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We investigate the dynamics of a three-dimensional Bose-Einstein condensate of ultracold atomic
gases with a soft-core shape long-range interaction, which is induced by laser dressing the atoms to a
highly excited Rydberg state. For a homogeneous condensate, the long-range interaction drastically
alters the dispersion relation of the excitation, supporting both roton and maxon modes. Rotons are
typically responsible for the creation of supersolids, while maxons are normally dynamically unstable
in BECs with dipolar interactions. We show that maxon modes in the Rydberg-dressed condensate,
on the contrary, are dynamically stable. We find that the maxon modes can be excited through
an interaction quench, i.e. turning on the soft-core interaction instantaneously. The emergence
of the maxon modes is accompanied by oscillations at high frequencies in the quantum depletion,
while rotons lead to much slower oscillations. The dynamically stable excitation of the roton and
maxon modes leads to persistent oscillations in the quantum depletion. Through a self-consistent
Bogoliubov approach, we identify the dependence of the maxon mode on the soft-core interaction.
Our study shows that maxon and roton modes can be excited dynamically and simultaneously by
quenching Rydberg-dressed long-range interactions. This is relevant to current studies in creating
and probing exotic states of matter with ultracold atomic gases.

I. INTRODUCTION

Collective excitations induced by particle-particle in-
teractions play an important role in the understanding
of static and dynamical properties of many-body sys-
tems. The ability to routinely create and precisely con-
trol properties of ultracold atomic gases opens exciting
prospects to manipulate and probe collective excitations.
In weakly interacting Bose-Einstein condensates (BECs)
with s-wave interactions [1–4], phonon excitations reduce
the condensate density, giving rise to quantum deple-
tion [5]. It has been shown [6] that quantum deple-
tion can be enhanced by increasing the s-wave scattering
length through Feshbach resonances [7, 8]. By dynami-
cally changing the s-wave scattering length [9], phonon
excitations can alter the quantum depletion, the momen-
tum distribution [10], correlations [11], contact [12, 13],
and statistics [14] of the condensate. Moreover the
phonon induced quantum depletion plays a vital role in
the formation of droplets in BECs [15].

When long-range interactions are introduced, the dis-
persion relation corresponding to the quasiparticle spec-
trum of a BEC is qualitatively different, where the ex-
citation energies of the collective modes depend non-
monotonically on the momentum. Previously BECs with
dipole-dipole interactions have been extensively exam-
ined [16–22]. In two-dimensional (2D) dipolar BECs [23],
roton and maxon modes emerge, where roton (maxon)
modes correspond to local minima (maxima) in the dis-
persion relation. The strength of dipolar interactions
can be tuned by either external electric or magnetic
fields [19]. When instabilities of roton modes are trig-
gered, a homogeneous BEC undergoes density modula-
tions such that a supersolid phase could form. The ex-
istence of roton modes has been supported by a recent

FIG. 1. (color online) Soft-core interaction and quench
scheme. (a) The soft-core interaction as a function of the
interatomic distance r. Energy is scaled by R6/C0 with R
and C0 to be the soft-core radius and dispersion coefficient.
The interaction is constant when r� R, and becomes a vdW
type when r� R. (b) Fourier transformation of the soft-core
interaction. The minimum of the interaction locates at krR ≈
5π/3, where the interaction is attractive. (c) The quench
scheme. A weakly interacting BEC with s-wave interactions
is first prepared. The laser dressing is applied at t > 0, which
induces the soft-core interaction.

experiment of ultracold dipolar gases [24]. Maxon modes,
on the other hand, normally appear at lower momentum
states [23]. It was shown however that the maxon modes
in dipolar BECs are typically unstable and decay rapidly
through the Beliaev damping [20, 21].

Strong and long-range interactions are also found in
gases of ultracold Rydberg atoms [25–29]. Rydberg
atoms are in highly excited electronic states and interact
via long-range van der Waals (vdW) interactions. The
strength of the vdW interaction is proportional to N 11

with N to be the principal quantum number in the Ryd-
berg state. For large N (current experiments exploit N
typically between 30 and 100), the interaction between
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two Rydberg atoms can be as large as several MHz at a
separation of several micrometers [30]. However lifetimes
in Rydberg states are typically 10 ∼ 100µs, which is not
long enough to explore spatial coherence. As a result,
Rydberg-dressing, in which a far detuned laser couples
electronic ground states to Rydberg states, is proposed.
The laser coupling generates a long-range, soft-core type
interaction between Rydberg-dressed atoms [31–41]. The
coherence time and interaction strength can be controlled
by the dressing laser [35]. With this dressed interaction,
interesting physics, such as magnets [42], transport [43],
supersolids [31, 34, 44, 45], etc, have been studied. Signa-
tures of the dressed interaction have been experimentally
demonstrated with atoms trapped in optical lattices and
optical tweezers [42, 46].

In this paper, we study excitations of roton and maxon
modes in three dimensional (3D) Rydberg-dressed BECs
in free space at zero temperature. Three dimensional
uniform trapping potential of ultracold atoms have been
realized experimentally [47]. When the soft-core inter-
action is strong, both the roton and maxon modes are
found in the dispersion relation of the collective excita-
tions. Starting from a weakly interacting BEC, roton and
maxon modes are dynamically excited by instantaneously
switching on the Rydberg-dressed interaction. Through a
self-consistent Bogoliubov calculation, we show that the
roton and maxon modes lead to non-equilibrium dynam-
ics, where the quantum depletion exhibits slow and fast
oscillations. Through analyzing the Bogoliubov spectra,
we identify that the slow oscillations correspond to the
excitation of the roton modes, while the fast oscillations
come from the excitation of the maxon modes. The de-
pendence these modes have on the quantum depletion in
the long time limit is determined analytically and numer-
ically.

The paper is organized as follows. In Sec. II, the Hamil-
tonian of the system and properties of the soft-core in-
teraction are introduced. Bogoliubov methods, that are
capable to study static as well as dynamics of the ex-
citation, are presented. In Sec. III, dispersion relations
are found using the static Bogoliubov calculation, where
roton and maxon modes are identified. We then ex-
amine the dynamics of the quantum depletion due to
the interaction quench. Excitations of the roton and
maxon modes are studied using a self-consistent Bogoli-
ubov method. The asymptotic behavior of the BEC at
long times is also explored. Finally, in Sec. IV we con-
clude our work.

II. HAMILTONIAN AND METHOD

A. Hamiltonian of the Rydberg-dressed BEC

We consider a uniform 3D Bose gas of N atoms that
interact through both s-wave and soft-core interactions.

The Hamiltonian of the system is given by (~ ≡ 1),

Ĥ =

∫
ψ†(r)

(
− ∇

2

2m
− µ

)
ψ(r) dr

+
1

2

∫
ψ†(r)ψ†(r′)g̃(r− r′)ψ(r)ψ(r′) dr dr′, (1)

where ψ(r) is the annihilation operator of the bosonic
field, µ is the chemical potential, m is the mass of a
boson, and ∇ is the 3D nabla operator on coordinate
r = {x, y, z}. The interaction potential is described by

g̃(r − r′) = g0δ(r) + Ṽ (r − r′), where g0 = 4πas/m is
the short-range contact interaction controlled by the s-
wave scattering length as [3]. Ṽ (r− r′) is the long-range
soft-core interaction,

Ṽ (r− r′) =
C0

R6 + |r− r′|6 , (2)

where C0 is the strength of the dressed interaction po-
tential and R is the soft-core radius [35]. Both these
parameters can be tuned independently by varying the
dressing laser [35]. The interaction potential saturates

to a constant, i.e. Ṽ (r) → C0/R
6 when |r| � R, and

approaches to a vdW type at distances of |r| � R, i.e.

Ṽ (r) → C0/|r|6 . An example of the soft-core potential
is shown in Fig. 1(a). The Fourier transformation of the
soft-core potential is V (k) = U0f(k), where U0 = C0/R

6

determines the strength and f(k) has an analytical form

f(k) =
2π2e−

kR
2

3kR

[
e−

kR
2 − 2 sin

(
π

6
−
√

3kR

2

)]
,

which characterizes the momentum dependence of the
interaction. Though the interaction is repulsive in real
space, i.e. Ṽ (r) > 0, it contains negative regions in mo-
mentum space, as shown in Fig. 1(b). The negative part
of V (k) appears at momentum around kR ∼ 5π/3. Pre-
viously, it was shown that the attractive interaction is
crucially important to the formation of roton instabili-
ties, as revealed by the Bogoliubov approximation [23].

B. Time-independent Bogoliubov approach

In momentum space, we expand the field operators us-
ing a plane wave basis, ψ(r) = 1/

√
Ω
∑

k eik·râk. The
many-body Hamiltonian can be rewritten as

Ĥ =
∑
k

(εk − µ)â†kâk +
∑

q,k,k′

gk
2Ω

â†k+qâ
†
k′−qâkâk′ , (3)

where â†k (âk) is the creation (annihilation) operator of
the momentum state k, and Ω volume of the BEC. The
kinetic energy is εk = k2/2m with k = |k|, while the
Fourier transformation of the atomic interaction g̃(r−r′)
is given by gk = g0 + V (k).

For a homogeneous condensate and in the stationary
regime, we apply a conventional Bogoliubov approach
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[48, 49] to study the excitation spectra. At zero tempera-
ture we assume a macroscopic occupation in the conden-
sate, which allows us to replace â0 ≈

√
N0 with N0 being

the number of condensed atoms. We then apply a canon-
ical transformation on the bosonic operators of the non-

zero momentum states [3], âk 6=0 = ūk b̂k− v̄∗k b̂†−k where bk

(b̂†−k) is the annihilation (creation) operator for bosonic
quasiparticles and ūk and v̄k are complex numbers such
that |ūk|2 − |v̄k|2 = 1, which satisfies the bosonic com-
mutation relation [3]. The excitation spectra of the Bo-
goliubov modes for different momentum components give
the dispersion relation,

Ēk =
√
εk[εk + 2gkn0], (4)

with n0 = N0/Ω being the density of the condensed
atoms. The coefficients in the Bogoliubov transforma-
tion are [3]

ūk =

√
1

2

[
εk + gkn0

Ēk
+ 1

]

v̄k = −
√

1

2

[
εk + gkn0

Ēk
− 1

]
. (5)

The distribution of the non-condensed atoms is given

by nk = 〈a†kak〉 = |v̄k|2. Taking into account contri-
butions from all non-condensed components, the quan-
tum depletion in the stationary state is evaluated as
n̄d = 1/Ω

∑
k6=0 |v̄k|2.

C. Self-consistent Bogoliubov approach for the
quench dynamics

The quench of the soft-core interaction consists of two
steps. The system is initially in the ground state of a
weakly interacting BEC, i.e. U0 = 0 when t ≤ 0. At
time t > 0 the Rydberg dressing is switched on imme-
diately. The scheme is depicted in Fig. 1(c). The time
dependence of the atomic interaction is described by a
piecewise function as follows,

gk =

{
g0 when t ≤ 0
g0 + U0f(k) when t > 0.

(6)

We assume that the s-wave interaction is not affected
during the quench. Hence we use parameter α = U0/g0
to characterize the strength of the soft-core interaction
with respect to the s-wave interaction.

A time-dependent Bogoliubov approach is applied to
study the dynamics induced by the interaction quench.
It is an extension of the conventional Bogoliubov approx-
imation, where the canonical transformation becomes

time-dependent, âk 6=0(t) = uk(t)b̂k − vk(t)∗b̂†−k where
uk(t) and vk(t) are time-dependent amplitudes with the
relation |uk(t)|2 − |vk(t)|2 = 1, which preserves the
bosonic commutation relation. This approach has been
widely used to study excitation dynamics in BECs with

or without long-range interactions [10–12, 14, 20]. It pro-
vides a good approximation when the condensate has not
undergone significant depletion.

Using the Heisenberg equation of the bosonic opera-
tors, we obtain equations of motion of uk(t) and vk(t),

i

[
u̇k(t)
v̇k(t)

]
=

[
εk + gknc(t) gknc(t)
−gknc(t) −εk − gknc(t)

] [
uk(t)
vk(t)

]
,(7)

where nc(t) is the condensate density. The total density
consists of the condensate and depletion densities as n =
nc(t) + nd(t) with the total density of the excitation, i.e.
quantum depletion given as

nd(t) =
1

Ω

∑
k

nk(t) =
1

2π2

∫ ∞
0

nk(t)k2 dk, (8)

where nk(t) ≡ 〈â†kâk〉 = |vk(t)|2 is the distribution of
momentum states. When the excitation from the con-
densate is weak nd ≈ 0, we can approximate nc(t) ≈ n.
Eqs. (7) can be solved exactly,[

uk(t)
vk(t)

]
=

[
cos(Ek(t)t)I− i

sin(Ek(t)t)

Ek(t)
(9)

×
(
εk + gknc(t) gknc(t)
−gknc(t) −εk − gknc(t)

)][
uk(0)
vk(0)

]
,

where I is the identity matrix, and the dispersion relation
Ek(t) =

√
εk[εk + 2gknc(t)]. The initial values of uk(t)

and vk(t) are [3],

uk(0) =

√
1

2

[
εk + g0n

Ek(0)
+ 1

]

vk(0) = −
√

1

2

[
εk + g0n

Ek(0)
− 1

]
. (10)

We kept nc(t) explicitly in Eq. (9) to indicate that uk(t)
and vk(t) are time-dependent quantities, while the total
density n is time-independent. Using the time-dependent
solutions, we calculate the momentum distribution nk(t),

nk(t) = |vk(0)|2 + gknc(t)

[
gknc(t)− g0n

]
× εk [1− cos(2Ek(t)t)]

2Ek(t)2Ek(0)
. (11)

Eq. (11) shows that nk(t) encodes the dispersion relation.
One can see this after carrying out a Fourier transform
of nk(t) to the frequency domain [50].

As we will consider very weak quantum depletion, the
conventional Bogoliubov approach can already describe
the dynamics well. To take into account the corrections
due to the weak quantum depletion, we additionally em-
ploy a self-consistent method through iterative calcula-
tions. From Eq. (9), we obtain the quantum depletion
and hence nc(t). As we still have nc(t) ≈ n, nc(t) will be
treated as an adiabatically changing quantity such that
we can again use Eq. (9) to calculate the quantum deple-
tion in which the weak time-dependence of nc(t) will be
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considered. This procedure will be iterated until nc(t) is
self-consistently obtained, i.e. additional iterations will
not change nc(t) any more. Note that the procedure used
here is approximately applicable as the quantum deple-
tion is small. When the depletion is strong, one could
apply the rigorous self-consistent procedure presented in
Ref. [12].

In the following calculations, we will scale the ener-
gies, lengths, and times with respect to the interaction

energy g0n, coherence length ζ = (mg0n)
−1/2

, and coher-
ence time τ = tg0n of the initial condensate. The zero
range interaction strength is fixed by the s-wave scatter-
ing length. To be concrete we will set as = 0.1n−1/3

throughout this work.

III. RESULTS AND DISCUSSIONS

A. Stationary dispersion relation

The soft-core interaction drastically alters the disper-
sion relation of the Bogoliubov excitations. To illustrate
this, we first examine dispersion relations of a static BEC
by assuming that the soft-core interaction is present.
When the soft-core interaction is weak, i.e. α is small, the
dispersion relation resembles that of a weakly interact-
ing BEC. The excitation energies increase monotonically
with momentum k [3] [see Fig. 2(a)]. By increasing α,
the shape of the Bogoliubov spectra changes significantly.
For different α, the dispersion intersects at a momentum
determined by V (k) = 0 [see Fig. 1(b)], where mode en-
ergies of the Rydberg-dressed BEC coincide with that of
a weakly interacting BEC (the dashed curve). More im-
portantly a local maximum and minimum can be seen
in the dispersion relation when α is large [Fig. 2(a)]. At
the maximum, special modes called maxon modes form,
while roton modes emerge around the minima [23]. In
the following, we will denote the energies of the maxons
and rotons with γm and γr, as the local maximal and
minimal values of the dispersion relation.

The roton and maxon modes depend on the soft-core
interaction non-trivially. When increasing α, γr decreases
while γm increases, as given by the examples shown in
Fig. 2(a). For sufficiently large α, the roton gap van-
ishes as the energies become complex. Due to the ro-
ton instability, the homogeneous state becomes dynami-
cally unstable which leads to interesting physics. It has
been shown that the emergence of the roton instability
can cause a first order phase transition where the ground
state changes from a uniform condensate to a supersolid
state [35, 51, 52]. We note that instabilities in dipolar
BECs are caused by angular dependent interactions with
both attractive and repulsive components [16], while the
instability in the dressed BEC is induced by stronger,
isotropic interactions. We will show in the following sec-
tion that switching on the dressed interaction induces
exotic dynamics even without triggering the roton insta-
bility.

FIG. 2. (color online) Roton and maxon modes. (a) Bo-
goliubov spectra in the stationary state for α = 0 (black, thin
dashed), 1 (blue, dotdashed), 6 (green, thick dashed), and
7.7 (purple, solid), when R = 15. The energy gaps γr and
γm indicating respectively the roton and maxon energies are
marked for the green curve. For α > 7.7, the spectra becomes
unstable. (b) The critical value αr vs R. Analytical calcu-
lations (black) agree with the numerical data (red dots). (c)
Roton energy γr. Increasing α, the roton energy decreases.
For large α, the analytical (black solid) and numerical (dot)
results agree. At small α, roton minima become weak and
eventually disappear, which leads to the deviation. The data
points in red are the energies taken numerically from the dis-
persion. (d) Maxon energy γm increases with α. The analyt-
ical (black solid) and numerical data agree nicely. In (c) and
(d) R = 15.

We now obtain the critical value at which the roton
mode becomes unstable. From Fig. 1(b), the Fourier
transform of the soft-core potential has the most neg-
ative value around kr ≈ 5π/3R. The roton minimum
takes place around this momentum. By substituting kr
into the dispersion relation, we can identify the critical
α at which the roton energy becomes complex,

αr =
5e5π/3

(
36R2 + 25π2

)
72πR2

[
2e5π/6 sin

(
π
6 − 5π

2
√
3

)
− 1
] . (12)

To check the accuracy of this critical value, we numeri-
cally find the instability point from the dispersion rela-
tion for various α values. Both numerical and analyti-
cal values are shown in Fig. 2(b). The analytical result
agrees with the numerical values very well. This supports
the assumption that the roton minimum happens around
momentum kr.

Knowing the momentum kr, we can obtain the roton
energies by inserting it into Eq. (4). It is found that
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FIG. 3. (color online) Excitation of the roton and maxon mode. In the upper panels, (a) gives the dispersion for a
static BEC. The momentum of the roton and maxon modes decreases with increasing soft-core radius R. Without soft-core
interactions, the excitation energy monotonically increases with momentum (black, thin dashes). The location of the maxon
modes for the red curve is highlighted it the arrow. In (b)-(c), the interaction quench is applied. Momentum densities nkk

2 at
time τ = 30 are shown in (b). The black dashed curve shows the momentum distribution of the initial state. The quantum
depletion damps slightly at early times and then oscillate rapidly with negligible damping over a long time (c). This leads
to sharp peaks in the respective Fourier transformation (d). The non-zero width of the peaks results from the damping at
the early stage of the evolution. The frequency νm at the major peaks is determined by the maxon frequency. Minor peaks
corresponding to other frequencies are almost invisible. In (a)-(d), three different soft-core radius R = 8 (red, thick), 10 (green,
thick dashes), and 12 (blue, thin) are considered, while the interaction strength is fixed at α = 4. In the lower panels, the
dispersion (e), momentum distribution (f), quantum depletion (g) and Fourier transformation of the quantum depletion (h) for
R = 10 and α = 5 (blue, thin), 6.5 (green, thick dashes), and 7.99 (red, thick) are shown. Approaching to the roton instability
(e), the momentum density distribution (f) develops a large occupation around modes at kr at τ = 30. Both the roton and
maxon momenta are highlighted with arrows in this case. The depletion dynamics maintains a slower oscillation (g) as the
interaction strength is increased, which can be seen from the Fourier transformation of the quantum depletion (h). The lower
peak frequency νr is determined by the roton mode. The major peaks at higher frequencies are due to the excitation of maxons.
When α = 7.99, both the roton and maxon mode are dynamically stable, giving narrow Fourier spectra. While calculating the
above spectra, the system was allowed to evolve up to time τ = 600.

the roton energy γr decreases with increasing α [see Fig.
2(c)]. The roton energy from the numerical calculations
agrees with the analytical data, especially when the soft-
core interaction is strong. Decreasing the soft-core inter-
action, the roton modes disappear for sufficiently small α,
as our numerical calculations indicate. Here large devia-
tions between the two methods are found in this regime.

On the other hand, the location of the maxon modes
in momentum space is difficult to find. By analyzing the
dispersion relation, the momentum corresponding to the
maxon mode is approximately given by km ≈ kr/2. Using
this approximation, we substitute this momentum value
into Eq. (4) and calculate the maxon energy. The re-
sult is shown in Fig. 2(d), where the approximate value
matches the numerical values with a high degree of ac-
curacy.

Recently, the stationary state of 2D and 3D Rydberg-
dressed BECs have been examined [53]. It was shown
that the increased occupation around the roton modes
leads to instabilities in the ground state in the form of
density waves. It was also seen that the strong interpar-
ticle interactions lead to a large depletion of the conden-
sate.

B. Roton and maxon excitation

Depending on parameters of the soft-core interaction,
the stationary dispersion relation could support roton
and maxon modes. One example is displayed in Fig.
3(a). Now if we quench the interaction, the dispersion
relations of the initial and final states are different. The
system is driven out of equilibrium, such that the momen-
tum distributions nk(τ) evolve with time. In Fig 3(b),
snapshots of the momentum density nk(τ)k2 are shown.
At τ = 0, the BEC is in a stationary state, which depends
on the initial condition, v̄k. The respective momentum
density is a smooth function of k. At later times, differ-
ent momentum components are excited by the presence
of the soft-core interaction causes dynamical evolution of
the quantum depletion.

The dynamics of the quantum depletion depends vi-
tally on the parameter R and α in the soft-core interac-
tion. After switching on the interaction, the excitation
of the Bogoliubov modes significantly affects the momen-
tum distribution. We will first investigate the oscilla-
tory behavior of the quantum depletion. For moderate
soft-core interactions, many momentum modes are ex-
cited by the soft-core interaction, as shown in Fig. 3(b).
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The quantum depletion increases rapidly at short times
and then oscillates around a constant value [Fig. 3(c)].
Its amplitude decreases slowly when τ < 100 but then
reaches a constant. The Fourier transformation ñd(ν)
of the quantum depletion, characterizing the spectra of
the dynamics, shows a sharp peak [Fig. 3(d)]. The finite
width of the peak is largely due to the damping of the
quantum depletion at the early stage of the evolution.
The peak positions, i.e. frequency of the oscillations, de-
crease gradually when increasing the soft-core radius.

For stronger soft-core interactions, the roton mode
moves towards the instability point [see Fig. 3(e)]. As
the interaction strength approaches αr, the momentum
density develops a large occupation at momentum values
matching kr [see Fig. 3(f)]. Around the maxon momen-
tum km, there are also large occupations. A new, lower
frequency pattern develops on top of the fast oscillation
in the quantum depletion [Fig. 3(g)]. This changes the
Fourier spectra of the quantum depletion, where a new
peak is found at a lower frequency [Fig. 3(h)].

Importantly, the peak positions in ñd(ν) are deter-
mined by the roton and maxon energies, where the fast
oscillations are due to the excitations of the maxon
modes, while slow oscillations are due to the roton modes.
To verify this, we first obtain the maxon and roton fre-
quencies by substituting the corresponding momentum
km and kr into Eq. (4). We then compare them with the
frequency at the peak positions in the Fourier spectra.
Note that the oscillation frequency (i.e. peak frequency
of the Fourier spectra) in the quantum depletion is twice
the Bogoliubov energy, as can be seen in Eq. (11). As
shown in Fig. 4, the numerical data for both the maxon
mode (a-b) and roton mode (c-d) agree with the analyti-
cal calculations. When varying the interaction strength,
the maxon (roton) frequency increases (decreases) with
increasing α. If we increase the soft-core radius, frequen-
cies of both modes decrease.

The agreement between numerical and analytical cal-
culation confirm that both roton and maxon modes are
excited via quenching the soft-core interaction. The dy-
namically excited modes are stable, as both the fast and
slow oscillations are persistent for a long time. In our
numerical simulations, the oscillations will not dampen
even when the simulation time τ > 1000. Such persistent
oscillatory dynamics also leads to the sharp peaks in the
Fourier transformation of the quantum depletion.

We want to emphasize that the quench dynamics in the
dressed BEC is in sharp contrast to BECs with either
s-wave or dipolar interactions. In a weakly interacting
BEC, the quantum depletion grows exponentially to a
steady value ∝ ζ−

1
3 , while oscillatory patterns are not

present in the depletion [11], due to the fact that low
energy phonon modes dominate the quench dynamics.
In dipolar BECs [19, 20, 24, 54, 55], on the other hand,
roton modes are formed due to the interplay between
long-range dipolar and s-wave interactions [19, 20, 24,
54, 55]. These roton modes can be excited by quenching
the dipolar interaction, while maxon modes are typically
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FIG. 4. (color online) Maxon frequency (a-b) and ro-
ton frequency (c-d). The dots are numerical data from the
Fourier spectra. The solid curves are the analytical results
2γm in (a)-(b) and 2γr in (c)-(d) obtained from the Bogoli-
ubov dispersion. The maxon (roton) frequency increases (de-
creases) with increasing interaction strength. At the critical
point αr, the roton mode loses stability. Frequencies of both
modes tends towards 0 for larger R values as the soft-core
interaction becomes weaker. In (a) and (c) R = 15. In (b)
and (d) α = 4.

unstable in the dynamics [see Appendix A for examples].

C. Quantum depletion in the long time limit

In the long time limit τ � 1, the quantum depletion
oscillates rapidly around a mean value [Fig. 3(c) and (g)].
In the following, we will evaluate the asymptotic value of
the quantum depletion. First we will derive an analytic
expression using the following approximations. In the
long time limit, the time averaged quantum depletion is
largely determined by the low momentum modes. More-
over, we will neglect the oscillation term in Eq. (11), as
they are related to the roton and maxons. Using these
approximations, the asymptotic form of the momentum
distribution n∞k is obtained,

n∞k ≈
1

2

(
k2 + 1√
k2(k2 + 4)

− 1

)
+
αf(k)

4k

n∞c
n
, (13)

where n∞c is the asymptotic condensate density. After
carrying out the integral over momentum space, the ap-
proximate quantum depletion when τ →∞ is obtained,

n∞d
n
≈ 2Γ

(
R2 + απ

3R2 + 2παΓ

)
, (14)

where Γ = (2π2ζ3n)−1. This result predicts that
the quantum depletion approaches to a constant value
n∞d /n → 2Γ/3 in the limit R → ∞. This resembles the
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FIG. 5. (color online) Asymptotic quantum depletion.
The asymptotic quantum depletion increases with increasing
α (a), which is seen from both the analytical and numerical
calculations. The quantum depletion n∞d decreases with in-
creasing soft-core radius (b). The lines are found analytically
using Eq. (14), while the data points are found by numeri-
cally solving Eq. (8) and taking the mean value at later times
between τ ≈ 50 → 150. Parameters in (a) are R = 3 (black,
open diamonds, with dashed line) and 4 (red, filled diamond,
with solid line). Parameters in (b) are α = 1 (black, open di-
amonds, with dashed line) and 3.5 (red, filled diamond, with
solid line).

result of the weakly interacting BEC, i.e. the soft-core
interactions plays no role in the dynamics.

To verify the analytical calculation, we numerically
find the mean value of the quantum depletion when time
is large. Both the numerical and analytical results are
shown in Fig. 5. For small α, low momentum states are
populated by switching on the soft-core interaction. This
is the regime where the approximation works. Here we
find a good agreement between the numerical and ana-
lytical calculations. Increasing the interaction strength,
more and more higher momentum components are pop-
ulated [see Fig. 3(f)], causing larger depletion. When
fixing α, the quantum depletion decreases with increas-
ing R, as can be see in Fig. 5(b). This results from the
fact that the quench only affects momentum components
k < kr/R [see Fig. 1(b)]. For momentum k � kr/R, the
dispersion is largely unaffected by the soft-core interac-
tion as the respective V (k)→ 0. Therefore increasing R
leads to a weaker quantum depletion.

IV. CONCLUSION

We have studied dynamics of 3D BECs in free space,
with Rydberg-dressed soft-core interactions. An interac-
tion quench is implemented through turning on the soft-
core interaction instantaneously, starting from a weakly
interacting BEC. The Bogoliubov spectra of the BEC dis-
plays local maxima and minima, which are identified as
maxon and roton modes. Through a time-dependent Bo-
goliubov approach, we have calculated dynamics of the
quantum depletion self-consistently. Our results show
that both roton and maxon modes are excited by switch-
ing on the soft-core interaction. The excitation of roton
and maxon modes generate slow and fast oscillatory dy-
namics in the quantum depletion. Our simulations show
that the excited roton and maxon modes are stable in
the presence of the soft-core interaction, which are ob-
served from the persistent oscillations of the quantum
depletion. We have found the frequencies of the roton
and maxon modes approximately, which are confirmed
by the numerical simulations.

Our study shows that exotic roton and maxon excita-
tions can be created in Rydberg-dressed BECs through
interaction quenches. Properties of the maxons and ro-
tons can also been seen from condensate fluctuations [see
Appendix B for details] and density-density correlations
[see Appendix C]. The results studied in this work might
be useful in identifying the soft-core interaction, through
measuring the frequencies and strength of the quantum
depletion. In the future, it is worth studying the stability
of the maxon mode due to the Beliav damping [56, 57].
Maxon modes are also present in strongly correlated
4He [58, 59], where the maxon decays into phonons at
the Pitaevskii plateau. Whether the maxons in Rydberg-
dressed BECs will decay through this mechanism is an
open and interesting research question. Another interest-
ing question is whether the soft-core interaction can lead
to the formation of droplets in Rydberg-dressed BECs.
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Appendix A: Dynamics of 2D Dipolar Systems

Quench dynamics in BECs with dipolar interactions
are drastically different. The dipolar interaction is given
by

Ṽdd(r− r′) = g0δ(r) +
d2

|r− r′|3 [1− 3 cos2(θ)], (A1)

where d is the dipole moment, θ is the angle between the
dipoles and molecular axis, and g0 is the short-range con-
tact interaction as before. In 3D, the Fourier transform
of the dipolar interaction has no momentum dependence
[60]. In a 2D trapped dipolar Bose gas [17, 18], the in-
teraction potential displays a strong momentum depen-
dence [20].

We consider a quasi-2D setup [20], where a strong con-
finement is applied in the perpendicular z-direction while
leaving atoms free to move in the x − y plane. The
dipoles are polarized along this z-axis. This leads the
axial confinement as lz, which provides a natural rescal-
ing of r 7→ r/lz [17, 18, 20–22]. After integrating Eq.
(A1) in the z-axis, we obtain the Fourier transformation
of the quasi-2D dipolar interaction [20]

gdd(k) = g0 + d2
[
2− 3k

√
πErfc(k)ek

2
]
, (A2)

where Erfc(k) is the complimentary error function. Here
we define the dimensionless parameter αd = d2/g0 to
characterizing the strength of the dipolar interaction,
such that the interaction after the quench is given as

gdd(k)/g0 = 1 + αd

[
2− 3k

√
πErfc(k)ek

2
]
. The quench

scheme for the dipolar case is similar to the procedure
outlined in the main text. We switch on the dipolar in-
teraction instantaneously, while keeping the s-wave inter-
action unchanged.

The dispersion relation for the dipolar BEC is shown
in Fig. A1(a), where both roton and maxon modes can
be seen.

When the dipolar interaction is compared to the
Rydberg-dressed BEC [e.g Fig. 2(a)], the energies of the
low momentum modes remain small, as seen by directly
comparing the dispersion relations. The absence of these
large maxon energies means that the mechanism behind
the dipolar interactions prevent the oscillations that we
previously attributed to the maxon modes from reaching
large amplitudes [Fig. A1(b)][20, 21, 61].

The energy spectrum of dipolar BECs [Fig. A1(a)]
shows that the maxon energies are slightly above the en-
ergy of a weakly interacting BEC (black, dashed line).
In comparison, Fig. 2(a) in the main text shows that
the maxon energy in the Rydberg-dressed interaction is
much higher. The absence of the high frequency oscil-
lations in the dipolar BECs might be attributed to this
lack of the high energy maxon modes.

We follow the same self-consistent process to obtain
the condensate fraction. We calculate the quantum de-
pletion as before as nd/n = 1/(2πl2zn)

∫∞
0
nkk dk. When

FIG. A1. (color online) Quantum depletion in a dipolar
BEC. Solid red curves are for αd = 2.1 and blue dashed
curves are for αd = 2.7. The black dashes correspond to the
noninteracting dispersion relation. The axial confinement is
set to lz = 0.1n−1/2. We show the dispersion relation in (a)
while the momentum distribution at time τ = 30 is shown
for (b). The quantum depletion and corresponding Fourier
spectra are shown in (c) and (d) respectively. The inset shows
a maxon mode is excited for αd = 2.1. However the signal is
very weak and almost invisible. The axes of the inset is same
as panel (d).

αd is small, the dynamics develops maxon oscillations,
which dampens in short time scales, as shown in Fig.
A1(c). When αd is large, the roton frequency completely
overpowers the maxon frequency in the dynamics. The
absence of a stable maxon mode is also seen in the Fourier
spectra [Fig. A1(d)].

Appendix B: Condensate fluctuation

In this section, we evaluate the fluctuation of the con-
densate for the Rydberg-dressed BEC. The condensate
fluctuation is defined as

∆nc =

√
〈n2c〉 − 〈nc〉2

=

√
〈n2d〉 − 〈nd〉

2

=
1

Ω

√ ∑
kk′ 6=0

[
〈â†kâkâ

†
k′ âk′〉 − 〈â†kâk〉 〈â

†
k′ âk′〉

]
,

where we have assumed the total density n is a constant.
Using the Bogoliubov transformation, the fluctuation of
the condensate is obtained,

∆nc =
1

Ω

√
2
∑
k6=0

nk(1 + nk) (B1)
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FIG. B1. (color online) Condensate fluctuation. (a) Dy-
namics of the condensate fluctuation. We fix R = 10, and
evolve the system for α = 5 (blue, lower curve), 6.5 (green,
middle curve), and 7.99 (purple, upper curve). The dashed
line is the fluctuation without the soft-core interaction, i.e.
α = 0. The inset shows fluctuations when α = 7.99 to high-
light the low frequency oscillations due to rotons. The axes
of the inset is same as panel (a). Mean values of the fluctu-
ations for different α (b) and R (c) when time τ → ∞ are
shown. We have considered R = 3 (black, open diamonds,
with dashed line) and 4 (red, filled diamond, with solid line)
in (b) and α = 1 (black, open diamonds, with dashed line)
and 3.5 (red, filled diamond, with solid line) in (c). Diamond
points correspond to the numerical data, while lines represent
the analytical expression. Other parameters can be found in
Fig. 5 in the main text.

One can numerically evaluate the fluctuation by insert-
ing Eq. (11) into the above equation. For convenience,

the relative fluctuation,
√
N∆nc/n, will be calculated.

Some examples are shown in Fig. B1(a). The fluctua-
tion increases rapidly, and then saturates at an asymp-
totic value when time is large. The fluctuation oscillates
around the asymptotic value. The maxon modes lead to
fast oscillations. When the roton mode is significantly
populated, a slower oscillation is found.

The asymptotic value of the fluctuation depends on the
soft-core interaction. Increasing α, the asymptotic value
increases [see Fig. B1(a) and (b)]. We can estimate the
asymptotic value of the density fluctuation by replacing
nk with its asymptotic value Eq. (13), in Eq. (B1), which
yields

√
N∆n∞c
n

=

√
2Γ

∫ ∞
0

n∞k [1 + n∞k ] k2 dk. (B2)

Further assuming the fluctuation depends solely on low
momentum states, we obtain the approximate result of

FIG. C1. (color online) Density-density correlation. (a)
the density-density correlations as a function of D and τ ,
when R = 15 and α = 7.7. Correlations at D = 5 (thick
red) and 25 (thin blue) are shown in (b). The corresponding
Fourier spectrum of the correlation function is shown in (c).
In the Fourier spectra, the peaks at lower and higher frequen-
cies are due to the excitation of roton and maxon modes.

the fluctuation when τ →∞,

√
N∆n∞c
n

≈

√
2Γπ2

[
1 + π2α

(
6
√

3 + παC
)]

27R
, (B3)

with the constant C =
[
4
√

3π − 3 log
(
27
16

)]
. The ap-

proximation result shows that fluctuations of the con-
densate decreases (increases) with increasing R (α). In
Fig. B1(b) and (c), numerical and approximate results
are both shown. The two calculations agree when α is
small or R is large, where the depletion and fluctuation
are both small. Though large discrepancy is found when
α is large or R is small, the trend found from both nu-
merical and analytical calculations are the same.

Appendix C: Density-Density Correlation

Lastly we evaluate the density-density correlation func-
tion [10, 11]

g(2)(r, t) =
∑

k,k′,q

eik.r
1

Ω2

〈
â†k+q(t)âk(t)â†k′−q(t)âk′(t)

〉
. (C1)

Within the Bogoliubov transformation, this can then
be expressed in terms of the condensate density

as 〈1/Ω2
∑

k,k′ â
†
k+q(t)âk(t)â†k′−q(t)âk′(t)〉 = n2 +

n/Ω
∑

k[4|vk|2−u∗kvk−ukv∗k]. Defining D = |r−r′ |/ζ as



10

0 25 50
τ

1.5

2.5

3.5
|u
k
(τ

)|

0 25 50
τ

1.5

2.5

3.5

|v k
(τ

)|

(a) (b)

FIG. D1. (color online) Evolution of Bogoliubov ampli-
tudes. Using the same parameters as the thick red curve
in Fig. 3(g), the amplitudes |uk(τ)| (a) and |vk(τ)| (b) are
shown for k = 0.3. The solid red curves corresponds to our
self-consistent algorithm while the blue data points are calcu-
lated by the rigorous calculation from Ref. [12]

the scaled interatomic distance, the correlation function
is given as [11]

g(2)(D, τ)− 1 =
4Γ

D

∫ ∞
0

k dk sin(kD)

×
[
nk − Re[u∗k(τ)vk(τ)]

]
.

(C2)

We see from Fig. C1(a) that the correlations immedi-
ately develop both slow and fast oscillations. The slow
oscillation corresponds to the excitation of roton modes,
when γr is small. The fast oscillations attributed to the
maxon occupation are more easily observed when looking
at a specific value of D [Fig. C1(b)]. The corresponding
Fourier transformation g̃(2) (D, ν) − 1 clearly show the
associated frequency peaks. When the distance D < R,
g(2)(D, τ) − 1 oscillates with large amplitudes and can
have negative values, i.e. strong repulsive interactions
lead to anti-correlations. Around the soft-core radius,

the correlations are positive, and reach their maximal
values. When D � R, the correlations tend to zero at
large times.

Appendix D: Self-consistent calculation comparison

The dynamical condensate density is found by calcu-
lating the quantum depletion self-consistently. In our
calculation we have chosen parameters such that quan-
tum depletion is small in the initial state and also in the
dynamical evolution. With this condition at hand, the
calculation is carried out by treating nc as an adiabat-
ically changing parameter. Here a crucial step in the
derivation of Eq. (9) of the main text is that we assume
nc = n during the first iteration. With this crude approx-
imation, Eq. (7) can be integrated, leading to Eq. (9).
After the first iteration, the value of nc will be updated
and then reinserted into the next iteration in Eq. (9).
As the corrected nc is still very close to n, we directly
iterate Eq. (9) instead of solving Eq. (7) numerically.

A more rigorous approach was presented by Ref. [12]
and should be followed in the event of large quantum
depletion. Due to nc ≈ n, we can replace the phase term

φ =

∫ t

0

dt′nc(t
′) (D1)

in Ref. [12] with nct in our calculations. These two
calculations appear to agree well when using the param-
eter regimes considered in the work. Some examples are
given in Fig. D1 where we show the dynamical evolution
of uk(t) and vk(t) obtained by the two different calcu-
lations. The blue curves are obtained from the rigorous
approach used in Ref. [12] and red using our calculations.
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