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Abstract 

Natural Language Processing (NLP) is an ever-growing field of computational science that aims to 

model natural human language. Combined with advances in machine learning, which learns patterns 

in data, it offers practical capabilities including automated language analysis. These approaches have 

garnered interest from clinical researchers seeking to understand the breakdown of language due to 

pathological changes in the brain, offering fast, replicable and objective methods. The study of 

Alzheimer’s disease (AD), and preclinical Mild Cognitive Impairment (MCI), suggests that changes in 

discourse (connected speech or writing) may be key to early detection of disease. There is currently 

no disease-modifying treatment for AD, the leading cause of dementia in people over the age of 65, 

but detection of those at risk of developing the disease could help with the identification and testing of 

medications which can take effect before the underlying pathology has irreversibly spread. We outline 

important components of natural language, as well as NLP tools and approaches with which they can 

be extracted, analysed and used for disease identification and risk prediction. We review literature 

using these tools to model discourse across the spectrum of AD, including the contribution of machine 

learning approaches and Automatic Speech Recognition (ASR). We conclude that NLP and machine 

learning techniques are starting to greatly enhance research in the field, with measurable and 

quantifiable language components showing promise for early detection of disease, but there remain 

research and practical challenges for clinical implementation of these approaches. Challenges 

discussed include the availability of large and diverse datasets, ethics of data collection and sharing, 

diagnostic specificity and clinical acceptability. 
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1. Introduction 

Natural Language Processing (NLP) and machine learning have changed the way humans and 

computers interact, making language-processing applications a familiar part of everyday life. Alexa, 

Siri, and Google Translate all depend on machine learning and NLP algorithms. The growth of NLP 

has been attributed to recent advances in machine learning algorithms, made possible by greater 

distributed computing power, large amounts of data available in digital form, and a deeper 

understanding of the structure of human languages (Hirschberg & Manning, 2015). It is clear, 

however, that adoption of the technology in the clinical domain is undoubtedly beginning to transform 

our ability to assess neurodegenerative diseases such as Alzheimer’s disease (AD). 

 

Evidence suggests that the build-up of pathology in AD begins decades before symptoms emerge 

(Jack et al., 2013; Ritchie et al., 2017), so research has become focused on early detection of 

disease, with the aim of enrolling participants in trials of disease-modifying therapy before pathology 

is too advanced. Detection of mild cognitive impairment (MCI) is particularly pertinent, as MCI is 

associated with a ~15% annual risk of dementia compared to 1-2% in unimpaired elderly (Ritchie, 

2004). MCI therefore represents an at-risk state for future AD. A reliable AD biomarker (a quantifiable 

change that correlates with pathological load) would undoubtedly lead to early recognition of disease, 

but available biomarkers (cerebrospinal fluid assays and amyloid ligand imaging) are invasive, time-

consuming and expensive, and therefore not currently candidates for routine or large scale testing 

(Jack et al., 2013; Lovestone, 2014). Bateman et al. (2019) has argued that plasma amyloid levels 

could be used as a marker of AD pathology, but the diagnostic potential of this and other blood-borne 

biomarkers has not been fully evaluated. 

 

Brief cognitive screening tests such as the Mini Mental State Examination (MMSE) (Folstein, Folstein, 

& McHugh, 1975) and Montreal Cognitive Assessment MoCA (Nasreddine et al., 2005) are 

inexpensive and quick to administer, but have low predictive value and very low specificity (Arevalo-



Rodriguez et al., 2015). They include minimal assessment of language ability, despite it long being 

recognised as a feature of AD: Faber-Langendoen et al. (1988) found that 48% of patients with mild 

AD showed evidence of aphasia on a standard language battery, and Forbes-McKay, Shanks, & 

Venneri (2013) documented semantic and phonological errors in the language produced by patients 

with mild and moderate AD, respectively. In the MCI phase, the inclusion of language-based 

measures in assessment improves accuracy in predicting progression to AD (Bondi et al., 2014; 

Laske et al., 2015; Oulhaj, Wilcock, Smith, & De Jager, 2009). Demonstration of the linguistic 

changes of AD could therefore be a sensitive marker of early detection of cognitive decline (Tsantali, 

Economidis, & Tsolaki, 2013; Bryant, Ferguson, & Spencer, 2016). 

 

There is growing interest in naturally produced language in the form of samples of writing or speech, 

which are very easily collected and may be more representative of problems encountered in everyday 

life for individuals living with AD (López-de-Ipiña et al., 2013; Mueller et al., 2018). As manual scoring 

is slow and reliant on subjective judgement, a key requirement is a means of analysing and 

interpreting such data rapidly, reliably and at scale (Asgari, Kaye, & Dodge, 2017). NLP and machine 

learning approaches meet these aims, and could lead to ‘flag raising’ systems which identify those at 

risk of disease, such as those at the MCI stage. With the additional potential for remote monitoring, 

the nature of ongoing assessment could evolve: regular monitoring could be accomplished without the 

need for hospital visits and without the practice effects that can make cognitive assessment difficult to 

interpret. Clinical trial methodologies, which currently depend on two or more years of follow-up, could 

also be revolutionised, leading to shorter, more efficient testing of new dementia treatments.  

 

Although not the focus of this review, we should mention in passing the growing interest in the 

application of NLP to the large-scale identification and extraction of relevant clinical data from 

Electronic Health Records (EHRs). In the dementia field this has been applied to identify subsets of 

patients already diagnosed with dementia, such as those suitable for a clinical trial (Ernecoff, Wessell, 

Gabriel, Carey & Hanson et al., 2017), or with agitation (Halpern et al., 2018), and to explore potential 

risk factors automatically (Zhou et al., 2019). Recent collaborative projects are enabling access to 

thousands of medical records, with overarching goals that include harnessing this complex data, 

along with other sources, to aid early diagnosis or increase its accuracy, such as identifying features 



of misdiagnosis. Dementias Platform UK (DPUK; https://www.dementiasplatform.uk/) enables access 

to an online portal of rich cohort data, while project iASiS (http://project-iasis.eu/) has a particular 

focus on NLP techniques, mining EHRs and other records for information that will lead to better 

decision making at individual and policy levels (Krithara et al., 2019).  

  

This review outlines the contributions of machine learning and NLP to the problem of dementia 

detection, and is structured according to discourse properties of potential importance. These are 

considered under the broad headings of individual words (vocabulary), and overall structure 

(connected language). After defining each feature we review methods and tools for their extraction 

(summarised in Table 1), and research into their value to predictive models of disease. This is 

followed by an overview of newer machine learning methods and Automatic Speech Recognition 

(ASR). To orient the reader to the clinical context, Table 2 lists the research studies employing one or 

more of these methods, grouped according to the question of clinical concern that they address.   

 

2. Vocabulary 

One of the simplest approaches to analysing language is to examine vocabulary, which provides 

information about the specific kinds of words people use and how those words relate to expected 

norms of the language being studied. A traditional starting point is the ‘bag-of-words’ assumption, 

under which the words in a discourse sample are considered without reference to the order in which 

they were produced, leaving their inherent lexical or grammatical properties as variables of interest 

(Jurafsky & Martin, 2017).  

 

2.1. Lexical properties 

The most commonly occurring words in any corpus are grammatical function words, or ‘closed class’, 

which indicate how a sentence is structured irrespective of its topic, while meaning is provided by 

content or ‘open class’ words. Content bearing nouns and verbs have a number of associated lexical 

properties, the analysis of which can provide information about the complexity of the vocabulary.  

 

Lexical properties include measures of the frequency with which a word appears in discourse, its 

familiarity to speakers of the language (Balota & Chumbley, 1984), average age-of acquisition and 



imageability (the ease with which a word’s referent can be pictured or imagined). For example, the 

word ‘ELEPHANT’ tends to be acquired early in life and can be easily pictured, compared to 

‘LEGISLATION’. Values of lexical frequency are derived from large corpora such as the British 

National Corpus (BNC), a collection of contemporary samples of spoken and written British English 

that contains a total of 100 million words (The British National Corpus, 2007). Frequency information 

of content bearing nouns and verbs is derived from their ‘lemma’ form, which is free from inflection; for 

example the lemmatised form of ‘BLOW’, ‘BLOWS’, ‘BLEW’ and ‘BLOWING’ is ‘BLOW’. As such 

researchers should convert words to their lemma form prior to calculation of these metrics so as not 

to, for example, underestimate the occurrence of a word in a sample. 

 

NLP-based analytical platforms enable automatic extraction of these properties from a text sample. 

The Tool for the Automatic Analysis of Lexical Sophistication (Kyle & Crossley, 2015) outputs lexical 

properties across words in a sample compared to the BNC and other databases. Whilst much of the 

research utilising this tool has centred on evaluating the proficiency of second language acquisition, 

the possibilities for applying it to clinical language data are clear. Coh-Metrix (Graesser, Namara, 

Louwerse, & Cai, 2004) also computes lexical properties as part of a larger set of 108 features of a 

text; we revisit this tool in the coherence & cohesion section (3.2). 

 

Garrard, Maloney, Hodges, & Patterson (2005) found that the mean frequency of words used by the 

novelist Iris Murdoch - who did not allow editing of her work - in her final novel (completed shortly 

before she was diagnosed with AD) was significantly higher than those of earlier works of fiction. Le, 

Lancashire, Hirst, & Jokel (2011) replicated these findings in 20 of Murdoch’s novels, using Agatha 

Christie and P.D. James as comparators, also finding a ‘trough’ in Murdoch’s vocabulary in her late 

forties to early fifties.  

 

A more recent study by Masrani, Murray, Field, & Carenini (2017) attempted to classify online blog 

posts as having been written by a person with or without dementia, and found that frequency 

(estimated using the SUBTL corpus (Brysbaert & New, 2009) was the most informative marker of 

status. No decline over time was found, however, the sample was small with only six participants, and 

the dementia group was diagnostically mixed, leaving the study greatly under-powered. 



 

There have been fewer large-scale studies of lexical properties of spoken language, which is less 

conducive to archiving. Moreover, people tend to produce a much wider range of vocabulary when 

writing (Crystal, 1987). Bird, Lambon Ralph, Patterson, & Hodges (2000) found that the 

representations of low imageability words are vulnerable to brain pathology in patients with semantic 

dementia, but Berisha, Wang, LaCross, & Liss (2015) found no evidence of this in the spoken 

language of President Ronald Reagan (diagnosed with AD) in the seven years before he left office, 

suggesting low sensitivity in isolation. The UK Prime Minister Harold Wilson was also diagnosed with 

AD in later life, and Garrard (2009) found that his word choices converged with those of his 

colleagues when looked at over a longer time period of ten years.  

 

Two important caveats concerning the use of lexical properties are, first, that values (particularly for 

word frequency) change with fashions in word usage, and secondly that low frequency words are 

typically under represented (Garrard, 2009). Furthermore, while the discourse of published authors 

and politicians offers a unique opportunity to analyse language prior to a diagnosis, it cannot be 

discounted that these individuals may not be representative of the wider population. The longitudinal 

nature of these studies does allow characterisation of changes with respect to the individual’s 

baseline, however more recent research has focused on applying computational techniques to new, 

more diverse datasets; we revisit this in section 8.1 ‘Availability of large and diverse datasets’.         

 

2.2. Grammatical class 

Parts of speech provide information about the relative use of grammatical word classes. Nouns, verbs 

and adjectives are the most familiar, but the often used Penn Treebank (Marcus, Marcinkiewicz, & 

Santorini, 1993) includes 45 different parts of speech, including determiners (e.g. ‘A’ and ‘THE’), 

conjunctions (e.g. ‘AND’ or ‘BUT’) and subcategories of nouns and verbs, which can be used as 

features in machine learning models (see section 6). As many as 20% of words can be assigned to 

more than one class, largely the highest frequency words in a language, leaving 55-67% of words in a 

text sample ambiguous out of context (Jurafsky & Martin, 2017).  

 



Automatic part of speech ‘taggers’ are built on the principle of a ‘sequence labelling problem’, and are 

able to learn features of connected language that give rise to specific tags (classes) using different 

approaches. For example, using the Python Natural Language Processing Toolkit (NLTK) tags can be 

assigned using a machine learning algorithm (‘Perceptron tagger’), which learns the context that gives 

rise to a particular tag from a large corpus, and then applies this knowledge to tag words in a sample 

(Bird, Loper & Klein, 2009). Current tagging approaches can assign a tag to each word of a language 

sample with around 97% accuracy (Manning, 2011).  

 

2.3. Richness 

In addition to the lexical properties of individual words, the richness of lexical choices in a sample of 

discourse may also be informative. The richness of President Reagan’s discourse begins to change 

prior to his leaving office and being diagnosed with AD, with a decline over time in unique words used, 

and an increase in non-specific nouns (e.g. ‘something’) and fillers (e.g. ‘um’, ‘ah) in press conference 

transcripts. No change in these measures was detected in the language of his immediate successor 

George H.W. Bush (Berisha et al., 2015). 

 

The type token ratio (TTR) of a text is a simple measure of the lexical diversity in a sample of text, 

quantifying the rate of re-use of each unique word in a sample of discourse. Types are the individual 

words, while tokens are the instances of types. For example, the sentence ‘I like brown dogs and big 

dogs’ has seven tokens, but only six types (as there are two tokens of the type ‘dogs’), giving it a TTR 

of 0.9. When calculated over a large window of text, TTR acts as an index of vocabulary size, while 

TTR at successive windows of text indicates the rate at which words tend to be re-used throughout a 

sample. 

 

TTR revealed changes over time in the author Iris Murdoch’s vocabulary, which appeared to have 

diminished by the time she started writing her final book, in which she introduced new words at a 

slower rate than in earlier works (Garrard et al., 2005; Le et al, 2011). A difference between the first 

and second halves of the final work of the Dutch author Gerard Reve, also diagnosed with AD in late 

life, suggested a shrinking vocabulary over the time during which the book was being written (Van 

Velzen & Garrard, 2008). This contrasts with healthy ageing, in which TTR has been found to 



increase with age, suggesting a more diverse vocabulary across the lifespan (Horton, Spieler, & 

Shriberg, 2010). 

 

As the computation of TTR includes token counts, samples of different lengths cannot be directly 

compared. Many solutions have been suggested, of which the most commonly adopted has been the 

Moving-Average Type Token Ratio (MATTR) (Covington & McFall, 2010), which calculates the TTR 

for a sample of n words that moves, one word at a time, from the first n to the last n words of the text. 

Windows of varying sizes can be used, and an average calculated.  

 

NLTK includes methods for estimating TTR and MATTR, while the Tool for the Automatic Analysis of 

Lexical Diversity (Kyle, n.d.) returns a range of measures relating to lexical diversity, including 

MATTR. When using off-the-shelf NLP tools such as this, users must ensure to understand the 

computational process from input to output. For example, what pre-processing is required; are 

features calculated using all words in a sample, or a sub-section such as content words; and what do 

values in the output indicate - have they been normalised by token count, for example, or if calculated 

for a window, as in MATTR, do all samples meet the minimum required length. 

3. Connected language 

Inevitably some information is lost through disregarding word order in a bag-of-words approach, but 

preserving word order allows investigation of syntactic complexity, coherence & cohesion, and 

entropy. 

 

3.1. Syntactic complexity 

Syntax refers to the rules which govern arrangement of words in a language to create sentences, 

such as word order. Using these rules a sentence can be ‘parsed’ according to its underlying 

structure, and the resulting parse visualised and analysed to investigate syntactic complexity. A 

syntactic parse tree is defined by clauses and sub-clauses within a sentence, and their syntactic 

relationships (fig. 1), while a dependency parse is defined according to the grammatical relationships 

between words that ‘depend’ on each other (fig. 2) (Jurafsky & Martin, 2017).  



 
Figure 1. An example syntactic parse tree. Parsed using the NLTK Python library. Syntactic labels: Det = determiner, N = noun, 

NP = noun phrase, PP = prepositional phase, S = sentence, VP = verb phrase. 

 
Figure 2. An example dependency parse. Parsed using the spaCy Python library. Parts of speech: ADP = adposition, DET = 

determiner, NOUN = noun, PROPN = proper noun, VERB = verb. Syntactic dependency labels: det = determiner, nsubj = 

nominal subject, pobj. 

There is no single agreed measure of syntactic complexity, and tools are available that calculate a 

number of metrics. Lu’s L2 Syntactic Complexity Analyzer (Lu, 2010) computes 23 indices, including 

mean sentence length of a sample and the number of clauses per sentence, also available as part of 

a larger set using the Tool for the Automatic Analysis of Syntactic Sophistication and Complexity 

(Kyle, 2016). The Computerized Linguistic Analysis System (CLAS) evaluates syntactic complexity by 

calculating three metrics: Yngve and Frazier scores (two approaches to calculating the depth of a 

syntactic parse tree) (illustrated in fig. 1), and dependency length, which measures the distance 

between syntactically related words in a dependency parse (see fig. 2) (Pakhomov, Chacon, 

Wicklund, & Gundel, 2011). 

 

Pakhomov et al. (2011) used CLAS to analyse passages from four of Murdoch’s novels and found 

accelerated decline while Murdoch was in her mid-thirties to late fifties. This interestingly coincides 

with the ‘trough’ in vocabulary found by Le et al. (2011), and represents an abnormally early change 

given that studies of syntactic complexity in healthy ageing have found it unchanged until mid-

seventies (Glosser & Deser, 1992; Marini, Boewe, Caltagirone, & Carlomagno, 2005). 
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Investigating spoken language, Roark, Mitchell, Hosom, Hollingshead, & Kaye (2011) found that in 

the MCI phase syntactic complexity was reduced for stories recalled after a delay, but not 

immediately, suggesting it may be an informative marker when the task has higher cognitive load. 

Tracking syntactic complexity from the MCI stage to moderate AD, later confirmed at post-mortem, 

Ahmed et al. (2013) found that reduced syntactic complexity was one of the most frequently observed 

deficits (along with semantic content), and a linear decline was observed. Machine learning 

approaches that capture syntactic complexity have been found to successfully distinguish both AD 

and MCI groups from healthy controls (Orimaye, Wong & Golden, 2014; Orimaye, Wong, & Wong, 

2018). Fraser, Meltzer, & Rudzicz (2016) assert that the utility of syntax as an early predictor of AD 

remains controversial due to variations in findings; this may result from different tools and methods 

used to quantify syntactic complexity, with not all sensitive to subtle, early change. 

 

3.2. Coherence & cohesion 

A semantically coherent piece of discourse follows a theme, or series of themes, which enables the 

listener (or reader) to follow along. Incoherent language places a higher cognitive load on the listener, 

(Graesser et al., 2004). Cohesion is an objective property of individual words; cohesive devices aid 

coherence by cueing the listener and helping them connect ideas, such as anaphora – words that 

refer back to a preceding clause. Discourse presents a unique opportunity to interrogate these 

properties (Glosser & Deser, 1991) and automating the analysis permits consistent approaches to 

characterising the flow of language across the discourse (Foltz, Kintsch & Landauer, 1998).  

 

Traditional approaches to scoring coherence and cohesion suggest that these measures may be 

sensitive to cognitive decline in AD. Glosser & Deser (1991) found that there were differences 

between patient and control groups in global (i.e. the whole language sample) but not local (e.g. 

between adjacent sentences) coherence. Ripich, Carpenter, & Ziol (2000) found a longitudinal decline 

in cohesion measures for AD patients compared to controls. However, the use of different scoring 

methods across studies means that results cannot easily be compared, and may be subject to bias.  

 

The Coh-Metrix platform (Graesser et al., 2004), previously mentioned, calculates 12 metrics of 

cohesion, and has been used in clinical research to explore language in psychosis (Gupta, Hespos, 



Horton, & Mittal, 2016; Heidari, D’Arienzo, Crossley, & Duran, 2017), and been adapted for dementia-

specific research with Portuguese speaking patients (‘Coh-Metrix Dementia’). Using this tool to 

analyse narrations of the Cinderella story, patients with mild AD were found to have poor global 

coherence, while those with MCI did not differ from controls (Toledo, Aluisio, & do Santos, 2017). As 

Coh-Metrix was originally designed to analyse writing, researchers should take care to remove any 

fillers or markers in a transcript, such as laughter, prior to analysis. 

 

3.3. Entropy & perplexity 

In information theory, entropy is used as a measure of the degree of uncertainty within a random 

variable and is linked to the predictability of a sequence. A sequence with low entropy has high 

predictability; when previous values are known, subsequent values can be predicted with more 

certainty. Entropy was first applied to language in 1951 by Claude Shannon (Shannon, 1951), who 

showed that information in a text could be quantified. Taking each unseen character as a variable, the 

amount of information inherent in that variable is tied to its predictability when previous characters are 

known. In language this will depend on higher order considerations (such as context or grammatical 

correctness) rather than just the rate of co-occurrence of individual letters. For example, in the 

sequence ‘The king married the q…’ there is 100% probability that the unseen variable is ‘u’, so its 

identification does not reduce prior uncertainty. For the next character in the same sequence, there is 

less predictability, as the sentence could conceivably be ‘The king married the quick-witted woman’. 

An estimate of the Shannon entropy of a passage of text can be made by averaging the values 

associated with every character.  

 

Entropy can also be applied at a more coarse-grained, sentence level of analysis. Roark et al. (2011) 

combined entropy with part of speech tagging to calculate the probability of a particular class given 

the previous one, and found that, compared to a control group, those with MCI had lower average 

entropy when immediately retelling a story, suggesting that at a grammatical level their speech was 

more predictable. Further, Hernández-Domínguez, Ratté, Sierra-Martínez & Roche-Bergua (2018) 

found that entropy of picture descriptions by patients with MCI or AD, and healthy controls, correlated 

with scores on the MMSE, suggesting more chaotic or disordered speech as cognition declined. 

 



Closely related to entropy is perplexity, a measure of how accurately the probability distribution of 

words, word-pairs, word-triplets, etc. (i.e. n-grams) in a sample of text predict the words that appear in 

an unseen portion of the same text. As with entropy, low perplexity indicates high probability of 

sample prediction, and equates to the number of possible n-grams the model would deem likely 

(Frankenberg et al., 2019).  

 

Wankerl, Nöth, & Evert (2016) trained bi-gram and tri-gram language models using 90% of sentences 

from 19 of Murdoch’s novels, predicting the remaining 10% of sentences. Perplexity decreased 

across the final three novels of Murdoch’s lifetime, from 1987 until her final novel written in 1995, 

suggesting that the vocabulary of these later works was less diverse. When analysing only the 

narrative sections of the novels, the pattern of perplexity showed a steady increase across the 

lifetime, indicating language growing in complexity across Murdoch’s career, before declining. 

 

In a longitudinal analysis of spoken language, Frankenberg et al. (2019) found that in people with MCI 

or AD baseline perplexity correlated with the MMSE score and information processing speed after 

approximately ten years. Thus lower perplexity may serve as a useful prognostic indicator of future 

decline, predicting later severity of cognitive decline, though the sample size was again small, with 

follow-up data available from only five ADs and 15 MCIs.  

4. Semantics 

Semantics of a language sample are concerned with the meaning and ideas the speaker or writer 

wishes to convey. Our understanding of semantic memory and language is due in part to an unusual 

syndrome, semantic dementia (SD), in which specific atrophy of the anterior temporal lobe leads to 

speech that is fluent but lacking in meaningful concepts (Landin-Romero, Tan, Hodges, & Kumfor, 

2016; Bird et al., 2000). AD pathology also gives rise to a semantic impairment, although not specific 

nor as pronounced as SD (Libon et al., 2013), and this was detectable at the MCI phase for patients 

with post-mortem confirmed AD (Ahmed, Haigh, de Jager, & Garrard, 2013). 

 

The Computer Language Analysis (CLAN) cross-platform program can be used to analyse semantic 

content (MacWhinney, 2000). Originally developed for child language data, CLAN has grown to 

enable the creation and in-depth analysis of a variety of clinical datasets. Mueller et al. (2018) utilised 



CLAN to analyse the spoken language of participants enrolled in the longitudinal Wisconsin Registry 

for Alzheimer’s Prevention (WRAP) study, extracting semantic indices: the percentage of nouns, 

percentage of verbs, and a pronoun index (number of pronouns divided by the total number of nouns 

and pronouns), along with other features. Compared to controls, a sub-group displaying subtle 

cognitive deficits that did not meet the threshold for MCI, termed ‘early MCI’ (eMCI), were found to 

decline faster over time in these semantic features, and measures of fluency such as filled pauses, 

when describing a picture, suggesting that speech was fluent but lacked specific content. Interestingly 

both groups declined in lexical features, but cognitive status was not an indicator of performance. 

Reflecting findings of Berisha et al. (2015), measures of speech fluency may be a very early predictor 

of cognitive decline, possibly due to continued error-monitoring (Mueller et al., 2018). 

 

Standard tests of semantic function, such as picture naming, did not correlate with semantic 

connected speech measures, suggesting that sampling connected speech – the end product of a 

number of different cognitive processes - results in a different type of data to stand-alone 

neuropsychological tests (Mueller et al., 2018). While this investigation in to early MCI reveals 

changes in language in a potentially at-risk cohort, the pathway of those diagnosed with eMCI is not 

yet known, so findings cannot be generalised to early AD. 

 

4.1. Latent Semantic Analysis 

How do we know what a word means, or the ideas that it represents? Humans can come to know the 

meanings of words even without direct sensory exposure to the concepts for which they stand. 

‘Innatist’ philosophers, beginning with Plato, argued that this implies that some knowledge is hard-

wired into the brain at birth, an idea opposed by Locke and the empiricist school. Landauer & Dumais 

(1997) suggested that many weak intercorrelations between knowledge domains afford learning 

through inference, an insight summed up by Firth (1957) in a memorable epigram: “You shall know a 

word by the company it keeps”. 

  

Latent Semantic Analysis (LSA) (Landauer, Foltz & Laham, 1998) uses word co-occurrence trends in 

large corpora to represent words in a semantic space. Beginning with a large contingency table 

containing all linguistic episodes (typically paragraphs) in a corpus, and the number of times every 



word type occurs in each, singular value decomposition is used to reduce dimensions of the matrix to 

those which depend on particular groups of words tending to occur together across contexts. The 

output of the process is a high-dimensional vector space of words, where the distance between each 

word vector, or ‘word embedding’, is used as a metric of semantic similarity. For example, the words 

‘doctor’ and ‘physician’ seldom co-occur, but they often occur in similar contexts as they are close in 

meaning, leading to their embeddings being close in a semantic space. 

 

An LSA web-based platform developed at CU Boulder (http://lsa.colorado.edu/; see Dennis, 2007 for 

a user guide) has an online interface and allows selection of different semantic spaces built from 

contrasting text collections, such as encyclopaedia articles or psychology text books; if the corpus 

used is not representative of discourse being analysed, the results may be unreliable. A number of 

metrics are available, including sentence to sentence comparison for measuring coherence. The 

aforementioned Coh-Metrix platform outputs eight measures based on latent semantic variables of 

texts. 

 

This approach has many applications in NLP, such as automatically grouping news articles according 

to content, regardless of whether the same words appear in each. In clinical contexts, LSA has been 

used in a variety of ways to characterise differences and changes in semantic content in clinical 

populations. For example, it has been used to characterise coherence of thought to detect the 

severity of thought disorder in schizophrenia (Elvevåg, Foltz, Goldberg & Weinberger, 2007; 

Holshausen, Harvey, Elvevåg, Foltz, & Bowie, 2014), predict risk of psychosis in patient populations 

(Bedi et al., 2015; Rezaii et al., 2019; Rosenstein, Foltz  & Elvevåg, 2015) and score semantic fluency 

in patients with autism spectrum disorders (Prud’hommeaux, van Santen, & Gliner, 2017). Combined 

with neuroimaging, the application of LSA has shed light on the underlying neural systems that 

support coherent speech in healthy adults (Hoffman, 2019). In the AD field, Dunn, Almeida, Barclay, 

Waterreus, & Flicker (2002) found that using LSA word embeddings to compute the similarity between 

patient’s attempts at a story recall and the original passage out-performed traditional hand scoring. 

Their method had the highest correlation with measures of global cognition, and was not subject to 

the same floor effects, or potential bias.  

 



4.2. Idea density 

Idea density is a metric that quantifies how conceptually rich a sample of language is - how many 

ideas is a person expressing, and how concisely? To calculate the idea density of a sample, 

sentences are first segmented in to propositions, before the ratio of propositions to words is 

calculated, with higher values indicating a greater number of ideas expressed with fewer words. A 

lower score could indicate the expression of fewer ideas, or the use of more words to express the 

same number of ideas (Spencer, Craig, Ferguson, & Colyvas, 2012).  

 

The Computerized Propositional Idea Density Rater tool (CPIDR; Brown, Snodgrass, Kemper, 

Herman, & Covington, 2008) automatically calculates idea density by tagging each word with its 

corresponding part of speech, before labelling and counting words as an idea if they are the predicate 

of a proposition (see figure 3). It offers a speech mode for analysis of transcribed speech, which 

excludes fillers, repetitions and hesitations.  

 

 

 

 

 

 

 

One of the most famous studies investigating language and AD is the Nun Study (Snowdon, 1997). A 

strong and consistent relationship between idea density of autobiographical essays written on entry to 

a convent and later cognitive function was found; those who displayed lower idea density at an early 

age were more likely to have poorer performance on neuropsychological tests years later. Recent 

computational analysis has replicated these findings in a more representative, yet smaller, AD cohort 

(Engelman, Agree, Meoni, & Klag, 2010). Chand, Baynes, Bonnici, & Farias (2012) assert four issues 

which arise from computational analysis of idea density using CPIDR, such as errors at the tagging 

stage which impact calculation of propositions, but Engelman et al. (2010) found similar results when 

comparing to manual scoring. 

Figure 3. Example output from CPIDR 3.2 for the sentence ‘Mary walked the dog in the park’. Output shows that it 
contains seven words and two propositions, giving an ID of 0.286. 

Mary walked the dog in the park. 



5. Sentiment 

The field of NLP has long been concerned with the classification of writing according to the sentiment 

it expresses, useful for automatically categorising, for example, consumer reviews. In clinical research 

this approach has been used to detect depression and neurodegenerative disorders using social 

media posts (Tao, Zhou, Zhang, & Yong, 2016; Wang, Zhang, Ji, Sun, & Wu, 2013). Sentiment can 

be predicted using machine learning, or using dictionaries of words annotated according to emotional 

valence, such as Linguistic Inquiry & Word Count (LIWC; Pennebaker, Boyd, Jordan, & Blackburn, 

2015). It provides 93 scores relevant to a range of psychological states, personal concerns, and 

relationship with the past or future, by comparing each word in a sample to its internal dictionaries. 

 

Features relating to time and space were found to be the most important in a study classifying 

conversations of participants with and without MCI, with 83.33% accuracy (see machine learning 

section 6), above chance level of 60% given the sample. This dropped to 76.46% on a sub-set of the 

data matched for education, suggesting the higher education level in the control group played a role in 

classification (Asgari et al., 2017). Limits of using an annotated dictionary approach should be 

considered: as words are treated as uni-grams (i.e. without context), negations such as ‘I was not 

feeling happy’ cannot be taken in to account (Jurafsky & Martin, 2017). 

6. Machine learning 

Machine learning is a set of computational techniques that aims to learn patterns in data, and apply 

what has been learnt to generate successful predictions on new data. In clinical medicine, for 

example, the characteristics of disease are learnt from multiple features, and an individual’s disease 

status predicted given these features (Salvatore & Castiglioni, 2018). Supervised learning is most 

common, whereby the data used to train and test performance of an algorithm consists of vectors of 

feature values labelled with their corresponding diagnosis, or ‘class’. In the training phase, an 

algorithm learns weighted values associated with each feature for the class of interest; features which 

hold predictive value gain large weights, while features of little or no value are smaller or zero 

respectively. In the testing phase, the algorithm predicts class membership for data that was not seen 

during training as an indication of performance, typically a portion of the same dataset which is held 

back. This generalisability to unseen data is key (Raschka, 2015), and in clinical settings will enable 

predictions in new patients. 



 

Performance metrics include total percentage accuracy, sensitivity and specificity, and Receiver 

Operating Characteristic Area Under the Curve (ROC-AUC, or AUC), which indicates performance at 

different thresholds of sensitivity and specificity summarised as a number between zero and one, with 

0.5 representing chance level. Accuracy may not be a useful indicator of performance if classes are 

imbalanced, or the cost of mislabelling as a false negative or false positive is not equal. Health 

datasets are also often small, and in these cases performance can be estimated using k-fold cross-

validation, with available data split into k different folds of training and test sets, and performance 

averaged across folds. This can help balance variability in the data set, and detect over-fitting, where 

a model fits the training data very well, but does not generalise (Hawkins, 2004). Using cross-

validation, different model parameters can be tested in order to select the optimal model for good 

performance on the test set without over-fitting (Schaffer, 1993). For example a regularisation 

parameter introduces a penalty for weights the model learns, ensuring it does not become too 

complex (Raschka, 2015). 

 

In a seminal study Fraser et al. (2016) extracted a wide range of 370 linguistic and acoustic features 

from language samples of 167 participants with AD and 97 controls, part of the ‘DementiaBank’ 

Cookie Theft picture description dataset (Becker, Boller, Lopez, Saxton, & McGonigle, 1994). Using 

cross-validation, a maximum accuracy of 81.92% was achieved using a sub-set of 35 features, 

selected according to their correlation with the class. A further factor analysis of the top 50 features 

found four factors: semantic impairment, acoustic abnormality, syntactic impairment and information 

impairment, in order of variance in the data explained. There was no single profile of impairment, 

suggesting heterogeneity in linguistic decline possibly due to spread of pathology. Interestingly, 

values of the semantic and syntactic factors correlated in the control, but not patient, groups, 

suggesting a decoupling of language abilities in AD (Fraser et al., 2016). Features of the semantic 

impairment factor were similar to those which Mueller et al. (2018) found differentiated their ‘early 

MCI’ group from controls. 

 

Orimaye et al. (2018) used a deep learning, neural network, approach to classify smaller groups from 

the DementiaBank set. Deep learning represents a subset of complex algorithms which contain an 



extra layer, or layers, capable of learning interactions between features and directly from an input, 

without the need necessarily to first extract features (Najafabadi et al., 2015). An AUC of 0.83 for 

classifying AD, and 0.80 for MCI (both compared to a control group) was achieved, with models with 

more layers achieving better performance, demonstrating the effectiveness of deep learning in this 

domain. However, it is not possible to extract information regarding feature importance from such 

models, rendering them more of a ‘black box’ approach (Jarrold et al., 2014), and transparency 

decreases as the number of layers increases. 

 

Yancheva, Fraser, & Rudzicz (2015) were able to predict MMSE scores from spoken picture 

descriptions with a mean absolute error of 3.83, which reduced when only participants with multiple, 

longitudinally obtained, samples were included, evidencing the need for longitudinal sample collection 

and analysis. Syntactic and semantic features were found to be most predictive of MMSE score, in 

keeping with other studies of semantic features in connected speech (Ahmed et al., 2013; Rentoumi, 

Raoufian, Ahmed, de Jager, & Garrard, 2014).  

 

Fraser, Lundholm Fors, Eckerström, Öhman, & Kokkinakis (2019) reported predictions at the 

individual level, using a classifier to predict an individual’s probability of having MCI, and varying the 

threshold required to obtain the label of MCI to investigate sensitivity and specificity of the model. 

Overall performance was best when combining predictions from different classifiers built using 

connected speech features and other tasks, achieving an accuracy of 84% and AUC of 0.90. Moving 

away from group level predictions, towards those at the individual level, will have greater impact for 

measuring clinical risk, prognosis and treatment response. 

 

6.1. Neural word embeddings 

Similar to LSA (section 4.1), neural word embeddings represent the meaning of words in a high-

dimensional vector space, but are built using deep learning. In an early approach called Word2Vec, a 

model is trained to predict either a target word in the centre of a window given the context (a 

continuous bag-of-words model), or the context of a window given the target word (skip-gram model). 

The learned weights of this model are used to build a high-dimensional semantic space, in which 

each word is represented by a unique vector (Mikolov, Chen, Corrado, & Dean, 2013). Word2Vec has 



been successfully used to measure prose recall in schizophrenia and predict classes of patients and 

controls (Chandler, Foltz, Cheng, et al., 2019). In the GloVe (‘global vectors’) approach, global co-

occurrence statistics across the whole corpus are utilised along with a smaller window looking at 

context (Pennington, Socher, & Manning, 2014). The Python Gensim library (Rehurek & Sojka, 2010) 

enables a user to build a custom semantic space from their own corpora, using Word2Vec, GloVe and 

LSA approaches, or utilise pre-trained word embeddings. All, however, entail important pre-

processing steps (Iter, Yoon, & Jurafsky, 2018). 

  

Using the average word embedding of a sample, representing average ‘meaning’, Mirheidari et al. 

(2018) achieved only 69.8% accuracy classifying controls vs AD in the DementiaBank dataset, 

suggesting a loss of accuracy when lexico-syntactic properties are ignored. This is supported by 

Yancheva & Rudzicz (2016), who found that adding automatically generated semantic topics from 

clusters of word embeddings to features utilised in Fraser et al. (2016) improved performance, using 

the same DementiaBank dataset to classify controls and AD patients. Weissenbacher et al. (2016) 

also automatically generated semantic content information, using word embeddings to find words with 

similar meaning to those used by controls, ensuring a comprehensive score. Added to other features, 

they achieved 86.1% accuracy classifying patients with AD and MCI compared to controls. 

 

Investigating MCI only, Fraser, Lundholm Fors, & Kokkinakis (2019) found that using a multilingual 

approach, including data from both English and Swedish speakers when creating information topics 

using word embeddings, improved model performance. Additional data from patients of another 

language was more effective than additional data from healthy controls of the same language, with 

overall accuracy reaching 72% using information content. Thus, while semantic information captured 

using neural embeddings alone may not lead to optimal detection of AD, these methods are being 

utilised in innovative ways to automate steps in analysis and augment data sets. 

 

In a different task, Mirheidari et al. (2018) achieved 100% accuracy on a small dataset classifying 

groups of patients diagnosed with any neurodegenerative disorder, or ‘functional memory disorder’ 

(i.e. lacking an organic cause), using conversations with an ‘intelligent virtual agent’ (IVA) asking 

similar questions to a Neurologist. Whilst an important classification, due to the need to make ongoing 



referral decisions in primary care (Mirheidari et al. (2018), it is not clear how well this model would 

generalise to a larger dataset, or data collected under less well-controlled conditions.  

 

There are limitations to the approaches outlined to creating word embeddings, such as an inability to 

model polysemy, where the same word has multiple meanings. Newer approaches seek to overcome 

this issue: ELMo (Embeddings from Language Models), which learns word embeddings from a whole 

sentence (Peters et al., 2018), BERT (Bidirectional Encoder Representations from Transformers; 

Devlin, Chang, Lee, & Toutanova, 2018) and EARP (Embeddings Augmented by Random 

Permutations; Cohen & Widdows, 2018) consider word order through deeper neural networks, 

capturing context dependent differences in vectors. These newer techniques are performing at state 

of the art levels in a range of language tasks, and although are yet to be applied to the field of 

dementia (to our knowledge), may lead to increased accuracy and precision when modelling AD 

discourse.  

7. Automatic Speech Recognition 

To fully automate the process of diagnostic classification and scoring, language samples need to be 

quickly and accurately transcribed, a goal that can be achieved through ASR, which uses a range of 

computational methods, including machine learning to automatically generate words from audio 

recordings, and can circumvent the need for human transcribers, which is costly and unscalable 

(Zhou, Fraser, & Rudzicz, 2016). As current ASR systems are not 100% accurate, work has 

investigated their utility in clinical fields. 

 

Early studies suggested that its use may negatively impact subsequent machine learning 

classification tasks, with performance dropping as errors in ASR transcription, measured using the 

Word Error Rate (WER), increase (Lehr, Prud, Shafran, & Roark, 2012; Zhou et al., 2016), More 

recently, a deep learning ASR approach led to an increase in classification accuracy of up to 22% in 

some, but not all tasks using the ‘IVA’ dataset described above (Mirheidari et al., 2018). Thus both 

approach and dataset quality may be key, with improvements in these domains leaving researchers 

with more time and resources to collect data. 

 



Outside of the research setting use of ASR in the dementia field may be problematic as its accuracy is 

particularly effected by age of voice and frailty. WERs gradually increase with age (Vipperla, Renals, 

& Frankel, 2008) and were found to be 10-12% higher for older voices than adults (Pellegrini et al., 

2012; Vipperla, Renals, & Frankel, 2010). These errors may ‘propagate’ downstream (Errattahi, 

Hannani, & Ouahmane, 2018). Adapting ASR systems for older voices can help to reduce errors: 

Zhou et al. (2016) found that using a small, domain specific dataset led to fewer errors than using 

large, out-of-domain data, and Kwon, Kim & Choeh (2016) improved accuracy by preprocessing data 

in-line with elderly speech patterns. Given that early detection of AD will rely on ASR capabilities in 

adult voices, as opposed to older, current systems may be appropriate. 

8. Discussion 

We have described the most important advances in NLP and machine learning, and shown how these 

have stimulated interest in computational studies of the impact of AD on discourse, with research 

moving towards answering clinically important questions quickly, objectively and with reproducible 

results. The tools and approaches available are expanding, with developments in neural approaches 

opening new pathways for investigation of discourse. They show potential to be deployed as clinical 

applications, but they also hold the promise of helping to better understand the underlying 

mechanisms of AD as they are manifested through the assessment of different components of 

language. However, research outlined throughout remains retroactive. For these tools to be used 

effectively and implemented into practice, there still remain several practical issues that need to be 

overcome before the field can progress from research to clinical application, and we outline these 

below. 

8.1. Availability of large and diverse datasets 

Datasets suitable for NLP analysis are scarce and most often consist of samples of spoken or written 

English (Fraser, Lundholm Fors, & Kokkinakis, 2019). Many studies have been performed on a small 

sample of authors, or using the DementiaBank dataset, and thus results may not generalise to other 

populations, with variation in education, age, and language. This is particularly problematic for 

machine learning studies which train and test a model on one dataset, as algorithms can be very 

‘brittle’, with performance dropping when applied to new data, such as in a clinical setting. To obtain 

an accurate measure of performance, algorithms could be tested on a separately collected dataset. 



While more data for training and testing algorithms within this domain may increase performance, 

diverse datasets are required for results that will generalise to the clinic; novel methods such as 

augmenting datasets using other languages are providing promising results (Fraser, Lundholm Fors, 

& Kokkinakis, 2019). 

In terms of stimuli, there has been much focus on the cookie theft picture, which may miss important 

features of different or longer discourse samples, and Fraser, Lundholm Fors & Eckerström, et al., 

(2019) found better results combining different tasks. Longer samples require time consuming and 

costly transcription, though ASR promises automation of the analytic pipeline. There is also still 

relatively little known about how language changes across the lifetime in healthy ageing for the wider 

population. Better normative data for specific linguistic features outlined will enable more accurate 

interpretation of clinical results, with longitudinal studies, such as WRAP which includes language 

samples (Johnson et al., 2018) meaning we are closer to achieving these aims. 

 

8.2. Ethics of data collection & sharing  

Collection of the large and diverse datasets required entails ethical guidelines for data collection and 

storage to ensure participant safety and protection of personal information. While these constraints do 

not apply to openly shared data (e.g. blog posts), diagnoses are less reliable and production 

conditions unknown. To achieve the large, diverse datasets necessary to advance the field, sharing of 

data amongst researchers is crucial. Fraser, Linz, Lindsay, & König (2019) outline these complex 

issues in depth, along with examples of good data sharing and recommendations, such as obtaining 

consent from participants for re-use of data, and considering the type of discourse samples collected, 

such as avoiding personal histories to maintain privacy.   

 

8.3. Diagnostic specificity 

One intrinsic problem with detecting AD through discourse is that disease can only be confirmed at 

post-mortem. Clinical diagnosis is often difficult; for those diagnosed with AD in life, sensitivity to post-

mortem thresholds for disease have been found to range from between 70.9% and 87.3%, and 

specificity between 44.3% and 70.8% (Beach, Monsell, Phillips, & Kukull, 2012). A few studies have 

utilised data from post-mortem confirmed AD, such as Ahmed et al. (2013) and studies of Iris 

Murdoch (e.g. Garrard et al., 2005), but most studies listed in Table 2 lack this diagnostic certainty. 



The increasing availability of brain tissue through brain banking could lead to increased diagnostic 

specificity not only in computational linguistics, but all forms of clinical research. 

 

8.4. Clinical acceptability 

Once in the clinic, for a dementia ‘flag-raising’ tool to be useful its use must be acceptable by both 

clinicians and patients. Trust in a tool or approach being used is key, and we break this down to two 

important factors: interpretability and accountability. Interpretability involves the level at which a tool’s 

output, such as the decision a patient is at risk of disease, can be explained – how was this decision 

reached? How does it map on to clinical understanding of disease mechanisms and symptomatology? 

There is usually a trade-off between interpretability and performance; deep learning methods can 

achieve higher performance than traditional machine learning approaches, but their interpretability is 

low (Chandler, Foltz, & Elvevåg, 2019). Research which attempts to open this black box is gathering 

pace, but must be a consideration for clinical utility. In terms of accountability, who is accountable if 

something goes wrong, such as an error in the system that leads to a false negative, or a data 

breach? Clear accountability will help foster trust. 

 

Patients may have additional concerns regarding acceptability, such as around transparency in how 

their data will be collected and used; whilst there are already laws and frameworks in place for clinical 

data, the use of technology, for example with remote monitoring, brings new challenges. The ease of 

use of a tool, or its intrusiveness, should also be considered. Some of these questions are starting to 

be addressed; Mirheidari et al. (2019) found that patients found it less intimidating to speak to a 

‘virtual’ neurologist on a screen than to a human examiner. Others, such as around accountability, are 

only now being discussed, and have some way to go before decisions are reached. Contributions 

from all ‘stake-holders’, including researchers, clinicians, patients, health services and commercial 

enterprises, will likely be required. The current and future challenges outlined are all linked - good 

generalisability will foster trust, as an algorithm will not be biased or more unreliable for certain 

groups, be that gender, ethnicity, or age or socioeconomic status (Chandler, Foltz, & Elvevåg, 2019). 

 

There is a wider question of whether early detection of disease is beneficial for patients given that 

there is currently no disease modifying treatment, however, as well as the need to identify those at 



risk to enable drug development and testing, it is widely considered an acceptable goal, and research 

has found that patients largely welcome early detection (Prince, Bryce & Ferri, 2011; Department of 

Health 2012; Alzheimer’s Research UK, 2019). 

9. Conclusion 

Undoubtedly NLP and machine learning techniques, and their application to AD, is gathering pace. 

The wealth of open source tools should enable greater homogeneity and reproducibility of methods, 

with researchers able to access tools and share code to study language features objectively, without 

the necessity for advanced programming skills. The techniques can provide insights into the 

underlying neurobiology of language as well as practical tools. This enables a multidisciplinary field, 

which benefits from clinical knowledge, although as we have outlined, researchers must understand 

processes and pitfalls of different approaches. Newer language models, investigated in larger cohorts, 

may bring new insights in to early language change in AD and MCI, leading to increased detection of 

at-risk individuals and optimal monitoring and assessment post-diagnosis. However, it may be some 

time before findings have clinical implications, given the challenges yet to overcome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tool Requirements Metrics Reference 

Coh-metrix 3.0 

 

Online interface (Firefox or Chrome browser) 

 

108 indices of cohesion, syntactic complexity, 

lexical diversity, word information and 

readability metrics 

Graesser et al., (2004) 

 

Computer Language Analysis (CLAN) MAC, Windows or UNIX. Transcripts must follow 

specific guidelines 

Enables basic and complex analysis, see 

manual for details 

Macwhinney (2000) 

 

Computerized Linguistic Analysis System (CLAS) Java based 

 

Measures of syntactic complexity 

 

Pakhomov et al., (2011) 

Computerized Propositional Idea Density Rater 

(CPIDR 3.2) 

Mac, Windows, UNIX or LINUX 

 

Propositional idea density 

 

Brown et al., (2008) 

Gensim 

 

Proficiency in Python coding language 

 

Python library which enables training of word 

embeddings using a variety of approaches 

including Word2Vec, or loading of pre-trained 

embeddings  

Rehurek & Sojka (2010) 

 

 

L2 Syntactic Complexity Analyzer (L2SCA 3.3.3) 

 

Implemented in Python, runs on LINUX, MAC or 

UNIX systems with Java installed. Online interface 

with batch mode available 

14 indices of syntactic complexity 

 

Lu (2010) 

 

Latent Semantic Analysis @ CU Boulder Online interface 

 

5 applications of LSA, with difference semantic 

spaces available 

Dennis (2007) 

 

Lexical Complexity Analyzer (LCA) 

 

Implemented in Python on LINUX, MAC or UNIX. 

Online interface with single (allows comparisons of 

two texts) or batch mode 

25 measures of lexical density, variation and 

sophistication 

 

Lu (2012) 

 

Linguistic Inquiry & Word Count (LIWC2015) 

 

Purchase of license. MAC or Windows 

 

Over 90 indices relating to POS, psychological 

constructs and language markers 

Pennebaker et al., (2015) 

 



NLTK 3.4 

 

Proficiency in Python coding language 

 

Simple processing steps like tokenizing or 

tagging, to more complex code 

Bird et al., (2009) 

 

Tool for the Automatic Analysis of Lexical Diversity 

(TAALED, 1.3.1) 

MAC, Windows or Python  

 

A wide variety of lexical diversity metrics 

including TTR and MATTR 

Kyle (n.d) 

 

Tool for the Automatic Analysis of Lexical 

Sophistication (TAALES 2.2) 

MAC, Windows or LINUX 

 

Over 400 classic and new indices of lexical 

sophistication 

Kyle & Crossley (2015) 

Tool for the Automatic Analysis of Syntactic 

Sophistication and Complexity (TAASSC 1.3.8) 

MAC, Windows or Python 372 indices of syntactic complexity, including 

those calculated by L2SCA 

Kyle (2016) 

Table 1. NLP tools available for computation of different linguistic features, referenced throughout this review. 

 

 

 

 

 

 

 

 

 

 

 

 



Example studies Dataset & task NLP Approach Sample size Best performance 

Question 1: Does this patient have dementia? 

Weissenbacher et al., 

(2016) 

Arizona Alzheimer’s Disease 

Center (ADC) 

Written picture description 

Word embedding features & other 

computationally extracted linguistic variables 

154 HC, 47 MCI or AD HC vs MCI+AD: 86.1% accuracy 

Fraser et al., (2016) DementiaBank 

Spoken Cookie Theft 

Computational extraction of 370 speech & 

linguistic features, with factor analysis 

97 HC, 167 AD HC vs AD: 81.92% accuracy 

Masrani et al., (2017) 6 online blogging sites Computational extraction of linguistic features 3 HC, 2 AD, 1 Dementia 

with Lewy Bodies 

HC vs dementia: 84.8 AUC 

Toledo et al., (2017) Universidade de São Paulo 

Cinderella Story narration 

Computational extraction of linguistic features 

(Coh-Metrix Dementia tool) 

20 HC, 20 amnestic MCI 

(aMCI), 20 mild AD 

Significant differences found between mild AD 

and other groups. 

Unable to detect statistical differences for 

features between HC and aMCI (question 2) 

Mirheidari et al., (2018) DementiaBank (Spoken Cookie 

Theft) 

Hallam (Neurologist & patient 

conversations) 

IVA (‘Virtual Neurologist’ & patient 

conversations) 

ASR or manual transcription. Word embedding 

features for classification 

473 audio/text files 

45 conversations 

18 conversations 

 

(participant breakdown not 

specified) 

DementiaBank 

HC vs AD: 69.8% accuracy 

Hallam 

HC vs FMD: 70.8% 

FMD vs DPD: 93.7% 

HC vs DPD: 75.9% 

IVA 

HC vs FMD: 100% 

FMD vs MCI: 75% (question 2) 

HC vs MCI: 81.25% (question 2) 

Question 2: Is this patient at risk of developing Alzheimer’s disease? 



Garrard et al., (2005) 3 novels written by Iris Murdoch Computational & manual extraction of linguistic 

variables 

1 AD Significantly higher average word frequency 

detected in final novel, prior to AD diagnosis  

Garrard (2009) Unscripted speeches by Harold 

Wilson 

Computational extraction of frequency features 1 AD, other speakers in the 

House of Commons pooled 

as controls (n unknown) 

Word frequency in AD speech more similar to 

controls in later years, suggesting a change 

over time  

Engelman et al., (2010) Precursor’s Study 

Medical School Admission Essays 

Idea density (CPIDR tool) 36 HC, 18 AD Higher idea density significantly lowered odds 

ratio for AD (OR=0.16) 

Roark et al., (2011) Layton Aging & Alzheimer’s 

Disease Center 

Spoken story recall 

Computational extraction of speech & linguistic 

variables 

37 HC, 37 MCI 86.1 AUC 

Lehr et al., (2012) Oregon Health and Science 

University’s Layton Aging and 

Alzheimer’s Disease Center 

Spoken story recall 

ASR to transcribe recordings. Computational 

alignment of recall to original story for feature 

extraction 

37 HC, 35 MCI 80.9 AUC 

AUC decreased as WER increased 

Wankerl et al., (2016) 19 novels written by Iris Murdoch Perplexity language model 1 AD Perplexity decreased across the final 3 novels 

of Murdoch’s career, starting 10 years prior to 

her AD diagnosis 

Asgari et al., (2017) 

 

 

Participants enrolled in a clinical 

trial 

Spoken semi-structured interview 

Sentiment features (LIWC tool) 27 HC, 14 MCI HC vs MCI: 83.33% accuracy (chance=60%) 

76.46% on education-matched subset 

Orimaye et al., (2018) DementiaBank 

Spoken Cookie Theft 

Deep learning language model 99 HC, 99 AD, 19 MCI HC vs AD: 83.0 AUC 

HC vs MCI: 80.0 AUC (subgroup of 19 

matched HC) 



Frankenberg et al., (2019) ILSE 

Spoken semi-structured interview 

Perplexity language model 31 HC, 15 MCI, 5 AD Perplexity significantly correlated with 

cognition measures 10-12 years later for the 

patient group, but not HC  

Fraser, Lundholm Fors, 

Eckerström, Öhman & 

Kokkinakis (2019) 

Gothenburg MCI Study 

Spoken picture description, eye 

tracking, neuropsychological 

testing 

Computational extraction of linguistic variables 29 HC, 26 MCI HC vs MCI: 84% accuracy, 0.90 AUC 

(combining multiple tasks & classifiers)  

Fraser, Lundholm Fors & 

Kokkinakis (2019) 

Gothenburg MCI Study, Karolinska 

corpus & DementiaBank 

Spoken picture description 

Word embedding features in a multi-lingual 

approach (Swedish & English) 

229 HC, 50 MCI HC vs MCI: 72% accuracy for Swedish 

speakers (0.77 sensitivity 0.69 specificity) 

63% accuracy for English speakers (0.53 

sensitivity, 0.74 specificity) 

Question 3: Is there linguistic change over time? 

Le et al., (2011) 51 novels written by 3 renowned 

authors 

Computational extraction of linguistic variables 1 HC, 1 AD, 1 suspected AD Trough in vocabulary & syntactic complexity in 

AD in late 40’s-early 50s 

 

Pakhomov et al., (2011) 4 novels written by Iris Murdoch Syntactic features (CLAS tool) 1 AD Significant decline in some measures over the 

lifespan, but not all, with accelerated decline in 

the middle of her career 

Ahmed et al., (2013) OPTIMA  

Spoken Cookie Theft 

Computational extraction of linguistic variables 9 HC, 9 AD Significant linear trends in five discourse 

composite scores from MCI to moderate AD 

Post-mortem confirmed AD (question 4) 

Van Velzen et al., (2014) 78 novels written by 6 renowned 

authors 

Computational extraction of linguistic variables 3 HC, 2 AD, 1 suspected AD Significant decrease over time for 

noun:pronoun ratio for authors diagnosed or 

suspected of AD, but not HC 



Berisha et al., (2015)  Transcripts of President’s Reagan 

& Bush speech Q&As 

Computational extraction of linguistic variables 

(NLTK) 

1 HC, 1 AD A significant change was found in linguistic 

variables for Regan only, from transcripts 13 

years prior to AD diagnosis  

Mueller et al., (2018) 

 

Wisconsin Registry for Alzheimer’s 

Prevention (WRAP) 

Spoken Cookie Theft 

Computational extraction of linguistic variables 200 HC, 64 early MCI 

(eMCI) 

eMCI declined faster over time in measures of 

speech fluency & semantic content compared 

to HC, but not grammatical complexity & 

lexical diversity 

Question 4: In the presence of linguistic change, what is the underlying pathology? 

Rentoumi et al., (2014) OPTIMA 

Spoken Cookie Theft 

Computational extraction of linguistic variables 18 pure AD (ADp), 18 mixed 

AD pathology (ADm) 

ADp vs ADm: 75% accuracy 

Question 5: In the presence of cognitive change, what is the degree of linguistic decline? 

Yancheva et al., (2015) DementiaBank 

Spoken Cookie Theft 

Computational extraction of 477 linguistic 

features 

90 HC, 165 AD Linguistic features predicted MMSE scores 

with a MSE of 3.83 

Yancheva & Rudzicz 

(2016) 

DementiaBank 

Spoken Cookie Theft 

Automatically generated information content 

units, lexico-syntactic & acoustic features 

98 HC, 168 AD HC vs AD: Standard features: 76% accuracy 

Information content unit features: 74% 

accuracy 

Feature sets combined: 80% accuracy 

Hernández-Domínguez et 

al., (2018) 

DementiaBank 

Spoken Cookie Theft 

Computational extraction of speech & linguistic 

variables 

74 HC, 19 MCI, 169 AD A number of measures significantly correlated 

with cognitive severity & MMSE score 

Study also answers question 1 for HC vs AD: 

94% accuracy & 93.0 AUC, & HC vs MCI+AD: 

87% accuracy, 87.0 AUC 

Table 2. Studies utilising NLP methods to investigate connected language in AD, organised according to five questions of clinical interest. 
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