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Abstract

In this paper, we study a large multi-server loss model under the SQ(d) routing scheme

when the service time distributions are general with finite mean. Previous works have

addressed the exponential service time case when the number of servers goes to infinity

giving rise to a mean-field model. The fixed-point of the limiting mean-field equations

(MFEs) was seen to be insensitive to the service time distribution in simulations but

no proof was available. While insensitivity is well known for loss systems models,

even with state-dependent inputs, belong to the class of linear Markov models. In

the context of SQ(d) routing, the resulting model belongs to the class of nonlinear

Markov processes (processes whose generator itself depends on the distribution) for

which traditional arguments do not directly apply. Showing insensitivity to the general

service time distributions has thus remained an open problem. Obtaining the MFEs in

this case poses a challenge due to the resulting Markov description of the system being in

positive orthant as opposed to a finite chain in the exponential case. In this paper, we first

obtain the MFEs and then show that the MFEs have a unique fixed point that coincides

with the fixed point in the exponential case thus establishing insensitivity. The approach

is via a measure-valued Markov process representation and the martingale problem to

establish the mean-field limit.
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1. Introduction

We consider a multi-server loss system consisting of a large number N of parallel servers

to which jobs arrive according to a Poisson process with rate Nλ and the service times are

generally distributed with finite mean. Each server has capacity to serve up to C jobs simulta-

neously, and there is no waiting room. A central job dispatcher routes an incoming job to one

of the servers where the processing of the job at unit rate begins immediately if the number of

jobs that are already in progress is less than C otherwise, the job gets blocked or discarded.

The job length is assumed to be random from a general distribution with finite mean. These

models appear in practice in cloud computing systems such as Microsoft’s Azure [30] and

Amazon EC2 [2].

The motivation behind considering such models is that due to a tremendous growth in the

trend to externalize storage and computing resources, cloud computing systems maintain a

large number of servers to provide service to the incoming jobs. In these systems, the job

requests are mapped into virtual machines (VMs) that request resources such as processor

power, I/O bandwidth, disk etc. from a server that is picked from a large set of available

servers. When a job arrives, the incoming request is routed to one of the servers where it

is accepted for the service if the requested amount of resources are available, otherwise it is

blocked or discarded. The resources allocated to a job will be released once the service of a

job ends. In order to provide good quality of service, the service provider in cloud computing

systems uses a routing policy at the job dispatcher that balances loads on servers that minimizes

the average blocking probability or the probability that a request cannot be accommodated.

Since the job requests arrive randomly and their durations are random too, the way this is

achieved is to route arrivals to servers that are least loaded or have the smallest number of jobs.

This is referred to as the join-the-shortest-queue (JSQ) policy and it requires knowledge of the

occupancies of all the servers. Large cloud computing systems have thousands of servers and

the individual server occupancies will need to be maintained at the dispatcher. However, this

is not necessary as the randomized sampling of just a few servers has been shown to perform

almost as well as complete sampling [31,32,45] for models of interest. This policy is referred

to as the SQ(d) policy, short for the power-of-d routing policy, that routes an incoming request

to the shortest of d uniformly sampled servers.

The SQ(d) scheme was first introduced in [45] for multi-server server systems with FCFS
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service discipline for the case of d = 2 and exponential service times. When the number of

servers N is finite, analyzing the SQ(d) routing policy is a difficult task due to dependence

amongst the servers introduced by the SQ(d) policy. However, when N →∞, they obtained a

tractable way of characterizing the stationary distributions that are accurate when the number

N is large [45]. Their results were then extended for the case of d > 2 in [31] where it was

argued that the case d = 2 provides most of the gains and hence the term ‘The power-of-2’

came to be used.

Loss models similar to the one considered here were analyzed in [35, 36, 46] under the

assumption of exponential service time distributions for the SQ(d) routing policy. They also

considered the more general heterogeneous case with an appropriate modification of the SQ(d)

policy to account for server and job heterogeneity. It was shown in [36] that the SQ(d) routing

scheme yields almost optimal blocking performance in that the average blocking is very close

to the theoretical lower bound on the minimum average blocking achievable by any work

conserving policy. In simulations the stationary occupancy distributions were observed to be

insensitive to the service time distribution.

In the case of exponential service times, the results shown actually imply that the following

interchange holds. Let xN (t) = (xNl (t), l ≥ 0) where xNl (t) denotes the fraction of servers

with at least l jobs. Then

lim
N→∞

lim
t→∞

xN (t) = lim
t→∞

lim
N→∞

xN (t). (1)

Equation (1) provides the equivalence between the stationary distribution of the limiting sys-

tem given by the left hand side and the globally stable fixed-point or equilibrium of the mean-

field given by the the right hand side under the SQ(d) routing policy. The key is that the

mean field equation is a deterministic differential equation that is easier to study. Moreover,

this property can be used to show that in the limit, the individual systems are statistically

independent.

In most applications, the service time distributions are not exponential. For example, the

service times follow log-normal distributions in call centers [8], and Gamma distributions in

automatic teller machines (ATMs) [26] etc. The focus of this paper is to consider this scenario

and develop a mean-field model and characterize the properties of its fixed point.

For general service times case, a Markovian modeling of the system requires us to track

the age or residual service time of each job that is in progress in the system. Therefore the
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underlying space on which the Markov process lies is not discrete and hence the classical

Markov chain techniques cannot be used. This makes establishing the mean-field limit and

characterizing the properties of its equilibrium behavior for general service times a challenging

task.

It is well known that the stationary distributions of single server loss systems even with

state-dependent Poisson arrival rates are insensitive to the service time distribution, i.e., they

only depend on the mean of the service times [9]. Hence, it is important to investigate whether

the insensitivity property carries over to the systems with randomized routing such as the SQ(d)

routing policy. When N is finite, randomized strategies result in the individual servers being

coupled. It can be shown as in [5, 6] that when N is finite, the system is not insensitive since

the SQ(d) policy does not satisfy the necessary condition of state-dependent arrival rates to

be balanced. Insensitivity of the fixed or equilibrium point was observed for the limiting case

(i.e. when N →∞) via simulations in [35, 46] but no proofs were provided. One of the main

objectives in this paper is to answer this question.

A mean-field analysis for processor sharing (PS) queues with the SQ(d) routing has been

done in [33, 34] in the exponential service time distribution case. In [7], randomized routing

schemes for queueing systems with general service time distributions when service disciplines

are FCFS, PS, and LIFO were studied. The steady-state results were characterized by assuming

the asymptotic independence of servers in the system. However the mean-field limit and its

fixed-point were not studied in any detail.

In [24] mean-field techniques were used to study closed queueing networks with M cus-

tomers and N queues with FCFS service discipline in which an exiting customer from a queue

joins another queue chosen with probability 1
N fromN queues. The mean-field was established

for the regime when limM,N→∞
M
N → α . However, the equilibrium behavior of the system

was not studied. Recently, the SQ(d) setting in a system of N FCFS servers where jobs arrive

according to a time-inhomogeneous Poisson process and general i.i.d service times was studied

in [1]. They obtained the mean-field for the case of general service time distributions for all

finite intervals of time. However, the steady-state analysis was not investigated.

Multi-server loss models with randomized routing schemes were first studied in [42, 43]

when job lengths are exponentially distributed using a formal mean-field approach. However,

the existence and uniqueness of the fixed-point of the mean-field were not shown. In [35, 36,

46], the existence and uniqueness of the fixed-point of the mean-field for homogeneous loss
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model of [42] was addressed. In [46], the existence and uniqueness was established under the

asymptotic independence of servers ansatz while [35] showed the asymptotic independence (or

propagation of chaos) and that the interchange of limits (1) holds. Propagation of chaos on path

space had been earlier studied by [16,17] in the context of alternate routing in circuit-switched

networks.

Mean-field analysis and the fluid analysis of queues are closely related, the former usually

in the space of measures and the latter on the sample paths. The fluid limit analysis of FCFS

and Processor Sharing queues with general service time distributions has been studied using

a measure-valued processes approach developed by Dawson [10] in [12, 18, 19, 25, 47]. In

this paper, we use the ages of jobs to construct a measure-valued Markov process that models

the system dynamics and we establish the mean-field limit of the empirical measure-valued

process as in [10, 12]. Our approach is similar to [14] where the FCFS model is studied with

exponential distributions under the SQ(d) policy. In the exponential case the set of server

states is the space of non-negative integers Z+. In [14] the law of large numbers on path

space is established by studying the limit of the sequence of empirical measures with samples

inM1(DZ+
([0,∞))) where DZ+

([0,∞)) is the space of right continuous functions with left

limits in Z+ and M1(DZ+
([0,∞))) is the space of probability measures on DZ+

([0,∞)).

More recently, in [15] a functional central limit theorem (CLT) is derived for the FCFS model

showing that under the CLT scaling the limiting process is a stable Ornstein-Uhlenbeck process

and the exchange of limits holds for this regime.

In this paper, we obtain the mean-field for the SQ(d) routing in loss systems and we

characterize the fixed-point or equilibrium of the mean-field equations. Unlike the exponential

case, the MFEs are now partial differential equations. In particular, we show that the fixed-

point is unique and moreover coincides with the fixed point of the MFEs in the exponential

case. This establishes the insensitivity of the fixed point.

The rest of the paper is organized as follows: Section 2 describes the system model and the

SQ(d) policy. In Section 3, we introduce the notation used in the paper. In Section 4, we derive

a measure-valued representation for the state of the system. The main results of the paper are

given in Section 5. We then establish the mean-field limit in Section 6. In Section 7, we prove

the main result on the uniqueness of the fixed point of the MFEs and show that the fixed point

is insensitive to the distribution, i.e., it depends only on the mean service time. In Section 8

we provide numerical results that suggest the global asymptotic stability of the fixed-point of
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the MFEs and hence the relation given in (1) indeed holds. Section 9 concludes the paper with

some remarks and generalizations. Proofs of supplementary technical results are provided in

the Appendices.

2. System model and the routing policy

We consider a system consisting of a large number N of parallel servers. Jobs arrive

according to a Poisson process with rate Nλ and the job lengths are assumed to be i. i. d.

from a general distribution G(·) defined on R+. A central job dispatcher routes an incoming

job to a server according to the SQ(d) policy defined below. We assume that each server has

capacity to process up to a number C of jobs simultaneously and each job is processed at

unit rate. At any time t, if a server is currently serving i jobs, then we say that the server

has occupancy i and vacancy C − i at time t. If an incoming job is routed to a server with

occupancy C, then the job is blocked or discarded, otherwise the processing of the job begins

immediately and it is processed at unit rate.

Definition 2.1. SQ(d) or Power-of-d routing: An incoming job is routed to the server with

the minimum occupancy among d servers that are selected randomly with replacement. Ties

among servers are broken by choosing a server uniformly at random. The randomly chosen

d servers are referred to as the potential destination servers and the server to which a job is

routed is called the destination server.

In the Definition 2.1, we assume sampling with replacement because of notational conve-

nience and it is easy to show that the asymptotic results that are of interest in the paper are not

affected whether we sample with or without replacement.

We assume that the service times have finite mean 1
µ and the service time distribution

denoted by G(·) on [0,∞) possesses a continuous density denoted by g(·). We make an

assumption that G(·) is supported on [0,∞) where G(.) denotes the complementary distribu-

tion. The hazard rate function of G(·) is defined as β(x) = g(x)

G(x)
= g(x)

1−G(x) for x ∈ [0,∞).

The hazard rate function β indicates the instantaneous rate at which the service of a job ends.

More precisely, a job with age y (where y denotes the time since its arrival) at time t exits the

server in the interval [t, t+ dt) with probability β(y)dt.

Assumption 2.1. The hazard rate function β satisfies β ∈ Cb(R+) where Cb(R+) denotes the
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space of continuous bounded functions on nonnegative real line R+

Remark 2.1. The Assumption 2.1 is true for several classes of distributions such as Phase-

Type distributions, Gamma distributions, Log-Normal distributions, and any Pareto distribu-

tion with finite mean.

3. Notation and terminology

We first introduce the notation which is used throughout the paper. Let Z, R be the set of

integers and real numbers, respectively. Further, let Z+, R+ be the set of nonnegative integers

and nonnegative real numbers, respectively.

Function and measure spaces.

For any given metric space E , let Kb(E), Cb(E), Cs(E) be the space of bounded measurable

real valued functions, the space of bounded continuous real valued functions, and the space of

continuous real valued functions with compact support, defined on E , respectively. Further-

more, let C1(E) be the space of once continuously differentiable real valued functions defined

on E and let the subspace of functions in C1(E) which have compact support be denoted by

C1
s (E). The space of bounded functions in C1(E) whose first derivatives are also bounded is

denoted by C1
b (E). For any function f ∈ Kb(E), h ∈ C1(E), we define

‖f‖ = sup
x∈E
|f(x)| , ‖h‖1 = ‖h‖+ ‖h′‖

where h′ denotes the derivative of h. The space Cb(E) is equipped with the uniform topology,

i.e., we say that a sequence of functions (fn ∈ Cb(E), n ≥ 1) converges to a function f ∈

Cb(E) if ‖fn − f‖ → 0 as n → ∞. The space C1(E) is equipped with the topology induced

by the norm ‖·‖1.

For a given metric space E , let the Borel σ-algebra be denoted by B(E). Let the space

of finite non-negative measures on E be denoted byMF (E). We use the notation ν(B) and

ν({y}) to denote the measure of a Borel set B ∈ B(E) and an element y ∈ E with respect

to the measure ν ∈ MF (E), respectively. The space of probability measures is denoted by

M1(E). Also, let MN
1 (E) ⊂ M1(E) be the subspace of probability measures defined as

MN
1 (E) = {ν ∈ M1(E) : N ν(B) ∈ Z+, ∀B ∈ B(E)}. For any φ ∈ Kb(E), ν ∈ MF (E),
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we define

〈ν, φ〉 =

∫
E
φ(y)ν(dy).

The space of measures MF (E) is equipped with the weak topology induced by the weak

convergence of measures.

The age of an active job is the time elapsed since its arrival. To model the dynamics of an

Erlang loss system with capacity C for each server by a Markov process, we define the state

of each server as (n, a1, a2, · · · , an) where n denotes the number of jobs that are in progress

at the server and ai denotes the age of the ith job in progress. We now define a space U that is

used in earlier works to study queuing models with general service time distributions by using

the classical supplement variable method [29, 41] such that it contains all the possible server

states as elements. The space U is defined as

U = ∪Cn=0Un,

where U0 = {0} and an element in Un for n ≥ 1 is of the form (n, a1, . . . , an) where 1 ≤

n ≤ C and ai ∈ R+. We specify that the state of a server that has n jobs belongs to the space

Un. Here, one might omit the variable n and consider just (a1, · · · , an) to represent a server

state, but such representation does not account for idle servers while (0) is the state of idle

servers in our representation. Furthermore, the variable n, directly gives us information about

the number of progressing jobs at a server which changes upon every arrival and departure.

Hence, it is convenient to work with the server state representation that has a variable that

denotes the number of progressing jobs at a server.

It is also possible to define an element in Un by (n, a1, · · · , an, 0, · · · , 0) of size C + 1.

This allows us to have constant size of C + 1 for an element in U . Note that the zeros in

the state (n, a1, · · · , an, 0, · · · , 0) act as dummy variables as there are only n jobs. Hence, to

make it simple, we consider an element in Un is of the form (n, a1, · · · , an) with size n + 1.

Without loss of generality, we refer to an element in the set U by u and an element in the set

Un by un. Note that we have u0 = 0. For yn = (n, y1, . . . , yn), zm = (m, z1, . . . , zm), we

define the metric dU (yn, zm) as

dU (yn, zm) =


∑n
i=1 |yi − zi| if n = m,

∞ otherwise.
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For (n, u1, . . . , un) ∈ Un and y ≥ 0, we use the following notation

un = (n, u1, · · · , un),

u−jn = (n− 1, u1, · · · , uj−1, uj+1, · · · , un),

(ujn; y) = (n+ 1, u1, · · · , uj−1, y, uj , · · · , un),

(u−jn ; y) = (n, u1, · · · , uj−1, y, uj+1, · · · , un).

For any Borel set B ∈ B(U), let I{B} be the indicator function of B. Let the function 1 be

defined such that for all u ∈ U , we have 1(u) = 1.

A function f : U 7→ R is said to be differentiable if for every n ≥ 1, the function ∂f(un)
∂ui

exists for all 1 ≤ i ≤ n at every un ∈ Un. As a result, the function I{Un}, n ≥ 1 is

differentiable. For a differentiable function f : U 7→ R, we have

‖f ′‖ = max
n≥1

(
sup

un∈Un

(
max

1≤i≤n

∣∣∣∣∂f(un)

∂ui

∣∣∣∣)) .
Further, for a differentiable function f : U 7→ R, let the function∇1f be defined as

∇1f(n, u1, · · · , un) = ∇f · 1 =

n∑
i=1

∂f(un)

∂ui
. (2)

A measure ν ∈ MF (U) when it is restricted to U0 is a Dirac measure at {0} satisfying

ν(U0) = ν({0}). We say that a measure ν is absolutely continuous with respect to Lebesgue

measure if ν({xn}) = 0 at every xn ∈ Un for all n ≥ 1. For any Borel measurable function f

that is defined on U , we define

〈ν, f〉 = f(0)ν({0}) +

C∑
n=1

∫
Un
f(zn)ν(dzn).

We now define the function I : U 7→ R as follows:

I(xn) =


∑n
i=1 xi if n ≥ 1,

0 otherwise.

For b ≥ 0, let τ+
b : U 7→ U be the transition operator defined as

τ+
b (xn) =

(n, x1 + b, · · · , xn + b) n ≥ 1,

0 otherwise.
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Similarly, for any b ≥ 0 and f ∈ Kb(U), let the mapping τb : Kb(U) 7→ Kb(U) be defined as

τyf(u) = f(τ+
y u). Also, for b ≥ 0, let the measure τbν ∈ MF (U) be defined such that for

any Borel set B ∈ B(U), τbν(B) = ν(τ+
b (B)). For ν ∈MF (U), the measure τbν ∈MF (U)

satisfies 〈τbν, f〉 = 〈ν, τbf〉 for all f ∈ Kb(U) and the existence of the unique measure τbν

follows from the Riesz-Markov-Kakutani theorem [40, Theorem 2.14].

Measure valued stochastic processes.

For a Polish space H and a nonnegative real number T < ∞, let the càdlàg functions,

also referred to as RCLL (right continuous with left limits) functions, that are defined on

[0, T ] and [0,∞) with values in H be denoted by DH([0, T ]) and DH([0,∞)) respectively.

Similarly, let the space of continuous functions that take values in H defined on [0, T ] (resp.

[0,∞)) be denoted by CH([0, T ]) and CH([0,∞)), respectively. The spaces DH([0, T ]) and

DH([0,∞)) are equipped with the Skorohod J1-topology and hence, are Polish spaces. Let

the covariation of two local martingales (M1
t , t ≥ 0) and (M2

t , t ≥ 0) in DR([0, T ]) be

denoted by (< M1,M2 >t, t ≥ 0) and the quadratic variation of (M1
t , t ≥ 0) be denoted by

(< M1 >t, t ≥ 0) = (< M1,M1 >t, t ≥ 0).

In our analysis, we study H−valued stochastic processes where H = MF (U). The

considered stochastic processes are random elements defined on (Ω,F,P) with sample paths in

DH([0,∞)), and are equipped with the Borel σ−algebra generated by the open sets under the

Skorohod J1− topology [4]. We say that a sequence of stochastic processes {Xn}n≥1 where

Xn is defined on (Ωn,Fn,Pn) with sample paths lying in DH([0,∞)) converges in distribu-

tion to a stochastic process X defined on (Ω,F,P) with sample paths lying in DH([0,∞)),

if for every bounded, continuous, real valued functional F : DH([0,∞) → R, we have

limn→∞ En(F (Xn)) = E(F (X)) where the expectation operators En,E are defined with

respect to Pn,P, respectively. We denote the convergence of {Xn}n≥1 in distribution to X by

Xn ⇒ X .

4. State descriptor and system dynamics

We index a sequence of systems by N that denotes the total numbers of servers. In-

coming jobs arrive according to a Poisson process with rate Nλ and the job lengths are

i.i.d. from a common distribution G(·) defined on R+. The state of a server is written as



Insensitivity the fixed-point of the mean-field Limit of Loss Systems 11

an = (n, a1, · · · , an) ∈ U when there are n progressing jobs and ith job has age ai for

1 ≤ i ≤ n. A server with state say an can be viewed as a particle with the given state.

Therefore the system evolution can be considered as the evolution of a system withN particles

where the interactions between particles takes place while routing an arrival according to the

SQ(d) routing policy.

The age of a job that is in service at a server increases linearly with time at unit rate until

its service is completed. We next describe the possible state of a server at time t + h (h > 0)

given that it has state an at time t. We assume that when h is small enough, in the interval

[t, t+h), the probability of having multiple events of arrivals or departures is negligible. In the

interval [t, t+h), if there is no arrival or departure at the given server, then the server state will

be equal to τ+
h (an) at time t+ h. On the other hand, if ith job expires in the interval [t, t+ h),

then the server state will be equal to τ+
h (a−in ) at time t+h. Considering arrivals, suppose there

is an arrival into the server at time t+ r (0 ≤ r < h), then the arriving job chooses its position

uniformly at random out of n + 1 possible positions and suppose it chooses jth position, then

the server state will be equal to ((τ+
h (an))j ;h− r) at time t+ h.

Let SN(i,t) ∈ U be the random variable that indicates the state of the server i at time t.

Although, one can think of considering (SN(1,t), · · · , S
N
(N,t)) to denote the system state at time

twhich is a Markovian representation of the system, the dimension of this state space increases

with N as N → ∞ which is inconvenient to work with since our focus of interest is to study

the asymptotic behavior of the system as N → ∞. Hence, we consider an alternative simple

system state representation that can be used to describe the system evolution as the evolution

of a Markov process. Note that the system is symmetric with respect to the servers as they are

identical and the server identities do not play any role in the evolution with time. Therefore

to model the system evolution by a Markov process, we will show that it is enough to just

keep track of the number of servers that lie in each state u ∈ U in order to establish the mean-

field limit. Measure-valued Markov processes have also been used to study other interacting

particle systems as in [20, 28, 37] where each particle state x ∈ Rn, n > 1 is viewed as a

measure-valued Markov process. Following these works, we consider the following system

state descriptor.

Definition 4.1. At time t, the state descriptor of the system with indexN is a random measure



12 T. Vasantam ET AL.

given by

ηNt =

N∑
i=1

δSN
(i,t)

. (3)

The interpretation of ηNt is that for any measurable function f defined on U , we have

〈ηNt , f〉 =

N∑
i=1

f(SN(i,t)).

At time t, conditioned on server states say S(N)
(i,t) = s(i,t), the system state can be represented

by a measure ν defined as

ν =

N∑
i=1

δs(i,t) . (4)

For ηNt = ν, an element y ∈ U is an atom of ν if there exists at least one server with the

state y at time t. The mass of an atom of ν denotes the number of servers lying at that atom

at time t. As a result, since the number of interacting particles in the system is equal to N , the

measure ν defined on U contains a finite number of atoms which is bounded by N . If all the

servers have different states then the number of atoms is equal to N , otherwise the number of

atoms is less thanN . Let Vt be the number of atoms at time t and let the ith atom be denoted by

v
(i)
t . Further, let the mass of the atom v

(i)
t be denoted by a(i)

t . Here, a(i)
t denotes the number

of servers that lie in the state v
(i)
t at time t and a(i)

t ≥ 1. Hence, for time t, from (4), we can

also write ν as

ν =

Vt∑
i=1

a
(i)
t δ

v
(i)
t
. (5)

For any Borel set B ∈ B(U), the number of servers with ages lying in the set B is equal to

ηNt (B) = ν(B) = 〈ν, I{B}〉. We now define the measure of an element yn = (n, y1, · · · , yn)

as below. Let Bε(yn) = {(n, r1, · · · , rn) : yi ≤ ri < yi + ε, 1 ≤ i ≤ n}. Then as in [18], we

define

ν({yn}) = lim
ε→0

ν(Bε(yn)). (6)

Essentially, ν({yn}) indicates the number of servers with state yn at time t and can be viewed

as an occupation count. The notation dν(yn) denotes the number of servers with state lying in

the interval [yn,yn+dyn), where dyn = (dy1, · · · , dyn) and yn+dyn is the vector addition

of yn and dyn. If there is no server lying in the state yn at time t, then ν({yn}) = 0, otherwise

yn is an atom with mass ν({yn}). The number of servers that have n progressing jobs at time

t is given by ν(Un) = 〈ν, I{Un}〉.
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We now obtain the probability that the destination server of an arrival lies in a particular

state.

Lemma 4.1. At time t, given that the system state is ν, i.e., ηNt = ν, under the SQ(d) routing

policy, the probability that the destination server of an arrival at time t lies in the state zn =

(n, z1, · · · , zn) where zn is an atom of ν is given by

pr(ν : zn) =
ν({zn})
N

(Rn( νN )d −Rn+1( νN )d)

(Rn( νN )−Rn+1( νN ))
, (7)

where Rn( νN ) =
∑C
j:j=n

ν
N (Uj) represents the fraction of servers with at least n jobs.

Proof. When a potential destination server is chosen uniformly at random from N servers,

it will have state (n, z1, . . . , zn) with probability ν({(n,z1,...,zn)})
N . Suppose out of the d po-

tential destination servers, say j servers have occupancy n and the remaining d − j servers

have occupancy at least n + 1. Further, out of the j (j ≥ 1) potential destination servers

with occupancy n, assume r (r ≥ 1) servers lie in the state zn. Then the probability that the

destination server is a server with state zn is given by(
d

j

)(
j

r

)(
r

j

)(
ν({zn})
N

)r (
ν({Un})− ν({zn})

N

)j−r ( C∑
i:i=n+1

ν(Ui)
N

)d−j
.

Finally, by summing over all the possible values of j (j ≥ 1) and r (r ≥ 1), we have

d∑
j=1

j∑
r=1

(
d

j

)(
j

r

)(
r

j

)(
ν({zn})
N

)r (
ν({Un})− ν({zn})

N

)j−r ( C∑
i:i=n+1

ν(Ui)
N

)d−j

=

d∑
j=1

(
d

j

)
1

j

(
C∑

i:i=n+1

ν(Ui)
N

)d−j (
ν({Un})
N

)j

×

[
j∑
r=1

r

(
j

r

)( ν({zn})
N

ν({Un})
N

)r ( ν({Un})
N − ν({zn})

N
ν({Un})

N

)j−r ]
.

The term inside the square bracket in the above equation is the average of a binomial random

variable and hence, it is equal to j
(

ν({zn})
N

ν({Un})
N

)
. As a result, the above expression simplifies to

pr(ν : zn) =

(
ν({zn})
N

ν({Un})
N

)
d∑
j=1

(
d

j

)( C∑
i:i=n+1

ν(Ui)
N

)d−j (
ν({Un})
N

)j
.

We can further write

pr(ν : zn) =

(
ν({zn})
N

ν({Un})
N

)[ d∑
j=0

(
d

j

)( C∑
i:i=n+1

ν(Ui)
N

)d−j (
ν({Un})
N

)j−( C∑
i:i=n+1

ν(Ui)
N

)d ]
.
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After simplifications, we get (7). �

Remark 4.1. We can also interpret the expression of the pr(ν : zn) as follows: The probabil-

ity that all the potential destination servers have occupancy at least n and there exists at least

one potential destination server with occupancy n is equal to Rn( νN )d − Rn+1( νN )d. From

the SQ(d) policy, the probability that the destination has occupancy n is equal to Rn( νN )d −

Rn+1( νN )d. From the list of the servers with occupancy n, the fraction of the servers with the

state zn is equal to ( ν({zn})N )
( ν({Un})N )

. Therefore the probability that the destination server lies in the

state zn is equal to ( ν({zn})N )
( ν({Un})N )

× (Rn( νN )d −Rn+1( νN )d).

For the case of exponential job length distributions, Un = {n} and zn = n. Hence,

pr(ν : zn) = Rn( νN )d − Rn+1( νN )d coinciding with the analysis for the exponential case

in [31, 35].

As it is clear from (7), the routing decision depends only on the number of servers lying in

each possible server state. Hence, we get the evolution of the process (ηNt , t ≥ 0) by tracking

arrival events, routing decisions, and departure events.

5. Main results

Our aim is to study the limit as N → ∞ of the empirical measure of the distribution of

the servers. For this, we define a sequence of systems such that a system with index N has

N servers that process the incoming jobs arriving according to a Poisson process with rate

Nλ, and all other system parameters remain the same for all N as given in the Section 2.

The system consists of a central job dispatcher that routes an arrival to a server according to

the SQ(d) policy. For given N , the process (ηNt , t ≥ 0) defined in equation (3) describes the

dynamics of the system with index N . The goal is to characterize the limit of the normalized

process (ηNt , t ≥ 0) as N →∞ where

ηNt =
ηNt
N
. (8)

For a Borel set B ∈ B(U), ηNt (B) is equal to the fraction of the servers with state lying in the

set B at time t.

5.1. Summary of analysis

We now give a brief overview of the analysis in the paper.
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The mean-field limit corresponds to limN→∞ ηNt = ηt, t ≥ 0, that takes values in

CM1(U)([0,∞)) and is a deterministic measure-valued process satisfying a set of evolution

equations referred to as the mean-field equations. We then obtain an alternative form of the

evolution equations satisfied by the process (〈ηt, ψ〉, t ≥ 0) for ψ ∈ Cb(U). This is stated in

Lemma 5.1. Using these equations, we show in Theorem 5.1 that there exists a unique solution

to the mean-field equations for a given initial point.

We then show that the sequence of processes {(ηNt , t ≥ 0)} is tight. For this, we first

study the Feller property of the Markov process (ηNt , t ≥ 0) and obtain the expression of

its semigroup operator in Appendix A. In Appendix D, we construct a martingale process by

using the generator of the Markov process (ηNt , t ≥ 0) by employing the Dynkin’s formula [11,

Theorem 7.15]. We then show that the martingale process converges to the null process as

N → ∞. Using this we prove the tightness of the sequence of processes {(ηNt , t ≥ 0)}.

Furthermore, we show that any limit point of the normalized process (ηNt , t ≥ 0) coincides

almost surely with the unique solution to the mean-field equations referred to as the mean-field

limit. This is stated in Theorem 5.2.

Finally, we obtain a set of the partial differential equations satisfied by the mean-field

limit. We then prove the uniqueness of the fixed-point and its insensitivity. This is stated

in Theorem 5.3. The proofs of Theorem 5.2 and Theorem 5.3 are given in Section 6 and

Section 7, respectively. The remaining proofs are given in the Appendix.

5.2. Transient regime:

In this section, we discuss the results on the transient regime. For given system parameters

λ,C, d and the probability density function g(·) of the service time distributions, in Proposi-

tion 5.1 we state the mean-field equations. The dynamics of a mean-field solution (ηt, t ≥ 0)

are described by using a set of evolution equations of the real valued processes (〈ηt, φ〉, t ≥ 0)

for all φ ∈ C1
b (U), referred to as the mean-field equations.

Proposition 5.1. Mean-field equations:

For given system parameters (λ,C, d, g(·)), the process (ηt, t ≥ 0) satisfies:

1. The mapping t 7→ ηt is a continuous.
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2. For φ ∈ C1
b (U), the process (ηt, t ≥ 0) satisfies

〈ηt, φ〉 = 〈η0, φ〉+

∫ t

s=0

〈ηs,∇1φ〉 ds

−
∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)
dηs(xn)

)
ds

+

∫ t

s=0

(
ηs({0})λΦ0(ηs) (φ(1, 0)− φ(0)) +

C−1∑
n=1

n+1∑
i=1

∫
· · ·
∫
Un

1

(n+ 1)

× λΦn(ηs)(φ(xin; 0)− φ(xn)) dηs(xn)

)
ds, (9)

where the index j is used to denote the position of the departing job when there are n progress-

ing jobs and i denotes the position of the arriving job when there are already n progressing

jobs at the server. Further, Φn(ηs) = (Rn(ηs)
d−Rn+1(ηs)

d)

(Rn(ηs)−Rn+1(ηs))
where Rj(ηs) =

∑C
n:n=j ηs(Un).

In (9), the second term on the right hand side is due to the increase of the ages of the

progressing jobs linearly with time at unit rate. The third and fourth terms on the right hand

side of (9) are due to the departure and arrival of a job, respectively.

Remark 5.1. The t-continuity of the mapping ηt is equivalent to the continuity of the mapping

t 7→ 〈ηt, φ〉 for all φ ∈ C1
b (U) since C1

b (U) is a separating class ofM1(U) [13, p. 111].

Although the mean-field equation (9) is defined for the class of functions φ ∈ C1
b (U), it

is more useful to obtain an approximation of the process (〈ηNt , I{B}〉, t ≥ 0) for an open set

B ∈ B(U). Therefore we need to obtain the evolution equations of the real valued process

(〈ηt, I{B}〉, t ≥ 0). In this direction, we first obtain the evolution equations of the real valued

process (〈ηt, ψ〉, t ≥ 0) where ψ ∈ Cb(U). We then proceed to obtain the evolution equations

of the process (〈ηt, I{B}〉, t ≥ 0) where B is an open set with the help of the monotone

convergence theorem since there exists a sequence of functions in Cb(U) that increase point

wise to I{B}.

Lemma 5.1. A process (νt ∈ M1(U), t ≥ 0) with continuity of the mapping t 7→ νt satisfies
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the mean-field equation (9) iff it satisfies the following equation for all φ ∈ Cb(U),

〈νt, φ〉 = 〈ν0, τtφ〉+
∫ t

r=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−rφ(x−jn )− τt−rφ(xn)

)
dνr(xn)

+

[
νr({0})λΦ0(νr) (τt−rφ(1, 0)− τt−rφ(0))

+

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)
λΦn(νr)(τt−rφ(xjn; 0)− τt−rφ(xn)) dνr(xn)

])
dr. (10)

The proof is given in Appendix B.

Using equation (10), we show that starting with an initial measure ν0, for t ≥ 0, there exists

a unique measure νt ∈M1(U) that satisfies equation (9).

For any finite measure ν defined on U , the operator 〈ν, φ〉 is a continuous linear operator on

the space of functions φ ∈ Cb(U) and let

‖ν‖ = sup
φ∈Cb(U)

|〈ν, φ〉|
‖φ‖

. (11)

Theorem 5.1. There exists a unique solution in CM1(U)([0,∞)) to the mean-field equations.

In particular, if (ν1
t , t ≥ 0) and (ν2

t , t ≥ 0) are two mean-field solutions starting at initial

measures ν1
0 ∈M1(U), ν2

0 ∈M1(U), respectively, then

‖ν1
t − ν2

t ‖ ≤ ‖ν1
0 − ν2

0‖ e(2C‖β‖+8d2λ)t. (12)

The proof is given in Appendix C.

We now show the convergence of the sequence of the processes (ηNt , t ≥ 0). For this, we

first assume:

Assumption 5.1. The sequence of the initial random measures {ηN0 } satisfy

(ηN0 , 〈ηN0 , I〉)⇒ (ϑ, 〈ϑ, I〉), (13)

where ϑ ∈M1(U) is a probability measure that possesses a density (w.r.t. Lebesgue measure)

and 〈ϑ, I〉 <∞.

Theorem 5.2. If the sequence of random measures {ηN0 } satisfies the Assumption 5.1, then

(ηNt , t ≥ 0) ⇒ (ηt, t ≥ 0), where (ηt, t ≥ 0) is the unique solution to the equation (9) with

the initial point ϑ. The process (ηt, t ≥ 0) is referred to as the mean-field limit.
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The proof is given in Section 6.

Remark 5.2. For any time t, a consequence of Theorem 5.2 is that as N → ∞, any finite set

of servers are independent of each other. Furthermore, asN →∞, ηt indicates the probability

law of a server’s state at time t and the arrival process to a server is a Poisson process with

rate λΦn(ηt) when there are n (n ≥ 0) progressing jobs. The proof follows from the same

arguments as in the proof of the Proposition 2 of [35].

Lemma 5.2. For any time t, the measure ηt has a density function w.r.t. Lebesgue measure

for almost all un ∈ Un, n ≥ 1.

The proof is given in Appendix F.

For any subset B ∈ B(U), once (ηNt , t ≥ 0) ⇒ (ηt, t ≥ 0), since ηt is absolutely

continuous w.r.t. Lebesgue measure for every t ≥ 0, the continuous mapping theorem implies

that (〈ηNt , I{B}〉, t ≥ 0) ⇒ (〈ηt, I{B}〉, t ≥ 0). This shows that for large N , we can

approximate 〈ηNt , I{B}〉 by 〈ηt, I{B}〉.

5.3. Stationary regime:

We now discuss the stationary behavior of the mean field.

We first demonstrate an analogy between the MFEs of the considered multi-server Erlang

loss system under the SQ(d) routing policy and the dynamics of an another single server Erlang

loss system with state-dependent arrivals. We then exploit this analogy to prove the uniqueness

of the fixed-point of the mean-field and its insensitivity. We first recall the dynamics of the

probability measure of the server state of a single server Erlang loss system with capacity C,

where jobs arrive according to a Poisson process with pre-specified state-dependent arrival

rates.

Consider a single server system with capacity C where jobs arrive according to a Poisson

process at rate αn when there are n progressing jobs in the system. The service times are

generally distributed as stated in the system model of Secion 2. Let ν(single)
t be the probability

measure of the server state at time t defined on U . For φ ∈ C1
b (U), it can be verified that the
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Kolmogorov equations are given by,

〈ν(single)
t , φ〉 = 〈ν(single)

0 , φ〉+

∫ t

s=0

〈ν(single)
s ,∇1φ〉 ds

−
∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)
dν(single)
s (xn)

+

[(
α0ν

(single)
s ({0}) (φ(1, 0)− φ(0))

)
+

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)

× αn(φ(xjn; 0)− φ(xn)) dν(single)
s (xn)

])
ds. (14)

On comparing the mean-field equation (9) with the Kolomogorov equation of a single-

server system given by (14), it is clear that both the dynamics are similar except that αn in

equation (14) is replaced by λΦn(ηs) when the probability measure of the server state is ηs at

time s. Equation (9) only differs from the equation with αn in that the arrival rates depend on

ηt. This is an example of a non-linear Markov process which means that the generator of the

Markov process at time t depends on the current distribution ηt of the Markov process [27]

while in equation (14) for fixed (αi, 0 ≤ i ≤ C) denotes a Markov process whose generator

does not depend on the current distribution.

We now study the fixed-point of the mean-field. Let Pt(0) be equal to νt({0}) and let

pt(xn) be the probability density of νt w.r.t. Lebesgue measure at xn. We obtain the differ-

ential equations satisfied by the process (Pt, t ≥ 0) with Pt = (Pt(u),u ∈ U) where

Pt(yn) =

∫ y1

x1=0

. . .

∫ yn

xn=0

pt(xn) dx1 · · · dxn. (15)

Here, from Remark 5.2, since ηt is the distribution of a server’s state as N → ∞, it implies

that Pt(yn) is the probability that a server has n jobs and the ith job’s age is at most yi for

1 ≤ i ≤ n as N → ∞. Also, since ηNt (·) ⇒ η(·), for a large value of N , the fraction of

servers with n jobs and the ith job’s age is at most yi for 1 ≤ i ≤ n can be approximated by

Pt(yn).

Lemma 5.3. The process (Pt, t ≥ 0) satisfies

dPt(0)

dt
=

∫ ∞
y=0

β(y)

(
∂Pt(1, y)

∂y

)
dy − λΦ0(Pt)Pt(0), (16)
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for 1 ≤ n ≤ C − 1,

dPt(yn)

dt
= −

n∑
i=1

∂Pt(yn)

∂yi
+

n+1∑
j=1

∫ ∞
xj=0

β(xj)

(
∂Pt(y

j
n;xj)

∂xj

)
dxj

−
n∑
j=1

∫ yj

xj=0

β(xj)

(
∂Pt(y

−j
n ;xj)

∂xj

)
dxj

+

n∑
j=1

λ
Φn−1(Pt)

n
Pt(y

−j
n )− λΦn(Pt)Pt(yn), (17)

and for n = C,

dPt(yn)

dt
= −

n∑
i=1

∂Pt(yn)

∂yi
−

n∑
j=1

∫ yj

xj=0

β(xj)

(
∂Pt(y

−j
n ;xj)

∂xj

)
dxj

+

n∑
j=1

λ
Φn−1(Pt)

n
Pt(y

−j
n ), (18)

where Φn(Pt) =
(Rn(Pt)

d−Rdn+1(Pt))

(Rn(Pt)−Rn+1(Pt))
and Rn(Pt) =

∑C
j:j=n limb→∞ Pt(j, b, · · · , b).

The proof is given in Appendix E.

Remark 5.3. Specializing the results to the exponential case with mean 1
µ , β(x) = µ, and

denoting Qt(n) = limb→∞ Pt(n, b, · · · , b), it can be verified that the process (Qt, t ≥ 0) =

(Qt(n), 0 ≤ n ≤ C, t ≥ 0) is the unique solution of the mean-field equations given in [35] for

the case of the exponential distributions with rate µ = 1.

We next state the the principal result on the insensitivity of the fixed point of the MFEs.

The proof is given in Section 7.

Theorem 5.3. The process (Pt, t ≥ 0) = (Pt(u),u ∈ U , t ≥ 0) has a unique fixed-point

given by π = (π(y),y ∈ U) where

π(yn) = π(exp)
n µn

n∏
i=1

∫ yi

xi=0

G(xi) dxi (19)

and π(exp) = (π
(exp)
n , 0 ≤ n ≤ C) denotes the unique fixed-point of the mean-field when

the service times are exponentially distributed with the mean 1
µ and π(exp)

n is the stationary

probability that there are n jobs in the limiting system. Further, since
∫∞
x=0

G(x) dx = 1
µ , the

fixed-point of the mean-field is insensitive, i.e.,

lim
b→∞

π(n, b, · · · , b) = π(exp)
n . (20)
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6. Convergence of the normalized processes: proof of Theorem 5.2

By using the results on the construction a martingale in Appendix D, we now show that the

normalized process (ηNt , t ≥ 0) converges to the mean-field limit.

Let (FNt , t ≥ 0) be the right continuous filtration associated with the process (ηNt , t ≥ 0).

Note that we have (ηNt , t ≥ 0) ∈ DMN
1 (U)([0,∞)). We first show that the sequence of

processes (ηNt , t ≥ 0) is relatively compact and we then prove that every limit point (χt, t ≥ 0)

almost surely has continuous sample paths with respect to t and coincide with the unique

mean-field solution with the initial point ϑ. For every limit point (χt, t ≥ 0), χ0 almost surely

coincides with the measure ϑ from the Assumption 5.1. Further, we have that the mean-field

solution is unique for the given initial measure. Hence, we conclude that for all the limit

points, almost surely sample paths coincide with the unique mean-field solution (ηt, t ≥ 0)

with the initial point ϑ. The process (ηt, t ≥ 0) is referred to as the mean-field limit. Therefore

(ηNt , t ≥ 0) converges in distribution to the mean-field limit.

For φ ∈ C1
b (U), from Proposition D.1, the process (M

N

t (φ), t ≥ 0) defined as follows is a

RCLL square integrable FNt −martingale

M
N

t (φ) = 〈ηNt , φ〉 − 〈ηN0 , φ〉 −
∫ t

s=0

〈ηNs ,∇1φ〉 ds−
∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

×
(
φ(x−jn )− φ(xn)

)
dηNs (xn)

+

[
ηNs ({0})λΦ0(ηNs ) (φ(1, 0)− φ(0)) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)

× λΦn(ηNs )(φ(xjn; 0)− φ(xn)) dηNs (xn)

])
ds. (21)

We further have

< M
N

· (φ) >t=
1

N

[∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)2
dηNs (xn)

+

[
ηNs ({0})λΦ0(ηNs ) (φ(1, 0)− φ(0))

2

+

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)
λΦn(ηNs )(φ(xjn; 0)− φ(xn))2 dηNs (xn)

])
ds

]
. (22)

Since the space DM1(U)([0,∞)) endowed with the Skorohod topology is complete and

separable, by using the Prohorov’s theorem [4], establishing the relative compactness of the
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sequence of the processes {(ηNt , t ≥ 0)} is equivalent to proving the tightness of the processes

{(ηNt , t ≥ 0)}. From Theorem 4.6 of [21], Jakubowski’s criteria that we recall below can be

used to establish the relative compactness of the sequence of the processes {(ηNt , t ≥ 0)}.

Jakubowski’s criteria: A sequence of {XN} ofDM1(U)([0,∞))− valued random elements

defined on (Ω,F,P) is tight if and only if the following two conditions are satisfied:

J1: For each T > 0 and γ > 0, there exists a compact set KT,γ ⊂M1(U) such that

lim inf
N→∞

P(XN
t ∈ KT,γ∀t ∈ [0, T ]) > 1− γ. (23)

This condition is called the compact-containment condition.

J2: There exists a family Q of real valued continuous functions F defined onM1(U) that

separates points inM1(U) and is closed under addition such that for every F ∈ Q, the

sequence {(F (XN
t ), t ≥ 0)} is tight in DR([0,∞)).

To prove the condition J2, we define a class of functions Q as follows:

Q , {F : ∃f ∈ C1
b (U) such that F (ν) = 〈ν, f〉, ∀ν ∈M1(U)}. (24)

Clearly every function F ∈ Q is continuous w.r.t. the weak topology onM1(U) and further

the class of functions Q separates points inM1(U) and also closed under addition. We next

recall the following result (From Theorem C.9, [38]) to prove the condition J2.

Tightness in DR([0, T ]): If S = DR([0, T ]) and {Pn} is a sequence of probability distribu-

tions on S, then {Pn} is tight if for any ε > 0,

C1: There exists b > 0 such that

Pn(|X(0)| > b) ≤ ε (25)

for all n ∈ Z+.

C2: For any γ > 0, there exists ρ > 0 such that

Pn(wX(ρ) > γ) ≤ ε (26)

for n sufficiently large, where

wX(ρ) = sup{|X(t)−X(s)| : s, t ≤ T, |s− t| ≤ ρ} (27)

and any limiting point P satisfies P(CR([0, T ])) = 1.
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We first establish the relative compactness of the sequence {(ηNt , t ≥ 0)}. For this, we

next prove the conditions C1 and C2 that are sufficient to prove the relative compactness of

the sequence {(〈ηNt , φ〉, t ≥ 0)} for φ ∈ C1
b (U) in DR([0,∞)). For any T > 0, t ∈ [0, T ],

we have 〈ηNt , φ〉 ≤ ‖φ‖1〈ηNt ,1〉 and since 〈ηNt ,1〉 = 1, the condition C1 is trivially satisfied

with b = ‖φ‖1.

We next prove that the condition C2 holds. For ε > 0, by using equation (22) and the

Doob’s inequality [13, page 63], we have

P
(

sup
t≤T

∣∣∣MN

t (φ)
∣∣∣ ≥ ε) ≤ 4

ε2
E
[
< M

N

· (φ) >T

]
≤ 4T‖φ‖2 1

N
(‖β‖+ dλ)

and hence, P
(

supt≤T

∣∣∣MN

t (φ)
∣∣∣ ≥ ε) → 0 as N → ∞. Therefore the sequence of processes

{(MN

t (φ), t ≥ 0)} converges in distribution to the null process from the standard convergence

criterion in DR([0, T ]). Further, the sequence of processes {(MN

t (φ), t ≥ 0)} is tight in

DR([0, T ]) and hence, there exists ρ′ > 0 and N ′ > 0 such that for all N ≥ N ′, we have

P

(
sup

u,v≤T,|u−v|≤ρ′

∣∣∣MN

v (φ)−MN

u (φ)
∣∣∣ ≥ γ

2

)
≤ ε

2
(28)

For any u < v ≤ T , from equation (21), we have

∣∣〈ηNv , φ〉 − 〈ηNu , φ〉∣∣ ≤ ∫ v

s=u

∣∣〈ηNs ,∇1φ〉
∣∣ ds+ 2‖β‖‖φ‖C |u− v|+ 2‖φ‖λ |u− v|

+
∣∣∣MN

v (φ)−MN

u (φ)
∣∣∣ . (29)

Further, we can write∣∣〈ηNv , φ〉 − 〈ηNu , φ〉∣∣ ≤ |v − u|C‖φ‖1(1 + 2‖β‖+ 2dλ) +
∣∣∣MN

v (φ)−MN

u (φ)
∣∣∣ . (30)

Therefore by using equations (28) and (30), there exists ρ > 0 and N1 > 0 such that for N ≥

N1, we have P
(

supu,v≤T,|u−v|≤ρ
∣∣〈ηNv , φ〉 − 〈ηNu , φ〉∣∣ ≥ γ) ≤ ε. This proves the condition

C2. Since the conditions C1 and C2 hold, the condition J2 also holds.

We next prove the compact containment condition J1. Let (ni(t), xi1(t) . . . , xini(t)(t)) be

the state of the ith server at time t where xij(t) denotes the age of the jth job at the ith server.

Clearly, we have 〈ηNt , I〉 = 1
N

∑N
i=1,ni(t)>0(xi1(t) + · · ·+ xini(t)(t)).

We can classify the progressing jobs into two classes. The jobs that are in service from the

beginning (t = 0) form the first class and the second class of jobs are the ones that entered
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the system in the interval (0, t]. At a server, the number of progressing jobs that belong to

each class are upper bounded by C. Let Yt be a random variable representing the age of a job

belonging to the second class that is in progress at time t, and Y be a random variable with job

length distribution G, then for any b ≥ 0, we have

P(Yt ≥ b) ≤ P(Y ≥ b). (31)

Therefore, using equation (31), since each server has capacity C, for any time t ≥ 0, we can

write

P(〈ηNt , I〉 ≥ b) ≤ P

(
〈ηN0 , I〉+ Ct+

1

N

N∑
i=1

(Yi1 + . . .+ YiC) ≥ b

)
, (32)

where (Yij , 1 ≤ i ≤ N, 1 ≤ j ≤ C) are i.i.d random variables with distributionG. Further, by

weak law of large numbers, we have 1
N

∑N
i=1(Yi1 + . . .+ YiC)⇒ C

µ as N →∞. Therefore,

by choosing ZT = 2〈ϑ, I〉+ 2CT + 2C
µ , we have

P

(
sup
t∈[0,T ]

〈ηNt , I〉 > ZT

)
→ 0 (33)

as N → ∞. Let us define LT , {ζ ∈M1(U) : 〈ζ, I〉 ≤ ZT } . Since 〈ζ, I〉 ≤ ZT for

ζ ∈ LT , let B = U0 ∪ (∪n≥1{(n, y1, · · · , yn) : 0 ≤ yi ≤ r, 1 ≤ i ≤ n}) and B be the

compliment of B, then we have ζ(B) ≤ ZT
r . Hence, limr→∞ supζ∈LT ζ(B) = 0. Therefore

from Lemma A7.5 of [23], LT is relatively compact inM1(U). Further, from equation (33),

we have lim infN→∞ P(ηNt ∈ LT ,∀t ∈ [0, T ]) > 1 − γ. Let KT be the closure of LT , then

we have a compact set KT such that lim infN→∞ P(ηNt ∈ KT ,∀t ∈ [0, T ]) > 1 − γ for all

0 < γ < 1.

This establishes the condition J1 and hence the proof of the tightness of the sequence of

processes (ηNt , t ≥ 0) is completed.

Let (χt, t ≥ 0) be a limit of a converging subsequence {(ηNikt , t ≥ 0)}. From the condition

C2, χt is continuous in t , Pχ − a.s., where Pχ is the probability law of (χt, t ≥ 0).

Furthermore from [22, Theorem 1.7] for f ∈ Cb(U), ν ∈ M1(U), it follows that for any

T > 0, we have (νt, 0 ≤ t ≤ T ) 7→ (〈νt, f〉, 0 ≤ t ≤ T ) is continuous in the Skorohod

topology. Then since the martingale (M
Nik
t (φ), t ≥ 0) converges to the null process, by the
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continuous mapping theorem, we conclude

〈χt, φ〉 = 〈χ0, φ〉+

∫ t

s=0

〈χs,∇1φ〉 ds

−
∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)
dχs(xn)

+

[
(χs({0})λΦ0(χs) (φ(1, 0)− φ(0))) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)

× λΦn(χs)(φ(xjn; 0)− φ(xn)) dχs(xn)

])
ds. (34)

From the Assumption 5.1, χ0 = ϑ almost surely and hence the sample paths coincide almost

surely with the unique mean-field solution with the initial point ϑ. This argument holds for

every limit point, and hence, the sample paths of every limit point are almost surely the same

as the deterministic mean-field solution with the initial point ϑ. This completes the proof.

7. Insensitivity: proof of Theorem 5.3

We now show that π = (π(u),u ∈ U) is the unique fixed-point of the mean-field. From

[35], we first recall that under the assumption of exponential service time distributions, there

exists a unique probability measure of occupancy π(exp) = (π
(exp)
n , 0 ≤ n ≤ C) on {0, 1, · · · , C}

to the stationary MFEs given below,

λ(exp)
n (π(exp))π(exp)

n = (n+ 1)µπ
(exp)
n+1 , (35)

where

λ(exp)
n (π(exp)) = λ

(
∑C
j=n π

(exp)
j )d − (

∑C
j=n+1 π

(exp)
j )d

(
∑C
j=n π

(exp)
j )− (

∑C
j=n+1 π

(exp)
j )

. (36)

Let θ = (θ(u),u ∈ U) be a fixed-point of the MFEs of the process (Pt, t ≥ 0) under

general service time distributions. Using θ, let the corresponding probability measure of

occupancy be Γ = (Γn, 0 ≤ n ≤ C) defined such that Γn = limb→∞ θ(n, b, · · · , b)) and

Γ0 = θ(0). We now show that

θ(yn) =

(∏n
i=1

λ
(exp)
i−1 (Γ)

iµ

)
1 +

∑C
m=1

(∏m
i=1

λ
(exp)
i−1 (Γ)

iµ

)µn n∏
i=1

∫ yi

xi=0

G(xi) dxi (37)
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and

θ(0) =
1

1 +
∑C
m=1

(∏m
i=1

λ
(exp)
i−1 (Γ)

iµ

) . (38)

Then it implies that Γ also satisfies equations (35)-(36), and hence Γ = π(exp) concluding the

insensitivity of the fixed-point. Furthermore, we have that θ(yn) = π
(exp)
n µn

∏n
i=1

∫ yi
xi=0

G(xi) dxi

concluding the uniqueness of the fixed-point of the mean-field under general service time

distributions.

To complete the proof, it remains to show the validity of equations (37)-(38). We now

recall the stationary distribution π(single) = (π(single)(u),u ∈ U) of a single server loss

system with state-dependent Poisson arrival process with rate αn (0 ≤ n ≤ C) when there are

n progressing jobs and the service time distributions are as in the system model of Section 2.

Then from [9], the stationary probability that the server has n progressing jobs and the ith job

has age at most yi (1 ≤ i ≤ n) is given by

π(single)(yn) =

(∏n
i=1

αi−1

iµ

)
1 +

∑C
m=1

(∏m
i=1

αi−1

iµ

)µn n∏
i=1

∫ yi

xi=0

G(xi) dxi (39)

and

π(single)(0) =
1

1 +
∑C
m=1

(∏m
i=1

αi−1

iµ

) . (40)

For the given fixed-point θ of the mean-field and its corresponding occupancy probability

measure Γ, consider a single server system under the assumption of a Poisson arrival process

with state-dependent rate λ(exp)
n (Γ) (0 ≤ n ≤ C) when there are n progressing jobs. Then the

unique stationary distribution is given by equations (39)-(40) with αn replaced by λ(exp)
n (Γ)

for all 0 ≤ n ≤ C. But from equations (9), (14), and Lemma 5.3, since Rn(θ) =
∑C
j=n Γj ,

we have that θ is also an another stationary distribution for the single server system with

state dependent Poisson arrival process having rates λ(exp)
n (Γ) for all 0 ≤ n ≤ C. Since

the stationary distribution must be unique, equations (37)-(38) must hold. This completes the

proof.

8. Numerical results

Showing that the fixed-point of the mean-field approximates the stationary distribution of

the system with large N , remains an open problem. If one can establish that the equilibrium



Insensitivity the fixed-point of the mean-field Limit of Loss Systems 27

or fixed-point of the MFEs is globally asymptotically stable (GAS), then the conclusion of

the interchange of limits would follow from the Prohorov’s theorem [4]. Proving that the

equilibrium point of the MFEs is GAS is a challenging problem because the joint distribution

of the occupancy and ages does not possess any monotonicity properties unlike the case of

exponential service time distributions [35]. In this section, we present numerical results on the

validity of the GAS of the mean-field for the case in which the service time distributions are

mixed-Erlang. In this case, the state of a server is also multi-dimensional and the mean-field

is also not monotonic unlike the exponential case. It is numerically easier to solve the MFEs

for the case of mixed-Erlang distributions as they are systems of ODEs unlike the case of

general service time distributions for which the MFEs are PDEs as we have shown. One more

reason for using mixed-Erlang distributions is that such distributions are dense in the set of all

distributions that have support on R+, see [3]. Our numerical results show that the mean-field

is GAS for the case of mixed-Erlang service time distributions.

We consider the system parameters as follows: The capacity of a server is assumed to

be C = 5. The average job length is assumed to be equal to one, i.e. µ = 1. The service

times have a Mixed-Erlang distribution given by sums of independent exponentially distributed

random variables (known as an Erlang distribution) where the number of exponential phases

(or independent random exponentials) is equal to i ∈ {1, 2, . . . ,M} with probability pi such

that
∑M
i=1 pi = 1. Each exponential phase is assumed to have rate µp. Therefore, we have,

1

µ
=

∑M
i=1 ipi
µp

.

We choose M = 3, p1 = .3, p2 = 0.3, p3 = 0.4.

Under mixed-Erlang service time distribution assumptions, let S be the set of all possible

server states defined as S = ∪Cn=0Sn where S0 = {(0)} and Sn = {(n, r1, . . . , rn) : 1 ≤ ri ≤

M, 1 ≤ i ≤ n}. We refer to an element in the set S by r and an element in the set Sn by rn.

The system dynamics can be modeled as a Markov process xN (t) = (xNr (t), r ∈ S) where

xNr (t) denotes the fraction of servers with n jobs such that ith job has ri remaining phases at

time t. Since the Markov process (xN (t), t ≥ 0) is defined on a finite dimensional space, we

can establish the mean-field limit x(t) = (xr(t), r ∈ S) by using the same procedure as that of

the exponential service times case in [35]. Hence we recall the following result without proof

from [44].
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Proposition 8.1. If xN (0) converges in distribution to a state u, then the process xN (·)

converges in distribution to a deterministic process x(·,u) as N → ∞ called the mean-field.

The process x(·,u) is the unique solution of the following system of differential equations.

x(0,u) = u, (41)

ẋrn(t,u) = hrn(x(t,u)), (42)

and h = (hr, r ∈ S) with the mapping hrn given by

hrn(x) =

n∑
b=1

(prb
n

)
x(r−jn )λ

(ME)
n−1 (x)− xrnλ

(ME)
n (x)I{n<C}

+

n+1∑
b=1

µpI{n<C}x(rbn;1) +

n∑
b=1

µpx(n,r1,··· ,rb−1,rb+1,rb+1,··· ,rn) − nµpxrn , (43)

where

λ(ME)
n (u) =

λ

(
∑

rn
urn)

( C∑
i=n

∑
bi

ubi

)d
−

(
C∑

i=n+1

∑
bi

ubi

)d . (44)

In Figure 1, we plot d2
E(x(t,u), π) as a function of t where dE is the euclidean distance

defined by

dE(u,v) =

√∑
l∈S

|ul − vl|2.

It is observed that for d = 2, λ = 1, and for four different initial points u1,u2,u3, and

u4, the mean-field x(t,u) for mixed-Erlang service time distribution converges to its unique

fixed-point π. Note that the computed π depends on the chosen value of d. This supports that

π is globally stable.

We conclude with some numerical results for the blocking probability of the above system

showing closeness to the theoretical lower bound. Under asymptotic independence any finite

set of servers are independent and the fixed-point of the mean-field implies that the fixed point

is the stationary distribution of the state of a server. The average blocking probability is then

given by πq(C)d where πq(C) = limb→∞ π(C, b, · · · , b). Let us recall the lower bound on the

average blocking probability, denoted by P avgblock for any routing scheme shown in [36]. From

the Little’s law, the average number of customers in the system is equal to (1 − P avgblock)Nλ

which is upper bounded by NC. Hence,

P avgblock ≥
(

1− C

λ

)
+

,
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FIGURE 1: Convergence of mean-field to the fixed-point

where (x)+ = max (x, 0). In Figure 2, we plot the lower bound
(
1− C

λ

)
+

and the average

blocking probability under the SQ(d) routing, and the state-independent random routing where

a destination server is chosen uniformly at random, as a function of λ. It is clear that the

resulting average blocking probability under the SQ(d) policy is much lower than the resulting

average blocking probability when pure random routing is employed. Furthermore, the average

blocking probability under the SQ(d) routing approaches the lower bound as d increases.

9. Concluding Remarks

.

In this paper we have provided a measure-valued process approach to establish the mean-

field behavior of loss systems with SQ(d) routing and general service time requirements. The

extension of these results to multi-class systems where servers are classified into different

classes based on their capacities and jobs are classified into different classes based on their
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FIGURE 2: Comparison of the average blocking probability under SQ(d) with lower bound.

service requirements follow in a similar manner mutatis mutandis from the approach used

here. Establishing the global asymptotic stability of the unique fixed point remains an open

problem.

Appendix A. Properties of Markov process and its semigroup

In this section, we compute the semigroup of the Markov process (ηNt , t ≥ 0) and we then

show that the Markov process (ηNt , t ≥ 0) is a Feller process.

Let Ah be the number of arrivals in the interval [0, h]. Similarly, given the initial state ηN0 ,

let Dh be the number of departures that occur in the interval [0, h]. Note that a job with age

x at time t departs from the system in the interval [t, t+ h] with the probability G(x+h)−G(x)

G(x)
.

Further, from the definition of the hazard rate, we have that limh→0
1
h
G(x+h)−G(x)

G(x)
= β(x)

and hence
G(x+ h)−G(x)

G(x)
= β(x)h+ o(h). (45)
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Let FNt be the filtration:

FNt = ∩ε>0σ({ηNs : s ≤ t+ ε}). (46)

We now define

TNh f(ν) = E
[
f(ηNh )|ηN0 = ν

]

where f is a continuous bounded function f : MF (U) → R and the operator TNh is a

semigroup operator when (ηNt , t ≥ 0) is a Markov process. Before computing the expression

for TNh f(ν), we first introduce the following notation. Suppose the measure ηN0 = ν has

mass at m atoms and let the ith atom be v(i) = (ni, v
(i)
1 , · · · , v(i)

ni ) for 1 ≤ i ≤ m and let the

number of servers with the state v(i) be denoted by ν({v(i)}) = a(i). If a server lies in the state

bn = (n, b1, . . . , bn) at time t, let the probability that there is no departure at in the interval

[t, t+ h] be denoted by pND(bn, h). We then have

pND(bn, h) =

n∏
i=1

G(bi + h)

G(bi)
. (47)

Note that using equation (45), we can write

pND(bn, h) =

n∏
j=1

(1− β(bj)h) + o(h). (48)

Lemma A.1. Let f be a real valued continuous bounded function defined onMF (U). Then

the process (ηNt , t ≥ 0) is a weak-homogeneousMF (U)-valued Markov process with semi-
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group operator TNh (·) given by

TNh f(ν) = (1−Nλh)

 m∏
j=1,nj>0

(pND(v(j), h))a
(j)

 f(τhν)

+ (1−Nλh)

m∑
j=1,nj>0

nj∑
r=1

a(j)

(
G(v

(j)
r + h)−G(v

(j)
r )

G(v
(j)
r )

)

×

 nj∏
w=1,w 6=r

(
G(v

(j)
w + h)

G(v
(j)
w )

) (pND(v(j), h))(a(j)−1)

 m∏
i=1,ni>0,i6=j

(pND(v(i), h))a
(i)


× f(τhν + δ((τ+

h v(j))−r) − δ(τ+
h v(i)))

+ (Nλh)

∫ h

x=0

1

h

 m∑
i=1

ni+1∑
j=1

1

ni + 1
pr(τxν : v(i))

×

I{ni<C}f(τhν + δ((τ+
h v(i))j ;h−x) − δ(τ+

h v(i))

) m∏
k=1,nk>0

(pND(v(k), h))a
(k)

G(h− x)

+I{ni=C}f

(
τhν

) m∏
k=1,nk>0

(pND(v(k), h))a
(k)

 dx+ ε(ν, h), (49)

where ε(ν, h) is a o(h) term for all ν. Moreover, the process (ηNt , t ≥ 0) is a Feller-Dynkin

process.

Proof. We can write

TNh f(ν) = E

[
f(ηNh )I{Ah=0,Dh=0}|ηN0 = ν

]
+ E

[
f(ηNh )I{Ah=0,Dh=1}|ηN0 = ν

]

+ E

[
f(ηNh )I{Ah=1,Dh=0}|ηN0 = ν

]
+

∑
i≥1,j≥1

E

[
f(ηNh )I{Ah=i,Dh=j}|ηN0 = ν

]
. (50)

We first simplify the first term on the right side of equation (50). In this case, since there

are no arrivals or departures, we have ηNh = τhν. As a consequence, we have

E

[
f(ηNh )I{Ah=0,Dh=0}|ηN0 = ν

]
= f(τhν)P

(
({Ah = 0, Dh = 0})|ηN0 = ν

)
. (51)

Further, we can write

P
(
({Ah = 0, Dh = 0})|ηN0 = ν

)
= P

(
{Ah = 0}|ηN0 = ν

)
P
(
({Dh = 0})|Ah = 0, ηN0 = ν

)
.

Since the arrival process is a Poisson process with rate Nλ and hence, it is independent of the

state ν. Therefore, we have P
(
{Ah = 0}|ηN0 = ν

)
= P({Ah = 0}) = e−(Nλh). On the other
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hand, the number of departures Dh, is influenced by the number of arrivals Ah. Hence we

need to compute the expression of P
(
({Dh = j})|Ah = i, ηN0 = ν

)
that gives the probability

that there are j departures in the interval [0, h] conditioned on the event that there are i arrivals

in the interval [0, h]. As it is known, if the arrival process is a Poisson process, conditioned on

the number of arrivals Ah, the arrival instants are random variables with uniform distribution

in the interval [0, h] [39, p. 325]. It can be seen that

P
(
({Dh = 0})|Ah = 0, ηN0 = ν

)
=

m∏
j=1,nj>0

(pND(v(j), h))a
(j)

.

We can write

E

[
f(ηNh )I{Ah=0,Dh=0}|ηN0 = ν

]
= (1−Nλh)

 m∏
j=1,nj>0

(pND(v(j), h))a
(j)

 f(τhν)

+ ε1(ν, h),

where

ε1(ν, h) = (P({Ah = 0})− (1−Nλh))

m∏
j=1,nj>0

(pND(v(j), h))a
(j)

f(τhν)

is a o(h) term for all ν.

Similarly, we can write the second term of the right side of equation (50) as

E

[
f(ηNh )I{Ah=0,Dh=1}|ηN0 = ν

]
= (1−Nλh)

m∑
j=1,nj>0

nj∑
r=1

a(j)

(
G(v

(j)
r + h)−G(v

(j)
r )

G(v
(j)
r )

)

×

 nj∏
w=1,w 6=r

(
G(v

(j)
w + h)

G(v
(j)
w )

) (pND(v(j), h))(a(j)−1)

 m∏
i=1,ni>0,i6=j

(pND(v(i), h))a
(i)


× f(τhν + δ((τ+

h v(j))−r) − δ(τ+
h v(i))) + ε2(ν, h),

where we use r to denote the index of the departing job at a server with the state v(j) and
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ε2(ν, h) is a o(h) term for all ν given by

ε2(ν, h) = (P({Ah = 0})− (1−Nλh))

m∑
j=1,nj>0

nj∑
r=1

a(j)

×

(
G(v

(j)
r + h)−G(v

(j)
r )

G(v
(j)
r )

) nj∏
w=1,w 6=r

(
G(v

(j)
w + h)

G(v
(j)
w )

) (pND(v(j), h))(a(j)−1)

×

 m∏
i=1,ni>0,i6=j

(pND(v(i), h))a
(i)

 f(τhν + δ((τ+
h v(j))−r) − δ(τ+

h v(i))).

We next compute the third term on the right side of equation (50). We can write

E

[
f(ηNh )I{Ah=1,Dh=0}|ηN0 = ν

]
= (P({Ah = 1}))

×
∫ h

x=0

1

h

 m∑
i=1

ni+1∑
j=1

1

ni + 1
pr(τxν : τ+

x v(i))

[
I{ni<C}f

(
τhν + δ((τ+

h v(i))j ;h−x) − δ(τ+
h v(i))

)

×
m∏

k=1,nk>0

(pND(v(k), h))a
(k)

G(h− x) + I{ni=C}f

(
τhν

) m∏
k=1,nk>0

(pND(v(k), h))a
(k)

 dx,

where the arrival instant x is chosen uniformly in [0, h] given Ah = 1, i denotes the index of

the atom corresponding to the state of the destination server and j is the position of the routed

job at the destination server chosen uniformly at random from ni + 1 positions. Further, we

write

E

[
f(ηNh )I{Ah=1,Dh=0}|ηN0 = ν

]
= (Nλh)

∫ h

x=0

1

h

 m∑
i=1

ni+1∑
j=1

1

ni + 1
pr(τxν : τ+

x v(i))

×

I{ni<C}f(τhν + δ((τ+
h v(i))j ;h−x) − δ(τ+

h v(i))

) m∏
k=1,nk>0

(pND(v(k), h))a
(k)

G(h− x)

+I{ni=C}f

(
τhν

) m∏
k=1,nk>0

(pND(v(k), h))a
(k)

 dx+ ε3(ν, h),
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where

ε3(ν, h) = (P({Ah = 1})−Nλh)

∫ h

x=0

1

h

 m∑
i=1

ni+1∑
j=1

1

ni + 1
pr(τxν : τ+

x v(i))

I{ni<C}f(τhν + δ((τ+
h v(i))j ;h−x) − δ(τ+

h v(i))

) m∏
k=1,nk>0

(pND(v(k), h))a
(k)

G(h− x)

+I{ni=C}f

(
τhν

) m∏
k=1,nk>0

(pND(v(k), h))a
(k)

 dx.

We now show that ε3(ν, h) is a o(h) term for all ν. For this, we apply the method of change of

variables by replacing x with hy. As a consequence, we have

ε3(ν, h) = (P({Ah = 1})−Nλh)h

∫ 1

y=0

1

h

 m∑
i=1

ni+1∑
j=1

1

ni + 1
pr(τhyν : τ+

hyv
(i))

I{ni<C}f(τhν + δ((τ+
h v(i))j ;h−hy) − δ(τ+

h v(i))

) m∏
k=1,nk>0

(pND(v(k), h))a
(k)

G(h− hy)

+I{ni=C}f

(
τhν

) m∏
k=1,nk>0

(pND(v(k), h))a
(k)

 dy.

By using the dominated convergence theorem, we have limh→0
ε3(ν,h)
h = 0 for all ν.

Finally, by using the fact that f is a bounded function, we now prove that the fourth term

on the right side of equation (50) is a o(h) term denoted by ε4(ν, h). Since f ∈ Cb(MN
F (U)),

it is enough to prove that
∑
i≥1,j≥1 P({Ah = i,Dh = j}|ηN0 = ν) is a o(h) term. In this

direction, we specify that
(∑

i≥2,j≥1 P({Ah = i,Dh = j}|ηN0 = ν)
)
≤ P({Ah ≥ 2}). Since

P({Ah ≥ 2} is a o(h) term, we have that
∑
i≥2,j≥1 P({Ah = i,Dh = j}|ηN0 = ν) is a o(h)

term for all ν. We now show that
∑
j≥1 P({Ah = 1, Dh = j}|ηN0 = ν) is a o(h) term. We

can write

(∑
j≥1

P({Ah = 1, Dh = j}|ηN0 = ν)
)

= P({Ah = 1}|ηN0 = ν)− P({Ah = 1, Dh = 0}|ηN0 = ν)

= P({Ah = 1})(1− P({Dh = 0}|Ah = 1, ηN0 = ν)).

Again, by using the method of change of variables and the dominated convergence theorem as

in the proof of the result that ε3(ν, h) is a o(h) term, we get that limh→0 P({Dh = 0}|Ah =
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1, ηN0 = ν) = 1 for all ν. Since limh→0
P({Ah=1})

h = Nλ, we have that
(∑

j≥1 P({Ah = 1, Dh = j}|ηN0 = ν)
)

is a o(h) term for all ν. Therefore, ε4(ν, h) is a o(h) term for all ν.

By combining the expressions for all the four terms on the right side of equation (50), and

by defining ε(ν, h) = ε1(ν, h) + ε2(ν, h) + ε3(ν, h) + ε4(ν, h), we get the expression for

TNh f(ν) as in equation (49). Finally, from [10, p.18], (ηNt , t ≥ 0) is a weak homogeneous

Markov process.

Finally, the proof of Feller-Dynkin property follows mutatis mutandis from the proof of

Proposition 1 of [12]. �

Appendix B. Proof of Lemma 5.1

Proof. We first show that any process (νt, t ≥ 0) that satisfies equation (9) also satisfies

equation (10). By using the fundamental theorem of calculus, for φ ∈ C1
b (U), a real valued

process (〈νt, φ〉, t ≥ 0) satisfying equation (9) is a solution to the following differential

equation (52) if the integrand in equation (9) is a continuous function of s,

d〈νt, φ〉
dt

= 〈νt,∇1φ〉+

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)
dνt(xn)

+

[
νt({0})λΦ0(νt) (φ(1, 0)− φ(0)) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)

× λΦn(νt)(φ(xjn; 0)− φ(xn)) dνt(xn)

])
. (52)

Therefore we need to show that the two terms on the right side of equation (52) are continuous

functions of t. Since φ ∈ C1
b (U) and the mapping t 7→ νt is continuous, the first term 〈νt,∇1φ〉

is a continuous function of t. In the second term, the expression related to the case of departures

can be written as

C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)
dνt(xn) = 〈νt, ψ1〉,

where the function ψ1 is defined as

ψ1(xn) =

0 if n = 0,∑n
j=1 β(xj)((φ(x−jn )− φ(xn)) otherwise.
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Since φ ∈ C1
b (U) and β ∈ C1

b (R+), we have that ψ1 ∈ Cb(U). Therefore the mapping

t 7→ 〈νt, ψ1〉 is continuous. The expression that corresponds to the case of arrivals can be

written as

〈νt, ψ(νt)〉 = (νt({0})λΦ0(νt) (φ(1, 0)− φ(0)))

+

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)
λΦn(νt)(φ(xjn; 0)− φ(xn)) dνt(xn),

where ψ(νt) is defined as

ψ(νt)(xn) =

0 if n = C,

λΦn(νt)
(n+1)

∑n+1
j=1 (φ(xjn; 0)− φ(xn)) otherwise.

(53)

For given νt, since φ ∈ Cb(U), we have that ψ(νt) ∈ Cb(U). Hence for any constant a ≥ 0, the

mapping t 7→ 〈νt, ψ(νa)〉 is continuous.

We next prove that the mapping t 7→ 〈νt, ψ(νt)〉 is continuous, i.e., we need to prove that

〈νt+b, ψ(νt+b)〉 → 〈νt, ψ(νt)〉 as b→ 0. We have∣∣〈νt+b, ψ(νt+b)〉 − 〈νt, ψ(νt)〉
∣∣ ≤ ∣∣〈νt+b, ψ(νt+b)〉 − 〈νt+b, ψ(νt)〉

∣∣+∣∣〈νt+b, ψ(νt)〉 − 〈νt, ψ(νt)〉
∣∣ .

(54)

Since ψ(νt) ∈ Cb(U), we have that limb→0

∣∣〈νt+b, ψ(νt)〉 − 〈νt, ψ(νt)〉
∣∣ = 0. We next prove

that limb→0

∣∣〈νt+b, ψ(νt+b) − ψ(νt)〉
∣∣ = 0.

For L > 0, let

U (L) = {xn ∈ Un : n ≥ 1, xi > L for all 1 ≤ i ≤ n}.

For given ε > 0, since νt is tight, we can find some L > 0 such that 〈νt, I{U(L)}〉 < ε.

Furthermore, from the continuity of the mapping t 7→ νt, we can find some h1 > 0 such that

for all b ∈ [−min (t, h1), h1],

〈νt+b, I{U(L)}〉 < ε. (55)

By using the fact that the mapping t 7→ Rn(νt) = 〈νt, I{∪Cj=nUj}〉 is continuous, we next show

that the mapping t 7→ ψ(νt) is continuous. For this, we need to show that ‖ψ(νt+b) − ψ(νt)‖ →

0 as b→ 0. From equation (53), we have

‖ψ(νt+b) − ψ(νt)‖ ≤ 2λ‖φ‖max
n

(|Φn(νt+b)− Φn+1(νt)|)

≤ 4dλ‖φ‖max
n

(
∣∣Rn(νt+b)−Rn(νt)

∣∣). (56)
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Since
∣∣Rn(νt+b)−Rn(νt)

∣∣→ 0 as b→ 0 for all n, ‖ψ(νt+b) − ψ(νt)‖ → 0. This proves that

the mapping t 7→ ψ(νt) is continuous. As a consequence, we have that ψ(νt+b) is uniformly

continuous on the interval b ∈ [−min (t, h1), h1] and u ∈ U (L)
(the complement of U (L)).

As a result, there exists some h2 ∈ (0, h1) such that for b ∈ [−min(t, h2), h2], u ∈ U (L)
, we

have ∣∣ψ(νt+b)(u)− ψ(νt)(u)
∣∣ < ε. (57)

Using equations (55)-(57), for b ∈ [−min(t, h2), h2], we have∣∣〈νt+b, ψ(νt+b) − ψ(νt)〉
∣∣ ≤ ε〈νt+b, I{U(L)

}〉+ 4dλ‖φ‖ε ≤ ε+ 4dλ‖φ‖ε. (58)

By letting b → 0 and then ε → 0 in equation (54), we have the continuity of the mapping

t 7→ 〈νt, ψ(νt)〉.

We next show that a solution of equation (52) is also a solution to another differential

equation obtained by applying a method of change of variables. For r ≤ t, we have

d〈νr, τt−rφ〉
dr

= lim
h→0

(〈νr+h, τt−r−hφ〉 − 〈νr, τt−rφ〉)
h

= lim
h→0

(〈νr+h, τt−r−hφ〉 − 〈νr+h, τt−rφ〉)
h

+ lim
h→0

(〈νr+h, τt−rφ〉 − 〈νr, τt−rφ〉)
h

(59)

We now look at the first term on the right side of equation (59). We can write

〈νr+h, τt−r−hφ〉 − 〈νr+h, τt−rφ〉 = 〈νr+h, ŵ〉,

where ŵ is defined such that ŵ(yn) = τt−r−hφ(yn) − τt−rφ(yn). We further simplify the

function ŵ by using the following definition, let

∂φ

∂si
(yn) = lim

h→0

φ(y−jn ; yi + h)− φ(yn)

h
.

We can write

ŵ(yn) = φ(τ+
t−r−h(yn))−φ((τ+

t−r−h(yn))−1; y1+t−r)+φ((τ+
t−r−h(yn))−1; y1+t−r)−φ(τ+

t−r(yn))

Further, we have

φ(τ+
t−r−h(yn))−φ((τ+

t−r−h(yn))−1; y1+t−r) = −
∫ y1+t−r

y1+t−r−h

∂φ

∂s1
((τ+

t−r−h(yn))−1; s1) ds1.

By replacing s1 with y1 + t− r − hv, we get

φ(τ+
t−r−h(yn))−φ((τ+

t−r−h(yn))−1; y1+t−r) = −h
∫ 1

v=0

∂φ

∂s1
((τ+

t−r−h(yn))−1; y1+t−r−hv) dv.
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Similarly, we can write

φ(n, y1 + t− r, · · · , yi−1 + t− r, yi + t− r − h, yi+1 + t− r − h, · · · , yn + t− r − h)

− φ(n, y1 + t− r, · · · , yi + t− r, yi+1 + t− r − h, · · · , yn + t− r − h)

= −h
∫ 1

v=0

∂φ

∂si
(n, y1+t−r, · · · , yi−1+t−r, yi+t−r−hv, yi+1+t−r−h, · · · , yn+t−r−h) dv.

For 1 ≤ i ≤ n, let

w(i,t,r,h,v)(yn) =
∂φ

∂si
(n, y1+t−r, · · · , yi−1+t−r, yi+t−r−hv, yi+1+t−r−h, · · · , yn+t−r−h)

As a consequence, after simplifications, we have

ŵ(yn) = −h
∫ 1

v=0

n∑
i=1

(
w(i,t,r,h,v)(yn)

)
dv

Let the function w∗(t,r,h,v) ∈ Cb(U) be defined as

w∗(t,r,h,v)(yn) =

0 if n = 0,∑n
i=1

(
w(i,t,r,h,v)(yn)

)
otherwise.

Now we can see that

lim
h→0

(〈νr+h, τt−r−hφ〉 − 〈νr+h, τt−rφ〉)
h

= − lim
h→0

∫ 1

v=0

〈νr+h, w∗(t,r,h,v)〉 dv.

Since h 7→ 〈νr+h, w∗(t,r,h,v)〉 is continuous, by the dominated convergence theorem, we have

lim
h→0

(〈νr+h, τt−r−hφ〉 − 〈νr+h, τt−rφ〉)
h

= −〈νr,∇1φ̃〉. (60)

We now look at the second term on the right side of equation (59). We have

〈νr+h, τt−rφ〉 − 〈νr, τt−rφ〉 =

∫ r+h

u=r

∂

∂u
〈νu, τt−rφ〉 du

By using equation (52), we have

〈νr+h, τt−rφ〉 − 〈νr, τt−rφ〉 =

∫ r+h

u=r

(
〈νu,∇1τt−rφ〉

+

C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−rφ(x−jn )− τt−rφ(xn)

)
dνu(xn)

+

[
νu({0})λΦ0(νu) (τt−rφ(1, 0)− τt−rφ(0)) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)

× λΦn(νu)(τt−rφ(xjn; 0)− τt−rφ(xn)) dνu(xn)

])
du.
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Again, by using change of variables, we have

〈νr+h, τt−rφ〉 − 〈νr, τt−rφ〉 = h

∫ 1

v=0

〈νr+hv,∇1τt−rφ〉

+

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−rφ(x−jn )− τt−rφ(xn)

)
dνr+hv(xn)

+

[
νr+hv({0})λΦ0(νr+hv) (τt−rφ(1, 0)− τt−rφ(0)) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)

× λΦn(νr+hv)(τt−rφ(xjn; 0)− τt−rφ(xn)) dνr+hv(xn)

])
dv.

As a result, by using the dominated convergence theorem, we have

lim
h→0

νr+h, τt−rφ〉 − 〈νr, τt−rφ〉
h

= 〈νr,∇1τt−rφ〉

+

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−rφ(x−jn )− τt−rφ(xn)

)
dνr(xn)

+

[
νr({0})λΦ0(νr) (τt−rφ(1, 0)− τt−rφ(0)) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)

× λΦn(νr)(τt−rφ(xjn; 0)− τt−rφ(xn)) dνr(xn)

])
(61)

Finally, by using equations (60) and (61), we have

d〈νr, τt−rφ〉
dr

=

C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−rφ(x−jn )− τt−rφ(xn)

)
dνr(xn)

+

[
νr({0})λΦ0(νr) (τt−rφ(1, 0)− τt−rφ(0)) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)

× λΦn(νr)(τt−rφ(xjn; 0)− τt−rφ(xn)) dνr(xn)

]
.

By integrating d〈νr,τt−rφ〉
dr with respect to r from 0 to t, we get equation (10) for φ ∈ C1

b (U).

Then the result can be extended to the simple functions by using the monotone convergence

theorem and then to the class of functions Cb(U) from the standard arguments by using the

Dynkin π − λ theorem [13, page 497].

We next prove that for φ ∈ C1
b (U), the solution (〈ηt, φ〉, t ≥ 0) of equation (10) is a solution

to equation (9). For this, it is enough to prove the differentiability of 〈ηt, φ〉 with respect

to t. Since φ ∈ C1
b (U), the existence of d〈η0,τtφ〉

dt follows from the dominated convergence
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theorem. By using the Leibniz integral rule, we verify the existence of the differentiation

of the second term on the right side of equation (10) with respect to t. According to this

rule, the first condition is that the integrand needs to be continuous with respect to both the

variables r and t. This follows from the same arguments that we have used to prove the

continuity of the integrand in equation (9). The second condition is that the differentiation of

the integrand with respect to tmust exist and the differential should be continuous with respect

to both r and t. The differential of the integrand with respect to t exists from the dominated

convergence theorem since φ ∈ C1
b (U) and also, it is continuous with respect to r and t from

the same arguments that we have used to prove the continuity of the integrand in equation (9).

Therefore any process (νt, t ≥ 0) ∈ CM1(U)([0,∞)) is a solution to equation (9) if and only

if it is solution to equation (10). Further, note that φ need not be a differentiable function in

equation (10). �

Appendix C. Proof of Theorem 5.1

Proof. From equation (10), we first make it clear that for all φ ∈ Cb(U), the operator

φ 7→ 〈νt, φ〉 is a linear operator with νt(U) = 1. Hence from the Riesz-Markov-Kakutani

theorem [40, Theorem 2.14], for νt ∈ M1(U), the existence of the unique operator φ 7→

〈νt, φ〉 implies the existence of the unique probability measure νt. The uniqueness of νt also

follows from the fact that Cb(U) is a separating class ofM1(U) [13, p.111], if η1, η2 ∈M1(U)

satisfies 〈νt, φ〉 = 〈η1, φ〉 and 〈νt, φ〉 = 〈η2, φ〉 for all φ ∈ Cb(U), then we have η1 = η2.

Given an initial measure ν0, we next prove that there exists at most one mean-field solution

by showing that there exists at most one real valued process 〈νt, φ〉 corresponding to the mean-

field. Suppose (ν1
t , t ≥ 0), (ν2

t , t ≥ 0) are two solutions to the mean-field equations with initial
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points ν1
0 , ν

2
0 , respectively. For φ ∈ Cb(U), we then have

〈ν1
t−ν2

t , φ〉 = 〈ν1
0−ν2

0 , τtφ〉+
∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−sφ(x−jn )− τt−sφ(xn)

)
× d(ν1

s − ν2
s )(xn)

)
ds

+

∫ t

s=0

([
ν1
s ({0})λΦ0(ν1

s ) (τt−sφ(1, 0)− τt−sφ(0))

+

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)
λΦn(ν1

s )(τt−sφ(xjn; 0)− τt−sφ(xn)) dν1
s (xn)

]

−
[
ν2
s ({0})λΦ0(ν2

s ) (τt−sφ(1, 0)− τt−sφ(0))

−
C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

(n+ 1)
λΦn(ν2

s )(τt−sφ(xjn; 0)− τt−sφ(xn)) dν2
s (xn)

])
ds. (62)

The first term on the right side of equation (62) can be bounded as
∣∣〈ν1

0 − ν2
0 , τtφ〉

∣∣ ≤
‖ν1

0 − ν2
0‖‖φ‖. To simplify the second term corresponding to departures, we define a function

ht,s as follows:

ht,s(xn) =

0 if n = 0,∑n
k=1 β(xk)(τt−sφ(x−jn )− τt−sφ(xn)) otherwise.

Then since φ ∈ Cb(U) and β ∈ Cb(R+), we have ht,s ∈ Cb(U). Further, we have ‖ht,s‖ ≤

2C‖β‖‖φ‖. Using the definition of ht,s, we have

∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−sφ(x−jn )− τt−sφ(xn)

)
d(ν1

s − ν2
s )(xn) ds

=

∫ t

s=0

〈ν1
s − ν2

s , ht,s〉ds.

To simplify the third term corresponding to arrivals, we define a function ft,s,ν as follows: for

0 ≤ n ≤ C − 1,

ft,s,ν(xn) =

0 if n = C,∑n+1
j=1

1
(n+1)Φn(ν)(τt−sφ(xjn; 0)− τt−sφ(xn)) otherwise.
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Then the third term is equal to
∫ t
s=0

λ
(
〈ν1
s , ft,s,ν1

s
〉 − 〈ν2

s , ft,s,ν2
s
〉
)
ds. Further, we can write∣∣〈ν1

s , ft,s,ν1
s
〉 − 〈ν2

s , ft,s,ν2
s
〉
∣∣ ≤ ∣∣〈ν1

s − ν2
s , ft,s,ν1

s
〉
∣∣+
∣∣〈ν2

s , ft,s,ν1
s
− ft,s,ν2

s
〉
∣∣

≤ ‖ν1
s − ν2

s‖‖ft,s,ν1
s
‖+ ‖ν2

s‖‖ft,s,ν1
s
− ft,s,ν1

s
‖.

Since ν2
s is a probability measure, ‖ν2

s‖ = 1. Furthermore, ‖ft,s,ν1
s
‖ ≤ 2d‖φ‖ and∣∣ft,s,ν1

s
(xn)− ft,s,ν2

s
(xn)

∣∣ ≤ 2d2‖φ‖
(∣∣Rn(ν1

s )−Rn(ν2
s )
∣∣+
∣∣Rn+1(ν1

s )−Rn+1(ν2
s )
∣∣) .

We can write Rn(ν1
s ) = 〈ν1

s , f
∗〉 where f∗ is a function defined as

f∗(xm) =

1 if m ≥ n,

0 otherwise.

We then have
∣∣Rn(ν1

s )−Rn(ν2
s )
∣∣ ≤ ‖ν1

s − ν2
s‖‖f∗‖ = ‖ν1

s − ν2
s‖.

Finally, by using bounds for all the terms, we get∣∣〈ν1
t − ν2

t , φ〉
∣∣ ≤ (‖ν1

0 − ν2
0‖+

∫ t

s=0

2‖β‖C‖ν1
s − ν2

s‖ ds +

∫ t

s=0

8d2λ‖ν1
s − ν2

s‖ ds
)
‖φ‖.

Therefore we have

‖ν1
t − ν2

t ‖ ≤ ‖ν1
0 − ν2

0‖+ (2C‖β‖+ 8d2λ)

∫ t

s=0

‖ν1
s − ν2

s‖ ds. (63)

From the Gronewall’s inequality, for some b, c > 0, t ∈ [0, T ], if ‖ν1
t − ν2

t ‖ ≤ b+c
∫ t
s=0
‖ν1
s − ν2

s‖ds,

then it follows that ‖ν1
t − ν2

t ‖ ≤ b ect. Therefore, from equation (63), we have ‖ν1
t − ν2

t ‖ ≤

‖ν1
0 − ν2

0‖ e(2C‖β‖+8d2λ)t. Hence, starting from an initial measure ν0, there exists at most one

solution for the mean-field equations.

We now prove that there exists a process (νt, t ≥ 0) ∈ CM1(U)([0,∞)) satisfying the mean-

field model equations. This follows from the relative compactness of the sequence {ηNt , t ≥ 0}

inDM1(U)([0,∞)) from the proof of Theorem 5.2. In particular, we have that every limit point

of the sequence {ηNt , t ≥ 0} satisfies equation (10). Further, each limiting point is almost

surely continuous. This concludes that there exists a solution to the mean-field equations.

�

Appendix D. Martingale construction

In this section, by using the infinitesimal generator of the Markov process (ηNt , t ≥ 0),

we construct a martingale (MN
t (φ), t ≥ 0) ∈ DR([0,∞)) where φ ∈ C1

b (U). We then show
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that the scaled version of the process (MN
t (φ), t ≥ 0) converges in distribution to the null

process based on which we later establish the convergence of the scaled version of the process

(ηNt , t ≥ 0).

Since the set of linear combinations of Qf : MF (U) 7−→ R for f ∈ C1
s (U) defined by

Qf (ν) = e−〈ν,f〉 is dense in the set C(MF (U)) [38, proposition 7.10], by using ANQf (ν),

for any continuous function F ∈ C(MF (U)) such that the infinitesimal generator ANF (ν) =

limh→0
E[F (ηNh )|ηN0 =ν]−F (ν)

h is well-defined, we have for all ν

ANF (ν) = lim
h→0

F (τhν)− F (ν)

h
−NλF (ν)− F (ν)

C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj) dν(xn)

+

C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
F (ν + δ(x−jn ) − δ(xn)

)
dν(xn)

+Nλ

[(
ν({0})
N

Φ0

( ν
N

) (
F (ν + δ(1,0) − δ(0))

))
+

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

N(n+ 1)
Φn

( ν
N

)

× F (ν + δ(xjn;0) − δ(xn)) dν(xn) +

∫
· · ·
∫
UC

1

N
ΦC

( ν
N

)
F (ν) dν(xC)

]
. (64)

For φ ∈ C1
b (U), it is clear that the function ν ∈ MF (U) 7→ 〈ν, φ〉 ∈ R belongs to the

domain of AN .

Proposition D.1. For all φ ∈ C1
b (U), the process (MN

t (φ), t ≥ 0) given by

MN
t (φ) = 〈ηNt , φ〉 − 〈ηN0 , φ〉 −

∫ t

s=0

AN 〈ηNs , φ〉ds (65)

is a RCLL (process that is right continuous with left limits) square integrableFNt −martingale.

For φ ∈ C1
b (U), the quadratic variation of (MN

t (φ), t ≥ 0) is given by

< MN
. (φ) >t=

∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)2
dηNs (xn)

+Nλ

[(
ηNs ({0})

N
Φ0

(
ηNs
N

)
(φ(1, 0)− φ(0))

2

)
+

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

N(n+ 1)
Φn

(
ηNs
N

)
(φ(xjn; 0)− φ(xn))2 dηNs (xn)

])
ds (66)

Proof. From the Dynkin’s formula [13], the process (MN
t (φ), t ≥ 0) defined by

MN
t (φ) = 〈ηNt , φ〉 − 〈ηN0 , φ〉 −

∫ t

s=0

AN 〈ηNs , φ〉ds (67)
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is a RCLL FNt −local martingale. Therefore, by simplification, we get

MN
t (φ) = 〈ηNt , φ〉 − 〈ηN0 , φ〉 −

∫ t

s=0

〈ηNs ,∇1φ〉 ds−
∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

×
(
φ(x−jn )− φ(xn)

)
dηNs (xn)

+Nλ

[(
ηNs ({0})

N
Φ0

(
ηNs
N

)
(φ(1, 0)− φ(0))

)
+

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

1

N(n+ 1)
Φn

(
ηNs
N

)
(φ(xjn; 0)− φ(xn)) dηNs (xn)

])
ds. (68)

By choosing Fφ(ηNt ) = 〈ηNt , φ〉, from [11, Theorem 7.15], we have

< M·(φ)N >t=

∫ t

s=0

(
ANF 2

φ(ηNs )− 2Fφ(ηNs )ANFφ(ηNs )
)
ds. (69)

After simplifications, we get equation (66). Finally, since φ ∈ C1
b (U) and β ∈ Cb(R+), we

have E
[
< MN

· (φ) >t
]
< ∞ and hence, (MN

t (φ), t ≥ 0) is a square integrable martingale.

�

Appendix E. Proof of Lemma 5.3:

Proof. Let us consider the function φ̂ = I{ln∈Un: 0≤li≤yi, ∀i}. For an absolutely continuous

measure νs which has no atoms, we have 〈νs, φ̂〉 = 〈νs, ψ〉, where ψ = I{un∈Un: 0<li<yi, ∀i}.

Since there exists a sequence of functions {fn} ∈ Cb(U) that increase point wise to I{B}

where B is an open set in Un, n ≥ 1, by using the monotone convergence theorem and

equation (10), we have that equation (10) is true even for the function ψ (Indicators on open

sets). Furthermore, since the measure νs is absolutely continuous for all s ≥ 0, we have that

equation (10) is true even for the function φ̂ (Indicators on closed sets). Therefore we can

obtain the evolution equations for the process (Pt, t ≥ 0) that is defined as Pt(yn) = 〈νt, φ̂〉

using equation (10). We can further simplify the expression of the process (Pt(u),u ∈ U , t ≥

0) obtained from equation (10) using the fact that

〈νs, τbI{xn∈Un: 0≤xi≤yi, ∀i}〉 = 〈νs, I{xn∈Un: 0≤xi+b≤yi, ∀i}〉

= 〈νs, I{xn∈Un: 0≤xi≤yi−b, ∀i}〉.

By differentiating Pt(yn) with respect to t and after simplifications, it is verified that the

process Pt = (Pt(u),u ∈ U) satisfies equations (16)-(18).

�
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Appendix F. Proof of Lemma 5.2

Proof. From the Remark 5.2, we recall that the MFEs are the dynamics of the probability

distribution of a single server Loss system with capacity C where jobs arrive according to a

Poisson process with rate λΦn(ηt) (n ≥ 1) when there are n progressing jobs. We have that

the initial distribution ϑ has a density function and our objective is to show that for given t = r,

ηr has a density function. For n ≥ 1, un = (n, u1, · · · , un), we now prove that ηr has density

at un. For γi > 0, 1 ≤ i ≤ n, let B = ((n, y1, · · · , yn) : ui < yi < ui + γi, 1 ≤ i ≤ n). The

probability that at time t = r, there are n progressing jobs and the ith job has age yi such that

yi ∈ (ui, ui + γi), i ≥ 1, is equal to ηr(B). Out of the n progressing jobs that are present at

time t = r, let J1 be the set of indices of all the progressing jobs that entered the system at a

time t > 0 and J2 be the set of indices of all the progressing jobs which are present from time

t = 0. Precisely,

J1 = {i : r ≥ ui, 1 ≤ i ≤ n},

and

J2 = {i : r < ui, 1 ≤ i ≤ n}.

Essentially, if i ∈ J1, it implies that the age of the ith job is less than or equal to r and

since the ages of progressing jobs increase linearly with time at unit rate, the ith job must

have entered the system at a time t > 0. Precisely, at time r, if the ith job’s age yi satisfies

yi ∈ (ui, ui + γi) and i ∈ J1, it implies that the ith job must have entered the system in the

time interval (r − ui − γi, r − ui) and stayed in the system up to time t = r. On the other

hand, if j ∈ J2, it implies that the jth job is present in the system from time t = 0. At time

t = r, if the jth job’s age yj satisfies yj ∈ (uj , uj + γj) and j ∈ J2, then its age should lie in

the interval (uj − r, uj + γj − r) at time t = 0.

Using the setsJ1 andJ2, we now obtain an upper bound on ηr(B) from which we conclude

that there exists a density function. For given set A, let |A| be the number of elements in the

set A. Further, let J1 = |J1| and J2 = |J2|.

Let B1 be the event that there exists at least J2 jobs at time t = 0 such that for each j ∈ J2,

there exists a job with age in the interval (uj − r, uj + γj − r) and it should stay in the system

up to time t = r. Note that the total number of jobs say q that are present at time t = 0

can be more than J2, but only J2 of them should stay in the system up to time t = r. A job

with age x at time t = 0 will stay in the system at time t = r with probability G(x+t)

G(x)
. Let
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fϑ = (fϑ(u),u ∈ U) be the pdf of ϑ. Let li be the ith smallest element of the set J2. Then

by using all the above arguments, we get the following bound where q denotes the number of

progressing jobs at time t = 0 and ij is the index of the job out of q jobs which will stay in the

system up to time t = r with age lying in the interval (ulj , ulj + γlj ) at time t = r:

P(B1) ≤
C∑

q:q=J2

 ∑
(i1,··· ,iJ2 )∈{1,2,··· ,q}

∫
· · ·
∫
V
fϑ(n, x1, · · · , xn)

(
J2∏
m=1

G(xim + r)

G(xim)

)
dx1 · · · dxq

 ,

(70)

where

V = {(x1, · · · , xq) : xm ∈ R+ if m /∈ {i1, · · · , iJ2}

and xm ∈ (ula − r, ula − r + γla) for m = ia, 1 ≤ a ≤ J2, 1 ≤ m ≤ q}.

We now focus on the jobs that belong to the setJ1. LetB2 be the event that for each j ∈ J1,

there is an arrival in the time interval (r − uj − γj , r − uj) and furthermore, this job should

stay in the system until the time t = r. Since the arrival process is a Poisson process with rate

λΦn(ηt) when there are n jobs and λΦn(ηt) ≤ λd for all n ≥ 0, for any time interval [t1, t2],

we have

P(X) ≤ P(Y ),

where X denotes the number of arrivals to the server in the interval [t1, t2] and Y denotes the

number of arrivals in the interval [t1, t2] when the arrival process is a Poisson process with

rate λd. Let ki be the ith smallest element of the set J1. Then since the arrival instants have

uniform distribution conditioned on the number of arrivals over a time interval [39, page 325],

we get

P(B2) ≤ (λd)J1

J1!

(
J1∏
j=1

G
(
ukj
)
γkj

)
. (71)

Finally, from (70) and (71), we have

ηt(B) ≤

 C∑
q:q=J2

 ∑
(i1,··· ,iJ2 )∈{1,2,··· ,q}

∫
· · ·
∫
V
fϑ(n, x1, · · · , xn)

(
J2∏
m=1

G(xim + r)

G(xim)

)
dx1 · · · dxq

)) (λd)J1

J1!

(
J1∏
j=1

G
(
ukj
)
γkj

) . (72)

Clearly, ηt has density at u since ηt(B)→ 0 as γj → 0 for 1 ≤ j ≤ n. �
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