten(ω) the
number of tenants in ω to be processed. We denote by
lenVMs(ω) the total number of VMs requested by the
tenants contained in ω.

The processing of a workload ω over a cloud model m
is carried out by using simulation. Thus, we denote by
S(m,ω) the simulation of an environment where the
workload ω is executed over the cloud m.

In Section 5 we introduce notation to access infor-
mation contained in S(m,ω) such as time of execution,
performance and cost.

4.2 Testing cloud computing systems

One of the most common problems for users when
simulating programs is the difficulty of methodically
testing the validity of their simulations. It is well-known
that testing of software systems can take around 50% of
the total budget of the project [1]. We are not aware of
such figures, in terms of effort, for the case of simulation
of cloud systems, but we expect similar numbers due

IEEE TRANSACTIONS ON RELIABILITY 9

to the large number of components like disks, CPUs,
networks and VMs, and the numerical computations of
the simulator. It becomes impractical for end-users to
manually predict the expected values and/or check the
correctness of the reported outputs. Therefore, it would
be desirable to use a methodology that reliably decides
whether the testing process found an error. Unfortu-
nately, testers usually adopt an ad-hoc strategy based
on contrasting the results obtained from the simulator
against real-world experiments. This strategy consists of
providing a model of the system under test and then
executing the same test in both environments, real world
and simulated environment, to compare the obtained
results. However, this strategy requires vast amounts of
time and effort for even a very limited number of test
cases.

When using conventional testing methods it is nec-
essary to check whether the output(s) returned by the
system under test are the expected ones or not. Schemat-
ically, let S be a system, I be the input domain and S
be a test selection strategy. Let T = {t1, t2, . . . , tn} ⊆ I
be the set of tests generated by using S. When these
tests are sequentially applied to the system S we obtain
a sequence of outputs S(t1), S(t2), . . ., S(tn). Therefore,
if we have a specification/oracle, called O, then we find
an error if there exists t ∈ T such that S(t) 6= O(t). In
general, we will not have an oracle and the most that
we can do is to look for evidence that there has been a
failure.

TEA-Cloud includes a testing engine whose main pur-
pose is to automatically test a cloud model by using an
approach inspired by MT. In TEA-Cloud, a single test
case is a pair (m,ω) representing the processing of ω
by the cloud m. Actually, this activity can be manually
carried out by a user even without using the testing
part of TEA-Cloud. The idea is to generate follow-up
test cases from the original cloud under study, execute
these new tests, S(m′

1, ω
′
1), S(m

′
2, ω

′
2), . . . , S(m

′
k, ω

′
k), and

compare the obtained results. In essence, a follow-up
test case consists of a variant model and a workload.
Note that our variants are not mutants in the sense
of mutation testing: our goal is not to kill the variants
to decide the goodness of the considered test but to
compare the different obtained results to detect a wrong
or suboptimal behaviour of the original model. We will
use MRs to compare these results. Next, we formally
define the pattern of our relations.

Definition 7. Let m be a cloud model and m′ be a variant
of m. Let ω and ω′ be workloads to be processed by m
and m′, respectively. A metamorphic relation R for m, m′,
ω and ω′ is a set of 4-tuples

R =

(

(m,ω), (m′, ω′),
S(m,ω), S(m′, ω′)

)

∣

∣

∣

∣

∣

∣

pin((m,ω), (m′, ω′))
⇓

pout(S(m,ω), S(m′, ω′))

where pin is a relation over cloud models and workloads
and pout is a relation over the results provided by the

simulation of the clouds for processing the workloads.

If a tuple does not belong to a metamorphic re-
lation, then we can say that we found an error.
In other words, given a model m that we are val-
idating and a workload ω, if we have that for
some variant model m′ and workload ω′ the tuple
((m,ω), (m′, ω′), S(m,ω), S(m′, ω′)) does not belong to
MR then we know that there has been an unexpected
behaviour. For example, it may happen that we expect
the performance of m to always be better than the one
corresponding to m′. However, for our chosen work-
load ω, the simulation to process ω over m and m′ shows
otherwise. In the next section we present some of the
MRs that are included in our tool and how they are
classified according to the type of property that they
validate (performance, functional and cost). In addition,
users of our framework can define new MRs (it will
be their responsibility to ensure the soundness of those
relations).

TEA-Cloud contains a catalogue of MRs that represents
the underlying correct behaviour of a cloud. Thus, users
can easily create, remove and edit current MRs from
the repository. This is a powerful feature of TEA-Cloud
because users can exchange MRs to easily and quickly
improve their testing processes.

The testing methodology proposed in this paper val-
idates whether a given cloud model works properly,
when processing each tenant contained in a given work-
load, by requesting virtual resources and launching ap-
plications. The following schema shows the methodolog-
ical steps used in TEA-Cloud:

S-1 Initially, the expert designs and includes MRs into
the catalogue (see step labelled by 1© in Figure 1).

S-2 A cloud model m must be provided by the user 2©.
S-3 Depending of the features to be tested on m, a subset

R of the MR catalogue 3© must be selected.
S-4 The testing engine 4© automatically generates:

S-4.1 A set of workloads W .
S-4.2 A set of test cases T = {(m,ω)|ω ∈ W}.

S-5 For each R ∈ R, the testing engine 5© uses T and
W to automatically generate a set of follow-up test
cases F = {(m′, ω′)|ω′ ∈ W}:

S-5.1 For each t ∈ T :
S-5.1.1 For each f ∈ F :
S-5.1.1.1 Execute S(t) 6©.
S-5.1.1.2 Execute S(f) 7©.
S-5.1.1.3 If (t, f, S(t), S(f)) /∈ R then a log indicating

the relation that is not passed by the cloud
model m is stored; otherwise, the log shows
that the current experiment did not find a
fault 8©.

S-6 The logs generated from [S-5] are processed by the
testing engine, which generates a report showing
the overall results 9©.

S-7 End of the testing process.

IEEE TRANSACTIONS ON RELIABILITY 10

5 METAMORPHIC TESTING FOR CLOUD COM-
PUTING SYSTEMS

TEA-Cloud provides a catalogue of MRs that can be
easily managed by users. These relations are the core
engine of the testing process. Therefore, the user chooses
some MRs on the basis of the features of the cloud
system that are to be tested (step S-3 of the algorithm
given in the previous section). For instance, if a user is
interested in testing the performance of a given cloud
system, then this user should select those MRs dealing
with performance. In order to facilitate this process, the
MRs incorporated in TEA-Cloud are grouped into three
different sets, where each set represents an aspect of the
system to be tested.

• Performance. This set contains those relations dealing
with the performance of a given system. Depending
on the part of the system to be tested, this per-
formance is measured in Mbps, MIPS or execution
time.

• Functional. This set contains those relations that
check the underlying behaviour of a system.

• Cost. This set contains those relations that check the
restrictions regarding the required monetary cost for
renting virtual machines in the cloud.

Next, we introduce some notation to formally specify
different aspects concerning performance and cost of a
cloud system and its parts.

Definition 8. Let m = (D,V,M) be a cloud model
consisting of a data center D, a set of VMs V and a
cloud manager M , where D = 〈H,E〉 and H = P ∪ S
(see Definition 3).

Let p = (cpu,mem, net, sto, type) be a physical ma-
chine. We denote by δ(px) ∈ R+ the theoretical per-
formance peak of the component x of p. Specifically,
δ(pcpu) denotes CPU performance, measured in MIPS,
δ(pmem) denotes memory performance, measured in
Mbps, δ(pnet) denotes network performance, measured
in Mbps, and δ(psto) denotes I/O performance, also
measured in Mbps. Consequently, if given two devices
x1 and x2 of the same type that satisfy the partial order
described in Definition 1, for example x2 is preferable to
x1, and two different machines p and p′ that only differ
in this component, then we must have δ(px1

) ≤ δ(p′x2
).

We denote by nCores(m) the aggregated number of
CPU cores provided by the physical machines of m.

We denote by Ω(m,ω) the total monetary cost required
to process all the tenants contained in ω over the cloud
m.

The theoretical performance peak of a given device
is usually provided by its manufacturer. Basically, this
performance heavily relies on the physical characteristics
of the hardware device. However, the maximum perfor-
mance obtained when a hardware device is exploited in a
real system rarely reaches the theoretical peak provided
by its manufacturer.

The estimation of the real performance and cost in
cloud systems is a difficult and complex task, which
requires sophisticated techniques for representing the
behaviour of each component of the system to be anal-
ysed. Due to the complex underlying architecture of
cloud systems, there are many elements such as network
bottlenecks, high number of users using shared resources
concurrently and scheduling policies for managing avail-
able resources, just to name a few, that have a direct
impact on the overall system performance. In order to
obtain accurate estimates, all these elements must be
taken into account. Therefore, we use simulation, where
both the physical characteristics and the underlying be-
haviour of each component can be individually modelled
with the objective of building fully customisable data
centers.

In order to compute the previously described metrics
in a cloud system, the simulator takes as input two
different elements: a cloud model m that represents
the infrastructure of a cloud and a workload ω that
represents the tenants to be processed by m. Next, we
introduce notation to represent different measures of
executing the workload ω over the cloud model m using
simulation:

• simΩ(m,ω) ∈ R+ denotes the total cost required to
process the workload ω in the cloud m.

• simΓ(m,ω) ∈ R+ denotes the time required to
process the workload ω in the cloud m.

• sim↑Users(m,ω) denotes the number of successfully
processed tenants of ω over m. For each worklet
(t, ts) ∈ ω, where t = (V,A), we say that the
tenant t has been successfully processed by the
cloud m when every application a ∈ A is completely
executed over V .

• sim↑VMs(m,ω) denotes the number of successfully
deployed VMs of ω over m, where m = (D,V,Φ). We
let P be the set of physical machines contained in D.
For each worklet ((V ′, A), ts) ∈ ω, we say that a vir-
tual machine v ∈ V ′ has been successfully deployed
in m if there exists p such that Φ(v) = p ∈ P , that
is, v has been successfully assigned to an available
physical machine of m.

It is important to observe that a proper design of the
MRs is key to successfully applying MT. Let us illustrate
this with a simple example, where we use the following
MR to represent the behaviour of a cloud system: “Given
two cloud models m and m′, and a workload ω, if the
number of physical machines of m is greater than the
number of physical machines of m′, then m requires less
time than m′ to process ω.” In this case, we apply the
workload ω over both clouds, m and m′, and observe the
performance provided. This is a clear example of a bad
metamorphic relation. Specifically, if m′ uses powerful
CPUs with a large number of CPU cores, in particular,
better than the CPUs used in m, then m′ may outperform
m. Therefore, a testing process using this MR might
show inaccurate results.

IEEE TRANSACTIONS ON RELIABILITY 11

Next, we enumerate our most relevant MRs. For the
sake of clarity, we provide a brief description of each
MR together with the corresponding formal definition.
In order to simplify the description of each MR, we
assume that the components of the model m that are not
reflected in the MR, remain unmodified in the generated
variant m′. We use two cloud models and two work-
loads, denoted by m = (D,V,M), m′ = (D′, V ′,M ′),
ω and ω′, respectively, where m represents the original
model provided by the user, m′ represents a variant
model automatically generated by the testing engine
and ω and ω′ are two workloads to be processed by the
cloud models. Initially, the workloads are arbitrary in the
sense that no sorting criterion has been applied to them.
Finally, we let D = 〈H,E〉, D′ = 〈H ′, E′〉, H = P ∪S and
H ′ = P ′ ∪ S′.
RP1: Given two cloud models m and m′ and two

workloads ω and ω′, if ω and ω′ are equal and the
theoretical aggregated CPU performance of m is greater
than the theoretical aggregated CPU performance of m′

(and all other aspects are the same), then the time
required to execute ω over m must be less than or equal
to the time required to execute ω′ over m′ or the number
of tenants of ω that are successfully processed over m
must be greater than the number of tenants in ω′ that
are successfully processed over m′.

RP1 =

(m,ω),
(m′, ω′),
S(m,ω),
S(m′, ω′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω = ω′

∧
∆(mcpu) > ∆(m′

cpu)
⇓

simΓ((m,ω)) ≤ simΓ((m
′, ω′))

∨
sim↑Users(m,ω) >
sim↑Users(m

′, ω′)

RP2: Given two cloud models m and m′ and two
workloads ω and ω′, if ω and ω′ are equal, and the
number of switches used in D and D′ is the same, and
the switches used in D are preferable to the switches
used in D′, then the time required to execute ω over m
must be less than the time required to execute ω′ over m′

or the number of tenants of ω that are successfully
processed over m must be greater than the number of
tenants in ω′ that are successfully processed over m′.

RP2 =

(m,ω),
(m′, ω′),
S(m,ω),
S(m′, ω′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω = ω′ ∧ |S| = |S′|
∧

∀s ∈ S, s′ ∈ S′ : s′ ≤swi s
⇓

simΓ((m,ω)) < simΓ((m
′, ω′))

∨
sim↑Users(m,ω) >
sim↑Users(m

′, ω′)

RP3: Given two cloud models m and m′ and two
workloads ω and ω′, if ω and ω′ are equal, and the
number of CPU cores provided by m is greater than

the number of CPU cores provided by m′, then the
time required to execute ω over m must be less than or
equal to the time required to execute ω′ over m′ and the
number of VMs that are successfully deployed when m
executes ω must be greater than or equal to the number
of VMs that are successfully deployed when m′ executes
ω′, or the number of tenants of ω that are successfully
processed over m must be greater than the number of
tenants in ω′ that are successfully processed over m′.

RP3 =

(m,ω),
(m′, ω′),
S(m,ω),
S(m′, ω′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω = ω′

∧
nCores(m) > nCores(m′)

⇓

simΓ((m,ω)) ≤ simΓ((m
′, ω′))

∧
sim↑VMs(m,ω) ≥
sim↑VMs(m

′, ω′)

∨
sim↑Users(m,ω) >
sim↑Users(m

′, ω′)

RP4: Given two cloud models m and m′ and two
workloads ω and ω′, if ω and ω′ are equal, and the ag-
gregated theoretical network performance of m is greater
than the aggregated theoretical network performance of
m′, and the number of CPU cores of m is greater than
or equal to the number of CPU cores of m′, then the
time required to execute ω over m must be less than
the time required to execute ω′ over m′ or the number
of tenants of ω that are successfully processed over m
must be greater than the number of tenants in ω′ that
are successfully processed over m′.

RP4 =

(m,ω),
(m′, ω′),
S(m,ω),
S(m′, ω′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω = ω′

∧
∆(mnet) ≥ ∆(m′

net)
∧

nCores(m) ≥ nCores(m′)
⇓

simΓ((m,ω)) < simΓ((m
′, ω′))

∨
sim↑Users(m,ω) >
sim↑Users(m

′, ω′)

We now comment on why these relations were chosen
and the types of faults that they might find. This first
group of relations, namely RP1, RP2, RP3 and RP4, focus
on performance. These relation are designed to locate
faults in cloud systems where we obtain the expected
behaviour but in an inefficient way. In these relations, m
represents the cloud under study while m′ represents the
variant cloud automatically generated for the follow-up
test case. Hence, RP1 aims to detect faults in clouds that
use powerful CPUs and provide a lower performance
than expected. We detect an error when m′, using slower
CPUs than m, provides better results. In the case of RP2,
we are interested in checking the performance of the

IEEE TRANSACTIONS ON RELIABILITY 12

networking subsystem and, therefore, we detect faults
when m′ is using a slow – or poorly configured –
network and provides better results than m, which uses
a fast and properly configured network. RP3 focuses
on the number of CPU cores of the studied cloud. For
this, we detect an error when m′ contains fewer CPU
cores than m and is able to allocate more VMs. Finally,
RP4 combines the number of CPU cores and the cloud
network. In this case, we study the total number of
successfully processed users and the total execution time,
which must be better in the cloud providing the better
resources.

The second group of relations deals with functional
properties.
RF1: Given two cloud models m and m′ and two

workloads ω and ω′, if ω′ is a permutation of ω built after
applying a sorting criterion to ω, denoted by sort(ω),
that produces a chronologically sorted sequence ω′ =
((t1, ts1), (t2, ts2), . . . , (tn, tsn)) such that for all 1 ≤ i < n
we have tsi ≤ tsi+1, and m and m′ are equal, then the
number of tenants of ω′ that are successfully processed
over m must be equal to the number of tenants in ω.

RF1 =

(m,ω),
(m′, ω′),
S(m,ω),
S(m′, ω′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sort(ω) = ω′ ∧m = m′

⇓
sim↑Users(m,ω′) =
sim↑Users(m

′, ω′) =
lenten(ω)

RF2: Given two cloud models m and m′ and two
workloads ω and ω′, if ω′ = sort(ω) and m and m′

are equal, then the number of VMs that are successfully
deployed when m executes ω′ must be equal to the total
number of VMs requested by the tenants contained in ω.

RF2 =

(m,ω),
(m′, ω′),
S(m,ω),
S(m′, ω′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sort(ω) = ω′ ∧m = m′

⇓
sim↑VMs(m,ω′) =
sim↑VMs(m

′, ω′) =
lenVMs(ω)

RF3: Given two cloud models m and m′ and two
workloads ω and ω′, if ω contains ω′ and the number
of CPU cores provided by m is less than or equal to
the number of CPU cores provided by m′, then the
number of VMs that are successfully deployed when m
executes ω must be less than or equal to the number of
VMs that are successfully deployed when m′ executes
ω′.

RF3 =

(m,ω),
(m′, ω′),
S(m,ω),
S(m′, ω′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω′ ⊆ ω
∧

nCores(m) ≤ nCores(m′)
⇓

sim↑VMs(m,ω) ≤
sim↑VMs(m

′, ω′)

This second group of relations, namely RF1, RF2 and
RF3, has been designed to check the functional prop-
erties of the cloud. In these relations, ω represents the
workload processed by the cloud under study m and ω′

is the workload processed by the variant cloud m′. Our
first relation, RF1, considers a single cloud system that
processes two different workloads ω and ω′, where in
both cases the cloud processes the same users but in a
different order. We detect an error in m if the number
of processed users differs when processing ω and ω′.
Similarly, RF2 focuses on the number of successfully
deployed VMs. In this case, we detect an error when
the number of VMs processed by the cloud is not the
same. Finally, we are interested in checking the number
of successfully deployed VMs by the cloud m processing
ω, when compared with m′ processing ω′, when ω′ is
a subset of ω and also m′ has more CPUs than m. In
this case, we find an error when the number of VMs
deployed by m′ is greater than the number of VMs
deployed by m.

Our last group of relations deals with properties re-
lated to costs.
RC1: Given two cloud models m and m′ and two

workloads ω and ω′, if m and m′ are equal and ω′

contains ω, then the total cost required for processing
ω over m must be less than or equal to the total cost
required for processing ω′ over m′ or the number of
tenants of ω that are successfully processed over m must
be greater than the number of tenants in ω′ that are
successfully processed over m′.

RC1 =

(m,ω),
(m′, ω′),
S(m,ω),
S(m′, ω′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m = m′ ∧ ω ⊆ ω′

⇓
simΩ(m,ω) ≤
simΩ(m

′, ω′)
∨

sim↑Users(m,ω) >
sim↑Users(m

′, ω′)

RC2: Given two cloud models m and m′ and two
workloads ω and ω′, if m and m′ are not the same,
and ω and ω′ are equal, then the total cost required
for processing ω over m must be less than or equal to
the total cost required for processing ω′ over m′ or the
number of tenants of ω that are successfully processed
over m must be greater than the number of tenants in
ω′ that are successfully processed over m′.

RC2 =

(m,ω),
(m′, ω′),
S(m,ω),
S(m′, ω′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m 6= m′ ∧ ω = ω′

⇓
simΩ(m,ω) ≤
simΩ(m

′, ω′)
∨

sim↑Users(m,ω) >
sim↑Users(m

′, ω′)

RC3: Given two cloud models m and m′ and two
workloads ω and ω′, if m and m′ are equal, and the

IEEE TRANSACTIONS ON RELIABILITY 13

workload ω′ is generated by concatenating the workload
ω and the tenant t, then the total cost required for
processing ω over m must be less than the total cost
required for processing ω′ over m′.

RC3 =

(m,ω),
(m′, ω′),
S(m,ω),
S(m′, ω′)

∣

∣

∣

∣

∣

∣

∣

∣

m = m′ ∧ ω′ = ω · t
⇓

simΩ(m,ω) <
simΩ(m

′, ω′)

The last group of relations, namely RC1, RC2 and
RC3, deals with monetary costs and focuses on the cost
of renting the VMs requested by the users. The first
relation, RC1, locates an error in the cloud m when the
cost associated with process ω is higher than the cost
for processing ω′ and ω is included in ω′ (consequently,
it should request fewer VMs). The idea is to establish
a relation between the users in the workload and the
cost related to process them. Similarly, RC2 finds an
error in the cloud m while processing ω if there exists
a cloud m′ that processes more users than m and at
lower cost. Finally RC3 establishes a relation between
two workloads processed by a single cloud. In this case,
ω′ is built by including a new user into ω. Intuitively, the
cost required to process ω should be lower than the cost
to process ω′; otherwise, this relation locates an error in
the cloud.

6 EMPIRICAL STUDY

In this section we describe an empirical study used to
evaluate the applicability and usefulness of TEA-Cloud.
In contrast to our previous work [14], where only one
faulty cloud was analysed using three MRs and we had
a very limited number of test cases, using our current
framework we were able to analyse the effectiveness of
a complete catalogue of MRs to check a wide range of
cloud configurations. Also, since we used the cloudSim-
Plus simulator [36], it was possible to use large test suites
during the testing process. For the sake of clarity, this
study has been divided into different subsections. The
first subsection gives the research questions addressed.
Next, Section 6.2 describes the experimental settings
in detail, explaining, among other aspects, the criteria
used to select a cloud simulator for this study, the
modelling of the source cloud models and the generation
of the workloads. Section 6.3 presents the experiment
performed and the results of this are given in Section 6.4.
Finally, Section 6.5 provides a discussion regarding the
obtained results and what they tell us about the research
questions.

6.1 Research Questions

Ideally, we would like a testing technique to have the
following two properties.

1) It is valid: testing is unlikely to reject/fail a correct
system.

2) It is effective: testing is likely to reject/fail a faulty
system.

The research questions correspond to these two proper-
ties.

Research Question 1. Is the proposed technique valid, in
the sense that it tends not to reject correct cloud systems?

MT can be applied to test complex systems by using
MRs that state properties of the system under test.
In our case, the testing of cloud systems is especially
challenging due to, among other aspects, the size of the
system, the large number of inter-related parameters to
model the cloud and the concurrent access by many
users.

In our study, we were interested in investigating the
suitability of applying MT for testing such cloud sys-
tems, when using the catalogue of MRs given. The first
research questions was motivated by the fact that we
want correct cloud systems to pass the tests.

Research Question 2. Is the proposed technique effective,
in the sense that it tends to detect faulty cloud systems?

Currently, MT has been successfully applied to test
a wide variety of systems such as Web services [47],
machine learning [48] and compilers [49]. This last work
is especially relevant because the authors discovered
over one hundred faults in two popular C compilers
(GCC and LLVM). In our study, we were interested
in analysing how effective the MRs are in terms of
detecting faults. In order to answer this question, we
used mutation testing techniques to artificially inject
faults into a cloud. We applied the tests to the faulty
clouds and checked whether the MRs were satisfied.

6.2 Experimental settings

This section describes the experimental settings. First, we
discuss the selection of the cloud simulator used to ex-
ecute the experiments. Next, we describe the modelling
of the source cloud models and how the workloads were
generated.

6.2.1 Selection of the cloud simulator

During the last decade, simulation tools have been
widely adopted by the research community. However,
the large number of possible alternatives requires, in
most cases, an additional effort on the part of the user to
select the most appropriate simulator for carrying out the
experiments. Generally, each simulator focuses on one
- or several - features of the cloud like, among others,
storage, virtualisation, SLAs and energy consumption.
To the best of our knowledge, there is no simulator that
fully simulates all the features of a cloud environment
and, therefore, one or several simulation tools must be
used to properly cover the requirements of the user for
simulating the system under test.

In order to select the most appropriate simulator for
this study, we first focused our efforts on analysing

IEEE TRANSACTIONS ON RELIABILITY 14

existing surveys of cloud simulation tools [58], [59],
[60]. These surveys provide a comprehensive study of
major cloud simulators by highlighting their important
features and analysing their strengths and weaknesses.
After a careful analysis, we selected six well-known
cloud simulators that are widely used by the research
community: DCSim [37], GreenCloud [39], SimGrid [43],
iCanCloud [41], [42], CloudSim [34] and CloudSim-
Plus [36].

DCSim [37], also known as The Data Centre Simulator,
is a Java extensible simulation framework for simulating
a data center hosting. In essence, DCSim focuses on
the IaaS layer for providing services to multiple ten-
ants and supports VM management operations, such
as VM live migration and replication. However, DCSim
lacks a communication model. GreenCloud [39] is an
open-source tool for simulating data centers focusing
on data communication and energy cost in cloud com-
puting systems. GreenCloud lacks flexibility for mod-
elling other systems, like storage or user management.
SimGrid [43] is a tool for simulating algorithms and
distributed applications in distributed computing plat-
forms. The resources are modelled by their latency and
service rate, and the topology is configurable by the
users. The main limitation of SimGrid is the difficulty
of generating variants and follow-up test cases. iCan-
Cloud [41] models and simulates cloud computing sys-
tems by providing different functionalities like resource
provisioning and user management. Additionally, the
framework E-mc2 [42] can be used for analysing energy
consumption. Although iCanCloud provides models for
the major part of the underlying cloud architecture, this
simulator requires a high computational cost, which is
reflected in long executions. CloudSim [34] is an ex-
tensible and open-source Java simulator, which enables
modelling of cloud computing systems and application
provisioning environments. CloudSim is considered the
de facto standard cloud simulation platform due to its
capabilities for simulating cloud systems, such as VM
allocation and provisioning, energy consumption, feder-
ated clouds and the possibility to model different types
of clouds like public, private, hybrid and multi-cloud
environments. One of the key features of CloudSim is
that it is possibile to include new functionality using
extensions. CloudSim-Plus [36] is based on CloudSim
and seeks to improve several engineering aspects, such
as maintainability, reusability and extensibility.

After a careful study, we decided that cloudSim-Plus
was the most appropriate simulation tool for this study.
First, CloudSim-Plus is built upon CloudSim, which
allows new functionalities to be added using extensions.
Thus, if new MRs are required to represent additional
features, these extensions can be used to deal with them.
Second, CloudSim-Plus enhances CloudSim because it
provides the flexibility to model a wider spectrum of
configurations, which are adequate for creating follow-
up test cases. Third, this simulator has an active commu-
nity and it is currently maintained by its development

team.

6.2.2 Source cloud models

In TEA-Cloud, a cloud model m is a tuple (D,V,M),
where D is a data center containing the hardware re-
sources, V is the set of virtual machines offered by
the cloud and M is a cloud manager that manages the
resource provisioning.

In this study we designed 9 different cloud models to
be tested. These different cloud models used the same set
of VMs V and three homogeneous data centers, namely
Dm, Ds and Dl, which provided, respectively, 576, 320
and 1088 physical machines. The main parameters of D
for modelling the data center are depicted as follows:

• Number of physical machines: 576 / 320 / 1088

– # Computing nodes: 512 / 256 / 1024
– # Storage nodes: 64

• Physical machine features:

– RAM memory: 16 GB
– Storage capacity: 500 GB
– CPU: 4 cores @ 84000 MIPS

• Network: Ethernet 1 Gbps

The second piece to be modelled is the configuration of
each VM offered by the cloud. In this case, we provided
three different configurations of VMs (see Table 1).

TABLE 1

Modelling of different configurations of VM

Type CPU cores Memory Storage

VMsmall 1 core 1 GB 100 GB
VMmedium 2 cores 2 GB 250 GB

VMlarge 4 cores 4 GB 500 GB

In order to conclude the modelling of each cloud
model, a cloud manager must be provided. Basically, a
cloud manager is a piece of software in charge of allo-
cating the VMs requested by users to physical machines
with available resources. In these experiments we used
three different algorithms for allocating VMs.

• Best-fit. The cloud manager performs a search, using
a criterion that minimises the fragmentation of CPU
cores among the list of available physical machines
in the cloud, that is, the physical machine with
the fewest available CPU cores that are enough for
deploying the requested VM is selected.

• First-fit. The cloud manager performs a linear search
among the list of available physical machines in the
cloud. The first physical machine having suitable
resources to deploy the requested VM is selected.

• Worst-fit. The cloud manager performs a search
among the list of available physical machines in
the cloud using a criterion that maximises frag-
mentation, that is, the physical machine with most
available CPU cores is selected.

IEEE TRANSACTIONS ON RELIABILITY 15

Using these parameters, we constructed nine cloud
models (see Table 2) by combining different cloud man-
ager algorithms, that is, Best-fit, First-fit and Worst-fit, and
three different data centers supporting the cloud. Later
we describe three different policies, implemented by
hypervisors, for mapping the execution of an application
to a VM. There will therefore be 27 cloud configurations,
each defined by a combination of a cloud model and a
type of hypervisor.

TABLE 2

Cloud models

Cloud model Data Center Cloud Manager

mm
best

Dm Best-fit
mm

first
Dm First-fit

mm
worst Dm Worst-fit

ms
best

Ds Best-fit
ms

first
Ds First-fit

ms
worst Ds Worst-fit

ml
best

Dl Best-fit
ml

first
Dl First-fit

ml
worst Dl Worst-fit

6.2.3 Generation of the workload

In order to analyse the behaviour of a cloud, a workload
must be executed. We consider that a workload is, essen-
tially, a sequence of tenants requesting VMs to the cloud
for executing applications. Each tenant is given by a pair
(V,A), where the first element represents the rented VMs
and A represents the applications to be executed.

In order to provide accurate configurations for mod-
elling VMs, we used models inspired by the VMs pro-
vided by Amazon EC2 [56]. These VMs execute different
applications requested by the users. Each application
was represented as an instance of a Cloudlet instance
in the cloudSim-Plus simulator. Thus, we used a list of
Cloudlet instances to represent the applications that
are executed over each VM requested by the user. Specif-
ically, each Cloudlet executes 1000 MIs, reads a file of
50 MB and writes to disk 75 MB of data. The interval
between the execution of two consecutive applications
was computed by using a Uniform(10 ms, 33 s)

distribution.
Table 3 shows the modelling of four types of tenant,

each one representing a group of users in the cloud
that have a similar behaviour. The configuration of this
behaviour can be set by using two parameters: the
applications to be executed and the VMs deployed by the
tenant. The first row of this table represents the number
of application instances requested by each type of tenant.
These are followed by three rows that represent the
number of VMs rented by each type of tenant.

The idea was to represent the behaviour of different
users, each one requesting different resources from the
cloud, to generate a heterogeneous workload to be pro-
cessed by the clouds under test.

TABLE 3

Modelling of different types of tenants

Configuration \ Tenant tA tB tC tD

App instances 5 10 1 1
VMsmall 5 0 0 0
VMmed 0 5 2 50
VMlarge 0 5 0 0

We generated a workload using the configuration
depicted in Table 3. This workload contains a total of
1024 tenants that are distributed as follows:

ω = (512× tA, 256× tB , 128× tC , 128× tD)

6.3 Checking the validity of the MRs

This section describes the experiments used to assess the
validity of the MRs provided and so address the first
research question. Specifically, we expect a correct cloud
system, or a simulation of a correct cloud system, to
satisfy the MRs; if this is not the case then the failure
of an MR might not indicate a fault.

In order to carry out this experiment, three different
cloud models were used: mm

best, mm
first, and mm

worst. Ad-
ditionally, we used three different policies for mapping
the execution of each application into the VMs. Typi-
cally, the hypervisor implements a policy for this task,
which allocates one, or more, CPU cores from physical
machines to deploy a VM, making it possible to share
different CPU cores to execute multiple VMs. Next, we
describe these policies:

• Space-shared: This policy allocates one, or several,
CPU cores from a physical machine to a VM. In
this case, sharing CPU cores is not allowed and,
therefore, the allocated CPU cores will be used until
the VM finishes running. In those cases where there
are not enough available CPU cores as required by a
VM, or where the available CPU cores do not have
enough capacity, the allocation fails.

• Time-shared: This policy allocates VMs to physical
CPUs using a fraction of the MIPS capacity of the
physical CPU cores. Let us illustrate this with an
example. Let us suppose that a VM requests a
virtual CPU with computing power of 800 MIPS
but, in this case, there is no physical machine with
a CPU of such capacity. However, this policy is able
to allocate these 800 MIPS among several physical
CPUs, for instance, by allocating 500 MIPS to a CPU
core and 300 MIPS to a different CPU core.

• Time-shared oversubscription: This policy allows the
allocation, into a physical machine, of those VMs
that require more CPU power than is currently
available. If the physical machine has, at least, the
number of requested CPU cores, then the VM is
deployed in the physical machine. However, the
VM only uses the real computing power provided
by the available physical CPUs. This particular case

IEEE TRANSACTIONS ON RELIABILITY 16

is known as over-subscription, which results in per-
formance degradation because fewer MIPS may be
allocated than required by a VM.

In order to check the validity of the MRs, we created
three source test cases using the cloud models mm

best,
mm

first, and mm
worst, and the workload generated in Sec-

tion 6.2.3. For each source test case, 10,000 different
follow-up test cases were automatically generated. The
idea was to execute each follow-up test case and then
check if the obtained results satisfy the MRs. It is impor-
tant to mention that the objective was to check whether
the MRs properly represent the behaviour of the cloud
system under test. Therefore, this experiment did not
focus on locating faults.

We assume that an MR fully validates a feature of the
cloud when all the follow-up test cases satisfy the MR.
This can be identified by a value equal to 100 in Table 4,
which shows the results of the experiments. As the table
shows, RP1, RP2, RP3, RP4, RC1 and RC3 were satisfied
by all the test cases. On the one hand, these results
provide evidence that these MRs are valid; they appro-
priately reflect the expected (correct) behaviour of the
cloud. On the other hand, the results also show that the
CloudSim-Plus [36] simulator is indeed accurate because
it was able to precisely represent the real behaviour of
the cloud under study.

In the rest of the cases we identify two other possible
scenarios: none of the follow-up test cases satisfy an MR
or some of them, but not all of them, do.

The first scenario happened when RF1 and RF2 were
used to check a cloud with a space-shared hypervisor,
where none of the follow-up test cases satisfied these
MRs. The catalogue of MRs was designed to represent
the expected properties of a cloud in the sense of pro-
viding a general view of the system under test. In some
cases, a particular configuration of the cloud may not be
fully represented by a general relation. This happens, for
example, with RF1 and RF2 that are designed to check
the behaviour of a space-shared hypervisor, which is the
most restrictive one. In this case, when at least one VM
cannot be allocated in the physical resources of the cloud,
the allocation fails and, consequently, the number of
tenants that are successfully processed by the cloud leads
to these MRs not being satisfied. However, it is important
to note that these relations are useful for the other cloud
configurations. Specifically, the remaining hypervisors,
time-shared and time-shared oversubscription, share re-
sources so that their functionality is less restrictive. For
example, it may happen that even though the requested
CPU resources were not available, the cloud is able to
deploy VMs that share the available resources. Thus, in
these cases we have MRs that are appropriate for some
hypervisor policies but not for others.

The second scenario was observed in several cases.
The first appears when RF3 was used to test a cloud
with a space-shared hypervisor, where 95% of the follow-
up test cases satisfied this MR. Although this percentage
shows that the MR represents a general view of the

cloud, there were some situations that were not consid-
ered by the restrictions reflected in RF3. In particular,
RF3 defines a constraint that compares the number of
VMs that are successfully deployed in the cloud, that is,
sim↑VMs(m,ω) ≤ sim↑VMs(m

′, ω′). Due to the random
nature of the follow-up test cases, the order in which
the tenants appear in the generated workload ω′ may
affect the result for allocating the requested resources in
the cloud. For instance, if the cloud is nearly reaching
the saturation point, then it is usually easier to allocate
two VMsmall instances, requiring 2 CPU cores in total,
than one VMlarge requiring 4 CPU cores. In the latter
case, the allocation fails, causing a reduced number
of successfully deployed VMs and, consequently, not
satisfying the MR. In order to alleviate this problem, we
generated a large number of different and heterogeneous
workloads so that our experiments faithfully reflect the
real behaviour of the cloud.

The second case happened when RC2 was used to
test the mm

best cloud with a time-shared hypervisor. This
situation can be categorised as a corner case, since it
is mainly produced by the hypervisor, which increases
the number of VMs that are sharing the same resources,
leading to performance degradation due to VM migra-
tion. Moreover, since the best-fit policy aims to minimise
the fragmentation of available physical CPUs by group-
ing, when possible, VMs in the same physical machine, it
also leads to a scenario where the resources are saturated
by being used for the same VMs. Consequently, these
VMs require more time and cost to be deployed in
the physical machines for executing the corresponding
applications.

6.4 Checking fault detection effectiveness

We now describe an experiment used to analyse the
effectiveness of the proposed methodology. In order
to accomplish this analysis, we used mutation testing
techniques to artificially seed faults into the clouds under
test. The testing process was performed as follows: i)
for each cloud configuration, 15 different mutants, rep-
resenting faulty versions of the cloud, were generated;
ii) for each mutant, approximately 1,100 different follow-
up test cases were automatically created; iii) all the
generated follow-up test cases were executed using the
cloudSim-Plus simulator; iv) the catalogue of MRs was
used to check whether the obtained results satisfy the
constraints reflected in the MRs. In this experiment, up
to 450,000 simulations were executed.

Table 5 shows a list of the generated mutants, which
are categorised into four groups, namely General, Space-
shared, Time-shared and Time-shared oversub. The sec-
ond column of this table shows the mutant’s ID and the
last column presents a description of each mutant. For
each cloud configuration, 15 different mutants were gen-
erated, that is, 12 general mutants and 3 specific mutants.
General mutants focus on the global behaviour of the
cloud, while specific mutants focus on the policy used

IEEE TRANSACTIONS ON RELIABILITY 17

TABLE 4

Validity (in %) of each MR for testing cloud models using the cloudSim-Plus simulator

Hypervisor Source test Performance Functional Cost
RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Space-shared
(mm

best
, ω) 100 100 100 100 0 0 95 100 100 100

(mm
first

, ω) 100 100 100 100 0 0 95 100 100 100
(mm

worst, ω) 100 100 100 100 0 0 95 100 100 100

Time-shared
(mm

best
, ω) 100 100 100 100 100 100 100 100 55 100

(mm
first

, ω) 100 100 100 100 100 100 100 100 100 100
(mm

worst, ω) 100 100 100 100 100 100 100 100 100 100

Time-shared oversubscription
(mm

best
, ω) 100 100 100 100 100 100 100 100 100 100

(mm
first

, ω) 100 100 100 100 100 100 100 100 100 100
(mm

worst, ω) 100 100 100 100 100 100 100 100 100 100

TABLE 5

Description of the generated mutants

Category Id Description

General

1 Error checking if a PM is suitable for a VM.
2 Modification of the currently allocated MIPS from the physical PEs.
3 Incorrect MIPS allocated for a VM reduced for the CPU migration overhead.
4 Allocates the host with less PEs in use for a given VM.
5 Error checking if resources required by the Vm already were provisioned.
6 Error searching a valid physical machine to host a VM.
7 Error reporting the resources allocation.
8 Error reporting the creation of a VM.
9 Wrong allocation of processing units.
10 False error reported on a resource allocation.
11 Wrong estimated time when a given cloudlet is supposed to finish executing.
12 Modification of the minimum time between events when it is close to the finishing time.

Space-shared

13
Seeds a modification in the calculation of the PM using the scheduler. Specifically, if it
has enough MIPS capacity to host a given VM.

14 Modification on the list of processing elements of a PM.

15
Modifies the calculation of the requested amount of MIPS, specifically if the PM has available
MIPS to be allocated to a VM.

Time-shared
16 Allows to allocate a VM that requires exactly the same capacity of a physical PE.
17 Seeds a modification that allows a minimum percentage of over-subscription.
18 Error allocating the MIPS requested by a VM.

Time-shared oversub
19 Seeds a modification in the calculation of the PM using the scheduler.
20 Error allocating the MIPS requested by a VM.
21 Invalid VM allocation.

by the hypervisor. Thus, each group of specific mutants
can only be applied to one hypervisor. These mutants
were inspired by bugs located in real systems and papers
found in the current literature. For example, mutant 1
represents a real bug located in the Git repository of the
cloudSim-Plus simutator1.

Firstly, we tested the clouds using Dm, that is, a data
center containing 576 physical machines. Figure 2 shows
the results of the testing process. Each chart shows a
single cloud configuration, that is, the execution of the
workload ω over a cloud using a specific cloud manager
and one hypervisor. Thus, the charts placed in the same
row represent clouds using the same hypervisor, while
the charts placed in the same column represent clouds
using the same cloud manager. The x-axis of each chart
shows the MRs used in the testing process to detect
faults and the y-axis refers to the mutant ID. In essence,
these results represent the ability of each MR to detect
the mutants, which represent a fault in the cloud. It is
important to remark that approximately 15,000 different

1. https://github.com/manoelcampos/cloudsim-plus/commit/
b69d1929cc12023b8134c734065f77de4f1cb2f2

follow-up test cases were executed for each mutant.
Since RF1 and RF2 cannot be used to validate the
behaviour of the cloud when a space-shared hypervisor
is used, we discarded them in figures 2.a, 2.b, and 2.c
(the corresponding columns are blank).

If the results provided by the executions of all the
follow-up test cases were not able to detect the mutant
using an MR, then the mutant remained alive, which
is represented in green. In contrast, when an MR was
able to detect a mutant using the results provided by
the execution of all the follow-up test cases, we say
that this mutant was killed, which is shown in red.
Additionally, we use a gradient to represent intermediate
values, which ranges from red (100% of the follow-
up test cases discover the mutant) to green (0% of the
follow-up test cases discover the mutant). Let us note
that, for the sake of clarity, Figure 2 provides a general
view of the results. However, different tables providing
a detailed version of these results are presented in the
Appendix of this paper.

Although these results show that all the faults in the
clouds were detected by at least one MR, it is important

IEEE TRANSACTIONS ON RELIABILITY 18

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
u
ta

n
t

ID

(a) Space-shared (mm
best

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
u
ta

n
t

ID

(b) Space-shared (mm
first

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
u
ta

n
t

ID

(c) Space-shared (mm
worst, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

16

17

18

M
u
ta

n
t

ID

(d) Time-shared (mm
best

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

16

17

18

M
u
ta

n
t

ID

(e) Time-shared (mm
first

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

16

17

18

M
u
ta

n
t

ID

(f) Time-shared (mm
worst, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

19

20

21

M
u
ta

n
t

ID

(g) Time-shared overSub (mm
best

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

19

20

21

M
u
ta

n
t

ID

(h) Time-shared overSub (mm
first

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

19

20

21

M
u
ta

n
t

ID

(i) Time-shared overSub (mm
worst, ω)

Fig. 2. Testing process for locating faults in the clouds mm
best, mm

first and mm
worst using the cloudSim-Plus simulator.

to mention that each cloud configuration provided dif-
ferent results concerning the detection of mutants. The
best results were obtained when the cloud under test
used a space-shared hypervisor, which is reflected in the
highest number of detected mutants. We can see that in
this situation more mutants are killed by more MRs. For
example, mutants 4−7 are detected by all the MRs used.
We see that specific mutants, that is, mutants 13 − 15,
were more difficult to kill than generic mutants. In our
case, we have that the previously mentioned specific
mutants were killed by only one MR. Clouds using
a time-shared hypervisor provided the lowest number
of detected mutants. This was mainly caused by the
restrictions established by the hypervisor, that is, while
the space-shared policy does not allow users to access
the cloud when the requested physical resources are
not available, hypervisors based on time-shared policies
allow access to the cloud in such situations.

It is worth mentioning that clouds using time-shared
and space-shared hypervisors have a similar shape in
the generated charts. For instance, specific mutants (see

Table 5) were not detected by the MRs focusing on
cost. In contrast, RF1 and RF2 were able to detect the
majority of the mutants, with the exception of mutant 1
when the cloud uses a time-shared hypervisor and the
worst-fit policy for allocating resources (see figures 2.d,
2.e and 2.f). Similar to the case when we considered
the validity of the MRs, we observe that faulty ver-
sions of flexible hypervisors were more difficult to detect
than restrictive ones, over-subscription representing the
extremest situation. Similar to before, specific mutants
were more difficult to kill. This is due to the fact that
very specific faults require MRs targeting the concrete
wrong behaviour and, therefore, most (generic) MRs
were unable to detect the fault included in the mutant.

It is interesting to note that when a cloud used the
time-shared oversubscription policy, the obtained re-
sults were completely different from the ones obtained
from testing the previous cloud configurations. In this
particular case, RP1 and RP3 were the most effective
MRs. However, the rest of the relations provided low
effectiveness. Although all the mutants were detected,

IEEE TRANSACTIONS ON RELIABILITY 19

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
u
ta

n
t

ID

(a) Space-shared (ms
best

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
u
ta

n
t

ID

(b) Space-shared (ms
first

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
u
ta

n
t

ID

(c) Space-shared (ms
worst, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

16

17

18

M
u
ta

n
t

ID

(d) Time-shared (ms
best

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

16

17

18

M
u
ta

n
t

ID

(e) Time-shared (ms
first

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

16

17

18

M
u
ta

n
t

ID

(f) Time-shared (ms
worst, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

19

20

21

M
u
ta

n
t

ID

(g) Time-shared overSub (ms
best

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

19

20

21

M
u
ta

n
t

ID

(h) Time-shared overSub (ms
first

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

19

20

21

M
u
ta

n
t

ID

(i) Time-shared overSub (ms
worst, ω)

Fig. 3. Testing process for locating faults in the clouds ms
best, ms

first and ms
worst using the cloudSim-Plus simulator.

in some situations several MRs could not detect a single
mutant (see RP4, RC1 and RC2 in figures 2.h and 2.i).

The cloud manager used in the clouds has a small
impact on the obtained results. Cloud managers based
on the best-fit policy provided the best results, while the
worst results were provided with the Worst-Fit policy.
Observe that the results for the three different cloud
managers were similar.

It is worth emphasising that we observe again the
same pattern in the results. In this case, we obtained
the worst results for the most restrictive hypervisor. This
reinforces our previous observation that generic MRs
were not well suited to detect faults when we use this
type of hypervisors.

Next, in order to analyse the scalability of our ap-
proach, we tested several cloud configurations contain-
ing a different number of physical machines. The results
of the testing process using a small cloud – containing
320 physical machines – are depicted in Figure 3, while
the results obtained for testing a large cloud – containing
1088 physical machines – are shown in Figure 4.

Broadly speaking, the shape of these charts is similar
to the ones provided from analysing the medium cloud,
which contains 576 physical machines. Similar to the
previous experiments, in these cases, RF1 and RF2 were
not applied when the space-shared hypervisor was used
(see figures 3.b, 3.c, 4.b, and 4.c).

When the small cloud was tested, a significant number
of red areas can be seen in the charts, which means that
the provided MRs were able to detect a large number
of faults in the cloud. Since the workloads used in the
experiments were the same, in this particular case the
number of idle resources is very limited and, conse-
quently, a wrong VM allocation algorithm is more easily
detected. In addition, some faulty versions of the time-
shared over-subscription algorithm were detected in this
case, with RF1 and RF2 being the most efficient MRs in
this configuration.

The results provided when testing the large cloud (see
Figure 4) are rather different, that is, fewer errors were
detected. This is mainly caused by the large amount of
idle resources. Recall that the workload processed by all

IEEE TRANSACTIONS ON RELIABILITY 20

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
u
ta

n
t

ID

(a) Space-shared (ml
best

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
u
ta

n
t

ID

(b) Space-shared (ml
first

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
u
ta

n
t

ID

(c) Space-shared (ml
worst, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

16

17

18

M
u
ta

n
t

ID

(d) Time-shared (ml
best

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

16

17

18

M
u
ta

n
t

ID

(e) Time-shared (ml
first

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

16

17

18

M
u
ta

n
t

ID

(f) Time-shared (ml
worst, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

19

20

21

M
u
ta

n
t

ID

(g) Time-shared overSub (ml
best

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

19

20

21

M
u
ta

n
t

ID

(h) Time-shared overSub (ml
first

, ω)

RP1 RP2 RP3 RP4 RF1 RF2 RF3 RC1 RC2 RC3

Metamorphic relation

1

2

3

4

5

6

7

8

9

10

11

12

19

20

21

M
u
ta

n
t

ID

(i) Time-shared overSub (ml
worst, ω)

Fig. 4. Testing process for locating faults in the clouds ml
best, ml

first and ml
worst using the cloudSim-Plus simulator.

the clouds is the same. Hence, a faulty algorithm for
allocating VMs in the data center is more likely to find
physical resources in this case and, consequently, the
error is more difficult to detect. This behaviour is clearly
shown when RF1 and RF2 are applied to test the cloud,
using a time-shared hypervisor with a best-fit and a first-fit
cloud manager. When the small and medium clouds were
tested, these relations were able to detect all the mutants
(see figures 2.d, 2.e, 3.d and 3.e). When we applied
these MRs to test the same scenarios in the large cloud
(see figures 4.d, 4.e) there was a noticeable number of
undetected mutants. These differences notwithstanding,
it is important to remark that all the mutants were
detected in each analysed cloud configuration.

As a concluding remark, a careful analysis of the
results allows us to conclude that relaxing the constraints
in the hypervisor policy makes it more difficult to detect
faulty clouds. Also, reducing the fragmentation of CPU
resources among the physical machines, which occurs
when the cloud manager implements the best-fit policy,

slightly improves the obtained results.

6.5 Discussion of the results and answers to the

research questions

We now discuss the results and what they tell us about
the research questions presented in Section 6.1.

6.5.1 Research Question 1: Are the MRs valid?

In order to answer this question, we use the results
described in Section 6.3. In this case, we executed up
to 90,000 simulations to determine whether the MRs are
valid when used with different cloud configurations. We
measured the validity of the different MRs by using the
percentage of test cases, for a correct cloud simulation,
that satisfy each MR [61], [62], [63].

The main objective of this experiment was to deter-
mine whether these MRs are valid; whether correct cloud
systems pass the MRs. It was found that most of the MRs
were satisfied by all tests. However, there were some

IEEE TRANSACTIONS ON RELIABILITY 21

exceptions, such as RF1 and RF2, that were not valid
with certain cloud scenarios.

Hence, the answer to Research Question 1 is that MT
is largely suitable for testing cloud systems but, in certain
situations, some MRs should not be used.

6.5.2 Research Question 2: How effective is MT at

detecting faults in cloud systems?

In order to answer this question, we use the results given
in Section 6.4, where mutation was applied to generate
a large number of faulty versions of the clouds under
study. Let us mention that applying mutation testing
techniques to check the effectiveness of MRs is a widely
adopted approach in the MT community [8], [9], [64].

The results were promising, with the catalogue of
MRs being able to detect all faulty clouds. We found
that the effectiveness of the catalogue of MRs (to detect
faults) relates to the level of restrictions imposed by the
hypervisor, that is, it is easier to find faults with highly
restrictive hypervisors than with relaxed hypervisors. In
contrast, the policy implemented by the cloud manager
had very little impact on the results. In these cases, we
obtained the best results when the CPU fragmentation
was minimised, which was achieved by the best-fit
policy.

We also noticed that some MRs were more effective
in certain scenarios. For example, when the cloud to
be tested used a time-shared hypervisor, RF1 and RF2

were able to detect most of the faulty clouds, with the
exception of mutant 1 (see Figure 2.f). RP1 and RP3

provided promising results for detecting faults in those
clouds using hypervisors based on time-shared over
subscription policies.

To answer Research Question 2 we can conclude
that MT is effective in detecting faulty clouds system. The
effectiveness of MRs depends on the configuration used, with it
being more difficult to detect faults in clouds using hypervisors
based on non-restrictive policies.

7 THREATS TO VALIDITY

This section presents the threats to the validity of the
results of our empirical study.

7.1 Internal threats

Internal validity focuses on determining if our findings,
which are based on the data produced by the exper-
iments, truly represent a cause-and-effect relationship.
Hence, the internal validity of this study relates to the
implementation of the experiments.

The MRs presented in Section 5 were designed by two
experts. The ability of MT to detect faults in the system
is directly correlated with the selection of MRs and,
consequently, the results may be different if other MRs
were used. However, using domain-specific properties
should make the approach more effective. In order to
mitigate this issue, in Section 6.3 we report on analysis

that checks the adequacy of each MR involved in the
testing process. The MRs and the algorithm used to
generate follow-up test cases were implemented in Java.
In order to increase the confidence in the correctness
of the implementations, three researchers inspected the
source code and different tests were manually executed.
We evaluated the MRs using the source test cases that
were manually generated by the user. The follow-up test
cases were automatically generated using the constraints
reflected in the MRs. Additionally, we used a well-know
simulator, CloudSim-Plus, that has been widely adopted
by the research community to analyse a wide spectrum
of cloud configurations.

7.2 External threats

External validity concerns the extent to which the results
of a study can be generalised.

We used 27 cloud configurations in our empirical
study, with these being generated by combining nine
cloud models with three different hypervisors. More-
over, up to 450,000 different follow-up test cases were
automatically generated using, as basis, the source test
cases and the MRs. We believe that the cloud models are
representative. However, there is no guarantee that the
obtained will be the same for other scenarios.

7.3 Constructs threats

Construct validity concerns whether the used measures
are representative or not.

We checked the effectiveness of MRs using the number
of test cases that satisfy each MR, which is a widely used
measure in the research community. Unknown defects in
the CloudSim-Plus simulator, in our proposed MRs or in
our algorithm for generating follow-up test cases could
be a threat to construct validity. However, we controlled
this threat by testing the implementation using a wide
range of test cases.

8 CONCLUSIONS AND FUTURE WORK

This paper presented a framework, called TEA-Cloud, for
testing cloud computing systems. TEA-Cloud integrates
simulation and MT techniques, with this making it pos-
sible to automate the generation and execution of large
test suites over the clouds under test. The data provided
by the execution of the test cases are automatically
checked by a catalogue of MRs that represents expected
properties of the cloud.

In order to check the validity and effectiveness of
TEA-Cloud we performed an experimental study, where
27 different cloud configurations were analysed using
mutation testing techniques to artificially inject 15 dif-
ferent faults into each. Interestingly, the percentage of
test cases that satisfy MRs significantly dropped when
the cloud under test used a hypervisor based on non-
restrictive policies, like time-shared oversubscription. In
contrast, better results were obtained when a restrictive

IEEE TRANSACTIONS ON RELIABILITY 22

hypervisor was used. All the generated mutants were
detected by at least one MR, hence obtaining promising
results.

The main limitation of TEA-Cloud is that the method-
ology requires appropriate MRs. However, there is evi-
dence that if a domain expert provides appropriate MRs
then the testing process provides very useful informa-
tion. We have mitigated this issue (the need for appro-
priate MRs) by providing a set of MRs and analysing the
adequacy of these MRs for testing cloud configurations.
In our study, we discarded two MRs when considering
cloud configurations that use a hypervisor based on a
space-shared policy.

There are several possible lines of future work. First,
we plan to extend the set of MRs. This will allow us to
increase the functionality of our methodology. As part
of this, we expect to analyse the suitability of combining
different MRs for testing cloud configurations. Also, we
plan to build a repository of MRs, where the results of
analysing different cloud systems, using a wide range of
cloud simulators, can be stored.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for the
careful reading of the paper and the many constructive
comments, which have helped us to further strengthen
the paper.

REFERENCES

[1] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,
3rd ed. John Wiley & Sons, 2011.

[2] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed.
Cambridge University Press, 2017.

[3] R. M. Hierons, K. Bogdanov, J. Bowen, R. Cleaveland, J. Der-
rick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause,
G. Luettgen, A. Simons, S. Vilkomir, M. Woodward, and H. Zedan,
“Using formal specifications to support testing,” ACM Computing
Surveys, vol. 41, no. 2, pp. 9:1–9:76, 2009.

[4] A. R. Cavalli, T. Higashino, and M. Núñez, “A survey on formal
active and passive testing with applications to the cloud,” Annales
of Telecommunications, vol. 70, no. 3-4, pp. 85–93, 2015.

[5] E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465–470, 1982.

[6] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions
on Software Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[7] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing:
a new approach for generating next test cases,” Department
of Computer Science, Hong Kong University of Science and
Technology, Tech. Rep. HKUST-CS98-01, 1998.

[8] S. Segura, G. Fraser, A. B. Sánchez, and A. Ruiz-Cortés, “A
survey on metamorphic testing,” IEEE Transactions on Software
Engineering, vol. 42, no. 9, pp. 805–824, 2016.

[9] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse,
and Z. Q. Zhou, “Metamorphic testing: A review of challenges
and opportunities,” ACM Computing Surveys, vol. 51, no. 1, pp.
4:1–4:27, 2018.

[10] M. Olsen and M. Raunak, “Increasing validity of simulation mod-
els through metamorphic testing,” IEEE Transactions on Reliability,
vol. 68, no. 1, pp. 91–108, 2019.

[11] R. M. Hierons, M. G. Merayo, and M. Núñez, “Mutation testing,”
in Encyclopedia of Software Engineering, P. A. Laplante, Ed. Taylor
& Francis, 2010, pp. 594–602.

[12] Y. Jia and M. Harman, “An analysis and survey of the de-
velopment of mutation testing,” IEEE Transactions on Software
Engineering, vol. 37, no. 5, pp. 649–678, 2011.

[13] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Har-
man, “Mutation testing advances: An analysis and survey,” ser.
Advances in Computers, A. M. Memon, Ed. Elsevier, 2019, vol.
112, pp. 275 – 378.

[14] A. Núñez and R. M. Hierons, “A methodology for validating
cloud models using metamorphic testing,” Annales of Telecommu-
nications, vol. 70, no. 3-4, pp. 127–135, 2015.

[15] L. Garber, “News briefs,” IEEE Computer, vol. 44, no. 6, pp. 18–20,
2011.

[16] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea,
“Cloud9: a software testing service,” ACM SIGOPS Operating
Systems Review, vol. 43, no. 4, pp. 5–10, 2010.

[17] P. Joshi, H. Gunawi, and K. Sen, “PREFAIL: a programmable tool
for multiple-failure injection,” ACM SIGPLAN Notices, vol. 46,
no. 10, pp. 171–188, 2011.

[18] M. Oriol and F. Ullah, “YETI on the Cloud,” in 3rd Int. Conf.
on Software Testing, Verification, and Validation Workshops. IEEE
Computer Society, 2010, pp. 434–437.

[19] J. Morán, A. Bertolino, C. de la Riva, and J. Tuya, “Automatic test-
ing of design faults in mapreduce applications,” IEEE Transactions
on Reliability, vol. 67, no. 3, pp. 717–732, 2018.

[20] R. M. Hierons, M. G. Merayo, and M. Núñez, “Implementation
relations and test generation for systems with distributed inter-
faces,” Distributed Computing, vol. 25, no. 1, pp. 35–62, 2012.

[21] ——, “Bounded reordering in the distributed test architecture,”
IEEE Transactions on Reliability, vol. 67, no. 2, pp. 522–537, 2018.

[22] ——, “An extended framework for passive asynchronous testing,”
Journal of Logical and Algebraic Methods in Programming, vol. 86,
no. 1, pp. 408–424, 2017.

[23] M. G. Merayo, R. M. Hierons, and M. Núñez, “Passive testing
with asynchronous communications and timestamps,” Distributed
Computing, vol. 31, no. 5, pp. 327–342, 2018.

[24] ——, “A tool supported methodology to passively test asyn-
chronous systems with multiple users,” Information & Software
Technology, vol. 104, pp. 162–178, 2018.

[25] H. Lu, W. K. Chan, and T. H. Tse, “Testing pervasive software in
the presence of context inconsistency resolution services,” in 30th
Int. Conf. on Software Engineering, ICSE’08. ACM Press, 2008, pp.
61–70.

[26] B. Marin, T. Vos, G. Giachetti, A. Baars, and P. Tonella, “Towards
testing future web applications,” in 5th Int. Conf. on Research
Challenges in Information Science, RCIS’11. IEEE Computer Society,
2011, pp. 1–12.

[27] W. Chan, L. Mei, and Z. Zhang, “Modeling and testing of cloud
applications,” in 4th IEEE Asia-Pacific Services Computing Confer-
ence, APSCC’09. IEEE Computer Society, 2009, pp. 111–118.

[28] L. Luo, S. Meng, X. Qiu, and Y. Dai, “Improving failure tolerance
in large-scale cloud computing systems,” IEEE Transactions on
Reliability (in press), pp. 1–13, 2019.

[29] J. Liu, S. Wang, A. Zhou, S. A. P. Kumar, F. Yang, and R. Buyya,
“Using proactive fault-tolerance approach to enhance cloud ser-
vice reliability,” IEEE Transactions on Cloud Computing, vol. 6, no. 4,
pp. 1191–1202, 2018.

[30] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa, and
M. Sato, “D-cloud: Design of a software testing environment for
reliable distributed systems using cloud computing technology,”
in 10th IEEE/ACM Int. Conf. on Cluster, Cloud and Grid Computing,
CCGrid’10, 2010, pp. 631–636.

[31] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Annual conference on USENIX Annual Technical Conference, ATEC
’05. USENIX Association, 2005, pp. 41–41.

[32] A. Bertolino, “Software testing research: Achievements, chal-
lenges, dreams,” in Workshop on the Future of Software Engineering:
FOSE’07. IEEE Computer Society, 2007, pp. 85–103.

[33] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloud-
Analyst: A CloudSim-Based Visual Modeller for Analysing
Cloud Computing Environments and Applications,” in 24th IEEE
Int. Conf. on Advanced Information Networking and Applications,
AINA’10. IEEE Computer Society, 2010, pp. 446–452.

[34] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource pro-
visioning algorithms,” Software - Practice and Experience, vol. 41,
no. 1, pp. 23–50, 2011.

[35] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “Con-
tainerCloudSim: An environment for modeling and simulation of

IEEE TRANSACTIONS ON RELIABILITY 23

containers in cloud data centers,” Software: Practice and Experience,
vol. 47, no. 4, pp. 505–521, 2017.

[36] M. C. S. Filho, R. L. Oliveira, C. C. Monteiro, P. R. M. In-
ácio, and M. M. Freire, “CloudSim Plus: A cloud computing
simulation framework pursuing software engineering principles
for improved modularity, extensibility and correctness,” in 15th
IFIP/IEEE Symposium on Integrated Network and Service Manage-
ment, IM’17. IEEE Computer Society, 2017, pp. 400–406.

[37] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, “DCSim: A data
centre simulation tool for evaluating dynamic virtualized resource
management,” in 8th Int. Conf. on network and service management,
CNSM’12. IEEE Computer Society, 2012, pp. 385–392.

[38] R. N. Calheiros, M. A. S. Netto, C. A. F. D. Rose, and R. Buyya,
“EMUSIM: an integrated emulation and simulation environment
for modeling, evaluation, and validation of performance of Cloud
computing applications,” Software: Practice and Experience, vol. 43,
no. 5, pp. 595–612, 2013.

[39] D. Kliazovich and P. B. amd S. U. Khan, “GreenCloud: A packet-
level simulator of energy-aware cloud computing data centers,”
The Journal of Supercomputing, vol. 62, no. 3, pp. 1263–1283, 2012.

[40] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer,
“GroudSim: An Event-Based Simulation Framework for Compu-
tational Grids and Clouds,” in Euro-Par 2010 Parallel Processing
Workshops, LNCS 6586. Springer, 2011, pp. 305–313.

[41] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé,
J. Carretero, and I. M. Llorente, “iCanCloud: A flexible and
scalable cloud infrastructure simulator,” Journal of Grid Computing,
vol. 10, no. 1, pp. 185–209, 2012.

[42] G. Castañé, A. Núñez, P. Llopis, and J. Carretero, “E-mc2: A
formal framework for energy modelling in cloud computing,”
Simulation Modelling Practice and Theory, vol. 39, pp. 56–75, 2013.

[43] H. Casanova, A. Legrand, and M. Quinson, “SimGrid: A generic
framework for large-scale distributed experiments,” in 10th Int.
Conf. on Computer Modeling and Simulation, UKSIM’08, 2008, pp.
126–131.

[44] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed appli-
cations and platforms,” Journal of Parallel and Distributed Comput-
ing, vol. 74, no. 10, pp. 2899–2917, 2014.

[45] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman, “Model-
based quality assurance of protocol documentation: tools and
methodology,” Software Testing, Verification and Reliability, vol. 21,
no. 1, pp. 55–71, 2011.

[46] H. Liu, X. Liu, and T. Y. Chen, “A new method for constructing
metamorphic relations,” in 12th Int. Conf. on Quality Software,
QSIC’12. IEEE Computer Society, 2012, pp. 59–68.

[47] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic
testing of RESTful web APIs,” IEEE Transactions on Software
Engineering, vol. 44, no. 11, pp. 1083–1099, 2018.

[48] X. Xie, J. W. K. Ho, C. Murphy, G. E. Kaiser, B. Xu, and T. Y.
Chen, “Testing and validating machine learning classifiers by
metamorphic testing,” Journal of Systems and Software, vol. 84,
no. 4, pp. 544–558, 2011.

[49] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in 35th ACM SIGPLAN Conf. on Programming
Language Design and Implementation, PLDI’14. ACM, 2014, pp.
216–226.

[50] P. Rao, Z. Zheng, T. Y. Chen, N. Wang, and K. Cai, “Impacts of
test suite’s class imbalance on spectrum-based fault localization
techniques,” in 13th Int. Conf. on Quality Software, QSIC’13. IEEE
Computer Society, 2013, pp. 260–267.

[51] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu, “Metamorphic slice:
An application in spectrum-based fault localization,” Information
and Software Technology, vol. 55, no. 5, pp. 866–879, 2013.

[52] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
of the Effectiveness of Dataflow and Controlflow-based Test Ad-
equacy Criteria,” in 16th Int. Conference on Software Engineering,
ICSE’94. ACM Press, 1994, pp. 191–200.

[53] A. Weiss, “Computing in the clouds,” netWorker, vol. 11, no. 4,
pp. 16–25, 2007.

[54] Y. Mansouri, A. N. Toosi, and R. Buyya, “Data storage man-
agement in cloud environments: Taxonomy, survey, and future
directions,” ACM Computing Surveys, vol. 50, no. 6, pp. 91:1–91:51,
2017.

[55] A. Bernal, M. E. Cambronero, V. Valero, A. Núñez, and P. C.
Cañizares, “A framework for modeling cloud infrastructures and
user interactions,” IEEE Access, vol. 7, pp. 43 269–43 285, 2019.

[56] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/.
Date of last access: 10th June, 2019.

[57] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measure-
ments in the cloud: observing, analyzing, and reducing variance,”
Proceedings of the VLDB Endowment, vol. 3, pp. 460–471, 2010.

[58] A. Ahmed and A. S. Sabyasachi, “Cloud computing simulators:
A detailed survey and future direction,” in 4th IEEE International
Advance Computing Conference, IACC’14. IEEE Computer Society,
2014, pp. 866–872.

[59] J. Byrne, S. Svorobej, K. Giannoutakis, D. Tzovaras, P. J. Byrne,
P. O. Östberg, A. Gourinovitch, and T. Lynn, “A review of cloud
computing simulation platforms and related environments,” in
7th Int. Conf. on Cloud Computing and Services Science, CLOSER’17,
2017, pp. 651–663.

[60] F. Fakhfakh, H. H. Kacem, and A. H. Kacem, “Simulation tools
for cloud computing: A survey and comparative study,” in 16th
IEEE/ACIS Int. Conf. on Computer and Information Science, ICIS’17.
ACM Press, 2017, pp. 221–226.

[61] F. Kuo, S. Liu, and T. Y. Chen, “Testing a Binary Space Partitioning
Algorithm with Metamorphic Testing,” in 26th ACM Symposium
on Applied Computing, SAC’11. ACM Press, 2011, pp. 1482–1489.

[62] M. Jiang, T. Y. Chen, F. Kuo, and Z. Ding, “Testing central pro-
cessing unit scheduling algorithms using metamorphic testing,”
in 4th IEEE Int. Conf. on Software Engineering and Service Science,
ICSESS’13, 2013, pp. 530–536.

[63] P. C. Cañizares, A. Núñez, and J. d. Lara, “An expert system for
checking the correctness of memory systems using simulation and
metamorphic testing,” Expert Systems with Applications, vol. 132,
pp. 44–62, 2019.

[64] M. Asrafi, H. Liu, and F. Kuo, “On Testing Effectiveness of
Metamorphic Relations: A Case Study,” in 5th Int. Conf. on Secure
Software Integration and Reliability Improvement, SSIRI’11. IEEE
Computer Society, 2011, pp. 147–156.

IEEE TRANSACTIONS ON RELIABILITY 24

APPENDIX

The following tables show – in detail – the results of
the testing process. For each mutant, approximately 1100
different follow-up test cases have been generated and
executed. The generated data is checked using the MRs.
These results are measured in % of follow-up test cases
that are not able to detect a mutant using an MR. Thus, a
value of 100% means that none the follow-up test cases
detect the mutant (the mutant is alive), while 0% means
the opposite, that is, all the follow-up test cases detect
the mutant. The last row shows the average of follow-up
test cases that cannot detect the mutants using an MR.

IEEE TRANSACTIONS ON RELIABILITY 25

TABLE 6

Results of the testing process for locating faults in mbest using the time-shared hypervisor (lower is better)

Id MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9 MR10

0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 55.81 100.0
1 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 41.62 0.0
2 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 100.00 100.0 0.0 100.0 0.0 0.0 100.0 100.0 100.0 100.0
4 100.00 0.0 100.0 100.0 0.0 0.0 100.0 0.0 54.34 0.0
5 100.00 0.0 100.0 100.0 0.0 0.0 100.0 0.0 69.043 0.0
6 100.00 100.0 100.0 100.0 0.0 0.0 100.0 0.0 61.31 0.0
7 100.00 100.0 100.0 100.0 0.0 0.0 100.0 0.0 71.32 0.0
8 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 100.00 100.0 64.0 100.0 0.0 0.0 75.0 0.0 100.0 0.0
11 100.00 0.0 100.0 100.0 0.0 0.0 100.0 0.0 76.0 0.0
12 100.00 100.0 0.0 100.0 0.0 0.0 100.0 100.0 100.0 100.0
16 100.00 100.0 0.0 100.0 0.0 0.0 100.0 100.0 100.0 100.0
17 100.00 0.0 0.0 100.0 0.0 0.0 100.0 100.0 100.0 100.0
18 100.00 100.0 0.0 100.0 0.0 0.0 100.0 100.0 100.0 100.0
Avg. 80.0 53.33 44.26 80.00 0.00 0.00 71.66 33.33 64.90 33.33

TABLE 7

Results of the testing process for locating faults in mfirst using the time-shared hypervisor (lower is better)

Id MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9 MR10

0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1 100.00 100.00 100.00 100.00 28.00 28.00 99.48 100.00 100.00 10.29
2 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 100.00 100.00 100.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00
5 100.00 100.00 100.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00
6 100.00 100.00 100.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00
7 100.00 100.00 100.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00
8 100.00 100.00 100.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00
9 100.00 100.00 100.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00
10 100.00 100.00 52.00 100.00 0.00 0.00 75.00 0.00 100.00 0.00
11 100.00 100.00 100.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00
12 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
16 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
17 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
18 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
Avg. 93.33 93.33 56.80 93.33 1.86 1.86 91.63 40.00 93.33 34.02

TABLE 8

Results of the testing process for locating faults in mworst using the time-shared hypervisor (lower is better)

Id MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9 MR10

0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1 100.00 0.00 100.00 100.00 100.00 100.00 100.00 85.71 78.40 1.43
2 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 100.00 100.00 91.84 100.00 0.00 0.00 100.00 0.00 70.79 0.00
5 100.00 100.00 91.84 100.00 0.00 0.00 100.00 0.00 61.03 0.00
6 100.00 100.00 91.84 100.00 0.00 0.00 100.00 0.00 52.90 0.00
7 100.00 100.00 90.45 100.00 0.00 0.00 100.00 0.00 46.93 0.00
8 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 0.00
9 100.00 100.00 80.00 100.00 0.00 0.00 75.00 0.00 100.00 0.00
10 100.00 100.00 91.84 100.00 0.00 0.00 100.00 0.00 56.96 0.00
11 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
12 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
16 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
17 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
18 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
Avg. 93.33 86.66 42.52 93.33 6.66 6.66 91.66 52.38 77.80 40.09

IEEE TRANSACTIONS ON RELIABILITY 26

TABLE 9

Results of the testing process for locating faults in mbest using the space-shared hypervisor (lower is better)

Id MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9 MR10

0 100.00 100.00 100.00 0.00 0.00 0.00 95.24 100.00 100.00 100.00
1 100.00 0.00 100.00 0.00 0.00 0.00 49.40 0.00 32.65 71.43
2 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 100.00 100.00 100.00 0.00 0.00 0.00 90.48 0.00 100.00 0.00
5 100.00 100.00 100.00 0.00 0.00 0.00 87.30 0.00 100.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 100.00 100.00 100.00 0.00 0.00 0.00 90.48 0.00 100.00 0.00
11 100.00 100.00 100.00 0.00 0.00 0.00 90.48 0.00 100.00 0.00
12 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
13 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
14 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
15 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
Avg. 66.67 60.00 33.33 33.33 0.00 0.00 60.54 33.33 62.17 38.09

TABLE 10

Results of the testing process for locating faults in mfirst using the space-shared hypervisor (lower is better)

Id MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9 MR10

0 100.00 100.00 100.00 100.00 0.00 0.00 95.54 100.00 100.00 100.00
1 100.00 0.00 100.00 0.00 0.00 0.00 38.64 0.00 100.00 71.43
2 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 100.00 100.00 100.00 0.00 0.00 0.00 85.23 0.00 100.00 0.00
5 100.00 100.00 100.00 0.00 0.00 0.00 80.30 0.00 100.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 100.00 100.00 100.00 0.00 0.00 0.00 85.23 0.00 100.00 0.00
10 100.00 100.00 100.00 0.00 0.00 0.00 85.23 0.00 100.00 0.00
11 100.00 100.00 100.00 0.00 0.00 0.00 85.23 0.00 100.00 0.00
12 100.00 100.00 100.00 0.00 0.00 0.00 85.23 0.00 100.00 0.00
13 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
14 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
15 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
Avg. 73.33 66.66 46.66 26.66 0.00 0.00 63.03 26.66 73.33 31.42

TABLE 11

Results of the testing process for locating faults in mworst using the space-shared hypervisor (lower is better)

Id MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9 MR10

0 100.00 100.00 100.00 100.00 100.00 0.00 94.32 100.00 100.00 100.00
1 100.00 0.00 100.00 0.00 0.00 0.00 39.77 0.00 52.96 71.43
2 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 100.00 100.00 100.00 0.00 0.00 0.00 88.64 0.00 100.00 0.00
5 100.00 100.00 100.00 0.00 0.00 0.00 84.85 0.00 100.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 100.00 100.00 0.00 100.00 0.00 0.00 0.00 100.00 100.00 0.00
10 100.00 100.00 100.00 0.00 0.00 0.00 88.64 0.00 100.00 0.00
11 100.00 100.00 100.00 0.00 0.00 0.00 88.64 0.00 100.00 0.00
12 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
13 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
14 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
15 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
Avg. 73.33 66.66 33.33 40.00 0.00 0.00 59.36 40.0 70.19 38.09

IEEE TRANSACTIONS ON RELIABILITY 27

TABLE 12

Results of the testing process for locating faults in mbest using the space-shared oversubscription hypervisor (lower is

better)

Id MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9 MR10

0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1 0.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
3 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 2.63
4 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 100.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00 94.70 81.58
8 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 81.58
9 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
11 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
12 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
19 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
21 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Avg. 13.33 80.00 0.00 93.33 86.66 86.67 93.33 93.33 92.98 77.71

TABLE 13

Results of the testing process for locating faults in mfirst using the space-shared oversubscription hypervisor (lower

is better)

Id MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9 MR10

0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1 0.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
3 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 2.78
4 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
6 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
7 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
8 0.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
9 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
11 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
12 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
19 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
21 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Avg. 6.67 86.67 0.00 100.00 93.33 93.33 100.00 100.0 100.00 86.85

TABLE 14

Results of the testing process for locating faults in mworst using the space-shared oversubscription hypervisor (lower

is better)

Id MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9 MR10

0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1 0.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
3 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 2.70
4 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
6 0.00 100.00 0.00 100.00 100.00 100.00 0.00 100.00 100.00 0.00
7 0.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
8 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
9 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00
11 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
12 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
19 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
21 0.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Avg. 6.66 86.66 0.00 100.00 93.33 93.33 93.33 100.00 100.00 80.18

