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Abstract—Caching content in small-cell networks can reduce
the traffic congestion in backhaul. In this paper, we develop a
hybrid caching network comprising of unmanned aerial vehicles
(UAVs) and ground small-cell base stations (SBSs), where UAVs
are preferred because of their flexibility and elevated platform
for line-of-sight. First, we derive the association probability for
the ground user affiliated with a UAV and ground SBS. Then, we
derive the successful content delivery probability by considering
both the inter-cell and intra-cell interference. We also analyze
the energy efficiency of the hybrid network and compare it with
the separate UAV and ground networks. We further propose the
caching scheme to improve the successful content delivery by
managing the content popularity, where the part of the caching
capacity in each UAV and ground SBS is reserved to store the
most popular content (MPC), while the remaining stores less
popular contents. Numerical results unveil that the proposed
caching scheme has an improvement of 26.6 % in content delivery
performance over the MPC caching which overlooks the impact
of content diversity during caching.

Index Terms—Caching, content delivery performance, energy
efficiency, unmanned aerial vehicle (UAV)

I. INTRODUCTION

Wireless edge caching is one of the most promising solu-
tions to backhaul congestion. In the wireless local caching,
the popular contents are stored in caches at the network
edges, such as small cells and hand-held devices during oft-
peak time [1], [2]. Consequently, contents can be directly
requested and accessed locally by users during peak times
to reduce the burden on backhaul. In addition to latency, the
energy efficiency of such networks is also important from
the network planning viewpoint [3], as the energy efficiency
performance is compelling for understanding the impact of
network parameters, such as BSs density, power consumption,
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and the quality-of-service requirement. Thus, it is of great
interest to study the energy efficiency performance of a hybrid
caching network to successfully deliver the cached contents to
the ground user for the required threshold and then compare it
with the separate unmanned aerial vehicle (UAV) and ground
networks.

UAV can provide flexible access due to their maneuverabil-
ity and hence, can be exploited as an aerial BS or a cache
to facilitate the high-speed transmission [4]. Different from
the network caching using the fixed ground infrastructure, the
UAV-enabled caching can increase the likelihood of successful
content transmission because of their flexibility which can
take the caching content closer to the typical user. However,
the deployment of UAVs can encounter many challenges [5],
and it can be based either on the deterministic approach, such
as circle packing method in [6] and hexagonal placement in
[7], or on the random distribution using tools of stochastic
geometry.

Recently, the research on the coexistence of the UAV-
enabled network with the terrestrial network was presented
in [8]- [11]. For these works, the spatial distribution of base
stations is defined by a Poisson point process (PPP). For
instance, in [8]- [11], UAVs were distributed according to
3D PPP and the terrestrial network was modeled by PPP.
However, most of these studies ignore the caching aspect in
UAVs. In [12], the authors provided an analytical framework
using independent PPPs for UAV and ground BSs to evaluate
the performance of UAV assisted cellular network in terms of
signal-to-interference-plus-noise ratio (SINR) coverage proba-
bility. In [13], the authors modeled a multi-layer aerial network
with PPP using air-to-ground (AG) and air-to-air (AA) channel
models to evaluate the transmission probability and area
spectral efficiency. In [14], the probabilistic caching placement
was investigated in heterogeneous UAV network modeled as
an independent homogeneous PPP without considering co-
channel interference or the terrestrial network. In [15], the
authors presented a framework for the uplink transmission of
cached contents from the ground SBSs distributed according to
a homogeneous PPP to a single aerial user equipment over the
ground-to-air (GA) channel. In [16], the UAV-assisted secure
transmission was studied via caching, where UAVs offload
the video traffic and deliver to mobile users in small cells. On
the other hand, the authors in [17] presented the architecture
of caching in UAV-enabled small-cell network. However, an
analytical framework for the performance analysis has not
been provided. The works in [18]- [20] utilized the cache-
enabled UAVs in radio access networks. However, these works
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do not model their system as a multi-tier caching network that
consists of ground SBSs to supplement UAVs.

Content placement is a key challenge due to the limited
caching capacity in SBSs, because spontaneous caching in
nearby SBSs will incur more interference. Extensive research
has been conducted to analyze the joint content placement
and transmission performance as well as designing relevant
caching strategies. For instance, [21] studied the optimal
content placement of the cache-enabled heterogeneous cellular
network. [22] proposed a caching strategy for the cluster-
centric small-cell network that combines the most popular
content (MPC) and the large content diversity. This strategy
was extended in [23] to the distributed relay network to
improve outage performance. In [24], heuristic solution was
proposed to significantly improve the video delivery perfor-
mance in the cache-enabled wireless heterogeneous network.
In [25], the authors proposed a heuristic algorithm to maximize
the transmission performance of cache-enabled multi-antenna
and millimetre-wave small-cell networks. [26] analyzed and
optimized the performance of the content placement in the
terrestrial BSs and in mobile users that coexists in a heteroge-
neous wireless network. In [27], the cache-enabled nodes were
grouped in disjoint clusters by Matern hard core point process.
In [28], spatial caching strategy was proposed to improve
content delivery probability and to avoid caching redundancy
in a heterogeneous network. In [29], the authors studied the
techniques to enhance the caching capacity in the mobile ad
hoc networks. However, these works did not consider the
content placement scheme in UAV-enabled networks using the
realistic AG channel conditions in urban environments.

Small-cell networks are expected to provide significant
improvement in the content delivery for higher transmission
rates and reduced backhaul congestion. In the previous works
[21]- [29], cache-enabled networks were designed mostly for
the ground BSs with fixed infrastructure. However, their instal-
lation can be hampered by geographical constraints in different
urban environments. On the other hand, UAVs provide flexible
platforms to deploy as aerial BSs or aerial caches in urban
settings. However, the coexistence of the aerial and terrestrial
SBSs in a multi-tier caching network has been largely ignored
in [18]- [29].

The existing studies mentioned above have neither consid-
ered the modeling of a hybrid caching network consisting of
UAVs and ground SBSs randomly located according to the
PPP [30], [31], nor analyzed its content delivery and energy
efficiency performance. Therefore, in this paper, we present the
guidelines to model the hybrid caching network and analyze
the performance of the proposed content caching scheme
which exploits the content diversity based on its popularity
measures. However, the use of protocol architecture of a
specific 3rd generation partnership project (3GPP) standard
in a hybrid caching network is beyond the scope of this
paper. The main contributions of this work are summarized
as follows:

1) User association probability for the UAVs and the
ground SBSs are derived using stochastic geometry.
Both UAVs and ground SBSs coexist in a network where
we adopt the density sharing scheme for the adequate

deployment of UAVs and ground SBSs. Their locations
are determined by the homogeneous PPPs. The typical
user request for a particular file is highly likely to be
associated with the cache-enabled UAV and ground SBS
in a hybrid network based on the maximum received
power criteria.

2) Successful content delivery probability is used to an-
alyze the network performance. Furthermore, inter-tier
and intra-tier interferences are taken into account and
modeled by the Laplace transforms. The results reveal
that the successful content delivery performance is de-
pendent on the network parameters, such as the UAV and
SBS density to control the interference and the UAV alti-
tude, and also on the content-related parameters, such as
the size of the content in the database, caching capacity
of UAVs and SBSs, skewness in content popularity, and
the target data rate.

3) Energy efficiency is a performance metric defined as the
ratio of the area spectral efficiency for the successful
content delivery to the average power consumption of
the network for a given quality-of-service threshold
[32]. The energy efficiency of the cache-enabled hybrid
network is then compared with those of the separate
UAV and ground networks to assess the effectiveness of
the hybrid approach.

4) A hybrid caching scheme is proposed in which a
portion of the caching capacity in each UAV and SBS is
designated to cache the MPC with the higher popularity
probability. Thereafter, the contents with the moderate
popularity are stored in the remaining portion of the
caching capacity. Furthermore, the content delivery per-
formance of the proposed caching scheme is compared
with the widely used popular content placement method
in [22]- [25] as a baseline scheme which only cache
MPC.

II. SYSTEM MODEL

In this section, we will describe the network topology,
the channel model, and the content placement scheme for
the cache-enabled hybrid network illustrated in Fig. 1. The
commonly used symbols in this paper and their meanings are
tabulated in Table I.

A. Network Topology

We consider a three-tier time division multiplexing hetero-
geneous network with UAVs in tier U, ground SBSs in tier
G, and one macro BS for backhaul connectivity. Specifically,
UAVs are deployed as a cache-enabled aerial BSs in tier U
after the ground SBSs are deployed, where UAVs share the
same altitude h and transmit with power Py. In this case,
the random deployment of UAVs follow the PPP in [30], [31]
due to two main reasons. First, the projection distribution is
similar to the classic PPP when all UAVs hovers at the same
altitude. Second, this offer analytical tractability for modeling
the uncertainty in the deployment of the cache-enabled UAVs
in the worst-case scenario [8]- [11]. In tier G, SBSs are on
the ground and transmit with power Pg. Furthermore, we



TABLE I
SUMMARY OF SYMBOLS.
Symbols | Meaning
Oy, P Location of UAVs in tier U, SBSs in tier G
AU, Aa Density of UAVSs in tier U, SBSs in tier G
h UAV altitude
n Density control factor
K Size of database
J Caching capacity of each UAV and SBS
z State of UAV being in line-of-sight (z = L) and non
line-of-sight (z = N) conditions
I The k-th file
by, Placement probability of file fi in UAV and SBS
cache
mp Popularity measure for the requested file f
o Rayleigh fading gain with unit mean for desired link
gi» g5, 91 | Rayleigh fading gain with unit mean for interference
link
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Fig. 1. System model for cache-enabled hybrid network with UAVs and
ground SBSs deployed according to PPP.

assume that each UAV and SBS is equipped with a single
antenna. In this paper, we consider a density sharing scheme
for appropriate participation of the cache-enabled UAVs and
ground SBSs in a hybrid network. The overall distribution of
the cache-enabled nodes in a hybrid network is modeled by
a homogeneous PPP &g with density A\g. The UAVs and the
ground SBSs in tier U and tier G follows two independent
homogeneous PPPs &y and ¢ with densities A\y = nAg and
Ac = (1 — n)As, respectively. In this case, 0 < 1 < 1 and
the factor 1 — 7 defines the percentage of active SBSs in a
hybrid network with Ag > Ay and A\g > A\g. Also, the ground
users are spatially distributed according to an independent
homogeneous PPP &1 with density Ar. We assume that the
user density is much larger than the UAVs and SBSs densities
(Ar > Ay and At > Ag). From the Slivnyak’s theorem of
PPP in [30], the user association probability for every pair of
UAV-user is the same. Thus, the typical user is set as a ground
reference point which is served by each UAV and SBS at each
time slot with multiple active users at each time slot in macro
BS.

B. Channel Model

For the downlink communication in tier U, we have an
AG channel between UAV and the typical user. In such a

channel, the path-loss is dependent on the environment and the
propagation distance. In this case, the line-of-sight (LOS) and
non line-of-sight (NLOS) links can be considered as separate
components of the AG channel. Thus, the path-loss for LOS
and NLOS links are given as [33]

LU,Z(X) = 60Xaz; z € {L7N}7 (D

where [, = (%)2 is the frequency-dependent channel power
at the reference distance of 1 m, f is the carrier frequency, c is
the speed of light, z € {L,, N} denotes the condition of being
LOS (z = L) or NLOS (z = N) links, X = v/d? + h? is the
propagation distance, d is the user distance from the projection
of the UAV, a1, and ay are the path-loss exponents for the
LOS and NLOS links, respectively. Also, the probability of
having a LOS link is given as [34]
B 1

1+ aexp (—b [%sin_1 (%) — a])
and the probability of having a NLOS link is given by
pN(X) = 1—pr(X), where a and b are constants related to the
environment. In order to have tractable analysis we consider
that the LOS probability for different communication links are
independent [11]

In the ground network, the channel between SBS and the
typical user has path-loss given as

La(Y) = B,Yee 3)

pL (X)

(@

where Y is the user distance from the ground SBS to typical
user and ag is the path-loss exponent of tier G.

C. Probabilistic Content Placement Scheme

We assume that the particular contents (such as multimedia
files) are placed in the cache at both the UAVs and ground
SBSs. A typical user randomly requests the contents from the
finite content database C := {f1,--- , fx, -, fx }, where the
database size is K and the k-th file is requested with a proba-
bility of mj. We assume that the contents differ in popularity
for all k£ and the files are requested in decreasing popularity,
so that my > mpy; > -+ > my and Zszl my = 1. We
consider that all content files have the same normalized size
equal to 1 [35]. Furthermore, we assume that each SBS can
only store up to .JJ contents, where J < K. Such an assumption
is practical because not all SBSs have enough capacity to store
the entire database contents.

In this paper, we adopt the probabilistic content placement
scheme used in [14], [21], and [25] for caching at UAVs
and ground SBSs while considering their storage capacity. In
this scheme, the caching probability by, satisfies the following

condition
® b < J.
Do <

The condition in (4) allow each UAV and SBS to cache the
maximum amount of the total content up to their caching ca-
pacity J. Note that, using the probabilistic content placement
strategy, ®g ; and ®y i, are independent PPPs with densities
Ag,k = bpAg and Ay = bpAy of the cache-enabled ground
SBSs and UAVs, respectively. These SBSs and UAVs can

0 < by < 1,Vk. 4)



support the typical user when the k-th content is requested,
and ®¢ = UrergPa i, and Py = Urer Py i, respectively.
All the remaining un-cached contents having least popularity
are served by the macro BS via backhaul.

III. INTERFERENCE CHARACTERIZATION

Considering the downlink communication, we focus on
the scenario where UAVs establish a communication link
with the typical user with the strongest received signal and
consequently provide the highest SINR for the user. Thus, the
received SINR at the typical user is given by

_ PUgo{LU,Z(Xo)}il
02+ Ty +1Ig

where X, denotes the distance from the typical user to its

serving UAV, g, ~ exp(l) is the Rayleigh fading channel

power with unit mean, o2 is the noise power, and the aggregate
intra-tier interference is given by Zy = Zy ¢ + Zy,n with

_ . 311
IU,C = e%:N} Ziebu,k\{o}PUgZ{LU’Z(XZ)} ) (6)

SINRy , ; ze€{L,N}, (5

and

IU,N:ZZE{L,N} > Pugi{Lun(X) )

JEPU\Pu,k

being the co-channel interferences from the UAVs with the
propagation distance X; and the point process Py i\ {0}
corresponding to the density by Ay that cache the k-th content,
and from the UAVs with the propagation distance X; and the
point process '\ Py x corresponding to the density given by
independent thinning theorem (1 — bg)Ay [30] that do not
store the k-th content in their caches, respectively. Also, the
aggregate inter-tier interference caused by the ground SBSs in
tier G is given by

I = Y Peg{Lc(M)} (®)
ledg

where Y] is the propagation distance between the typical user
and the ground SBS, g;,9;,91 ~ exp(1l) are the interfering
Rayleigh channel fading powers that follow the exponential
distribution.

Similarly, the received SINR at the typical user from the
ground SBSs in tier G is given by

PGgo{LG(YO)}_l
02 +TIg + 1y
where the aggregate intra-tier interference is given by Zg =

Is,c +Ig N with

— . . -1
Igc = Zie%)k\{o}Png{LG(E)} ;

SINRg =

€))

(10)
and

— ) 11
ToN =D cpnog, FogillaG}7hAD)

being the intra-tier interferences from the ground SBSs with
the ground distance Y¢ and the point process ®¢ i\ {0}
corresponding to the density i A that store the k-th content,
and from the ground SBSs with the ground distance Y'j

and the point process @¢\Pg . corresponding to the density
(1 —bg) A that do not store the k-th file. Also, the aggregate
inter-tier interference caused by all UAVs in tier U is given
by

5 _ -1
IU—ZZE{L’N}Zle‘bUPUgl{LU,z(Xl)} : (12)

where X is the interfering propagation distance from UAVs
in tier U.

IV. DERIVATION OF USER ASSOCIATION PROBABILITY

User association accounts for both the content availability
and the link reliability. Therefore, we introduce a user asso-
ciation method based on the maximum received signal power
by the user from the UAV (LLy ;) and the ground SBS (Lg,y)
with the following criterion

> LU,Z(m)—lpZ(m)) (13)

]LU,;E = PUQO(
z€{L,N}

and
La,, = PagoLa(ry) ™"

It is important to note that only the popular parts of all
contents, i.e., CU and CS, are cached at the UAV and ground
SBSs due to their limited storage capacity. Hence, it is possible
that a file requested by the user may be unavailable at SBSs,
which has to be requested via the backhaul. However, such
situation arises occasionally and are omitted in our analysis
for mathematical tractability, similar to [36], [37]. A user is
associated with the content-centric SBSs if the user requests
file f; and is served by UAV in tier U and SBS in tier G.
Thus, when the user requests the file fj, the serving UAV and
SBS denoted by Ly is defined as

(14)

max Ly, max Lg, o, fi € {cv,c%y
yEPG K

rcdy i

arg max{
Lp = arg max Lyg, fr € cY
zePy i

arg max Lgy, fr € cE.
ye€dG

15)
where we assume fixed Py in tier U and Pg in tier G,
respectively. In this case, the variable transmit power of UAVs
may not be useful due to the properties of homogeneous PPP
and the user association scheme in (15).
Lemma [: The probability that a typical user is associated
with the nearest cache-enabled UAV with file f; in LOS and
NLOS conditions is given by

ko k
Ag = Zze{L,N}AU’Z’

where, A% 1, and A’fj N are association probabilities for LOS
and NLOS conditions, respectively, and A%’L is calculated as

[e'e] P 2/(XG
Ty €XP ( — b Ag <PG7“I“L>
U

(16)

h

_27Tbk)\U/ /pL(l)ldl>PL(7"x)d7"m- (17)
h



Proof: Assume that r,, is the minimum propagation distance
between the UAV with file fi in tier U to the typical user and
7y is the distance from the ground SBS in tier G to the typical
user. Thus, the user association probability for the UAV in
the LOS condition A’&L is the probability that Ly ,(ry) >
Lg(ry). Therefore,

Ab 1 = Ep, [P[Lus(rz) > Lo(ry)]]

[e'] P, 1/0‘G
:/ ]P’[ry > (GrgL) }f,ﬁ(rw)drx. (18)
h Py ’

1/ag

where P[r, > <£€r§‘L ] is computed by using the null

probability of a 2D Poisson process as

PG N 1/OLG
P{ry >(HerL) =
P 2/ag
exp ( — mhpAg (Grm%) > (19)
Py

Furthermore, the PDF of 7, denoted by f (r,) corresponds
to the serving UAVs in LOS condition with probability pr, (7 )
that provides strongest signal to the typical user with the
shortest distance. In this case, f}z (ry) is derived by taking
the derivative of 1 — P[h < I < r,] with respect to r, and
using the null probability of a 2D Poisson process, where

T

Plh<1<r,)= exp(—27rbk)\U/ pL(Didl).  (20)

h

and [ is the minimum propagation distance range. Then, by
using Leibniz integral rule, (rx) is given by

fE(ry) = 2mrabedupr (rs)

X exp ( - wak)\U/ pL(l)ldl>.
h

Substituting (19) and (21) in (18), we obtain the result in
(17). Similarly, the association probability AU N for the UAV
in the NLOS condition can be derived by followmg the same

steps as
o0 P 2/aG
Ty €XP ( — b (eraN)

Py
—2rbi Ay / "pN(z)Zdz>pN(rx)drz.
h

21

‘A%,N :27Tbk)\U /
h

(22)
Lemma 2: The probability that a typical user is associated

with the nearest cache-enabled ground SBS with file fj is
given by

Ag =2mbi\a Z / Ty €Xp < — ﬂbkAGry

z€{L,N}

Do) drz> dry, (23)

Proof: Assume that the minimum distance between the
ground SBS with file f;, in tier G to the typical user is 7y,

and the propagation distance between the UAV in tier U to
the typical user is r,. Thus,

Ag = Ery [P[LG(ry) > Ly, (TI)]]
o P 1/,
= [T < (Foge) ]ss e e
0 Pg'? ’ ‘

Then using null probability of a 2D Poisson process, we have

Py . 1/,
P[h<rm < <PGTyG> } =

(%W
exp < — 27Tbk)\U / Pz (Tz)rzdrz) .
h

The PDF of the minimum ground distance r, is given by
ery’ (ry) = 2wbpAary €Xp ( — kaAGri). (26)
Substituting (25) and (27) in (24), we obtain the result in (23).

(25)

V. THE SUCCESSFUL CONTENT DELIVERY PROBABILITY

The network performance is measured by the successful
content delivery probability, which represents the probability
that the file requested by a typical user is not only cached
at UAV and SBS but also successfully transmitted by them
over the wireless channel. For the density share scheme,
the successful content delivery probability of the considered
hybrid network is given by

Pscp (0, br) = Psep (1, br) + PSep (1, b),

assuming that the content size of ¢ bits needs to be transmitted
in 7 seconds. One has

27

J
= > mP[SINRy,, > dy],
k=1

Psen (1, be) (28)

o/T
with dy = 2‘€VU — 1 and Wy being the UAV bandwidth and

J
=Y mP[SINRG > dq],
k=1

PSen (1, be) (29)

o/T
where 0 = 23’@ —1, and W is the ground SBS bandwidth.

A. Successful Content Delivery Probability for the UAV in tier
o)

Lemma 3: The successful content delivery probability for
the cache-enabled UAV with file f in tier U is given by
J

)= kPG, (1, br),
k=1

where P, (0,0i) = Pey/(n.br) + Pogy (n,br) and
Pot(n, by) and Po (1, by,) are the coverage probabilities to
successfully delivered the file f; with caching probability by,
to a typical user connected with the serving UAV in tier U
with density A\y = nAg having LOS and NLOS conditions,
respectively, and are given as

Pos(1.bi) = 31)
L1y o(s1) - L1y n(s1) - L3, (s1) - exp(—spL0?) - AT 1,

Pscn (1, be (30)



Pgé;lj (777 bk) =
L1y .o(8) * Lzy n(s8) - Lz,

(32)

(sn) - exp(—sno?) - Ap n,

— b f L,N
Puy/y2+h2 " or z € {L.N},
A%_L, and .A]fj N are given in (17) and (22), respectively. Also,

L1y (), EIU:N (-), and Lz _(-) are the Laplace transforms of
the interference generated by UAVs that cache with file fy,
UAVs that do not cache fj, and ground network, respectively.

respectively, where s, =

Proof: Given that a typical user is associated with the cache-
enabled UAV in tier U in the LOS condition, the connection
probability in the presence of the intra-tier interference from
UAVs that cache and do not cache f;, and inter-tier interference
from the ground network is given as

Pgé%(m br) = P[SINRUL > 0y

oulLlvy, N
=Plg, > %(02+IU70 +ZunN JrI(;)
U

= exp(—510%) - L1y o (s1) - L1y (s1) - L3, (s1), (33)

duBo

Pur/y+h? "

geometry can be used to determine the Laplace transforms.
Thus, Lz, -(s1) is given by

where s, = Properties of the stochastic

= Egy .\ (o} [exp(—s1.Tu.c)]

EIUC( L) =
2rbeAu Y / (1—

= exp(
z€{L,N}

B, [exp (—sLPng‘\/ﬂx2 +h2 ﬂ )xpz(x’)dx)

@ exp ( — 2mh Ay X

> L

ze{L,N}

< SLPU :EQ + h2 _ > ! )
— |ap,(a")dx ),
Bo + sLPuV x2+h2
(34

where 2’ = v/x2 + h2, (a) comes from the probability gen-
erating functional of PPP and (b) follows the moment gener-
ating function of the exponential distribution [21]. Likewise,
Lz, «(s1) is given as

’CIU,N (SL) = exp < - 271'(1 — bk))\UX

s, Puva? + R ,
Z — |apa(a’)dx ).
2e{L,N} Bo + sLPuva® + h?

(35)

The Laplace transform for interference from the ground

network is given as

Eo [exp(—sLig)}

0 1

© SuPeE R
:exp<—27rAg/ vIG VYt alxdx),
o Pyroc +5yPoy/y?2+h?
) 65/0@ <y2 + h2)aL/(xG csc (2%)
=exp| —27° g RV .
(%)

ag
(36)

where csc(-) is the Cosecant trigonometry function.

Similarly, Laplace transforms of cached and un-cached
UAVs in NLOS condition can be computed by following the
same steps. Next we will derive the successful content delivery
probability for the ground SBS in tier G.

B. Successful Content Delivery Probability for the SBS in tier
G

Lemma 4: The successful content delivery probability for
the cache-enabled ground SBS with file fj in tier G is given
by

J
)= mxP G, (1, br),

k=1

Pson (11: b (37)
where P&, (1, by) is the coverage probability to successfully
deliver the file f; with caching probability by to the ground
user connected with the serving ground SBS in tier G with
SBS density A\g = (1 — n)As and is given as

P8, (n,bx) = P[SINRG > dc]

ocL
P{go> cla
G

= ‘CIG,C(SG) : ‘CIG,N (SG) : ‘Ci'U

(0'2 +Zgc+IgN+ i-U)

(sa) - exp(—sqo?) - Ag,
(38)

where sq = o Ag is given in (23), and Lz .(-),
L1, (-) and L4 (-) are the Laplace transforms of the intra-
tier interference generated by ground SBSs that store fy,
ground SBSs that do not store fj, and the UAV network,
respectively.

Proof: The Laplace transform for the intra-tier interference
generated by the ground SBSs that cache the file fi is given
as

L15(s6) = Eag .\ {0} [exp(—s6Za,c)]

—exp<—27rbk)\c,/ X
Yy

. *OCG
(- oo (- 4 )

sgPgr—«¢
= — 2 A d
eXp< Ok G/y (/60+5GPGx OIG)x Z'>

:eXp<_27rbk)\Ga6 042(}72_052(3’_60)).
(39)
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where 2F1(-, -y+,+) is the Gauss hypergeometric function.
Likewise, Lz, (sc) is given as

day?
L1 (5a) =exp | —27(1 = bp)Ag
ag — 2
2 2
X2F1(1a1_72_a_56)>' (40)
aG aG

Using the proof of Lemma 3, £; (sc) is given as

ﬁiU (sq) = exp < — 2Ty X

<[ sgPuVa?+ R :
Z —ay, Ipz(-r )d.’L‘ .
ey v \Bo + saPuvVa? + b2
(41)

VI. ENERGY EFFICIENCY OF HYBRID NETWORK

Energy efficiency is a widely used performance measure
for the heterogeneous network with dense and random de-
ployment of SBSs. Using (30) and (37), we have obtained
the successful content delivery probabilities for the UAV and
ground networks, respectively. In this case, the throughput
attained at a tygical user by the UAV and ground SBS
are given by » ;. miP[SINRy, > du]logy(1 + dy) and
Z,‘cjzl miP[SINRg > dg]log,(1 4 d¢), respectively, and the
area spectral efficiency is taken over the UAV-user and ground
SBS-user links in the network. Thus, for the UAV and ground
homogeneous network, the area spectral efficiency is defined
as A\uPgcp (1, br) 1ogs(1 + 6u) and AaPep (1, br) log(1 +
da), respectively. Finally, we define the energy efficiency of
the hybrid network as [32]

AUPYo (1, b1) + A PG (1, b@] log, (1 + 0)

M (Pu + Paov) + Ac(Pa + AcPrr) ’
(42)

where § is a prescribed quality-of-service requirement. The
UAVs in our work are static during transmission and therefore,
Piov is the power consumption of each multi-rotor UAV in
hovering and given as [38]

EE =

3

(mug)
2rR2N,p’
where my is the mass of UAV in kg, g is referred as
acceleration of gravity in m/s?, R and N,, denote the propeller
radius and number of propellers, respectively, p denotes the
air density in kg/m3. In this paper, we adapted the power
consumption model for small-cell wireless networks in [39],
where A¢ is the load-dependent power consumption slope of
the ground SBS and Prr being the RF output power of the
ground SBS.

Proy = (43)

VII. A HYBRID CACHING SCHEME

In this section, we propose the hybrid caching scheme where
UAVs and ground SBSs in small-cell networks cache the
contents according to their popularity. In particular, contents
are segregated into three groups according to their popularity

measure based on the placement probability of 1 (by = 1)
for the MPC files, between 0 and 1 (0 < b, < 1) for files
with the moderate popularity, and the placement probability
of 0 (b = 0) for the unpopular files that do not need to be
cached in the small-cell network. We assume that the content
request follows the Zipf distribution where the content request
probability is modeled as [40]

v
Zf:rs v
where v is the Zipf parameter defines the popularity distribu-
tion.

In this paper, we seek to improve the overall successful
content delivery performance of the hybrid network by the
proposed caching scheme. Firstly, we assume that the content
placement is made on the basis of MPC scheme which stores
the popular content in UAVs and ground SBSs with b, = 1.
In this case, the entire caching capacity is designated to store
only the popular content and hence, successful content delivery
probability of a hybrid network can be given as

my = v >0, (44)

PSS (n) =

J J
S kP (b = 1)+ > my P& (n, by = 1), (45)
k=1 k=1

where PY,, and P&, are given in (30) and (37), respectively.
Secondly, we propose the improved caching scheme where
a fraction of SBS caching capacity .J, is assigned to cache
the most popular content called the MPC portion. Thereafter,
the contents with the moderate popularity are stored in the
remaining portion of the caching capacity called the content
diversity (CD) portion. In the CD portion, the disparity of the
cached content with less popularity measures represents the
content diversity. To this end, the successful content delivery
probability of the hybrid network can be given as

Pecp (1) =

Jo J

Z mkpgov(nv b = 1) + Z mkpgov(na b;g)

k=1 k=Jo+1
Jo J

+> miPE bk = 1)+ D> miPl(n,b),). (46)
k=1 k=Jo+1

where J, is defined as the caching capacity in UAVs and
ground SBSs to increase the content diversity and hence,
improve the overall successful content delivery probability for
the hybrid networks. In (46), contents {1,--- ,.J,} are in the
MPC portion of the UAV and ground SBS caches with the
placement probability by = 1 and contents {J,+1,-- , J} are
in the CD portion with the placement probability 0 < b}, < 1.

VIII. NUMERICAL RESULTS AND DISCUSSION

In this section, we present and discuss the numerical results.
The user association probability in (16) and (23) analyzes
the performance of the typical user associated with the UAV
and SBS that has the desired cached contents. The successful
content delivery probability in (30) and (37) characterizes the
downlink transmission performance of the contents cached in



TABLE II
SYSTEM PARAMETERS

Parameters Values
Transmit power of each UAV (Py) 1W
Transmit power of each ground SBS (Pg) | | W
noise power (c2) -170 dBm

2 GHz, 3 x 108 m/s
2.1, 3.7, 3.7 [11]

frequency (f) and speed of light (c)

Path-loss exponents (a1, an, ag)

Environment parameter (a, b) 5.0188, 0.3511 (Subur-
ban) [34]
Density of hybrid network (\g) 10~% 1/m?
Bit rate of each file (p/7) 100 Kbps
Bandwidth Wy, Wa) 200 KHz

Database size (K) 104
Cache capacity of SBS (J) 100 files

the UAV and SBS. The energy efficiency in (42) evaluates the
power consumption performance of a hybrid network while
successfully transmitting the most popular contents to the
typical user. Furthermore, the successful content delivery per-
formance of the proposed caching scheme in (46) is examined
and compared with the popular caching scheme in (45) to
characterize the impact of different network parameters.

The simulation and analytical results are obtained by using
MATLAB. The simulation results are obtained by using Monte
Carlo with 10° runs. The system parameters are given in Table
II, unless otherwise specified. In Table II, the values for the
path-loss exponents and the environment specific parameters
are obtained from [11] and [34], respectively, and other values
are set for illustration purpose only.

A. User Association Probability

In Fig. 2, we investigate the impact of the density n on the
user association probability in suburban environment. In the
density sharing scheme, as 7 increases, the density of UAVs
increases. As a result, the user association probability with
UAVs monotonically increases with . Meanwhile, the density
of the ground SBSs decreases. Therefore, user association
probability monotonically decreases with increase of 7. Thus,
we observe that the typical user tends to connect to a tier with
higher density.

In Fig. 3, the impact of UAV altitude on the association
probability of UAVs is investigated. One can notice that the
maximum association probability is 0.98 for n = 0.7 at the
altitude of 25.50 m and is 0.93 for n = 0.2 at the altitude of
46 m. Thus, there exist an optimal UAV altitude to achieve
higher association probability which depends on 7 and can be
computed by searching (16) numerically. Finally, simulation
results are plotted with the markers and agree well with the
analytical results of Lemma 1 and Lemma 2 plotted with the
solid lines, which validates our analysis.

B. Successful Content Delivery Performance

In Fig. 4 and Fig. 5, we analyze the effect of the density
factor and the UAV altitude, respectively, on the coverage
probability. In both cases, the optimal density control factor
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Fig. 2. The impact of SBS density control parameter (1) on the user associ-
ation probability for the UAV and the ground SBS in Suburban environment
with b, = 1.
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Fig. 3. The impact of UAV altitude (k) on the user association probability
for the UAVs with b, = 1 and different 7.

and the optimal UAV altitude exists for the UAV network.
From Fig. 4, it is observed that, an optimal density con-
trol parameter exists for an adequate deployment of UAVs,
which maximizes the coverage probability. Furthermore, it
is observed that the optimal 7 is a function of the given
UAV altitude, for instance, n is 0.2 and 0.1 for the UAV
altitude of 30 and 60 m to achieve the maximum coverage
probability of 0.8 and 0.7, respectively. On the other hand,
the coverage performance of the ground network degrades
as n increases. However, no significant improvement in the
coverage performance is observed for the SBS in the ground
network.

For the given density control factor in Fig. 5, the optimal
UAV altitude exists for suburban and urban environments.
Higher optimal altitude experiences more blockage. On the
other hand, the UAVs should fly as low as possible in suburban
scenario where there are less blockage. In suburban scenario,
as 7 increases from 0.2 to 0.7, the number of UAVs in-
creases, which increase the amount of co-channel interference
generated by cache-enabled UAVs in a network. Therefore,
the maximum coverage performance in suburban scenario is
achieved at the lower optimal altitudes and at the lesser density
factor, for instance, h is 18, 22, and 28 m for 7 of 0.2, 0.4,
and 0.7 to achieve the coverage probability of 0.84. 0.82, and
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Fig. 4. The impact of the density factor (1) on the coverage probability of
the UAV and ground network for different altitudes.
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Fig. 5. The impact of the UAV altitude (k) on the coverage probability of
the UAV network for different density factor (n) in Suburban, and Urban
(a = 9.61, b = 0.16) environments.

0.8, respectively. Furthermore, the optimal altitude in urban
environment is 63 m for = 0.2. In Fig. 4 and Fig. 5, the solid
line represent the analytical results of Lemma 3 and Lemma
4 while the markers represent the simulation results.

In Fig. 6, we compare the successful content delivery
performance for the networks composed solely of UAV, ground
SBS and hybrid network with different caching schemes. One
can observe that the hybrid network operated with the pro-
posed caching scheme outperform the popular caching scheme
implemented for the UAV, ground and hybrid networks. This
result is important which shows that the deployment of UAV
and ground SBS alone does not meet the increasing content
delivery demand in multi-tier heterogeneous network.

C. Energy Efficiency

Fig. 7 shows the energy efficiency in the UAV, ground, and
hybrid networks as a function of the density control factor
with 0y = dg = § = 0 dB. The parameters concerning the
power consumption model of hovering UAV are adapted from
[38] with my = 0.75 Kg, g = 9.8 m/s?, R = 0.2 m and
N, = 4 (quadcopter UAV), and p = 1.225 kg/m>. Moreover,
the parameters for the power consumption model of the ground
SBS are used for the femto-cell in [39] with P = 4.8 W,
Ag = 8.0, and Prr = 0.05 W. The energy efficiency of the
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Fig. 6. The impact of the density factor (1) on the successful content delivery
probability of the UAV, ground and hybrid networks with J, = 50 files,
h = 60 m, and v = 0.8 for different caching schemes.
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Fig. 7. The impact of the density factor (1) on the energy efficiency of
the UAV, ground and hybrid networks with J = 100 files, h = 60 m, and
v=0.8.

UAV network is worst due to its higher power expenditure to
maintain hovering of UAV. From Fig. 7, one can see that the
energy efficiency of the ground network is better for femto-
cell BS when compared to the UAV network. The reason for
this is that the RF power of ground SBSs is smaller than the
hovering power of UAVs. Finally, it can be seen that energy
efficiency of the hybrid network is better than the UAV or
ground networks, but beyond n = 0.5, the energy efficiency
of the hybrid network is comparable with the ground network.

D. Performance of the Proposed Caching Scheme

In Fig. 8 — Fig. 11, we study the effects of caching size,
Zipf parameter, UAV altitude, and target data rate of content
transmission, respectively, on the successful content delivery
performance of the popular caching scheme [22]- [25] and the
proposed caching schemes in a hybrid network. The popular
caching scheme corresponds to the case when only the most
popular files with by = 1 are cached in UAVs and ground
SBSs. On the other hand, the proposed caching scheme allow
to cache two types of files. First, the most popular files.
Second, the next most popular files with caching probability
0<by, <L
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Fig. 8. The impact of the caching capacity on the successful content delivery
probability with J, = 50 files, n = 0.7, h = 60 m, and v = 0.8 for different
caching schemes.

In Fig. 8, it is observed that the proposed caching scheme
performs better with the performance improvement of 26.6%
on average in the successful content delivery over the popular
caching scheme which ignores the content diversity. When the
content popularity is not uniform it is imperative to consider
the content diversity in the probabilistic caching scheme to
improve the the content delivery performance. In addition,
more different files can be cached at UAVs and SBSs with
higher content diversity. In general, as the content size in the
database decreases, the probability of the successful content
delivery increases with the same performance gap. In Fig.
9, the successful content delivery performance depends on
the skewness of the content popularity distribution defined
by v. However, for the highly skewed popular content e.g
v > 1.6, the proposed scheme performs as well as popular
content placement scheme because very few popular contents
are requested by majority of users. In Fig. 10, one can see the
existence of the optimal UAV altitude due to the trade-off by
the altitude on the successful content delivery performance.
When the LOS probability increases, for e.g from 10 to 15
m, the content delivery performance improves due to less
shadowing. However, beyond 15 m, the adverse effect on
performance occurs due to the greater link distance between
UAV and the ground user which corresponds to higher path-
loss. In Fig. 11, it is observed that the content delivery
probability increases as the target data rate reduces due to
the decrease of the SINR threshold and thus, decreases the
quality-of-service of the typical user.

IX. CONCLUSION

In this paper, we have derived the user association prob-
ability and the successful content delivery probability and
compared the successful content delivery performance of the
popular and the proposed caching schemes in the hybrid cache-
enabled network. The successful content delivery performance
has been improved by 26.6% on average. Furthermore, the
cache-enabled hybrid network is more energy efficient than
the separate UAV and ground networks caching the same
contents. Future extension of this work includes the study
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Fig. 9. The impact of popularity skewness of contents on the successful
content delivery probability for n = 0.7, h = 60 m, and J, = 50 files with
different caching schemes.

I
IS

—3¥— Popular caching scheme, K = 10*
—E— Proposed caching scheme, K = 10?
—}— Popular caching scheme, K = 10*
Proposed caching scheme, K = 10*[]
X Optimal value

o
w
@

o
w
T

o

N

@
T
L

I
N,

o
s
o

o
o

Successful content delivery probability

o
o
a

15 20 25 30 35 40 45 50 55 60
UAV altitude (k) m

=
IS)

Fig. 10. The impact of the UAV altitude on the successful content delivery
probability for n = 0.7, h = 60 m, v = 0.8, and J, = 50 files with different
caching schemes.

o
=

—3¢— Popular caching scheme, K = 10°

—B— Proposed caching scheme, K = 10°
Popular caching scheme, K = 10*

—4— Proposed caching scheme, K = 10*

o
3

o
>

I
N}

Successful content delivery probability
o o
P w

o

5 25 50 75 100 125 150 175 200 225 250
Target data rate (£) Kbps

Fig. 11. The impact of target data rate of the link on the successful content
delivery probability for n = 0.7, h = 60 m, v = 0.8, and J, = 50 files
with different caching schemes.



of cooperative caching where UAVs and ground SBSs cache
different contents.
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