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Abstract

We examine the role of the travel time of a predator along a spatial network on predator-prey population interactions, where the

predator is able to partially or fully sustain itself on a resource subsidy. The impact of access to food resources on the stability and

behaviour of the predator-prey-subsidy system is investigated, with a primary focus on how incorporating travel time changes the

dynamics. The population interactions are modelled by a system of delay differential equations, where travel time is incorporated as

discrete delay in the network diffusion term in order to model time taken to migrate between spatial regions. The model is motivated

by the Arctic ecosystem, where the Arctic fox consumes both hunted lemming and scavenged seal carcass. The fox travels out on

sea ice, in addition to quadrennially migrating over substantial distances. We model the spatial predator-prey-subsidy dynamics

through a “stepping-stone” approach. We find that a temporal delay alone does not push species into extinction, but rather may

stabilize or destabilize coexistence equilibria. We are able to show that delay can stabilize quasi-periodic or chaotic dynamics,

and conclude that the incorporation of dispersal delay has a regularizing effect on dynamics, suggesting that dispersal delay can be

proposed as a solution to the paradox of enrichment.

Keywords: predator-prey dynamics; allochthonous resource subsidy; population dynamics; non-equilibrium dynamics; network

structure in ecology; stepping-stone model; dispersal delay

1. Introduction

Interactions between the Arctic fox (Alopex lagopus) and

the Arctic lemming (Cricetidae family) have traditionally been

considered as a predator-prey system (Angerbjorn et al., 1999).

However, the Arctic fox also consumes certain birds, bird eggs,

and seal (Phocidae family) carrion discarded by polar bears

(Ursus martimus) on the sea ice during migration (Nevai and

Van Gorder, 2012; Roth, 2002, 2003). While the existence

of an allochthonous resource in a predator-prey type interac-

tion may seem innocuous, empirical studies have shown that

resource subsidies can disrupt otherwise stable population in-

teractions (Darimont et al., 2008; Halaj and Wise, 2002; Hen-

den et al., 2010). Numerous other ecosystems follow the same

interaction patterns, such as: systems where river otters bene-

fit from a resource subsidy (Ben-David et al., 2005), the wolf,

deer, and salmon carcass system (Adams et al., 2010; Darimont

et al., 2008), and populations of puma that benefit from mule

deer carcass in addition to hunted prey (Bauer et al., 2005).

One popular predator-prey model is the Rosenzweig and

MacArthur (1963) model, given by

dx

dt
= rx

(

1 −
x

k

)

− θ
xy

x + h
, (1)

dy

dt
= ǫθ

xy

x + h
− δy. (2)

Here, the birth rate of the prey is given by a logistic model with

carrying capacity k and growth rate r. The consumption rate

is given by a Holling Type II functional response θx/(x + h)

(Turchin, 2003), such that the prey consumption rate saturates

as x grows large. The maximum prey consumption rate is de-

noted by θ, h is the half-saturation rate, ǫ is the efficiency of

predator consumption, and δ is the death rate of the predator.

The system admits a stable equilibrium for a certain range of the

carrying capacity k, which undergoes a supercritical Hopf bifur-

cation as k increases beyond this range (Hofbauer and Sigmund,

1998; Kot, 2001) and a limit cycle about the now unstable fixed

point comes into existence. As k increases further, the ampli-

tude of the limit cycle grows and the prey density x may pe-

riodically reach vanishingly small values which cannot persist

in nature (Kot, 2001). This non-intuitive phenomena is known

as the “paradox of enrichment” (Gilpin and Rosenzweig, 1972;

Kot, 2001; May, 1972; Rosenzweig et al., 1971; Turchin, 2003).

These limit cycles found under the Rosenzweig-MacArthur

population model result in the “atto-fox problem”, where solu-

tions may fluctuate violently and reach arbitrarily small values,

yet recover (Arditi and Berryman, 1991; Jensen and Ginzburg,

2005).

The Rosenzweig-MacArthur model was extended to include

a resource subsidy by Nevai and Van Gorder (2012), in what

was named the predator-prey-subsidy (PPS) model. Letting s(t)

denote the density of the resource subsidy at time t, the evo-

lution of the prey, subsidy, and predator populations (denoted

x, s, y, respectively) is described by the following system of dif-
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ferential equations:

dx

dt
= rx

(

1 −
x

k

)

− θ

(

x

x + s + h

)

y, (3)

ds

dt
= i − γs − ψ

(

s

x + s + h

)

y, (4)

dy

dt
=

(

ǫθx + ηψs

x + s + h

)

y − δy, (5)

where i is the subsidy input rate, γ is the rate at which the sub-

sidy decays or is otherwise removed, and ψ and η are the sub-

sidy equivalent of θ and ǫ. Note that h is now the half-saturation

rate of combined prey and subsidy consumption. All other pa-

rameters are defined as in the Rosenzweig-MacArthur model,

and all parameters are non-negative.

For sufficiently small subsidy input rates i, the model per-

mits a stable predator-free equilibrium for small prey carrying

capacities k, a stable positive equilibrium for intermediate k,

and limit cycles for large k. The introduction of a subsidy is

stabilizing in the sense that as i increases from zero, the limit

cycles appearing in the Rosenzweig-MacArthur model experi-

ence “amplitude death” (Nevai and Van Gorder, 2012). More-

over, as i increases above a certain threshold, a unique, stable

prey-free equilibrium point appears. Hence, high rates of re-

source subsidy input drives the prey to extinction.

The inclusion of non-autonomous periodic forcing terms in

a Lotka-Volterra model has been shown to produce chaotic dy-

namics for certain parameter values (Zhang et al., 2015a). The

PPS model was later extended by Levy et al. (2016) to include

seasonal effects by introducing various time-dependent parame-

ters. This non-autonomous PPS model displayed non-linear dy-

namics not found in the original model, such as quasi-periodic

and chaotic oscillations.

1.1. Including Spatial Dimension

The models introduced above ignore spatial effects and as-

sume random mixing on an isolated patch. However, the Arctic

fox is a migratory animal and migrates every three or four years,

often taking random paths rather than migrating in known pat-

terns (Wrigley and Hatch, 1976). This migration takes about

five months, during which the fox suffers from higher death

rates due to lack of food and other hazards (Wrigley and Hatch,

1976). Moreover, the fox must travel onto the sea ice to con-

sume seal carrion, into an area where their natural prey, the

lemming, does not live. Therefore, we consider the impact of

predator movement on the population dynamics.

Models that investigate spatial and migratory effects can gen-

erally be categorized into one of three groups: island mod-

els, stepping-stone models, and continuum models (Shen and

Van Gorder, 2017). An n-patch island model considers a set of

n spatially separated environments, where, on each patch, pop-

ulations exist and are governed by a system of equations such

as those described above. As there is no movement between

patches, the relative locations of different populations have no

effect on the model behavior (Kareiva et al., 1990; Levin, 1976).

An n-patch stepping-stone model assigns a spatial coordinate

to every patch and a network of permissible routes of move-

ment. The migratory populations may move across the network

by discrete diffusion. It is generally assumed that migration is

instantaneous, meaning travel time is not incorporated in the

model. Notice that the relative spatial location of each patch

is now explicitly included in the model, and stepping-stone do-

mains differ from island domains in that the spatial structure

may influence the dynamics (Neubert et al., 2002; Shen and

Van Gorder, 2017). Lastly, continuum models use partial differ-

ential equations to describe spatial dispersal of populations in

a continuous domain (Bassett et al., 2017; Kareiva et al., 1990;

Levin, 1976).

Substantial research has been done on the effect of disper-

sion across spatial domains of predator prey models (Jansen,

1995, 2001; Jansen et al., 2000; Levin, 1974, 1976; Scheffer

and De Boer, 1995; Weisser and Hassell, 1996). It has been

suggested that population dispersion, of either predator, prey,

or both species, has a stabilizing effect on the dynamics of the

model, causing amplitude death of limit cycles and dampening

the effect of the paradox of enrichment (Jansen, 1995). While a

system with two competing prey-populations and one predator

in a single patch exhibit enriched dynamics and even chaotic os-

cillations for physical parameter regimes (Hutson and Vickers,

1983), a two-patch system with a separate prey-population on

each patch with a migratory predator was found to be stabilized

by dispersion of the predator (Holt, 1984).

However, modelling spatial dispersion increases the dimen-

sionality of the model, which may give rise to more complex

dynamics. In (Jansen, 2001), Jansen investigated a two-patch

Rosenzweig-MacArthur model with a predator and prey popu-

lation on each patch, where the predator was allowed to migrate

by discrete diffusion. Quasi-periodic solutions and chaotic at-

tractors were observed, where unphysically large carrying ca-

pacities k were required for the latter behavior. For high rates

of dispersal, solutions existed where the prey were driven to ex-

tinction in one patch only. More sophisticated models of disper-

sion that incorporate animal behaviors, such as predator aver-

sion or predation, have also been investigated for a two-patch

predator-prey model by making dispersion density-dependent

(Hauzy et al., 2010; Kang et al., 2015).

Nevai and Van Gorder (2012) proposed a two-patch island

model, where the prey was confined to one patch and the sub-

sidy to another. The predator was allowed to travel instanta-

neously between the two domains by discrete diffusion at rate

α. The two-patch PPS model was also motivated by the Arctic

ecosystem, where the prey is non-migratory while the predator

both travels out on the ice in search of resource subsidy and mi-

grates over longer distances quadrennially (Dalén et al., 2004;

Roth, 2002, 2003). The effect of the subsidy on the system was

similar to that of the single-patch case and it was found that in-

creasing the dispersion rate α also had a stabilizing effect on the

system (Nevai and Van Gorder, 2012).

A general n-patch PPS model was proposed by Levy et al.

(2016). Letting x( j)(t), s( j)(t), y( j)(t) be the population densities
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at patch P
( j) at time t, the model is given by

dx( j)

dt
= r( j)x( j)

(

1 −
x( j)

k( j)

)

− θ( j)

(

x( j)

x( j) + s( j) + h( j)

)

y( j), (6)

ds( j)

dt
= i( j) − γ( j)s( j) − ψ( j)

(

s( j)

x( j) + s( j) + h( j)

)

y( j), (7)

dy( j)

dt
=

(

ǫ( j)θ( j)x( j) + η( j)ψ( j)s( j)

x( j) + s( j) + h( j)

)

y( j) − δ( j)y( j)

+

n
∑

ℓ=1

(

λ(ℓ, j)α(ℓ, j)y(ℓ) − α( j,ℓ)y( j)
)

,

(8)

for j ∈ {1, 2, . . .n}. Here, α(ℓ, j) is the dispersion rate from patch

P
(ℓ) to P

( j) and λ(ℓ, j) is the survival rate of the predator upon

moving from P
(ℓ) to P

( j). Migration from a patch to itself is

disallowed, so α( j, j) = 0 for all j. As the focus of Levy et al.

(2016) was on the impact of non-autonomous parameters, only

simple two- and three-node networks were considered. Shen

and Van Gorder (2017) found that network structure had some

influence on the dynamics of the n-patch PPS system. Increas-

ing migration rates α(ℓ, j) was largely stabilizing, and could drive

the predator to extinction in most network structures where ac-

cess to food was scarce. However, it was also found that in

some cases where predator death would occur in a single-patch

model, having multiple patches could allow the predator to sur-

vive. Moreover, there exists a family of networks for which

increasing α leads to destabilization akin to the paradox of en-

richment (Shen and Van Gorder, 2017).

1.2. Delayed Migration

The models discussed so far assume that migration is instan-

taneous between patches. While this assumption may be ap-

propriate in systems where the time-scale of migration is fast in

comparison to the dynamics on the patches, this is not the case

for our motivating example of the Arctic ecosystem. Moreover,

we may want to differentiate migration of the fox between is-

land regions to trips out on the ice, which have different dura-

tion. Hence, incorporating delayed migration into the model is

a way of further describing spatial information. Although dis-

persion is a well-studied topic, inclusion of travel time as delay

is less so (Zhang et al., 2015b). Wall et al. (2013) show that

even small delays can have a large impact on the qualitative

behavior of a biological system, implying that the assumption

of instantaneous travel may be illegitimate. Introducing delay

into dynamical systems is generally destabilizing (MacDonald

and MacDonald, 2008), and delay in the inter-species interac-

tion terms of a predator-prey model has been shown to cause

chaotic behavior (Choudhury, 1992).

Delayed migration with one patch has been studied by re-

moving the migrating predators from the predator-prey dynam-

ics through a “dispersal pool” (Holt, 1984; Weisser and Has-

sell, 1996; Weisser et al., 1997). This can be considered as a

two-patch system with discrete dispersal migration where one

patch is barren. Similarly, delayed migration in a PPS model

was investigated by Levy et al. (2016), where they considered a

three-patch linearly linked system where P(1) was subsidy-free,

P
(2) prey- and subsidy-free, and P

(3) prey-free. Both studies

found that this type of delayed migration is always stabilizing

(Holt, 1984; Levy et al., 2016). While using one or more bar-

ren patches to describe distance between habitats is an intuitive

approach, it makes unnatural assumptions about the way mi-

gration occurs. In particular, it implies that there is an exponen-

tial distribution of travel times. Hence, there are no minimum

or maximum trip duration and a predator could hypothetically

survive an arbitrarily long trip (Neubert et al., 2002).

Predator-prey systems described by stepping-stone Lotka-

Volterra models with dispersal delay and reduced migra-

tion survival rate were investigated by Neubert et al. (2002).

These modifications were stabilizing compared to standard

stepping-stone Lotka-Volterra models for non-discrete travel

times. Klepac et al. (2007) studied a single-patch Rosenzweig-

MacArthur model, where the predator migrates with arbitrary

distributions of trip durations. It was shown that for most distri-

butions, time delay was stabilizing. However, for discrete travel

times, quasi-periodic and aperiodic behavior was observed in

addition to the existence of multiple attractors for certain val-

ues of the delay τ. Specifically, a hysteresis effect was observed

when the time delay τ was varied, where, depending on the ini-

tial conditions, both stable equilibria and aperiodic solutions

could exist (Klepac et al., 2007). The two-patch Rosenzweig-

MacArthur predator-prey model with delayed passive prey mi-

gration and homogeneous patches was investigated by Zhang

et al. (2015b), where delay was found to always be stabilizing.

1.3. Overview

The predator species’ access to food resources are deter-

mined by the migration rate, travel time, and rate of survival

during migration. We aim to further the understanding of how

changes to this access impacts the dynamics of the PPS model

and hence more realistic predator-prey interactions in general.

As was argued in Section 1.2, delayed migration better de-

scribes the relative distance between patches compared to in-

stantaneous travel. We will consider the impact of delayed dis-

persion on the PPS system, focusing on the two-patch model of

Nevai and Van Gorder (2012) for simplicity. The remainder of

the paper is organized as follows. In Section 2, we formulate

the multi-patch stepping-stone models with dispersal delays. In

Section 3, we study the qualitative dynamics and bifurcations

emergent from two-patch models, showing that dispersal de-

lays can stabilize the dynamics for some parameter regimes,

and then we extend these results to specific stepping-stone do-

mains with more than two nodes in Section 4 to ascertain the

role of the underlying spatial network structure on the emergent

dynamics. In Section 5, we demonstrate how the inclusion of

dispersal delays can regularize quasi-periodic and chaotic dy-

namics, in some cases resolving the paradox of enrichment by

ensuring that populations are bounded far enough away from

zero to prevent extinction. We discuss the results and their bi-

ological implications in Section 6. Conclusions and directions

for future work are finally given in Section 7.
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2. Multi-patch Stepping-Stone Models

Consider a modification to the n-patch model presented by

Levy et al. (2016) with migration delay incorporated. The n-

patch model has populations of predator, prey, and subsidy

species distributed over a network of n nodes. Each node or

patch is defined as a closed region of space where the local

population dynamics are not directly influenced by the behav-

ior in other patches. The prey and subsidy are confined to the

patch where they originate from, while the predators may move

across the network.

Denote the patches by P
( j) for j ∈ {1, . . . , n}. Let

x( j)(t), s( j)(t), and y( j)(t) be the populations of prey, subsidy, and

predators in P
( j) at time t, respectively. The populations are

modelled by the following system of equations for each j:

dx( j)

dt
= r( j)x( j)

(

1 −
x( j)

k( j)

)

− θ( j)

(

x( j)

x( j) + s( j) + h( j)

)

y( j), (9)

ds( j)

dt
= i( j) − γ( j)s( j) − ψ( j)

(

s( j)

x( j) + s( j) + h( j)

)

y( j), (10)

dy( j)

dt
=

(

ǫ( j)θ( j)x( j) + η( j)ψ( j)s( j)

x( j) + s( j) + h( j)

)

y( j) − δ( j)y( j)

+

n
∑

ℓ=1

(

λ(ℓ, j)α(ℓ, j)y(ℓ)(t − τ(ℓ, j)) − α( j,ℓ)y( j)
)

. (11)

Here, the time dependence of x( j), s( j), and y( j) is suppressed

except for in terms with delay. The parameters are analogous to

those of the PPS n-patch model. We have added the parameter

τ(ℓ, j), the travel time from P
(ℓ) to P

( j). We require τ(ℓ, j) ≥ 0 for

all ℓ and j. Note that τ(ℓ, j) may not be equal to τ( j,ℓ). All param-

eters are non-negative, ǫ( j), η( j), and λ(ℓ, j) are bounded above

by unity for biological reasons, and we make the assumption

that h( j) > 0. Although h( j), θ( j), ψ( j), ǫ( j), and η( j) may vary be-

tween patches, we will consider them fixed across the system

for the remainder of this paper, so we drop the ( j)-dependence

hereafter.

2.1. Nondimensionalization

Assume we have the n-patch model presented in Equations

(9)-(11) with r( j) = r for all j, meaning the birth rate of the prey

is the same across all patches. Define t̂ = rt, x( j) = hx̂( j), s( j) =

hŝ( j), and y( j) = νŷ( j), where ν = hr/θ. Let î( j) = i( j)/(hr), γ̂( j) =

γ( j)/r, δ̂( j) = δ( j)/r, α̂(ℓ, j) = α(ℓ, j)/r, be the supply and decay rate

of subsidy, and death rate and dispersion rate of the predator

in the new timescale. The rescaled travel time is τ̂( j) = τ( j)/r,

and ǫ̂ = ǫθ/r, η̂ = ηψ/r. Due to our choices of homogeneous

parameters between patches, we define the nondimensionalized

migration survival rate as λ̂(ℓ, j) = λ(ℓ, j)ν(ℓ)/ν( j) = λ(ℓ, j). If h, r,

and θ vary across patches, λ̂(ℓ, j) is a measure of the survival

rate during migration that incorporates the differences between

patches. Making these substitutions and dropping the hats on

the variables for ease of reading, Equations (9)-(11) become

dx( j)

dt
= x( j)

(

1 −
x( j)

κ( j)

)

−

(

x( j)

x( j) + s( j) + 1

)

y( j), (12)

ds( j)

dt
= i( j) − γ( j)s( j) − φ

(

s( j)

x( j)(t) + s( j) + 1

)

y( j), (13)

dy( j)

dt
=

(

ǫx( j) + ηs( j)

x( j) + s( j) + 1

)

y( j) − δ( j)y( j)

+

n
∑

ℓ=1

(

λ(ℓ, j)α(ℓ, j)y(ℓ)(t − τ(ℓ, j)) − α( j,ℓ)y( j)
)

, (14)

where κ( j) = k( j)/h is a scaled carrying capacity and φ = ψ/θ is

a measure of the relative consumption rates of subsidy and prey

for the predator. The inclusion of this scaling factor ν(ℓ)/ν( j)

into λ(ℓ, j) allows us to choose different expressions for ν at dif-

ferent patches. Note that while the re-scaling of x, s, and y may

be different at every patch, it is essential that r( j) = r for all

patches, or else the timescale would not be consistent through-

out the domain.

2.2. Separated n-Patch Model

We consider a variation on the general n-patch model, where

the set of patches {P( j)}n
j=1

is the union of three non-overlapping

subsets NS ,NX , and NE . NS and NX will be sets of patches

only populations of subsidy and prey permanently inhabit, re-

spectively, and NE will be the set of patches without any food

source for the predator. The predator is still allowed to move

over all patches P
( j). In the language of our model, x = 0 on

patches inNS , s = 0 on patches inNX , and x = s = 0 inNE for

all time t ≥ 0. The inspiration for this variation of the main

model comes from the origins of the Predator-Prey-Subsidy

Model; as the arctic foxes would travel from their habitat onto

the ice to consume seal carcasses, they travel from patches with

only prey (lemmings) to ones with only resource subsidy (seal).

We only give the nondimensional model here. We have for

P
( j) ∈ NX ,

dx( j)

dt
= x( j)

(

1 −
x( j)

κ( j)

)

−

(

x( j)

x( j) + 1

)

y( j), (15)

dy( j)

dt
=

(

ǫx( j)

x( j) + 1

)

y( j) − δ( j)y( j)

+

n
∑

ℓ=1

(

λ(ℓ, j)α(ℓ, j)y(ℓ)(t − τ(ℓ, j)) − α( j,ℓ)y( j)
)

, (16)

for P( j) ∈ NS ,

ds( j)

dt
= i( j) − γ( j)s( j) − φ

(

s( j)

s( j) + 1

)

y( j), (17)

dy( j)

dt
=

(

ηs( j)

s( j) + 1

)

y( j) − δ( j)y( j)

+

n
∑

ℓ=1

(

λ(ℓ, j)α(ℓ, j)y(ℓ)(t − τ(ℓ, j)) − α( j,ℓ)y( j)
)

, (18)

and for P( j) ∈ NE ,

dy( j)

dt
= −δ( j)y( j) +

n
∑

ℓ=1

(

λ(ℓ, j)α(ℓ, j)y(ℓ)(t − τ(ℓ, j)) − α( j,ℓ)y( j)
)

.

(19)
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We give technical details on the existence and boundedness of

solutions to (15)-(19) in Appendix A to demonstrate that the

model gives biologically reasonable solutions.

We note that (15)-(19) has different stability properties to

(12)-(14) and hence should be considered independently. To

demonstrate this, we shall contrast the separated and gen-

eral two-patch models without delay (τ = 0). The separated

two-patch model was analyzed in great detail in Nevai and

Van Gorder (2012). We will refer to this analysis and its re-

sults here. For the general model, both P
(1) and P

(2) may

have populations of predator, prey, or subsidy species. Let

i(1) = 0, i(2) > 0, and all other parameter values be constant and

identical across the patches, so that P(1) is subsidy-free. The

model is defined by Equations (12)-(14) for n = 2. Hence, it is

a system of six coupled, nonlinear differential equations.

Let us order the state variables as (x(1), s(1), y(1), y(2), s(2), x(2)),

which will allow for a convenient expression of the Jacobian.

Let D1,D2 denote x
(1)
∗ +s

(1)
∗ +1 and x

(2)
∗ +s

(2)
∗ +1, respectively. At

a fixed point (x
(1)
∗ , s

(1)
∗ , y

(1)
∗ , y

(2)
∗ , s

(2)
∗ , x

(2)
∗ ), we have the Jacobian

J =

[

J1 J2

J⊤
2

J3

]

, (20)

where the submatrices are given by

J1 =









































1 −
2x

(1)
∗

κ
−

(

s
(1)
∗ +1

)

y
(1)
∗

D2
1

x
(1)
∗ y

(1)
∗

D2
1

−
x

(1)
∗

D1

−φ
s

(1)
∗ y

(1)
∗

D2
1

−γ − φ

(

x
(1)
∗ +1

)

y
(1)
∗

D2
1

−φ
s

(1)
∗

D1
(

(ǫ−η)s
(1)
∗ +ǫ

)

y
(1)
∗

D2
1

(

(η−ǫ)x
(1)
∗ +η

)

y
(1)
∗

D2
1

ǫx
(1)
∗ +ηs

(1)
∗

D1
− δ − α


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


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J3 =


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(23)

In the separated two-patch model without delay, the predator-

free fixed point is stable when the parameters satisfy certain

constraints (Nevai and Van Gorder, 2012). The fixed point is

x∗ = κ and s∗ = i/γ. In that case, one patch has only subsidy and

the other has only prey residing on it. In order to replicate this

behavior in the general two-patch model, we consider the case

where P
(1) is prey-only, so that x(1) = κ, s(1) = 0, and i(1) = 0,

and P
(2) is subsidy only, meaning x(2) = 0 and s(2) = i/γ. The

Jacobian is now given by

J =
















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























. (24)

As µ = 1 is an eigenvalue of the Jacobian, this is an unsta-

ble fixed point for all parameter values. This is because any

introduction of prey to P
(2) will induce growth in the prey pop-

ulation. Due to our nondimensionalization, we are unable to

set the reproduction rate to zero and we cannot set the carrying

capacity to zero. Hence, the only way to ensure that prey may

not inhabit P(2) is to set x(2)(0) = 0 and dx(2)/dt = 0.

It follows that the separated two-patch model has different

stability-properties than the general two-patch model.

3. Numerical Simulations of the Two-Patch Model

We present results obtained numerically for the two-patch

separated PPS model. These include both simulations of the

system of delay-differential equations, and numerical stabil-

ity analysis of the two-patch system. In general, account-

ing for environmental heterogeneity is important to understand

ecosystem dynamics (Goldwyn and Hastings, 2009; Yang et al.,

2015). However, as a first attempt to understand the interac-

tions between each component of our model, we take homo-

geneous parameters across the patches, and therefore drop the

superscripts. We note that even with this simplification, there

are many remaining nondimensional parameters in the model,

which can vary widely depending on the ecosystem being mod-

elled. These parameters can be estimated either a priori based

on biological considerations, such as allometric scaling, or a

posteriori based on observed populations over time; these ap-

proaches have been compared using a delayed logistic growth

model and a multi-trophic Rosenzweig-Macarthur model by

Hendriks and Mulder (2012).

In general, we chose parameters similar to those used in the

PPS literature (Levy et al., 2016; Nevai and Van Gorder, 2012;

Shen and Van Gorder, 2017). The nutritional value of prey and

subsidy are assumed to be the same and so ǫ = η = 5, θ = 1.

The subsidy decays at rate γ = 10 and the predator dies at rate

δ = 1. We note that all of these nondimensional parameters

have been scaled by the prey growth rate, r, so that ǫ is now

the ratio of the predator growth rate due to prey consumption

to the prey growth rate, η is the same for the predator growth

rate to subsidy consumption, and δ and γ are the decay rates

of predator and subsidy respectively. These choices correspond

to predators which, in a spatially homogeneous setting, would

be able to sustain themselves on either prey or subsidy. The

biological parameters corresponding to these nondimensional

values are within an order of magnitude of some observed pop-

ulations, such as the zooplankton Daphnia which feeds on ma-

rine algae (Murdoch et al., 1998) as well as predation of micro-

tone rodents (Microtus) by larger mustelidae (weasels, Mustela

nevalis) (Hanski and Korpimäki, 1995).

3.1. Qualitative Impact of Delayed Dispersion

We present examples of qualitatively different impacts of

delay on the two-patch separated PPS model. These results

are obtained by numerically simulating the system of delay-

differential equations using MATLAB’s dde23. In order to obtain

accurate results, we reduced the relative error tolerance from
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Figure 2: Qualitative change in stability of coexistence equilibrium. In (a),

κ = 2.4, i = 1, α = 8, λ = 1, τ = 3. The undelayed solution is given as initial

history and displays a stable limit cycle about a fixed point. Setting τ = 3 at

time t = 50 causes the fixed point to become stable. In (b), κ = 3, i = 6, α =

8, λ = 0.98, τ = 1. The undelayed solution is initially oscillatory yet slowly

decays to a stable equilibrium. Introducing delay at time t = 200 induces a

stable limit cycle.

the default value 10−3 to 10−9 and the maximum step size to

10−1. The recommended maximum step size for dde23 is a

fraction of the period of oscillations of solutions, which was

found to be larger than 2 in all simulations performed. Unless

otherwise specified, the initial history is taken to be the solu-

tion to a system with identical parameter values aside from τ,

which is set to zero. This is denoted by “the undelayed solu-

tion”. Throughout this section, we define y(t) = y(1)(t) + y(2)(t).

Delayed dispersion is largely stabilizing to a two-patch PPS

system for small delays, decreasing the amplitude of limit cy-

cles, while increasing the period of oscillations. Both stabiliza-

tion and period-prolongation effects can be observed in Figure

1 (a)-(c). There is a qualitative change in behavior from Fig-

ure 1 (c) to (d), where the oscillations become doubly periodic

in y and the amplitude of the limit cycle has increased as the

delay is taken to be large. Delayed dispersion may alter the sta-

bility of the coexistence equilibrium, as shown in Figure 2. In

Figure 2(a), the fixed point undergoes a change in stability and

becomes stable as τ increases from 0 to 3. In Figure 2(b), we

observe the opposite; introducing delay causes the fixed point

to become unstable. As τ increases further, the period of the

limit cycle increases.

3.2. Bifurcation Analysis

We generated several bifurcation diagrams to observe the

global effects of the delayed dispersion. We vary α, λ, and τ

to investigate how access to food resources changes the out-

come of the system. We could generate bifurcation diagrams

by one of two methods: by running numerical simulations of

the system of delay-differential equations for different sets of

parameters, or by determining the sign of the major eigenvalue

of the modified Jacobian. While the former approach has the

benefit of giving more information, it suffers from the slow

convergence of solutions and computational expense of delay-

differential equation solving. As generating enough data to re-

liably produce bifurcation diagrams was time consuming, we

opted for a numerical stability analysis.

Regarding changes in the stability of equilibria, we focus our

attention on a modification of the two-patch model presented in

Nevai and Van Gorder (2012) with delayed dispersion. Here,

P
(1) is subsidy-free, P(2) is prey-free, while the predator is al-

lowed to move between the patches. For simplicity, we assume

the rate of dispersal, travel time, and survival rate are equal

in both directions: α(1,2) = α(2,1) = α, τ(1,2) = τ(2,1) = τ,

and λ(1,2) = λ(2,1) = λ. Carrying out a standard linearized

stability analysis, we obtain a generalized Jacobian. The bi-

furcation diagrams were generated by finding the eigenvalues

of the Jacobian evaluated at relevant fixed points. If the real

part of any eigenvalue is greater than zero, the correspond-

ing equilibrium value is unstable. We used the MATLAB open-

source package chebfun, whose function roots implements

the Marching Squares algorithm for finding roots of bivariate

two-dimensional functions.

In Figure 3, we plot bifurcation diagrams in τ and α for four

different values of λ. The delay may stabilize or destabilize

the coexistence equilibrium. However, delayed dispersion is

mainly stabilizing for these parameter regimes; for most values

of α, a limit cycle observed for τ = 0 experiences amplitude

death upon increasing τ. The equilibrium may again become

unstable as τ is further increased. Destabilization is only ob-

served for low migration rates α. As the predator migration

survival rate λ is decreased from 1, the system is stabilized. For

λ = 0.8, the predator population dies out for sufficiently high

migration rates, since a large fraction of the population will die

during the frequently occurring migration. The system goes

directly from stable coexistence to a predator-free fixed point

without experiencing non-equilibrium dynamics. Notice that

the existence of a stable predator-free equilibrium is indepen-

dent of τ for this parameter regime.

Levy et al. (2016) show that decreasing λ from unity could

destabilize the coexistence equilibrium of the undelayed two-

patch PPS model, causing a limit cycle to appear. The limit

cycle would again disappear as λ was decreased further and the

system would eventually be driven to a predator-free equilib-

rium. Figure 4 shows how delay impacts this behavior for four

different values of dispersion rate α. Figure 4(a) has the param-

eter values used in Levy et al. (2016). Along the τ = 0 axis,

we see the behavior described above. Increasing τ destabilizes

the coexistence equilibrium at λ = 1. A simulation depicting

this change was shown in Figure 2(b). As α decreases, the re-

gion of non-equilibrium dynamics shifts to lower λ-values, and

the boundary between stable coexistence and oscillatory behav-

ior becomes more varied. When α becomes sufficiently small,
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Figure 1: Qualitative change of solution behavior as τ increases from 0 for a oscillating solution. Parameter values are κ = 2.4, i = 1, α = 8, λ = 1. The dispersal

delay τ for (a)-(d) is 0, 0.1, 3, and 5, respectively. The initial history of (b)-(d) is simulation (a).
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Predator-Free Equilibrium Coexistence Equilibrium Non-Equilibrium Dynamics

Figure 3: Bifurcation diagram in τ, α parameter space. k = 2.4, i = 1, varying α ∈ [0, 8] and τ ∈ [0, 8]. The predator migration survival rate λ is varied between

the plots: Panels (a)-(d) have λ equal to 1, 0.99, 0.95, and 0.8, respectively. Non-equilibrium dynamics refer to all dynamics not resulting in equilibria at each node,

such as stable limit cycles and less regular oscillations.
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Figure 4: Bifurcation diagram in τ, λ parameter space. k = 3, i = 6, varying λ ∈ [0.5, 1] and τ ∈ [0, 8]. Panel (a)-(d) has α = 8, 5, 4, and 2, respectively.

all non-equilibrium behavior disappears, and the system shifts

directly from stable coexistence to a prey-free equilibrium for

high rates of predator survival.

4. Impact of Network Structure on Dyanmics

We turn our attention to four patch models to investigate

the impact of delay on higher-dimensional systems. Shen and

Van Gorder (2017) were able to show that the network struc-

ture influences the resulting dynamics of the undelayed PPS.

For simplicity, we investigate the four-patch model. While four

nodes allow for only small changes in topological structure, it

is sufficient to demonstrate the influence that structure has on

the dynamics.

An interesting feature of the separated n-patch PPS models

is the existence of stable equilibria where the prey population

dies out on only a subset of the nodes. This cannot occur in

the two-patch model, as there is only a single prey population.

Hence, for a four-patch separated model with two patches of PP

dynamics, there are at least six possible fixed points: subsidy

only, predator free, prey free, two fixed points with partial prey

extinction, and a positive coexistence equilibrium.

We consider the separated model on the three networks de-

picted in Figure 5. The first two networks, denoted linear mixed

(LM) and linear separated (LS), are both path graphs, but the

relative placement of PP and PS systems differ. For the moti-

vating example of the arctic ecosystem, the path graphs could

be models of environments such as a string of islands connected

by ice. The complete graph (C) simulates an environment along

the shore, with two patches on land, and two on the ice.

We performed stability analysis of the three different models

(LS), (LM), and (C) by a method similar to what was done in

Section 3. Due to lack of analytic expressions, we used numer-

ical root finding to obtain most of the possible fixed points. The

system of characteristic equations for the real and imaginary

parts of the eigenvalues of the modified Jacobian was found an-

alytically by use of the MATLAB symbolic math toolbox. This

set of equations was then solved using numerical root finding

tools. Throughout this and the following section, y(t) is defined

as the sum of the predator population across the network.

We produced bifurcation diagrams of the systems in order

to get a general idea of the possible behaviors. It became ap-

parent that the differences in the network made comparison be-

tween the models challenging. As the focus of our investiga-

tion is migration over the network, the underlying structure has

a large effect. We performed stability analysis for τ and α, with

α ∈ [0, 4] for the path graphs and α ∈ [0, 2.5] for the complete

graph. The different ranges of α is to maintain a comparable

amount of total migration across the networks.

Figure 6 shows the impact of variation in α and τ for each

model and two different values of λ. The difference in response

to α and τ across the models is readily observable. The effect of

travel time τ is similar to the two-patch case. For these regions

of parameter space, the time delay τ is only stabilizing. Several

bifurcations occur that cause the coexistence fixed point to shift

stability. From numerical simulations, we observe the existence

of small-amplitude limit cycles near these bifurcations, suggest-

ing that they are supercritical Hopf. Observe that the decrease

in λ causes almost no change for the (LS) model, but stabilizes

both the (LM) and (C) models. In model (C), high migration

rates induced prey-death in one patch for λ = 1, which does

not occur for λ = 0.95. For the green region in Figure 6(e), we

observe both a stable equilibrium with partial prey death, and a
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Figure 5: Schematic of systems under consideration. The separated PPS model on a path graph, where the patches P(1),P(3) are predator-prey (PP) and P
(2),P(4) are

predator-subsidy (PS) systems. The networks are a linear mixed (LM) graph, a linear separated (LS) graph, and a complete (C) graph, respectively.
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Figure 6: Bifurcation diagram in τ, α parameter space. Panels (a),(c),(e) have i = 1, κ = 3, λ = 1, while (b),(d),(f) have i = 1, κ = 3, λ = 0.95. (a)-(b), (c)-(d), and

(e)-(f) are models (LS), (LM), and (C), respectively.
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Figure 7: Bifurcation diagram in τ, α parameter space. Panels (a),(c),(e) have i = 1, κ = 2.4, λ = 1, while (b),(d),(f) have i = 3, κ = 3, λ = 1. (a)-(b), (c)-(d), and

(e)-(f) are models (LS), (LM), and (C), respectively.
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Figure 8: Comparison of the solutions in prey-predator (x − y) space for the (a) undelayed (τ = 0) and (b) delayed (τ = 0.5) solution. Notice that the introduction of

delay has severely reduced the amplitude of oscillation, thereby keeping the dynamics bounded further away from zero. Parameters are κ = 3, i = 1, λ = 1, α = 0.1.
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stable, positive limit cycle.

Figure 7 depicts the results of stability analysis for two sep-

arate sets of parameters. The left column has the same parame-

ters as in Section 3: i = 1, κ = 2.4, and λ = 1. The four-patch

models appear to be more stable than the two-patch model for

this set of parameters. For the complete graph in Figure 7(e),

the delay is again stabilizing. In the (LM) model in Figure 7(c),

the coexistence equilibrium undergoes destabilization for suffi-

ciently large τ and α around 0.5. The right column exhibits be-

havior not observed in the two-patch model. For models (LM)

and (C), increasing delay causes a stable coexistence fixed point

to destabilize for a larger range of α. Existence of a stable equi-

librium with partial prey-death is observed in both models (LS)

and (C). For the path graph in Figure 7(b), the prey population

goes extinct in P
(3) for α > 3.25, and this is the only stable at-

tractor in the system. In the complete graph (Figure 7(f)), the

PP-patches P(1) and P
(3) are equal due to symmetry, and hence

have equal stability properties. For sufficiently high α, a sta-

ble equilibrium with partial prey death comes into existence.

However, the stable, positive limit cycle originating from the

unstable coexistence equilibrium is still an attractor of the sys-

tem. As α increases further, the equilibrium with partial prey

death becomes unstable, and a second stable limit cycle comes

into existence. The value of α for which the prey-extinction

point destabilizes is dependent on τ.

In the four-patch model, we observe similar behavior to the

two-patch case. Increasing τ from zero can be destabilizing or

stabilizing, but stability is again predominant. The four-patch

case allows for multistability, and for stable equilibria and limit

cycles where one of the two prey-populations is extinct.

5. Suppression of Quasi-Periodic and Chaotic Dyanamics

One of the main criticisms of the Rosenzweig-MacArthur

model is the existence of the phenomena known as the paradox

of enrichment, where an increase in access to food resources

may lead a stable system into oscillatory behavior with min-

ima arbitrarily close to zero (Jansen, 1995). As populations are

generally observed to maintain a population density away from

zero, we desire models that exhibit this behavior.

In the previous two sections, we presented results indicat-

ing that introducing delayed dispersion to PPS models could

both destabilize and stabilize the dynamics. However, most of

the simulations pointed toward stabilization of unstable fixed

points. From simulations of the system of delay-differential

equations of the two-patch model, we observed that introducing

delay could dampen the amplitude of limit cycles. Both are ex-

amples of the delay suppressing non-equilibrium dynamics. In

this section, we provide evidence of delay suppressing the com-

plexity of the dynamics in systems exhibiting quasi-periodic or

chaotic behavior. This is done by applying specific parameter

regimes where these behaviors are observed in the undelayed

PPS model to our model with delay.

5.1. Suppressing Quasi-Periodic Dynamics

A quasi-periodic solution for a dynamical system will oscil-

late on at least two incommensurate frequencies (Ott, 2002). In

an n-dimensional system, the attractor is homeomorphic to a

k-torus, where 2 ≤ k < n and the solution moves around on

this object without ever repeating itself (Strogatz, 2014). It fol-

lows that for systems of ordinary differential equations, quasi-

periodic behavior can occur when n ≥ 3. Through adding a

delay, we observe that the solutions attain less extreme values

when travel time is taken into consideration. Most importantly,

the minimum values do not lie close to zero, as illustrated by

Figure 8. In this instance, introducing delay induces more reg-

ular dynamics.

5.2. Suppressing Chaos

Chaotic dynamics have been observed in several predator-

prey models, such as a three-species food chain (Hastings and

Powell, 1991), a two-patch Rosenzweig-MacArthur predator-

prey model (Jansen, 2001), and the non-autonomous PPS model

(Levy et al., 2016). Such complex dynamics has not been found

in the two-patch autonomous PPS model. In this section, we

present evidence of chaotic dynamics in the four-patch (LM)

and (LS) models, and observe that introducing delay into these

systems has a stabilizing effect.

It is generally challenging to distinguish quasi-periodic be-

havior from chaotic. The existence of chaotic dynamics in a

system can be determined by numerical methods. Estimating

Maximal Lyapunov Exponents (MLE) is one such test for chaos

(Wolf et al., 1985), based on the theory of Lyapunov exponents

of dynamical systems (Strogatz, 2014). The MLE is challeng-

ing to implement, and since determining chaos is not the pri-

mary concern of this paper, we will use the 0-1 Test (Gottwald

and Melbourne, 2004, 2009). The 0-1 Test only requires time

series data as input and no knowledge of the system dynamics

in real-time. The output is a single number, which in theory is

1 for chaotic time series or 0 for non-chaotic time series. In

practice, however, the test will return a number close to 1 for a

time series coming from a chaotic attractor and a number close

to zero for non-chaotic (Gottwald and Melbourne, 2009). This

method is sensitive to oversampling from the time series data

and may return an indication of chaos for non-chaotic dynam-

ics. To ensure that our results were correct, we tested differ-

ent sampling intervals against data we know to be non-chaotic,

such as limit cycle solutions and the quasi-periodic solutions

from the previous section. As the test is stochastic, we ran the

test multiple times and recorded extreme outputs.

Using low migration rates α coupled with high carrying ca-

pacities κ, we were able to find chaotic behavior in the (LM)

and (LS) models. The chaos was robust, in that small pertur-

bation of the parameters generated similar behavior. In Figure

9, the solutions of the (LM) model with i = 1, λ = 1, κ = 20,

and α = 0.02 are shown. Figure 9(a),(c) shows the undelayed

system, and Figure 9(b),(d) shows the corresponding plots for

the system with τ = 0.5. For this set of parameters, the result of

ten 0-1 Tests on the undelayed system were all above 0.9970,

indicating chaotic dynamics. The 0-1 Test for the system with

delay returned all values below 0.0853. When increasing delay

from zero to τ = 0.1, the dynamics relax onto a stable limit

cycle.
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Figure 9: Stabilization of chaos by delay for the (LM) model. Here, κ = 20, i = 1, λ = 1, α = 0.02, and τ = 0. Panels (a) and (c) illustrate the dynamics of the

undelayed (τ = 0) model, while (b) and (d) have non-zero delay τ = 0.5. Panel (a) shows the 3D x − y − s phase space for t ∈ [8.5 × 103 , 104]. Panel (b) shows the

stable attractor for the system with delay. Panels (c) and (d) show time-series that appear to be indicative of the general behavior.
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Figure 10: Stabilization of chaos by delay for the (LS) model. Here, κ = 20, i = 1, λ = 1, α = 0.02, and τ = 0. Panels (a) and (c) illustrate the dynamics of the

undelayed (τ = 0) model, while (b) and (d) have non-zero delay τ = 0.1. Panel (a) shows the 3D x− y− s phase space for t ∈ [8.5× 103, 104], while panel (b) shows

the stable attractor for the system with delay. Panels (c) and (d) show a time-series that appears to be indicative of the general behavior.
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In Figure 10, we show similar results for the (LS) model with

equal model parameters. The result of the 0-1 Test on this sys-

tem had all values above 0.9974. Here, we introduced delayed

dispersal with τ = 0.1, and again observed a relaxation onto a

limit cycle. The 0-1 Test for the system with delay returned all

values below 0.0341. Note that in Figure 10(c)-(d) we observe

an increase in the amplitude of the limit cycle, rather than an

increase in the amplitude of the limit cycle as was seen in the

(LM) model. This was also the case when running the simula-

tions with τ = 0.5 instead of τ = 0.1.

6. Discussion

The motivating example for this study is the ecological sys-

tem formed by interaction of Arctic fox, lemming, and seal car-

rion in the Arctic region. This system differs from the regu-

lar predator-prey dynamics due to the foxes’ ability to partially

or fully sustain themselves on the allochthonous subsidy. Our

analysis and results are applicable to other population interac-

tions following the same interaction patterns, such as systems

where river otters benefit from a resource subsidy (Ben-David

et al., 2005), the wolf, deer, and salmon carcass system (Adams

et al., 2010; Darimont et al., 2008), and populations of puma

that benefit from mule deer carcass in addition to hunted prey

(Bauer et al., 2005). The separated and general n-patch models

presented in this paper could be good models for these systems,

with appropriate choices of parameters describing the living

conditions for predator, prey, and subsidy, and sensible choices

of underlying network structure, including migration rates and

travel time.

This study focused on predator access to food resources: in

particular, how implementing non-zero travel time in disper-

sion affected the dynamics. In the majority of studies done

of spatial population models, migration is assumed to be in-

stantaneous. While this assumption may seem appropriate for

systems where the travel time between environments is small

compared to the time scale of the dynamics within the environ-

ments, even small delays have the possibility to greatly change

the solution behavior (Wall et al., 2013). The Arctic ecosystem

features migration by the fox, both as trips from the shore out

on the ice to scavenge for seal carcasses and as quadrennial mi-

gration lasting 4-5 months between environments on the shore

and on the ice (Wrigley and Hatch, 1976). We do not expect

that our choices of parameters pertaining to migration are pre-

cise, but hope that they help shine light on phenomena that are

lost in the undelayed model.

We examined the effect of introducing constant delayed dis-

persion in the PPS models. For this implementation of travel

time, the location of equilibria of the systems are not impacted

by the introduction of delay. This is because our model does

not consider the migration survival rate to vary with the length

of the journey, a simplification that may be investigated more in

future works. However, the behavior of the solutions about the

fixed points were found to vary with delay time.

We investigated a two-patch model, finding no instances

where the delay caused population death of either the prey or

the predator. The delay heavily impacted the stability of a co-

existence equilibrium and could both induce limit cycles from

a constant, positive solution, or cause a limit cycle solution to

experience amplitude death and become a stable coexistence

equilibrium. Destabilization was only observed for relatively

high subsidy input rates i or low migration rates α, while sta-

bilization was found broadly in all other parameter regimes in-

vestigated that permitted unstable coexistence equilibria for a

range of α. Therefore, we concluded that the undelayed and

delayed PPS models often fundamentally disagreed in the dy-

namics of the system, even for small delays. We further found

evidence that introducing delays could dampen the amplitude of

limit cycles, even when the solution was not forced into a sta-

ble equilibrium. Dispersal delay changed the qualitative nature

of the oscillatory behavior by decreasing its frequency or by

introducing double-amplitude oscillations. In the cases where

the delay stabilized the coexistence equilibrium, increasing the

time delay τ further led to destabilization. Hence, a change in

travel time may cause changes in the dynamics that only be-

come apparent much later.

We extended our analysis to three different four-patch models

and found again that the delay could not force the extinction of

any population, but instead had the ability to stabilize or desta-

bilize coexistence equilibria. We found that the structure of the

environment greatly changed how variations in access to food

sources affected the system. In the four-patch model, there ex-

ist coexistence equilibria where a portion of the prey-population

dies out locally. Delay may destabilize or stabilize such equi-

librium points, but did not force them into or out of existence.

Moreover, the delay did not affect the existence of multistability

in simulations of the four-patch models, which was previously

seen in simulations of corresponding non-delay systems. How-

ever, certain quantitative features, such as the types of behaviors

possible in multistable regimes, were modified by the inclusion

of delay.

As mentioned previously, a main issue with the Rosenzweig-

MacArthur population model is the atto-fox problem, where

solutions may fluctuate violently, and reach arbitrarily small

values, yet recover (Arditi and Berryman, 1991; Jensen and

Ginzburg, 2005), in contrast to what is commonly observed in

nature. We found that the stabilizing property of delayed dis-

persion could regularize the dynamics of the PPS models, hence

creating a possible solution to the paradox of enrichment. In

Section 5, we showed that introducing small delay into a system

exhibiting quasi-periodic solutions with minimum population

densities close to zero could force the system onto a limit cy-

cle of much smaller amplitude. We were also able to show that

dispersal delay could stabilize chaotic dynamics onto a simple

attractor. Although the latter results were for parameter regimes

not found in the Arctic ecosystem, it exemplifies that travel time

is an important influence on the dynamics of a PPS system.

The importance of these results to a mathematical biologist is

that travel time in a system with migratory populations has the

ability to greatly change the dynamics of the system, even for

small delays. Hence, the assumption of instantaneous migration

should not be made lightly. Additionally, changes to the delay

in travel between patches may push a stable equilibrium point
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into large oscillations; for example, see Figure 2(b). This may

be caused both by increases and decreases in the delay. While

we might intuitively think that decreasing travel time will bene-

fit the predator population by increasing access to food sources,

this may in fact destabilize the system and leave the popula-

tions susceptible to extinction. Moreover, we showed that the

qualitative behaviour of four-patch models could differ greatly

with the same general parameter set due to differences in the

migration network. Hence, changing the underlying network

structure by restricting or offering access to the prey could have

complex and unforeseen consequences.

7. Conclusions and future work

We proposed a model motivated by the Arctic ecosystem,

where migratory foxes are able to sustain themselves on both

hunted lemming or scavenged seal carcasses. We investigated

how access to food resources, especially the travel time, im-

pacted the stability and behaviour of the predator-prey-subsidy

system. We concluded that dispersal delay is primarily stabi-

lizing with respect to pre-existing non-equilibrium dynamics

(such as limit cycles), which aligns well with earlier results

from predator-prey systems (Klepac et al., 2007; Neubert et al.,

2002; Zhang et al., 2015b). However, we also showed that

delay can destabilize the predator-prey dynamics by inducing

limit cycles from coexistence equilibria in the corresponding

undelayed model. These results were found for both the two-

patch and a range of four-patch models. As we found that ap-

plying delay in migration to an undelayed system can stabilize

quasi-periodic and chaotic dynamics, incorporating travel time

might fundamentally change the dynamics of a system. The

stabilizing property of dispersion delay, where limit cycle solu-

tions collapse to coexistence equilibria and solutions exhibiting

chaotic dynamics are reduced to limit cycles, establishes the in-

corporation of travel time as a possible resolution to the paradox

of enrichment.

In our motivating example of the Arctic ecosystem, the

predator takes short trips out on the ice to access the resource

subsidy, and migrates every three to four years, when it cov-

ers up to 1000km (Wrigley and Hatch, 1976). A more realistic

analysis of this system could involve differentiating these trav-

els by implementing dispersion delays of different order across

the network, and studying the effect of this on solution behavior.

Scavenging trips out on the sea ice during the warmer seasons

may be more challenging and hazardous for the fox to com-

plete, and hence of longer duration in the summer than in the

winter. Therefore, there is an argument for making the travel

delay seasonally dependent by implementing non-constant time

delay, τ(t). This would be an extension of the work done on

seasonality by Levy et al. (2016) and should be implemented

along with time-dependent migration rate and migration sur-

vival rate, α(t) and λ(t). There is evidence that the migration

patterns of the Arctic fox align with the cyclic behavior of the

lemming population, in that the migration rates of the fox popu-

lation will increase when lemming is scarce (Angerbjorn et al.,

1999; Dalén et al., 2004; Gilg and Yoccoz, 2010). By including

density-dependent migration rates for the predator, one might

incorporate this effect.

Finally, we assumed that the temporal delays were discrete.

This is equivalent to assuming the travel time is equal for ev-

ery traveller, on every trip taken. A more realistic model would

only assume a distribution of travel times. This implementa-

tion of delayed dispersion, which also takes into account that

increased travel time implies decreased migration survival rate,

was investigated for a one-patch Rosenzweig-MacArthur model

by Klepac et al. (2007) and could be extended to multi-patch

PPS models, such as those we considered here.

A. Existence and Boundedness of Solutions to (15)-(19)

In order to ensure that solutions to the model (15)-(19) are

biologically feasible, we now prove that solutions exist and re-

main bounded.

A.1. Existence of a Continuous Solution

We show that solutions to our models exist and are contin-

uous. This result is used to prove that the model solutions are

non-negative and bounded above for physical initial data. For

the following proofs, we will need to ensure that the solution to

the relevant system of delay-differential equations exists and is

continuous. We will here give a result due to Driver (1963).

Let m, n ≥ 1, with m, n ∈ Z and u(t) : R
+ 7→ R

n, where

R
+ is the positive real line. For k = 1, . . . ,m, let gk(t, u(t)) :

R
+ × R

n 7→ R
+, hence gk is real-valued and non-negative. Let

F : R
+ × R

n × R
mn define a delay-differential equation of the

form

d

dt
u(t) = F (t, u(t), u (t − g1(t, u(t))) , . . . , u (t − gm(t, u(t)))) .

(25)

Equation (25) is a n-dimensional delay-differential equation

with m delayed terms. Each delay gk(t, u(t)) may be state and

time dependent. Let t0 ≥ 0 be the initial time and φ(t) =

(φ1(t), . . . , φn(t)) be an initial history for t ∈ (−∞, t0]. The fol-

lowing Theorem is found in Winston (1971) and is proven in

Driver (1963).

Theorem 1: Local Existence of Solution. Let F be as given

above and locally continuous. Let gk be continuous for all

t ≥ t0, u ∈ R
n for k = 1, . . . ,m, and let φ(t) be continuous

for t ∈ (−∞, t0]. Then there exist ε > 0 and a function u(t) such

that u(t) satisfies Equation (25) for t0 ≤ t < t0 + ε.

We note that state and time dependent delay is not required

for the models presented in this paper; however, it can be useful

for possible extensions. Theorem 1 implies that a continuous

solution u(t) exists for all values of t, u(t) such that F is contin-

uous. For the non-dimensional models presented in this paper,

F is continuous whenever s( j), x( j)
, −1 for all patches P( j). As

we will show in the following Section A.2, this is not attainable

for non-negative and continuous initial histories. Hence, by

a boot-strapping argument, global solutions exist for all mod-

els presented in this paper, assuming physically realistic initial

data.
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A.2. Dynamics Bounded Below

The models presented in this paper describe physical quanti-

ties that cannot be negative; the population density of an animal

population or the available amount of a resource must not go be-

low zero. In this section, we will prove that the dynamics of the

separated n-patch model are non-negative. This is an important

result to ensure the feasibility of our model.

Lemma 1: Dynamics Bounded Below. Consider the separated

n-patch model with non-negative parameters as given by Equa-

tions (15)-(19). Let the system have non-negative initial condi-

tions x(ℓ)(0) = x
(ℓ)

0
for P(ℓ) ∈ NX , s(k)(0) = s

(k)

0
for P(k) ∈ NS

and a continuous, non-negative initial history y( j)(t) = y
( j)

0
(t) for

t ∈
[

−maxℓ, j τ
(ℓ, j), 0

]

, for all P( j). Then x(ℓ)(t) ≥ 0, s(k)(t) ≥ 0,

and y( j)(t) ≥ 0 for all ℓ such that P
(ℓ) ∈ NX , k such that

P
(k) ∈ NS , and all j ∈ {1, . . . , n}, for all time t.

Proof: By Theorem 1, a continuous solution to the described

system exists for some time t ∈ [0, ε), ε > 0. We will prove

that this solution is bounded below by zero by considering the

movement of the x, s, and y components separately.

Consider the dynamics of x(ℓ) given by Equation (15). For

x(ℓ) to be negative at some time t, there must exist a time t̄ such

that x(ℓ)(t̄) = 0 by the Intermediate Value Theorem. However,

when x(ℓ) = 0, dx(ℓ)/dt = 0, and so x(ℓ)(t) = 0 for all t ≥ t̄.

Hence x(ℓ) may not be negative. Similarly, consider the case

that s(k)(t) < 0 for some time. By the same argument, we require

that s(k)(t̄) = 0 for some time t̄. By Equation (13), ds(k)/dt(t̄) =

i(k) ≥ 0. Hence s(k) ≥ 0 for all t.

Lastly, consider the case that y( j) < 0 for some P
( j). Let

T denote the set of times where y( j) < 0 for some j: T =
{

t ≥ 0 | ∃ j with y( j)(t) < 0
}

. If T , ∅, T must have an infi-

mum t̄. At t = t̄, y( j)(t) ≥ 0 for all j, and there exists an i such

that y(i)(t̄) = 0 and dy(i)/dt < 0 at t̄. Assume without loss of

generality that i is such that P(i) ∈ NX . By Equation (16), we

have
dy(i)

dt
(t̄) =

∑

ℓ,i

λ(ℓ, j)α(ℓ,i)y(ℓ)(t̄ − τ(ℓ,i)), (26)

As t̄ is the onset of negativity, y(ℓ)(t̄ − τ(ℓ,i)) ≥ 0 for all ℓ, and so

dy(i)/dt ≥ 0 at t̄. Hence we have a contradiction, and y( j) ≥ 0

for all t. �

This result can easily be extended to the general n-patch PPS

model.

A.3. Dynamics Bounded Above

The solutions of a physical model of population behavior

must be bounded below to be relevant. Likewise, it is pertinent

that solutions are bounded above, since we do not want

unbounded populations. Hence, we offer a boundedness result

for the separated n-patch model. We state the following global

existence result that can be derived from a bootstrapping

argument from Theorem 1 and Lemma 1:

Corollary 1: Global Existence of Solution with Physical Initial

Data. Consider the separated n-patch model with non-negative

parameters as given by Equations (15)-(19). Let the system

have non-negative initial conditions x(ℓ)(0) = x
(ℓ)

0
for P(ℓ) ∈ NX ,

s(k)(0) = s
(k)

0
for P

(k) ∈ NS and a continuous, non-negative

initial history y( j)(t) = y
( j)

0
(t) for t ∈

[

−maxℓ, j τ
(ℓ, j), 0

]

, for all

P
( j). Then, the solutions of the system are globally continuous.

At a time t, there are two possibilities for the relationship

between y( j)(t) and y( j)(t − τ( j,ℓ)): either y( j)(t) ≥ y( j)(t − τ( j,ℓ)),

or y( j)(t) < y( j)(t − τ( j,ℓ)). Hence, we can partition the time

t > 0 by considering all possible configurations of y(t) =
(

y(1)(t), . . . , y(n)(t)
)

relative to y(t − τ( j,ℓ)), for each pair ( j, ℓ).

As it will be necessary to keep track of these configurations for

the boundedness lemma and proof, we introduce the following

time-dependent sets

S (t) =
{

( j, ℓ) : j, ℓ ∈ {1, . . . , n}, j , ℓ, and y( j)(t) < y( j)(t − τ( j,ℓ))
}

,

S̄ (t) =
{

( j, ℓ) : j, ℓ ∈ {1, . . . , n}, j , ℓ, and y( j)(t) ≥ y( j)(t − τ( j,ℓ))
}

.

It is clear that S (t) ∪ S̄ (t) = {1, . . . , n} × {1, . . . , n} for all t. For

ease of notation, let S j(t) = { j : ( j, ℓ) ∈ S (t)}, and similarly

S̄ j(t) = { j : ( j, ℓ) ∈ S̄ (t)}.

Each delay τ( j,ℓ) introduces two possibilities, and so it fol-

lows that the number of possible time partition sets is 2n(n−1).

Giving a full enumeration of these sets is unnecessary for the

statement and proof of a boundedness result, as we can con-

sider them generally.

Lemma 2: Dynamics Bounded Above for the n-Patch Sep-

arated System. Consider the separated n-patch PPS model

with non-negative parameters as previously described, predator

death rate δ( j) > 0 for all j, and subsidy removal rate γ(k) > 0

for all P(k) ∈ NS . Let the system have non-negative initial

conditions x
(ℓ)

0
for P

(ℓ) ∈ NX , s
(k)

0
for P

(k) ∈ NS and a non-

negative, continuous, and bounded initial history y( j)(t) = y
( j)

0
(t)

for t ∈
[

−maxℓ, j τ
(ℓ, j), 0

]

, for all P( j). Assume that y( j)(t) > 0

for all P( j). Moreover, assume

δ( j) +
∑

ℓ∈S j

α( j,ℓ)
(

1 − λ( j,ℓ)K( j,ℓ)(t)
)

≥ 0, (27)

for each j such that ( j, ℓ) ∈ S (t), where S , and S j

are as defined above, and where K( j,ℓ)(t) is such that

K( j,ℓ)(t)y( j)(t) = y( j)(t − τ( j,ℓ)). Then x(ℓ)(t), s(k)(t) and

y( j)(t) are bounded for all ℓ such that P(ℓ) ∈ NX , k such that

P
(k) ∈ NS , and all j ∈ {1, . . . , n}, for all time t.

Proof: By Corollary 1, the solution to the described system

is continuous for t ≥ 0. As in Lemma 2.1, the solutions

x(ℓ)(t), s(k)(t) for ℓ such that P(ℓ) ∈ NX , k such that P(k) ∈ NS

are bounded above.

We will prove that y( j)(t) is bounded above under the given

assumptions by considering a general time t, assuming y has

previously been bounded. As the solutions are continuous,

there must be a t for which this assumption holds. For this

time, we have sets S , S j, S̄ , and S̄ i as described above. Adopt

the notation j ∈ S to signify ( j, ℓ) ∈ S for some ℓ. Note that
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some of these sets may be empty, but they must fulfill the fol-

lowing relations: S ∪ S̄ = {1, . . . , n} × {1, . . . , n}, S ∩ S̄ = ∅,

S j ∪ S̄ j = {1, . . . , n}, and S j ∩ S̄ j = ∅. If S̄ = ∅, y( j)(t) is

bounded by its past values, and t must pass into another par-

tition before the solution can grown unbounded. Hence, we

assume that S , ∅. For the same reason, we will also assume

that there is at least one j such that j < S .

Define the quantity B as follows:

dB

dt
(t) =

∑

jX∈NX

ǫ( jX ) x( jX )(t) +
∑

jS ∈NS

η( jS )

φ( jS )
s jx) +

∑

j∈{1,...,n}

y( j)(t).

Taking the derivative of B with respect to time, and using simi-

lar manipulations as what was done in the proof of Lemma 2.1,

we get

dB

dt
(t) ≤

∑

j∈{1,...,n}

C j − δ
( j)y( j)(t)

+
∑

ℓ, j

α(ℓ, j)
[

(λ(ℓ, j)y(ℓ)(t − τ(ℓ, j)) − y( j)(t)
]

≤ C̃ +
∑

i∈S̄



















−δ̄(i)y(i)(t) +
∑

k∈S̄ i

α(i,k)
[

λ(i,k)y(i)(t − τ(i,k)) − y(i)(t)
]



















+
∑

j∈S



















−δ( j)y( j)(t) +
∑

ℓ∈S j

α( j,ℓ)
[

λ( j,ℓ)y( j)(t − τ( j,ℓ)) − y( j)(t)
]



















,

where C j bounds the y-independent terms of P( j), and C̃ is the

sum of these terms. δ̄(i) is defined as zero if i ∈ S , and δ(i) if

i < S , and is defined to avoid over counting of negative terms.

It follows from assumption that δ̄(i) > 0 for at least one i ∈ S̄ .

Using the relations of set S and S̄ , the following substitutions

can be made

dB

dt
(t) ≤ C̃ −

∑

i∈S̄



















δ̄(i) +
∑

k∈S̄ i

α(i,k)
(

1 − λ(i,k)
)



















y(i)(t)

−
∑

j∈S



















δ( j) +
∑

ℓ∈S j

α( j,ℓ)
[

1 − λ( j,ℓ)K( j,ℓ)(t)
]



















y( j)(t).

(28)

As y( j)(t) is bounded by its past value for all j, it cannot have

grown unbounded for the present t, and hence we do not need to

bound y( j)(t) for this partition of time. By the restriction given in

the statement of Lemma 2, the outer sum in j on the second line

of (28) is negative, and so we may remove it from the bound.

Define ξ(i) such that

ξ(i) = δ̄(i) +
∑

k∈S̄ i

(

1 − λ(i,k)
)

α(i,k)

for i ∈ S̄ . Recall that λ ≤ 1 and the definition of δ̄(i). Hence,

ξ(i) ≥ 0 for all i, and ξ(i) > 0 for i < S . By assumption, there

exists i such that ξ(i) > 0. If ξ(i) = 0, y(i)(t) is bounded by its

past history, and need not be bounded. Define ξ = min{ξ(i) :

ξ(i) > 0}. The inequality (28) then becomes

dB

dt
(t) ≤ C̃ − ξ

















∑

i∈S̄

y(i)(t)

















.

Assume now that some y(i) for i ∈ S̄ grows unbounded. Then

y(i) must at some time be larger than some of its delayed terms.

Thus, i ∈ S̄ for some t, for which it is arbitrarily large. There-

fore,
∑

i∈S̄ y(i)(t) > C̃/ξ, as all components y( j) > 0. Hence

dB/dt < 0, and B(t) must be decreasing. Notice that this bound

is independent of all solutions bounded in this partition set.

Hence, y(i) cannot grow arbitrarily large for any patch, and so

the solution must be bounded. �

We have not observed unbounded solutions for any numeri-

cal simulations. We believe the restrictions on the growth rate,

given by (27), could be lifted, but we do not pursue this techni-

cality here.
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