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ABSTRACT

Phylogenetic dating is one of the most powerful and commonly used methods of drawing epidemiological

interpretations from pathogen genomic data. Building such trees requires considering a molecular clock

model which represents the rate at which substitutions accumulate on genomes. When the molecular

clock rate is constant throughout the tree then the clock is said to be strict, but this is often not

an acceptable assumption. Alternatively, relaxed clock models consider variations in the clock rate,

often based on a distribution of rates for each branch. However, we show here that the distributions

of rates across branches in commonly used relaxed clock models are incompatible with the biological

expectation that the sum of the numbers of substitutions on two neighbouring branches should be

distributed as the substitution number on a single branch of equivalent length. We call this expectation

the additivity property. We further show how assumptions of commonly used relaxed clock models can

lead to estimates of evolutionary rates and dates with low precision and biased confidence intervals.

We therefore propose a new additive relaxed clock model where the additivity property is satisfied. We

illustrate the use of our new additive relaxed clock model on a range of simulated and real datasets,

and we show that using this new model leads to more accurate estimates of mean evolutionary rates

and ancestral dates.
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INTRODUCTION

Epidemiological analysis of pathogen genomic data often relies on the construction and interpretation

of dated phylogenies. Dated phylogenies have branch lengths measured in units of time (for example

years or days) instead of genetic distance. The leaves of a dated phylogeny are aligned on the time axis

with their isolation dates (which are usually known), and the internal nodes are aligned with the time

when the corresponding common ancestors existed which is usually unknown but can be estimated.

Time-scaled phylogenetic analysis represents a very useful and popular tool for genomic epidemiology,

allowing researchers to study population size dynamics (Ho and Shapiro 2011), transmission (Didelot

et al. 2017), pathogen population structure (Volz et al. 2020) or host population structure (Volz et al.

2013). Dated phylogenies can be built directly from the genetic data using Bayesian phylogenetic

methods implemented in BEAST (Suchard et al. 2018; Bouckaert et al. 2019). Alternatively, a two-

step approach can be used, which is based on firstly building a standard phylogeny and secondly

estimating the date of each node in this phylogeny. The first step (standard phylogenetics) can be

performed, for example, using RAxML (Stamatakis 2014), PhyML (Guindon et al. 2010), FastTree

(Price et al. 2010) or IQ-TREE (Nguyen et al. 2015). The second step (phylogeny dating) can be

performed, for example, using LSD (To et al. 2016), node.dating (Jones and Poon 2017), treedater

(Volz and Frost 2017), TreeTime (Sagulenko et al. 2018) or BactDating (Didelot et al. 2018). In this

article for ease of presentation we initially focus on the two-step phylogeny dating approach, and later

show how our findings are applicable to the integrated approach too.

An important consideration when building a dated phylogeny is the choice of the clock model, which

represents the way in which mutations accumulate during the evolution of the population (Kumar

2005; Lepage et al. 2007; Drummond and Suchard 2010; Lartillot et al. 2016). In the phylogeny dating

approach, the clock model represents the stochastic relationship, for each branch i of the phylogeny, the

duration li separating the nodes at the top and bottom of the branch, and the number xi of mutations

that occurred on the branch. The simplest clock model is called the strict clock model and assumes a

constant rate µ of mutation on all the branches (Zuckerkandl and Pauling 1962). Therefore, a branch

of duration li will contain a number of mutations xi which is Poisson distributed with parameter µli.

The strict clock model (Zuckerkandl and Pauling 1962) has just a single parameter µ and this simplicity

is attractive, but it is often too simple because of variations in the mutation rate from one lineage to
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another.

A number of alternatives to the strict clock model have been proposed, with by far the most popular

being the uncorrelated relaxed clock model (Drummond et al. 2006). Under this model, each branch

has its own mutation rate mi, and these per-branch rates are independent of one another. In current

implementations of the uncorrelated relaxed clock model, the rates mi are drawn independently and

identically from a well defined rate distribution, for example a lognormal distribution (Drummond

et al. 2006), an exponential distribution (Drummond et al. 2006; To et al. 2016), a normal distribution

(Sagulenko et al. 2018) or a gamma distribution (Volz and Frost 2017; Didelot et al. 2018). However,

we found that the use of the same distribution for all per-branch rates of the uncorrelated relaxed

clock model is inconsistent with the intuitive biological expectation of additivity between branches

of the phylogeny. For example, if we consider two branches i and j of the tree with length li and

lj respectively, then the distribution of xi + xj is not the same as the distribution for a branch of

length li + lj . The currently used models are therefore not robust to adding or removing genomes in

the phylogeny, since the way these genomes find common ancestors with the remaining genomes will

cause some branches to be split or merged. The non-additivity property of frequently used relaxed

clock models becomes clear when we consider splitting or merging branches of the tree. But it is also

important even if there is no intention to add or remove genomes, since it means that the dating results

are not robust to the selection of genomes used for analysis.

Using an additive model is likely to be especially important for applications of dating in genomic

epidemiology where many branches of short duration are considered, due to very large sample sizes

and epidemic processes of interest sometimes occurring in a matter of days (Carroll et al. 2015; Faria

et al. 2017). It is also very relevant to real-time studies of pathogen outbreaks, where new cases are

continuously added onto the phylogeny over time, splitting ancestral branches (Quick et al. 2016; Dinh

et al. 2018; Fourment et al. 2018; Hadfield et al. 2018; Gill et al. 2020). Here we propose alternative

robust uncorrelated relaxed clock models which solve this issue and therefore have better statistical and

biological properties compared to the current models. We consider both the case where the number of

mutations on a branch is discrete or continuous. We illustrate the difference between our models and

previous models using simulations, and show that previous models can lead to misleading conclusions

on both simulated and real genomic epidemiology datasets.
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NEW APPROACHES

Additivity of the strict clock model

We start with the simple strict clock (SC) model (Zuckerkandl and Pauling 1962) in order to set

notations and define the additivity property in this context. Under the SC model, we have that each

branch mutates as a Poisson process with rate µ. The discrete number of mutations xi on a branch of

duration li (which could be measured in years or days, etc) is therefore:

xi ∼ Poisson(liµ) (1)

Note that we use lower case symbols for both random variables and their realisations, which is a

frequently used abuse of notation in the field (and also more generally when Greek symbols are used).

Let us now consider two branches of lengths l1 and l2. Under the SC model, the distribution of the

convolution x1 + x2, i.e. the sum of the number of mutations on both branches, is the same as the

distribution of the number x of mutations on a branch of length l = l1 + l2, because:

x1 ∼ Poisson(l1µ) and x2 ∼ Poisson(l2µ) =⇒ x1 + x2 ∼ Poisson((l1 + l2)µ) (2)

We call this property the additivity of the SC model, and note that it is a consequence of the infinite

divisibility of the Poisson distribution.

Non-additivity of previous uncorrelated relaxed clock models

The uncorrelated relaxed clock (RC) model was first proposed by Drummond et al. (2006). In this

model, each branch has its own mutation rate mi. A convenient choice for the distribution of the

mi rates is a Gamma(k, θ) distribution, since this is the conjugate of the Poisson distribution of xi

given li (note that here and throughout this paper we use a shape-scale parametrisation of the gamma
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distribution). As previously noted (Volz and Frost 2017) this choice leads to:

xi ∼ NegBin

(
k,

θli
1 + θli

)
(3)

More generally, let µ and σ2 denote the mean and variance of the distribution of per-branch rates mi.

In the case of the Gamma(k, θ) distribution, this is achieved by setting k = µ2

σ2 and θ = σ2

µ . Using the

laws of of total expectation and variance of xi we can show that:

E(xi) = E(E(xi|mili)) = E(mili) = µli (4)

V(xi) = E(V(xi|mili)) + V(E(xi|mili)) = E(mili) + V(mili) = µli + σ2l2i (5)

We note that the expectation is the same as in the SC model, whereas the variance is increased by an

additive factor σ2l2i . The fact that the variance is increased makes sense since RC is a relaxation of the

SC model. However, the variance is increased by a factor that is not proportional to the branch length

li, and this implies that the model does not have the additivity property. In particular, we find that

the variance of the number of mutations x on a branch of length l = l1 + l2 is greater than the variance

of x1 + x2 where x1 and x2 are numbers of mutations on branches of lengths l1 and l2 respectively:

V(x) = µl + σ2l2 > V(x1 + x2) = µ(l1 + l2) + σ2(l21 + l22) (6)

Since the variances of x and x1 + x2 are not the same, their distributions are clearly not identical

and so the RC is not additive like the SC model. This is true for the RC model in Equation 3 which

is based on the same gamma distribution for all per-branch rates, but the calculation above was not

based on any particular distribution, so that it also applies to any other RC model based on any

other identical distribution for the per-branch rates. The fact that the RC model does not have the

additivity property is problematic both from a statistical and biological point of view.
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Additive uncorrelated relaxed clock model

In order to obtain the additivity property in a relaxed clock model, we propose an alternative model

which we call the Additive Relaxed Clock (ARC) model. This model has parameters µ and ω such that

a branch of duration li has mutation rate mi with expectation E(mi) = µ and variance V(mi) = µω/li.

Using the laws of total expectation and variance as previously, we find that:

E(xi) = E(E(xi|mili)) = E(mili) = µli (7)

V(xi) = E(V(xi|mili)) + V(E(xi|mili)) = E(mili) + V(mili) = µli(1 + ω) (8)

The expected number of mutations under the ARC model is therefore the same as in the SC model

and RC model. The variance is increased relative to the SC model by a multiplicative factor 1 + ω.

The values of the expectation and variance on the number of mutations are therefore compatible with

the desired additivity property of the proposed model. However, this is a necessary but not sufficient

condition. For the model to be additive, we need the distributions to be additive, not just their

expectations and variances. We can obtain this full additivity property using a gamma distribution

for the mutation rate mi of a branch of length li as follows:

mi ∼ Gamma

(
µli
ω
,
ω

li

)
(9)

Since the gamma distribution is the conjugate prior to the Poisson(mili) distribution of xi given mi

we get:

xi ∼ NegBin

(
µli
ω
,

ω

1 + ω

)
(10)

This ARC model clearly satisfies the additivity property, since the sum of two negative binomial random
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variables with the same second parameter is also a negative binomial random variable. Specifically:

x1 ∼ NegBin

(
µl1
ω
,

ω

1 + ω

)
and x2 ∼ NegBin

(
µl2
ω
,

ω

1 + ω

)
=⇒ x1+x2 ∼ NegBin

(
µ(l1 + l2)

ω
,

ω

1 + ω

)
(11)

Like the Poisson distribution used in the SC model (Equation 1), the negative binomial distribution

used here (i.e. with a constant second parameter ω
1+ω ) is infinitely divisible for its first parameter

which is proportional to the branch length.

Continuous relaxed clock models

In this section we consider models in which the branch lengths xi of the phylogenetic tree, measured

in units of substitutions, are continuous. This is useful because most standard phylogenetic software

return trees where branch lengths are continuous, in order to accommodate uncertainties in ancestral

sequence reconstructions (Yang and Rannala 2012) and to account for non-uniform mutation models

which give different weights to different types of mutations (Liò and Goldman 1998). Gamma

distributions are a natural choice for this as previously noted (Didelot et al. 2018). For example, in the

case of a continuous strict clock (cSC) model with rate µ, instead of the discrete Poisson distribution

from Equation 1 we can use the gamma distribution with the same expectation and variance, namely:

xi ∼ Gamma(µli, 1) (12)

This cSC model satisfies the additivity property, since:

x1 ∼ Gamma(µl1, 1) and x2 ∼ Gamma(µl2, 1) =⇒ x1 + x2 ∼ Gamma(µ(l1 + l2), 1) (13)

A continuous uncorrelated relaxed clock (cRC) model was recently proposed (Didelot et al. 2018) based

on the assumption that each branch has its own mutation rate mi with mean µ and variance σ2, as in

the discrete RC model. Specifically, xi was proposed to be gamma distributed as follows:
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xi ∼ Gamma

(
µ2li

µ+ σ2li
, 1 +

σ2li
µ

)
(14)

This choice is analogous to the discrete RC model (Drummond et al. 2006) previously mentioned, and

suffers from the same issue of non-additivity. In particular, we can use the laws of total expectation and

variance of xi to get E(xi) = µli and V(xi) = µli +σ2l2i exactly as in the discrete case (cf Equations 4

and 5). If σ2 = 0 this model reduces to the cSC model (Equation 12) which is additive, but otherwise

this model does not have the additivity property. This is true for the cRC model in Equation 14 but

also for any other cRC model that assumes that the per-branch rates are independent and identically

distributed.

We can remedy this issue in a similar way as we did for the discrete case, and define a continuous

additive relaxed clock (cARC) model. We consider the model with parameters µ and ω such that a

branch of duration li has mutation rate mi with the same expectation and variance as in the discrete

case, ie E(mi) = µ and variance V(mi) = µω/li. By application of the laws of total expectation and

variance, we get the same expectation and variance for xi as in the discrete case, cf Equations 7 and

8. These formulas for the expectation and variance of xi are necessary for the additivity of the model,

but as noted in the discrete case they are not sufficient since we also need the distributions themselves

to be additive. To obtain this property we define the cARC using the following gamma distribution:

xi ∼ Gamma

(
µli

1 + ω
, 1 + ω

)
(15)

If ω = 0, this model reduces to the cSC model (Equation 12). The cARC model has the additivity

property since the sum of two gamma distributed random variables with the same scale parameter is

also gamma distributed with the same scale. Specifically:

x1 ∼ Gamma

(
µl1

1 + ω
, 1 + ω

)
and x2 ∼ Gamma

(
µl2

1 + ω
, 1 + ω

)
=⇒ x1+x2 ∼ Gamma

(
µ(l1 + l2)

1 + ω
, 1 + ω

)
(16)
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Note that there is a difference in the way we derived this continuous model (cARC, Equation 15)

compared to the discrete model (ARC, Equation 10): in the latter we selected a distribution on mi to

deduce the distribution of xi whereas in the former we selected a distribution of xi directly, without

worrying about the distribution of mi (which are not identically distributed). There is however no

difference in practice between these two approaches: in the discrete case the distribution of mi was

selected to get the distribution of xi we wanted (i.e. with the additivity property) which is not

statistically more principled than directly specifying the distribution of xi.

RESULTS

Comparison of model properties

Model Full name Relaxed Additive Continuous Equation Reference
SC Strict Clock N Y N 1 Zuckerkandl and Pauling (1962)
RC Relaxed Clock Y N N 3 Drummond et al. (2006)

ARC Additive Relaxed Clock Y Y N 10 This study
cSC Continuous Strict Clock N Y Y 12 Didelot et al. (2018)
cRC Continuous Relaxed Clock Y N Y 14 Didelot et al. (2018)

cARC Continuous Additive Relaxed Clock Y Y Y 15 This study

Table 1: Summary of the six clock models under study and their properties.

The six clock models described above and their properties are summarised in Table 1. We compared

the discrete distributions of the number of substitutions implied by the SC model, the RC model and

the new ARC model, varying both the duration of the branches considered and the level of relaxation

in the RC and ARC models. Specifically, the distributions of the number of substitutions xi on a

branch of duration li are shown in Figure 1 for the SC model (Equation 1), the RC model (Equation

3) and the ARC model (Equation 10). Increasing the variance of the per-branch rates in the RC

model (parameter σ2) and the ARC model (parameter ω) made the distributions of substitutions

increasingly diffuse relative to the SC model, as expected. There are however marked differences

in behaviour between the RC and ARC models: in the RC model the distribution mode for longer

branches quickly shifts to small values as relaxation is increased, whereas this is not the case in the

ARC model. Conversely, for short branches even a high σ2 in the RC model does not imply much

relaxation, whereas a high ω in the ARC model has a much clearer effect for small branches. On a
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branch of length li, the excess variance in the number of mutations of the RC model relative to the

SC model is σ2l2i (Equation 5) whereas in the ARC model it is µliω (Equation 8). If we set µ = 1 and

σ2 = ω we therefore have that the variance is greater in the ARC model than in the RC model for

branches of length li < 1 and vice-versa for branches of length li > 1, as can be seen by comparison of

the last two rows of Figure 1.

We performed a similar comparison for the models using continuous distributions of the number of

substitutions on each branch. The distributions of number of mutations xi on a branch of duration

li are shown in Figure S1 for the strict cSC model (Equation 12), the relaxed cRC model (Equation

14) and the new cARC model (Equation 15). We note that these results are very similar to the

discrete case for all six models considered, i.e. SC vs cSC, RC vs cRC and ARC vs cARC (compare

Figures 1 and S1). This indicates that the gamma distributions used in the three continuous models

are good continuous equivalents to the Poisson and negative binomial distributions used in the three

discrete models. In particular, comparison between cRC and ARC shows very similar features to the

ones described above between RC and ARC concerning the effect on short vs long branches. In the

discrete situation, the SC model defined in Equation 1 is not a special case of the RC model defined

in Equation 3. However, in the continuous situation we have a useful property that the cSC model

defined in Equation 12 is a special case of both the cRC model (by setting σ2 = 0 in Equation 14) and

the cARC model (by setting ω = 0 in Equation 15). This property is useful for model selection, since

it means that the cSC model is embedded within the cRC and the cARC models.

Application to simulated datasets

We simulated 100 datasets, each of which consisted of 100 genomes of 10,000bp sampled at regular

intervals between 2010 and 2020. The ARC model was used to simulate mutations along the branches

of this dated phylogeny, with a mean rate of µ = 5 mutations per genome per year, and a relaxation

parameter varying between ω = 0 (in which case the model reduced to the SC model) and ω = 10.

Undated phylogenies were reconstructed from the genomes using PhyML (Guindon et al. 2010) which

were used as input trees in BactDating (Didelot et al. 2018). Separate MCMC runs were performed

assuming either the old RC model or the new ARC model. Each MCMC was run for 105 iterations

which took approximately 10 minutes on a single core of a standard desktop computer. Good
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convergence and mixing properties of the MCMC results were found using both the Gelman-Rubin

diagnostic (Gelman and Rubin 1992; Brooks and Gelman 1998) and an effective sample size test

implemented in CODA (Plummer et al. 2006).

We compared the fit of these two models by computing the deviance information criterion (DIC) of

both models (Spiegelhalter et al. 2002). We found that the ARC had significantly better fit (i.e.

smaller DIC) for all simulations with ω > 1, which is as expected since the data was simulated from

the ARC model. This model comparison was more ambiguous when ω < 1, which again is as expected

since when ω is close to zero both the ARC and RC models reduce to the SC model. Figure 2 shows

the difference between real and estimated time to the most recent common ancestor (TMRCA) and

the estimated mean mutation rate µ for both models, as well as the estimates of the parameter ω for

the ARC model. The 95% credible intervals of both the TMRCA and µ almost always include the

correct values of zero and five respectively, but the intervals are slightly larger in the RC model for µ

(mean length of 2.30 vs 1.91), and much larger for the TMRCA (mean length of 24.82 vs 10.91). This

indicates that even if using the RC does not result in biased estimates, more precise estimates can be

obtained using the ARC model, especially for dating nodes. The difference was less pronounced when

simulation used lower values of ω, as expected since the ARC and RC models both reduce to the SC

model when ω = 0, but even in these conditions the ARC presented a clear advantage in terms of

precisely estimating the TMRCA (Figure S2). The estimates of ω under the ARC model follow the true

values of ω used in the simulation, which is as expected when the same model is used for simulation

and inference but also shows that there is significant statistical power, even in these relatively small

datasets, to correctly infer the level of relaxation of the molecular clock.

We applied treedater (Volz and Frost 2017) to the same datasets using the ARC model and computed

parametric bootstrap values for the TMRCA, mean mutation rate µ and relaxation parameter ω

(Figure S3). The inferred values of ω followed the correct values used in the simulations, which is as

expected since the ARC model was used for both simulation and inference. The TMRCA and µ were

correctly inferred with no evidence of bias, but the 95% confidence intervals estimated using parametric

bootstrapping were wider than the Bayesian credible intervals in BactDating, which is certainly the

result of inherent differences between these two statistical approaches rather than differences between

the continuous and discrete models.
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We applied BEAST2 (Bouckaert et al. 2019) to the same genome datasets using our new BEAST2

package. Inference was performed in BEAST2 using both the previous uncorrelated lognormal relaxed

molecular clock (Drummond et al. 2006) and our new ARC model (Figure 3). We found that the

inference of both the TMRCA and the mean clock rate µ was improved when using the ARC model.

The estimates for both models were usually centred on the correct values, but the credible intervals for

the RC model were much wider than for the ARC model for both the mean clock rate (mean lengths

4.12 vs 2.01) and the TMRCA (mean lengths 14.29 vs 8.08). There was a slight underestimation of the

relaxation parameter ω for values greater than three, which reflects the difficulty to infer this parameter

precisely and our choice of a conservative prior Gamma(0.1,1) with mean and variance equal to 0.1.

We also performed in BEAST2 another set of analyses in which we purposefully misspecified the

mutation model by using an infinite site model for the simulations and a finite site model for the

inference (Figure S4). We used sequences of length only 1,000bp to accentuate the difference between

simulation and inference models, with all other conditions as before. This resulted in a relatively small

bias when inferring with the ARC model, with a slight overestimation of both the mean rate µ and the

relaxation parameter ω. However, the results with the uncorrelated lognormal relaxed molecular clock

were worse in terms of both the clock rate and TMRCA estimates (Figure S4). These results therefore

show that the ARC model is fairly robust to model misspecification, with relatively little effect on the

estimates of lineage dates.

Application to real datasets

We reanalysed a previously published dataset (Schuenemann et al. 2013) consisting of ten modern

genomes plus five ancient genomes of Mycobacterium leprae, the causative agent of leprosy. In a

previous analysis using BactDating (Didelot et al. 2018), the cSC model was found to be preferred to

the cRC model using a reversible jump Markov Chain Monte-Carlo (rjMCMC; Green 1995) to compare

between the two models which resulted in a Bayes factor of 141.85 in favour of cSC. We repeated this

analysis using a similar rjMCMC to compare between cSC and our new cARC, and found once again

that cSC was preferred, with an estimated Bayes factor of 57.82. Thus in this model, as previously

concluded (Didelot et al. 2018), there is no evidence for relaxation of the clock rate, whether a cRC or

cARC model is used, and the inferred dated phylogeny is therefore unchanged (Figure S5).
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We also reanalysed another previously published dataset (Holt et al. 2013) consisting of 155 Vietnamese

genomes from the VN clade of the bacterial pathogen Shigella sonnei. A previous analysis using BEAST

estimated the TMRCA to be 1982 [1978-1986] (Holt et al. 2013) and a separate analysis using the cRC

model of BactDating found a very similar estimate of 1983.45 [1977.99;1986.88] (Didelot et al. 2018).

We repeated this second analysis using the cARC model, and found a more precise estimate for the

TMRCA of 1983.04 [1979.58;1985.91] (Figure S6). In the previous cRC analysis, the mean evolutionary

rate was estimated to be µ = 4.22 [3.66-4.85] substitutions per genome per year whereas with the new

cARC it was slightly lower at 3.93 [3.36;4.51] substitutions per genome per year with a relaxation

parameter ω of 1.72 [1.11;2.44]. We computed the DIC (Spiegelhalter et al. 2002) under both cRC and

cARC and found them to be respectively equal to 2008.33 and 1782.69. This represents conclusive

evidence that this dataset is better explained by the new cARC model rather than the previous cRC

model, and therefore that additivity is an important property to analyse this dataset.

Finally, we present a new analysis of a question that has sparked debate for many years: the age of

last common ancestor of Typhi, the serovar of Salmonella enterica which causes typhoid fever. This

age was first estimated to be about 50kya (Kidgell et al. 2002) based on a universal clock of 6× 10−9

per site per year (Ochman and Wilson 1987; Ochman et al. 1999). This estimate was later revised

to between 10 and 40kya (Roumagnac et al. 2006), still based on the same universal clock. However,

these estimates have been criticised on the basis that the universal clock is no longer believed to be

valid (Morelli et al. 2010; Achtman 2016). Recent genomic studies on Typhi did not provide a new

estimate for the age of Typhi, focusing instead on specific geographical regions or individual clades

within Typhi (Wong et al. 2015, 2016; Britto et al. 2018; Park et al. 2018). One of these studies

included a large number of genomes from the whole of Typhi, but reported a lack of temporal signal

(Wong et al. 2015). This study therefore focused on the recently emerged H58 lineage of Typhi,

within which they estimated a clock rate of 0.63 [0.59-0.67] substitutions per genome per year (Wong

et al. 2015). We reanalysed the 978 genomes from this study (Wong et al. 2015) which are not part

of H58. We found, as reported by the authors, no evidence for a temporal signal on the basis of a

linear regression of root-to-tip distances versus isolation dates (Figure S7). However, this regression

approach is not statistically powerful since root-to-tip distances are not independent from one another,

and also because it makes an implicit assumption of a strict molecular clock. We therefore applied

both the cRC and cARC models within BactDating, and found that cARC had a much smaller DIC
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of 11107.77 compared to 17419.52 for cRC. The cARC model is therefore supported by the data, and

in this analysis we estimate a mean rate µ of 0.38 [0.36;0.42] substitutions per genome per year with

relaxation parameter ω of 8.13 [7.16;9.02]. This mean rate is similar to the previous estimate for H58

(Wong et al. 2015) which suggests that the temporal signal is correctly captured. On the other hand,

this rate for the whole of Typhi is slightly lower than for the recent clade H58, which is consistent with

the well documented inverse relationship between estimated substitution rates and TMRCA (Ho and

Larson 2006; Ho et al. 2011; Duchêne et al. 2014; Biek et al. 2015). We confirmed that this temporal

signal under the cARC model is significant following a previously described method (Duchêne et al.

2015): the analysis was repeated 100 times with sampling dates randomized, and we found that the

95% credible interval of µ mentioned above did not overlap with any of the intervals obtained after

randomization. Based on this analysis with BactDating and the cARC model (Figure 4), our estimate

of the age of Typhi is 1166 CE [1042.57;1274.37], which suggests that early estimates based on a

universal clock were inaccurate, as previously mentioned (Morelli et al. 2010; Achtman 2016).

DISCUSSION

We defined the additivity property to be that the sum of the numbers of substitutions on n ≥ 2

branches should have the same distribution as the number of substitutions on a single branch of

length equal to the sum of the n branches. We showed that the existing strict clock models for both

discrete (SC, Equation 1) and continuous (cSC, Equation 12) cases satisfy this additivity property,

whereas commonly used uncorrelated relaxed clock models (RC, Equation 3 and cRC, Equation 14)

do not. However, we have defined two new relaxed clock models for the discrete (ARC, Equation 10)

and continuous cases (cARC, Equation 15) that satisfy the additivity property. We implemented the

new relaxed additive models in three popular software for the inference of dated phylogenies, namely

BactDating (Didelot et al. 2018), treedater (Volz and Frost 2017) and BEAST2 (Bouckaert et al. 2019).

We have shown using simulated datasets that inference using non-additive models could be misleading

if the true underlying model is additive. We have also shown in real datasets that the additive models

can provide better results than the previous non-additive models, and can represent a better fit to

the data. All the clock models we described belong to the class of uncorrelated relaxed clock models,

where the rate of each branch is uncorrelated with the rate of nearby branches. An alternative class of
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models are the autocorrelated relaxed clock models, where neighbouring branches share similar rates

(Thorne et al. 1998; Ho et al. 2005; Ho and Duchêne 2014; Bromham et al. 2018). We focused on

uncorrelated relaxed clock models rather than autocorrelated relaxed clock models because the former

are much more frequently used in the field of genomic epidemiology.

It is interesting to note that all the additive models we described, whether strict or relaxed, and

whether discrete or continuous, belong to the same class of stochastic processes. The SC model is a

simple Poisson process on the branches of the phylogeny, whereas the ARC model corresponds to a

negative binomial process (Barndorff-Nielsen and Yeo 1969; Kozubowski and Podgorski 2009). The

cSC and cARC models both correspond to a gamma process, and these three processes are all Lévy

processes, which means that they have stationary and independent increments (Applebaum 2004).

Lévy processes generate infinitely divisible random variables, which implies the additivity property

that we sought, since a branch may be divided into any number of parts when samples are added into

a phylogenetic tree, and this division should not affect the distribution of the number of mutations on

that branch. The ARC model in Equation 10 can therefore be obtained by considering that branches

are made of L infinitesimal units, each of which has an associated number of substitutions distributed

as NegBin
(
µli
Ls ,

ω
1+ω

)
. The sum of these L random variables corresponds to the number of substitutions

on the whole branch, which is distributed as in Equation 10 using the negative binomial summation rule

(Equation 11). Likewise, the cARC model in Equation 15 can be derived using Gamma
(

µli
L(1+ω) , 1 + ω

)
for the distribution of substitution of each infinitesimal unit and using the gamma summation rule

(Equation 16).

One of the earliest proposed models for a relaxed molecular clock (Takahata 1987) was based on a

compound Poisson process which is another type of Lévy process and therefore satisfied the additivity

property, but this model has not been used in practice in a phylogenetic framework. More generally,

Lévy processes are natural to describe biological phenomena in time, and have been proposed several

times recently to model evolutionary jumps (Jourdain et al. 2012; Landis et al. 2013; Duchen et al.

2017), which is similar to the relaxation of the molecular clock we want to model in this study. In

conclusion, we recommend using additive relaxed clock models when performing genomic epidemiology

studies based on the estimation of dated phylogenies, as these models are more sound than previously

used models, both statistically and biologically.
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MATERIALS AND METHODS

Simulated datasets

The simulated datasets were generated by first sampling from the heterochronous coalescent model

(Drummond et al. 2002) with an expected coalescent time for any two lineages equal to α = Neg = 5

years, where Ne is the effective population size and g is the duration of a generation. For each branch

duration li we simulated a mutation rate mi using Equation 9 for a given value of the mutation rate µ

and relaxation parameter ω of the ARC model. The software tool seq-gen (Rambaut and Grassly 1997)

was then applied to generate genomes of length 10,000bp assuming a Jukes-Cantor model. For the

application of BactDating and treedater to the simulated datasets, we first reconstructed a phylogeny

using PhyML (Guindon et al. 2010). For the application of BEAST2, the sequence data was used

directly as input. For the simulation of data under an infinite site model (Figure S4), we sampled the

number of mutations xi for each branch of length li from Equation 10 and applied these mutations to

sequences of length 1,000bp. All the data and code used to generate and analyse these simulations are

available at https://github.com/xavierdidelot/ARC-examples.

Implementation and availability

In order to make our new additive relaxed clock models as readily available as possible, we

have implemented them in three separate preexisting software packages for the inference of dated

phylogenies.

The treedater software can perform dating of the nodes of a phylogeny using maximum likelihood

(Volz and Frost 2017). The SC and RC models were previously implemented in treedater, and we

have extended it with the new ARC model (Equation 10). treedater is an R package available at

https://github.com/emvolz/treedater.

The BactDating software can perform dating of the nodes of a phylogeny using Bayesian inference

(Didelot et al. 2018). The SC, RC, cSC and cRC models were previously implemented in BactDating,

and we have extended it with the new ARC and cARC models (Equation 10 and 15). Furthermore,
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BactDating can simulate datasets based on all six clock models described above. BactDating is an R

package available at https://github.com/xavierdidelot/BactDating.

The BEAST2 (Bouckaert et al. 2019) software can infer dated phylogenies directly from the genetic

data. Both a strict clock model and an uncorrelated relaxed clock model (Drummond et al. 2006)

were previously implemented in BEAST2, and we have created a BEAST2 package so that it can now

use the new ARC model. This BEAST2 package is available at https://github.com/igococha/ARC.

This new implementation is based directly on the model in Equation 9 for the per-branch evolutionary

rates, as opposed to the models implemented in treedater and BactDating which are based on branch

lengths. This difference in implementation is due to the fact that BEAST does not explicitly model

the numbers xi of mutations on each branch, but instead considers the products of the branch rates

and durations to compute the probability of a dataset using the pruning algorithm (Felsenstein 1981).

When analysing data under the new ARC model it is necessary to infer the new relaxation parameter

ω jointly with the other parameters such as the mean clock rate µ and the dates of the nodes. For

maximum likelihood inference in treedater we simply optimise this new parameter along with the

others in the same way as for example the mean clock rate µ. For Bayesian inference in BactDating

and BEAST2 we use an additional Metropolis-Hastings move for ω assuming a gamma prior with

user-specified parameters.
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Figure 1: Comparison of clock models for discrete branch lengths. The top-left plot shows
the SC model, with µ = 1. The second row shows the RC model, with µ = 1 and σ2 = 0.5, 1 and 2
respectively from left to right. The third row shows the ARC model, with µ = 1 and ω = 0.5, 1 and
2 respectively from left to right. In each plot, the x-axis shows values of li, the y-axis shows values of
xi and the color represents the value of the log of p(xi|li) as per the legend.
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Figure 2: Application of BactDating to 100 simulated datasets. On the left inference used
the RC model and on the right the ARC model. The top row shows inferred values of the TMRCA
(relative to the correct value), the middle row shows inferred values of the mean mutation rate µ,
and the bottom row shows inferred values of the relaxation parameter ω for the ARC model. In each
plot, the x-axis represents the value of ω used in the simulations (varied between 0 and 10) and the
y-axis represents the inferred values, with a dot for the posterior mean and a bar for the 95% credible
interval.
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Figure 3: Application of BEAST2 to 100 simulated datasets. On the left inference used the
RC model and on the right the new ARC model. The top row shows inferred values of the TMRCA
(relative to the correct value), the middle row shows inferred values of the mean mutation rate µ,
and the bottom row shows inferred values of the relaxation parameter ω for the ARC model. In each
plot, the x-axis represents the value of ω used in the simulations (varied between 0 and 10) and the
y-axis represents the inferred values, with a dot for the posterior mean and a bar for the 95% credible
interval.
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Figure 4: Application of the cARC model in BactDating to the Typhi dataset. The inferred
dated tree is shown with node positions on the x-axis representing the posterior mean date for each
node and the blue bars representing the 95% credible intervals.
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