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Summary

The thesis examines the relationship between the germ of 

a C“ diffeomorphism f: Rn ,0 -• Rn ,0 which is tangent to the 

identity at 0 and its Taylor expansion. The case in which n 

is one is already well understood. For n greater than one 

some normal forms for germs are already known. These are 

germs with the property that any other germ having the same 

Taylor expansion is conjugate to the normal form. Conjugation 

may be thought of as a change of variables. The idea is that 

the Taylor expansion determines what the germ 'looks like'.

The above concept is extended in the thesis in a new way to 

deal with the common situation where the Taylor expansion 

only partially determines what the germ 'looks like', for 

example the Taylor expansion may determine what the germ 

looks like near one axis, but not away from that axis. Examples 

are given.

The importance of the extended concept is highlighted by 

a construction (using the new idea) of a large class of

germs which do not have normal forms in the old, limited, 

sense.

The theory allows one to study the centralisers of such 

germs, and to describe what their invariant curves 'look like', 

for example,’can the germs be embedded in one-parameter groups, 

and do they have invariant curves which may be thought of as 

graphs of C°° functions?



Key to Abbreviations _an_d_ Symbols,

Cn differentiable n times, with continuous n-th derivative 
O'* differentiable infinitely many times
G the group of germs of C“° diffeomorphisms Rn,0 Rn,0
Gn those members of G which are n-tangent to the identity
Ĝ , those members of G v/hich are in G^ for all integers n
R the real numbers
R+ the non-negative real numbers including zero
R* the positive real numbers excluding zero 
Rn the Euclidean product of R with itself n times 
Z(f) the centraliser of the germ f in G 
exp the exponential map from R into R*
log the inverse of exp from R£ into R
( , ) the open interval 
( , ] half open interval 
[  , J closed interval 

summation 
n  product 
\ J  union of sets 
C \ intersection of rets 

C , inclusion of one set in another 
membership of a set 

C 3  reference number
c ) reference to another part of the text 
X closure of the set X
AX union of all segments between members of X 
f^m  ̂ the m-th derivative of the diffeomorphism f
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1 Introduction.
Consider the group of C'’"diffeomorphisus Rn,0 — i» Rn,0 

under functional composition, for some fixed integer, n. How 
close is the relationship between a germ at 0 and its Taylor 
expansion'; The situation is well understood when the number 
of variables, n, is one, but not in higher dimensions.

First I shall give the vall known results for one dimension 
and then outline the generalisations and counter-examples for 
higher dimensions which are proven in the main body.
1.1 Any germ whose linear term is neither the identity nor 

minus the identity is conjugate to the unique linear 
germ corresponding to its linear term. Moreover there 
is only one conjugating germ whose linear term is the 
identity.

As is very common in this field, the proof divides into 
three complementary parts: Firstly there is the corresponding 
result for formal power series, which in this case is easily 
proven. Secondly there is an existence theorem for the case 
when the Taylor expansions are identical, in this case given 
by Sternberg [9j, and thirdly there is a uniqueness result, 
in this case provided by i.opell W .

As an example of an application of this result, consider 
the follov:ing: The group of linear germs is a one-parameter 
group. But by 1.1 every germ (except those given there) is 
a linear germ in the appropriate co-ordinate system, hence 
every germ embeds canonically in a one-parameter group.

The linear germs are called 'normal forms' because of the 
central role they play in the proof of results like the one 
above. It is the relative simplicity of these proofs which 
motivates the study for s\ich forms in higher dimensions.



m+ 1 . . 2m+1X • w» X

Tokens £l1J has studied germs whose linear term is the identity. 
His results nay be summarised (and slightly expanded upon; as 
f ollov.’s:
1.2 For each strictly positive integer m, any infinite 

power series in one variable whose m-jet is the identity 
but whose m+1-jet is nojt the identity is conjugate to 
exactly one power series of the form

x - x + t.x , 
for some fixed real number t.

Tokens shoved existence. Uniqueness of t is a case of simple 
algebra. The complementary result for germs is as follows:
1.3 For each strictly positive integer m and each real number 

t, any two germs whose Taylor expansions are
x

are conjugate. Moreover there exists exactly one 
conjugat^ng germ whose Taylor expansion is the identity. 

Takens proves existence. A careful reading of his proof shows 
that the conjugating germ is unique. An alternative proof is 
given in the text [5.2^ . An application follows:
1.4 For each strictly positive integer n and each real 

number t, the centraliser of the germ given by
x - /-+1 * t.x2"*1

is either isomorphic to R (if m is odd) or RxZ2 (if m 
is even). Moreover the m+1-jet of every element of the 
centraliser is of the form

+x + s.xm+1 for some real mm.ber, s.
The necessary algebra is done in A2.3 A2.8.
Thus when the number of variables, n, is one, the Taylor

expansion determines the germ up to changes of co-ordinates, 
and the necessary change is essentially unique.



The only exceptions are the obvious ones, v:hen the 'i’aylor 
expansions are either plus or minus the identity. Sergeraert £&] 
has recently studied such germs, with identity Taylor expansion, 
showing, for example, that many such germs do not have ’square 
roots’ in the sense that they cannot be formed by composing 
another germ with itself.

Sternberg and Kopell £6 have generalised 1.1 to higher 
dimensions, leaving germs whose linear term is the identity to 
be studied here. Accordingly some generalisations will be 
given, together with some novel coimter-examples where appropriat 

The formal normal form of 1.2 is extremely useful, in that 
the results 1.3 c 1.4 need only be proven for these normal forms. 
However in higher dimensions, except for the linear case, there 
is no finite-parameter family of normal forms for power series.
In section 2 though ’standard quasi-contractions’ are intro­
duced, and these play a similar role in the developement of the 
theory. That is a large number of germs can be conjugated into 
these forms, and these germs are ’stable’ in the sense of 1.3.

*AMore formally, the following notation is reqired:
1.5 Given a positive integer m, let G be the group of germs

of diffeomorphisms Rn ,0 t-* Rn,0 whose m-jet is the
identity, let G = Gn and • Give each Gn the

m
topology provided bjr the m-M-jets.

Thus a typical neighbourhood of the identity consists 
of all germs in G -whose m+1-linear part has sufficiently 
small coefficients.

£Thus by a ’large number’ of germs is ment on open set in the 
above topology, and ’almost all’ means on all except some meagre 
subset. Note that almost all germs can be represented by normal 
forms in the one dimensional case, an ideal which the standard



quasi-contractionr fall far short of. It will in fact be shown 
that for m even there are no normal forms.

Belickii £ 3 3 has recently partially generalised 1.3 by 
finding open sets v/ith the following property:
1.6 An element g e G  is flat stable if and only if for 

every germ f £G which is infiniely tangent to g at 0 
(i.e. has the same Saylor expansion/ there exists a 
germ h € G (with identity Taylor expansion) such that

geh = h,f .
✓Belickii write s in Russian, and the term he uses for the

above notion has variously been translated as 'plane stable'
or 'horizontally stable', but the term 'flat stable' seems
more appropriate in English, since the germs are essentially

*/
stable under flat perturbations. Belickii's result may now 
be sum. arised as follows:
1.7 For each even integer m which is at least two there 

exists a non-empty open set, QC, of Gm (which he calls 
the qtiasi-contractions), every member of which is flat 
stable.

A rlightls’- different concept will prove useful later. The 
formal deflation is given in section 2, together with examples. 
The relationship between the two notions is explained in section 
5. Belickii's theory is outlined in Appendix 1. This is done 
because the formal proof he gives is not quite general enough 
to provide the result required, namely that the 'new' quasi­
contractions also have a type of flat stabiltity. It is also 
shown that the element 'h' of 1.6 is unique when g is a quasi- 
contraction. Moreover it follows from some algebraic results 
given in Appendix 2 that:
1.8 For each even integer m, at least two, there exists an
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open dense subset, QC' of QC, such that for all 
f£QC' the centraliser of f is either isonorphic to 
R or RxZ0.

She proof of this is done in two parts. Firstly it ir shown
in 5 . 1  that there exist integers k, depending contiguously on

the eh-1-ten’s, such that only the identity germ has identity
k-jet and commutes with the given germ. So 1,8 is reduced to
a problem of algebra, which is covered by A2.9.

✓So far Beliekii's result has simply been generalised and
$extended slightly. In section 6 these results are applied to show 

that for each even integer m greater them zero there exists a 
non-empty open subset of G^ (see 1.5) every member of which 
has the same Taylor series as some other member which is yet 
not conjugate to it, in contrast to 1.3. This shows that Belickii's 
1.7 is inevitably limited. In other words the Taylor expansions 
are often insufficient to determine the behaviour of a germ. To 
illustrate this an open set is constructed, every member of 
which has the same Taylor series as a pair of germs, one of 
which has a centraliser isomorphic to R and the other a central­
iser isomorphic to Z.

For the sake of coEipleteness section 7 describes open subsets
of each G , members of which have ’large' centralisers in the
sense that their centralisers have non-trivial intersections
with G^ . This generalises a result of Kopell [6] for the case
when m is zero (i.e. for germs with non-identity lin^r term),
and shows that the element h in 1.6 is not always unique. In 

✓particular Belickii has shown that what he calls quasi-hyperbolic 
gems [2] are flat stable, and the result of section 7 applies to 
these. They do not actually form an open set in the appropriate 
space G ,, but it is easily shown that there exist open sets of
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each &E , every member of which is cojijugate to a quasi-hyperbolic 
germ, and consequently every member of which is flat stable 

but has a large centraliser. As usual this is proven in two 
parts: firstly fomal algebra and secondly an application of 
the quasi-hyperbolic gems' stability.

Finally, in section 8 some applications of these results 
are given. These are made more interesting by including some 
applications of sections 4 and 5 which give results 
similar to those of section 3, namely on stability and the 
smallness of centralisers, for germs which are not necessarily 
infinitely differentiable. These sections are entirely elementary, 
for example the conjugating germs are constructed explicitly t  

as limits rather than being merely shown to exist as fixed 
points of an operator, t.sides widening the scope of the applic­
ations this also gives an insight into the C°° ca.se, particularly 
for the^Luasi-contractions of Belickii when the two maps are 
unique, and hence the same.y

To summarise: the contractions and hyperbolic maps of the 
linear theory' have their anologues, but these by no means 
exhaust the open types of germ, some of which exhibit a new 
phenomenon, namely that the Taylor series does not determine 
what the centraliser looks like.
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Quasi-Contractions on Invariant Sets.

A contraction is a germ of a diffeomorphisia Rn,0 —» Rn,0 
such that any diffeomorphism having the same first derivative 
at 0 is a topological contraction near 0. The definition of a 
quasi-contraction extends this concept in W o  ways. Firstly, 
one considers higher order terms in the Taylor Expansion. 
Secondly, one considers local phenomena. The following will 
help to illustrate this:
Examples 2.1

2 2Let ffg: R f0 —► R f0 be given by the formulae
f: (x,y) (x , y  ~ F.J1C
g: (x,y) h » ( x/2 , y/2 ) .

Then any diffeonorphism with the same Taylor Expansion as f 
up to terns of order 3 is a topological contraction near 0, 
just as any diffeomorphism with the same Taylor Expansion as 
g up to terras of order 1 is a topological contraction near 0. 

Consider now h: R,0 —•» R,0 given by
nh: x *-► x - x‘ .

This is contracting on one side of 0 but expanding on the
other. This is the sense in which the concept of a contraction
has been generalised to 'local phenomena': in this care the
diffeoinorphiem is only a contraction on half of the
neighbourhood of 0. In higher dimensions the situation

2 2becomes more complex. Consider lc: R ,0 —* R ,0 given by
nk: (x,yj •-+ (x - x ,y - 2xy/ .

This is a topological contraction on a neighbourhood of the 
positive semi-axis.Rore precisely, if

X = {(x,y)eR2|o<xd,|y|< x} 
then for any neighbourhood, U, of 0 there exists an integer
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H such that for all into-ere n^N, kn(X) € U/'IX .
'i’his sort of behaviour does not occur with ordinary 

contractions.
The fomal definition of a quasi-contraction is as follows: 

Definition 2.2
H 1bet m be a strictly positive integer. Let X C R  . A C 

diffeomorphisra f: Rn , 0  Rn,0 is said to be a 
quasi-contraction of de :ree r. on X if and only if there exist 
strictly positive numbers r, a, b, c such that for all x£]F^ 
with 0 <Jxlfe. r one ha*:

i) f(x; £ X ,  if xfeX
i i )  ll'jll -  a | | x i r 1 C | | f ( x ) | |  4  M  ~ b /|x ( |m+1 J i f  x f X

iii) ||Df(x)-1|l 4 1 + c llxll1'1 .
V/ith this notation the function f of 2.1 is a quasi-

2contraction Of degree 2 on R , hr is a quasi-contraction of 
degree 1 on R+, and k is a quasi-contraction of degree 1 on 
the specified triangular region, X. Notice that any perturbations 
of the above diffeonorphisns having the same Taylor Expansions 
are also ouasi-cont^actions of the same degree on the same 
sets. Often, b\it not always, the cuasi-contractiveness will 
be a property of the Taylor Expansion and not just the germ. 
Example 2.3

Let 1: R2,0 —> R2,0 be given by
1: (x,y) h * (x - x , y - 2xy + x y ) .

Then X = {(x,y) fcR2/o^x < 1 , |y|$x2] is invariant 
under 1, and 1 is a ouasi-contraction of degree 1 on X.
However X is not invariant under

l'! (x,y) (x - X2, y - 2xy + x2y + exp(- x"2) )_, 
which is infinitely tangent to 1 at 0.
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The following lemmas give cone v:c.j r. in which quasi-contractions 
can he built up. They are easily proven.
Lemmas 2 ./
a) Given C 1  CRn, every quasi-cont: action, f, of finite

. iJ gdegree on X, with fiY)£Y,Aa qusi-contraction of the sane 
de ree on Y.
b) Given X, Y c  :.n, every- diff eomorphism which is a 
quasi-contraction of the sari? degree on X and Y is also a 
quasi-contractaxn of that degree on both X U Y and X<Vi.
(Thus in general one would air.i to find the union of the sets 
on which a given diffeonorphisn was a quasi-contraction of
a given degree. )
c; The. compos.it:! on of two quasi-contractions of the sane 
degree on the sane seJ- is a quasi-contraction of that sane 
degree on that sane set.
d/ The conposition (in either order/ of a quasi-contraction 
of finite degree; on Rn and a rotation is a cuasi-contracti :n
cf the same degree.
e j let XCI’n , let f: En ,C —> Xn,Q be a quasi-contraction 
o: degree n on X and let g: Rn,0 —* Xn,Q be a C 
diifeomoruhism with the property that f r soiae r ai e > 0  

there exists a strictly positive real number r such that 
f . r all x«Xn with 11x 11 4  r one has both 

|llj(x/ ll ,<( 1 + fcflojli' , and
|bg_1(rj l |  « 1 + ellxlF  .

Then the function
rr — "Ifu - ff f XT A o ©*Loo

__ Ais a quasi-contraction of degree m on g (X).
The simplest examples of quasi-contractiens are C“° 

diffeonorphisns in one. dimension. These are described in 
the following:



10

Theorem 2.5
Let f: R , 0 — » R , 0 be a C diffeomorphism with 

Df(0) = identity. Unless f is infinitely tangent to the 
identity at 0 there exists a least integer m such that
Dm+1 f(o) y  o.

Moreover, either f or f"1 is a quasi-contraction of
degree m on R+. If m is even then either f or f  ̂ is a
quasi-contraction on R. If m is odd then neither f nor
f-  ̂ is a quasi-contraction on R.

The proof is a straightforward application of the Mean 
it is possible to show that 

Value Theorem. More gene rally,^ one has the following
characteristic of quasi-contractions in one dimension.
Theorem 2.6

A diffeomorphism f: R, 0 R , O i s a  
quasi-contraction of degree m on R+ if and only if there 
exists a C°* diffeomorphism g: R , 0 —i  R , 0 (called a 
’gauge' for f) with the following properties:

i) Dg(o) = identity
ii) D2g(0)= ... = I^giO) = 0
iii) Dm+1g(0) <0
iv) for some integer n, for some real number r j 
for all x fi R+ with x <, r,

Dgn(x) < Df(x) < Lg(x) .
Conditions (i) and

(ii) are simply that g be m-tangent to the identity function 
at 0. The notion of m-tangent may be generalised as follows 
Definition 2.7

Let m be a strictly positive integer and Xg R 11. A 
function f: Rn,0 Rn,0 is m-flat on X at 0 if and only if
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lim sup {  Ilf (x )I|/I|xI|E t 1 ] < oo where
r-*0 x€.X^ ” " J— r
Xr  = {x € X | o  <|fc||< r } .

Two functions v.'hose difference is n-flat on X at 0 are 
m-tangcnt on X at 0. Infinitely flat and infinitely tangent 
mean m-flat and m-tangent for all integers m.

The formal definition of a quasi-contraction is tied in 
with the intuitive concept as follows:
Theorem 2.8

Let f: Rn,C —> Rn ,Q be a Cm+  ̂ diffeomorphism which is 
m-tangent to the identity function.

Then f is a quari-contraction of degree m on Rn if and
Aonly if every C diff eor.iorphism which is (m+1 )-tangent to 

f is a topological contraction near 0.
Proof

The only if part is clear. Conversely, suppose that f 
is not a quasi-contraction of degree m on Rn. Then since 
f is Cm+1 and E-tangent to the identity function it can 
only fail to be a quasi-contraction in one respect, namely 
that there exist points Rn with x^ -> 0 as i—»<*> such that

I l f M  > llsil! - .
Let = x1/ll2£ill •

These points accumulate on the unit sphere, so in that 
direction Lm+1f(0) iE trivial, and so f is (m+1)-tangent 
to a function which has fixed points on a line through 0.

Theorem 2 ,£  may be generalised as follows: (proof not given) 
Theorem 2.9

A C1 diffeomorphism f: Rn,0 Rn ,0 is a 
quasi-contraction of degree n on X if and only if there 
exists a C"* diffeomorphism g: ^»0 -i 1^,0 (called a
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•gauge' for f ,  such that
i) g is a quasi-contraction of degree m on Xf
ii) for some strictly positive real number r and 
some integer n, one has for all x 6 X^ , f(s)<£ X,

|lsn (x)!l « !lf(z)|| ||g(x)|| , & for all x6Rn with ||x|| 4r,
ltDf(z)"1H < llDgn (X)-1||.

The above two results characterise the quasi-contractions 
of a given degree on Rn. For more complicated invariant sets 
the characterisation becomes more difficult. The following 
standard examples will prove useful:
Definition _2.J_0

Let p be an n-tuple of homogenous polynomials of degree 
m+1 in n variables.

Then p is in standard form if and only if for every pair
of integers i,j = 1...n with i £ j the x^x^ coefficient of
the j-th component of p is zero.

Given such a polynomial, for each integer i = 1...n,
denote by r^ the x°x^ coefficient of the i-th component of p.

Let f: Rn,Q Rn,Q be a Cn’t diffeomorphism with (m+1/-
jet equal to the identity minus p.

Then f is a standard qua.si-contraction of degree m about
the x^-axis if and only if 0 < r̂  < r0 ̂ rv... <_rn . 

derivative at 0 of theNote that the^n-tn partial derivative with respect to the
first variable is a diagonal linear map with entries along 

mi timesthe diagonal of^ (.m+1) .r1 ,r^,r^,.. .rn . This fact will be 
used later. First, however, the aim is to show that these 
standard quasi-contractions are indeed quasi-contractions.
Later it will be shown that they represent a large number 
of germs. The first step, then, is to find f-invariant sets.
Such sets will be described as follows:



Definition 2 . 1 1

Let r be a strictly positive real number. Let 
be strictly positive real numbers, and let ln+2»***^2n 
strictly negative real numbers.

The pyramid associated with r. l^...»!^. ^u t2** * iB 
X = '[(x1,...,xn ) £ Rn j 0 4 x1 ^  r and, for i=2...n

x1ln+i ^ xi ^ xl1i"\ *
It has one vertex at 0 and the others at the points 

(r,rl2,...,rln ), (r,rl2.... rln_1Prl2n) etc.
One may now state the following result:

t

Theorem 2.12
Let f: Rn,0—*Rn,0 be a standard quasi-contraction of 

degree m about the x^-axis. Let g: Rn,0 —1> Rn,0 be a C°° 
diffeomorphism, m-tangent to f at 0. If g^m+^(0) is 
sufficiently close to f^m+1^(0) then for r,l2,...ln, 
^n+2** **^2n sufficiently small, the associated pyramid, X, 
is mapped onto itself by g, and g is a quasi-contraction of 
degree m on the pyramid X.
Proof

It will be shown that g maps X formally into a proper 
subset of itself, and this dominates the higher order terms

Let X be as in 2.11, for some r,l2,.. .ln,ln+2, * * *‘*'2n* 
Consider x = (x1 ,x2,.. .xn) ^ 0 on the boundary of X. Then 
for each integer i=1...n one has the decomposition

g(x)i = xi - r'x.,x® + Pj/x) + q^x) + r^x) , (A)
where p^,q^ are homogenous polynomials of degree m+1, pi 
has no terms o^the form x^x^, q^ has only x™x^ terms (with 
j^i), and the function r£ is (m+l)-flat at 0 .

Now, for g(m+l)(0) sufficiently close to f^m+1^(0) ,
0 <  r} <  r^ for j»2...n ,

and every term of each p̂  ̂has a factor x-jxjj with j,k*1 .



existe a constant KLet L = max £ ̂ i*_1i+nl • Then ‘fc}iere i=2•..n
such that, for r and L sufficiently small,

|p±(x) + r£(x)| 4 K.L2 |x 1|jd+1 .
Moreover, for each real e>0, for g^m+1^(Q) sufficiently close 
to f^Wfl* (o) and Ibdi sufficiently small, one has 

Iq-i(x)J 4 elilx1 im+1 .
Thus, under the above conditions, (A) gives the inequalities

0 < g(x), ^ Xj & g(x)f 1„+1 <  g(s)a- < g(s), li for i=2...n. 
In other words, the boundary of X minus 2 is mapped into the 

interior of X by g. But g is a homeomorphism, so the whole of 
X must be mapped into itself by g, as required.

By taking e, L sufficiently small it can be seen that the 
constants a,b of 2.2 exist and can be made to be arbitrarily 
close to r̂j . By proceeding as above, but using Lg , it can 
be shown that c of 2.2 can be taken to be arbitrarily close to 
max£(m+1 )r i.tf-

Note: a ^ r]j b and c£ max£(m+l )rlj »r^j .
Examule 2.15

Let f: R2,0 — 4 R 2,0 be defined by 
(x,y) •-* (x - x2,y - 2xy ).

This is a standard quasi-contraction of degree 1 about the 
x-axis. However f has fixed points along the entire y-axis, 
so cannot be a quasi-contraction on any open set containing 0. 
Also, Lf is singular at the point (i,0) on the x-axis, so one 
has restrictions on the set on which f is a quasi-contraction.

For standard quasi-contractions it does not matter which 
norm is used, as the pyramids of 2.1,1 may be taken to be so 
narrow that the norm on the x.,-axis dominates the total norm,
and there is essentially only one norm on R^.

More generally, however, the following example shows that 
the choice of norm can Be critical.
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Example 2,14-
Let f: Rn f0 —» RnpQ be given by the formula

o *2 O *r
(x,y) t-v ( x - 2.xy - x , y + 2.x y - y ) .

Then using the usual Euclidean norm given by 
|l(::,y))l= (x'+y2)1 , 

one has the Taylor expansion
Ilf (x,y)|| 2 = x2+y£' -2.x. (2.xy2+x5) +2.y.(2.x2y-y^) +h.o.ts.f

= ||(x,y)|l2 - 2.(x/l+y^) + higher order terms.
2Thus f is a quasi-contraction of degree 2 on R .

However if one uses the supremum norm given by 
lKx,y)!ls = nax{ |x| , |y|] f

Athen for 0 < x < y <, 2*-.x<0.1 one has that
|!f(x,y)||s = max{x.(1-2.y2-x21 y.(l+2.x2-y2)} ,

> y = | l ( x , y ) l | s ,
2and so f is not a quasi-contraction of any degree on R 

with respect to the supremum norm.
From now on only the Euclidean norm will be used.

In the case studied by Sternberg et al., where the derivative 
alone forces the germs to be topological contractions one has 

' liar II < 1 near f>. However for quasi-contractions one 
may have

llbf l| > 1 arbitrarily near 0, as is shown below:
Example 2.15

Let f: Rn ,0 —i^Rn,Q be given by the formula
•2 *2 O

(x,y) v-* ( x - x5 , y - y  + 1|.x y ) .
Then If(x,y)||2 = x“"+y2 - 2.(x^-1*.x2y2+y^) + h.o.ts., 
but x4-1&.x2y2+y^ = (x2-y2)2 + ^ . x c y 2 y O  unless x«*y=0, 
so f is a quasi-contraction of degree 2 on R .

However the following calculation shows that 
l|Df(xfy)li > 1 for x,y arbitrarily small:
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Let d2f(x)2 represent the derivative of the second 
co-ordinate of f with respect to the second variable. Then 

d2f(x,y)2 = 1 - 3.y2 + 1^.x2
= 1 + 3.y^ for x = 2.y ,

so |!l>f(xty)ll }  1 + 3.y2 > 1 for x = 2,y , y ^ 0 .
As here, any C**difisomorphism which is m+1 -tangent to

the identity at Q must have a derivative which is m-tangent
1to the identity at Q. However this is not the case for C 

diffeomorphisms, as is shown below:
Example 2,16

Let f: R,0 R,0 be given by the formula
■zf : x i—* x + x ,cos(1/x ) .

Then Df: x 1 + 3.x ,cos(l/x) + x.sin(l/x) .
Hence f is a o'* diffeomorphism near 0 and is 2-tangent to 
the identity at 0, but Df is not 1-tangent to the identity 
at 0 , but only 0-tangent.

To unify the treatment from now on definition 2,7 is 
modified as follows:
Definition 2,17

Let k be a strictly positive integer and let X£ R n .
Then C1 functions f,g: Rn,0 —■» Rn,Q are k-tangent at 0 
if and only if

lim sup f|lDf(s)-Dg(x)|l/|/x|lk] <°° . 
r>0 SeXrL

By the M.V.T., if 0 is a star-centre of some Xr then any pair 
of functions satisfying this definition also satisfy 2.7*
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In Theorem 2,12 it was shown that perturbations of stan­
dard quasi-contractions are quasi-contractions. Example 2,3 
shows that perturbations of more general quasi-contractions 
need not be quasi-contractions. However, as the following 
result shows, if the invariant map is formally mapped properly 
into itself, then perturbations of the quasi-contraction are 
also quasi-contractions.
Theorem 2,18

Let f,g: Rn,0— > Rn,0 be C1 diffeomorphisms which preserve 
some subset X $Rn. (In particular, if f(X) SX and f,g agree 
outside X then g(X)^X also.)

Suppose that f is a quasi-contraction of degree m on X, 
g is m-tangent to f at 2  and g^m+1 ^(0 ) is sufficiently close to 
f(m+1 )(0).Then g is a quasi-contraction of degree m on X.

Moreover, by talking g(m+l)(o) sufficiently close to f^m+1 ^(0), 
the characteristic constants a, b, c of definition 2 . 2  may be 
chosen for g to be arbitrarily close to their values for f.
Proof

For each e > 0 , for Ujclj sufficiently small, and g^m+ 1 ^(0 ) 
sufficiently close to f^m+ 1 ^(0 ), one has 

dg(i)-f(x)li 4  eijx|lm+1 ,
so |iil| - (a+e)Jj£||fHl ^ /|g(i)|| ^ Hid - (b-e)/iilim+1 .

-1  -1Let h * g-f and k « g -f • Then one has the following: 
id - Dg0Dg_ 1 = (5f+Bh)0 (Df"1 +Dk)

= id + (Bf+5h)0Dk + Lh0Itf_1 . (A)
How, Df' 1 is less than 2 near £ , so for //ill sufficiently small,

inf { I lD f (i) (2 )̂ ] >£ , since 
^6 Rn : /jyj) s 1
||Df (i)tl)j/-tfDf (x) " 1 M i l  >  I U H Z - 1 • <B)

Hence li(Itf+5h)(i)(i)i/ >  iH x J I near Q , and so
l|lfc(i)|/ 4 8 l f a i ( z ) H  by (A).
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But for all real numbers e,>0, for g^m+^0) sufficiently close 
to f^m+1^(0) and |xll sufficiently small,

I I Bh(x)ll 4 (e/8), |lx||m , 
so || I)g_1 (x)|| 4 || Df”1 (x)|) + ilBh(2c)//

« 1 + (c+e)l|xj|m , as required.

Note that from (B) above,
||Df(x)(v)|| }  ||v||2/l|Df(x)"*1 (v) ¡I for all v ,

but from 2.2
|lDf(x)"1l| ^ 1 + c.|lx)lm , 

so
ll Df (x)(v)|| Îly)|/(1+c.|l2£||m ) ,

whence for II x ll sufficiently small, g^m+^(0) sufficiently close 
to f^m+1^(0), one has

l|Df(x)|l£ 1 - (c+e). |l2£l|m •

Lemma 2.19
Let f: Rn,0 —* Rn,0 be a C1 quasi-contraction of degree m 

on some subset X t R n.
Given a positive integer i>m, a strictly positive real 

number s and a point x £ R n,
let u(i,s,x) eRn | |lx-ylU s//xli1-m } .
Let g: Rn,Q Rn ,£ he a diffeomorphism which is k-tangent 

to f at Q and equal to f outside X, Let a,b,c be characteristic 
constants for f, as in 2,2,

Then for both
i) i = k >  m+c/b & lljsll »/Ixll/s sufficiently small 

and ii) i - k+1 > m+c/b & Hill , 1/s sufficiently small, 
one has

U(i,s,f(2c)) C  g(U(i,s,2c))
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Proof
Let z£ U(i, s,f (x)). Then, by "the Mean Value Theorem, 

for some strictly positive real number e and some point 
u between z and g(s)»

lie' 1 < i) - i|U  /lis ' 1 (a )ll.{ lla -i(s )IH If(i)-g (s )« ]
-< Hig(g-1 (ji))-1 It +e.luilk*1} .

Thus for any real number c’> c, for llx)| sufficiently small,
|ig~ 1 (2.)“2sll s. (1 +c' .llxlf1).^(!(xll—"b.Wat(|m+ J*"7'1 +e.|l2t)|k (/l2 fl/s)J

Hence for either of the two conditions (i),(ii),
|fg~1 (&)-*!/ < s.|(il|i-ID , 

as required,

N.B. In the above application of the Mean Value Theorem 
Dg is controlled on the whole of Rn, so n need not lie in X, 
Consequently it is not necessary to suppose, for example, th3t 
X is convex or even star-shaped.
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3 Quasi-Oontractiong on Invariant Sets are
Flat-Stable on those Sets.

The notion of flat-stability goes back to Sternberg [9].
The notation g is used for the germ at 0 of a function 
g: Rn , 0  ^ e  conventional idea of flat-stability is
cs fellows:
Definition 3.1

Let f: Rn ,0 —» K®,0 be a C*° diffeomorphism.
Then f is flat-stable if and only if for every C*° 

diffeoi.10rphism g: Rn ,0 —> Rn,Q v.hich is infinitely tangent
to f at 0 there exists a G°° diffeomorphism h: Rn,0 — > Rn,0 , 
infinitely tangent to the identity at 0 , such that 

gh = hf .
Takens [1 1 ] proved that quasi-contractions are flat-stable 

for the special case when the number of variables, 'n', is 
one. Belickii [2] has recently proved that quasi-contractions 
on Rn are flat-stable. The notion of a 'local' quasi­
contraction is too general for the above definition to apply: 
an appropriately 'local' definition is required. This involves 
the following concept:
Definition 3.2

liven X, Y £Rn, Y is a core of X if and only if both
a) for each positive real number r, Y^ is non-empty

(that is, Y has a non-trivial germ), and
b) there exists an integer s and strictly positive 

real numbers e and r such that for all y £ Y r 
{x€Rn | ||x-ylKe||y||s} C X  (

A set X QRn is significant if and only if it has a core
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Uote that any set which contains a significant set is 
itself significant, and every significant set contains 0 

in its closure. Conversely, in the case where n = 1 any 
interval which contains 0 in its closure is itself significant. 
Also the 'pyramids' of 2.11 are significant. The local 
definition of flat-stability can now he given.
Definition 5.3

Let f: Rn,0 — ► Rn,0 be a C°°diffeonorphisn. Let X CRn be *
with Y Cf(Y) for some^r^O

significant. Suppose that for each core Y rof X/and each CA
diffeomorphism g: Rn,C —> Rn,0 which is infinitely tangent 
to f at Q there exists a C*° diffeomorphism h: 1^,0 —* Rn,Q , 
infinitely tangent to the identity at 0 , and a strictly 
positive real number r such that for all y^Y^, 

gh(y) = hf(y) .
Then f is flat-stable on X.^
The following theorem may now be stated:

Theorem 3.4
Let f: Rn ,0 — * Rn,Q be a C°° quasi-contraction of finite 

de ree on X C R n, v.’ith Lf (ir.-1)-tangent to the identity on X.
If X is significant then f is flat-stable on X.

In particular this result applies to Takens' 1-dimensional
v'maps, 3elickii's 'global' qir si-contractions and, anew 

result, The standard quasi-contractions of 2.10.
The following illustrates why only significant sets are 

considered:
Lxam-ple 5 . 0

Let f: R2,0 — * R2,0 be given by
p

(x,y) »-* (x - x , y) .
This is a quasi-contraction of degree 1 on the x-axi£, 

but it is not flat-stable in any meaningful sense.

*These exist by 2.19.
*Said to be uniaueiyfrlat-stable when the diffeo. h is unique.



The proof of Theorem 3.4 follows Belickii's lead, Another 
type of stability is used to link Belickii's rigid notion 
with the more general notion introduced above.
Definition 3.6

Let JQ be the space of germs of C maps Rn,0 —» Rn,0 
v.'hich are infinitely flat at 0 . Let J ^ J ^ .

Then a map f: Rn,0 —* Rnf0 is J1-stable if and only if 
for all germs h e J 1 there exists a germ k eJ 1 such that 

(id+k),f = (f+h)0(id+k) .
*S

Belickii considers only jQ-stability. The case of interest 
will be when for some subset Z iRn

J ' = { j £ JQ l for all zfiZ, 3 (z; = c] ,
■A

in v:hich case J will be denoted by J(Z).
Bor the usual topology (see Appendix 1), J(Z) is complete.

It is also closed under the following: subtraction; multiplic­
ation by C“°maps; and the maps induced by composition and the

idi + J . These are vital to Belickii's 
method. .Any set j V jc satisfying these conditions will be 
said to be 'suitable' , and only such sets will be considered. 
Details are in Appendix 1.
Theorem 3.7

Let f: Rn,0 Rn,0 be a quasi-contraction of degree m
on a set X £ R n , with Df (m-1 ;-tangent to the identity on X.
Suppose f(Z) Q Z and ZUX = Rn . Then f is a J(Z)-quasi- of degree m uniquely
contraction^Cin the sense of A1.10), and hence^J(ZJ-stable
(in the sense of 3 .6 ).

The proof utilises A1.11, but mainly consists of showing 
that A1.3» a modification of a result of Belickii's, may be
applied.
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Theorem A1.14 shows how a diffeomorphism may be proven to 
be stable in the sense of 3 . 7  by dividing the space of perturb­
ations into subspaces, and dealing with them seperately. The 
same cannot be done for type of stability of 3 .3 , as will be 
shown in section 6 .
Proof of Theorem 3.4

let Y be a core of X, with e,s,r'as in definition 3.2.
Then for each point y e Yr , let

u(y)={x€Rn |//x-ylU ie.llyll8] .
Then for any sufficiently small r, each subset U(y)is also a 
core of. X ( with e'= $e , say.)

How , for r' sufficiently small,
V  c  fOf) ,

and for all y e Yr i , one has 

where r is as above.
Hence by Lemma 2.19, for s sufficiently large and r sufficiently 
small,

U(y) C  f(U(f1(Y)) ,
Let Y* = ( )  U(y) .

S«Yr

Then for some real number r* > 0 ,
Y£*Cf(Y*) ,

and Y* is a core of X, since the choice of e* above is 
independent of y .

How, take

X* - X v O Nfn (Y*)
Then X* and X agree near Q, so f is a quasi-contraction of X*. 
Moreover Z K J 1 * ■ H11 and f(Z)CZ , so Theorem 3.7 applies.
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Let B; — ^R ^ ( 0 be C on R?̂— with

B - J  0 on Y|r
v. 1 on Z , »

and with bounded derivatives. This is possible since Y* is a 
core of RnsZ ,

Given a C*° diffeomorphism g: Rn,Q —*  H31»^ which is 
infinitely tangent to f on X, let 

g' = B.f + (1 -B).g .
Then g' is C1", equals g on Y|r, and equals f on Zf , Hence by 
Theorem 3#7 there exists a C** function h: Rn,0 —> R^O , 
equal to the identity outside such that 

h9g' ■ f»h near 0 , and so
h.g = f„h on Y near Q , as required.

To complete the proof of Theorem 3.7 it suffices to prove! 
Lemma 3 »8

Let f:Rn , 0  e-* Rn,0 be a C °°quasircontraction of degree m 
on X, with Df (m-1 )-tangent to the identity on X. Let Z £Rn 
with f(Z)£Z and SUX = Rn. Let the operator T:J(Z) -* J(Z) 
be given by the follov;ing formula: 

h -(Df)“ 1 .h0f .
Then there exists a real number c such that

for all non-negative integers i and all sufficiently 
large integers k there exists an integer k' such that

for all sufficiently small strictly positive real 
numbers e there exists a real number d such that 

for all integers Ii and all htJ (Z)f ,

This is sufficient because by A1.3 the map ID+T has an
inverse Ĵ jand so the map of A1.10 given by

See Appendix 1 for the definition
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Bf. (id+T): h — * Df.h - hef
has an inverse, (Bf)-1.i . Thus f is a J(Z)-quasi-contraction.
Proof of Iiemma 3.8 (after A.Masson's thesis L 7].)

The multi-index notation of Theorem A3.2 is used. Also, given x
A , « T T l | B f ( f q ( x ) r 1| l ,  D i - T r | | B f ( f q ( * ) ) H i » Hi =max { llh^q )  ( f 3 ( x )  )l/}  ,

3 q=0 ” 3 q= 0 J 0 <qci
and for increasing sequences of strictly positive reals, a^ja^,..,

pr S * i - q -  * * •
that these increase with i

Also,, A 1 .A^ef»Aj+1, D^.D^0f=D^+1, Hj0f=Hj + 1, and aiP;j -PJ + 1 .d# d+1 * 3

By Leibniz's Formula (A3.1) and the Chain Rule (A3.2),
(Th)(i) sr C^A1(i_p). ^  h (q)f . £  cuf-, for all i> 0.

P-1 q=1 *¡*1 ~
Df and A1 are bounded away from 0, and all derivatives of f are 
bounded, so for some increasing sequence a0 ,a1t..., for each i, 
|l(Th)(i)(^|UA1 .Di(H^+a.H^ " 1 ) = A ^ . X ^  .
This is the case j = 1 of the more general inequality below: 
||(T3h)(if e ^ A r Dj.X^ . . (A)
For larger values of ^ the induction step is as follows: 
| l (T 3+ 1h ) ( i ) (x ) l l  = ||(T(T3h))(i)(x)J|

* Ai*1)i * V f*;Dr f*(x3,3+i+ai5“^ [ xd,d+i^) *
- Aj+1 .Dj+1.Y , where

Hi rij + 1 Tjf “ 1 . ’v-1 nj + 1 pf Hi-P +C3 + 1 pi jji “' C ¡J "*■ "I )
Hj+i+ai°i ,Hj+i ^¿°p ,pp,Hj+i Cj+1* d+i,Hj+i »

■ X^ + 1 , as required to prove the inequality (A).
Now, le t  l(x) » A1 .(ilf(x)H/llsll)lC+m»D| •

Since each 4 j*, there exist constants ci suchljiat 
H(T3h)(l^(g)ll ̂  l(s)...l(f;)‘ 1 (2i)).(Hj+ci3iH^"1 )/(|lf;)(x)||k+m) . (B)

i,k+m
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For k'=k+(i+1).m, the right hand side of (B) is bounded by

Thus it suffices to prove the following result:
Lemma 3»9

Let i be a positive integer. Let f: Rn,0 — >Rn ,0 be a C* 
quasi-contraction of degree m on X. For ijiO suppose that Bf is 
(m-1)-tangent to the identity at 0.

For each integer k, let
Kx )  = ||Bf(xr1|i.(|lf(x)(|/||xil)k.||l>f(x)jli .

Then for k sufficiently large, for all X6X, one has
5? I(x)...l(f3"1 (x)). j1 <  for some D.
3=0

Moreover, when i=0, any k > c*+a*.m will do, where c*, a* . 
are the greatest lower bounds of c/b, a/b respectively, where 
a, b, and c are as in Definition 2.2.
Proof

Let a, b, c be as in Definition 2.2. Let d be such that 
||Df(x)|| ^ 1 +d.||3c)lm , and choose k so that 
k.b > c+a.m(i+1)+i.d .

Then for all xfeXr (with r sufficiently small) one has 
l t e U  (1 (1 +cilx||m ).(1 H-dllad!”1)1 .

A real number u may now be chosen such that
a.m.(i+l) < u <  k.b-c-i.d .

Let p(x) = 1-u.llxff1 . Then for r sufficiently small,
l(x) 4  p(x) for all 2C£.Xr .

Let H..(x) ■ p(s)...p(f^(x)) for each positive integer j.
It now suffices to show that for each point & e X r one has

1+^? H.ixJ.j1 D/j/x|l̂ i+1 for some constant D.3-0 J
Let 1 6(0,1). Let xfeX with |jx||-r. Then for each positive 

integer p, define the set of integers Ep by the formula
E - {qfcN | fq(2c) e  (tpr,tp"1r3] ,



27

and let C be the number of elements in E .This divi sion P P
will be used to calculate the sura above.

For all £CX with |Jjvllt(tpr, tp_1J one has 
HZ - f(y)ll> b.(tPr)m+1,

hence one derives the following upper bounds for Cp: 
Cp <r(tp_1-tp)/(b(tpr)(n+1)) + 1 

< (1-t)(t"pEl"1r_mb"1) + 1
s<K/(btpm+1rm )f d ;

v.’here K  = 1 + brm.
Sirailarly one has the following lower bound for Cp:

Cp >(t-(p-l)ni(l-t)a-Vm ) - 1 (2).
Hence with t£(0,l) and r sufficiently small compared with

t(l-t), is non-zero. For each positive integer p, let b^
be the largest integer in 1! , let P (x) = (x), and letP P Dp
Pq (x . = 1. Then

f  ( x )  = p  « ( x ; . IT p f 1 ( x )P P 1 i c £

< P._1 (x).p(t1_2i) P (3).
Kow, p(t-’x) = (1 - utpnrn)f so by (2)G t  ( *  . \ . m m . rap» -1

p(tTi) ! > < (e ip (- 1  ‘  3 1  * ' a u , (4) ,

provided that r is sufficiently small compared with t.
The last inequality uses the fact that

(1-z )1/z — * exp(-1) from below as z —* 0 from above, 
let v = (tn (t-1) + arn }u/(a.log(t)).Then for r 

sufficiently s: .all compared with t(l-t), v is strictly 
positive and (4j gives 

p(tpx) p < t *
Bote that v is independent of p.

3y induction on pf the above inequality and (3) lead to 
Pp(x)<tp v . (5).



Note that
(t-l)/log(t) —> 1 frou above as 

t — * 1 from below.
By taking t sufficiently close to 1 and taking r 

sufficiently small compared with (1-t) so that rm/log(t) 
is sufficiently snail, v may be made arbitrarily close to 
u/a. Let E = v - m(i-;-l). Then t and r may be chosen so as 
to make E strictly positive.

Now Hp(x) decreases as p increases, so

Nov fro.. U)

since E > 0  and 0<t<”l.
ihis is the inequality required, and completes the proof 

of theorem 3.7«

b.v
p j>( _____\ . __ 1_

P .  ' j i S l b t ^ V 4 r“ t1*0“ ‘ J“ •

for some constant C.
Using (1) and (5) one gets

-mpt(p-l)v t-mpi
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4 Finite Stability.

In the previous sections the main motivation was to study 
the structure of G, the group of germs of 0** diffeomorphisms 
Rn ,2 —> Rn,2. Later some applications of this theory will be 
made, and it will be clear that the notion of flat stability 
is at times too restrictive. Accordingly the neitt concept is 
introduced:
Definition 4.1

Given positive integerS^J^and a set X £Rn, a C1 
diffeomorphism f: R ,Q —* R ,0 is said to be *-stable on X 
if and only if for all C*' diffeomorphisms g: Rn ,Q —► Rn,0 
which are k-tangent to f at 0 and equal to f outside X there 
exists a C function h: Rn,0 —> Rn ,0 (k-m)-tangent to the 
identity at 0 and equal to the identity outside X such that 

gh = hf and
fh"1 = h-1g near 2.

As in the previous section the quasi-contractions in 
particular displa” this type of stability, but this time the 
proof is elementary.

In order to make precise the dependence of the permissible 
k values of the parameters of the quasi-contraction the 
following notation is introduced:
Definition 4.2

Given a quari-contraction f: Rn ,0 —» Rn,0 of degree m
n greatest loweron X C R  t let a*, c* be the A bounds for the numbers

a/b, c/b of 2.2.
'then (a*,c*) is called the characteristic of f.
Rote that a* is at least 1.
the main result may now be stated:



Theorem 4.3
Given a strictly positive integer, m, and an open set X t R n, 

let f: Rn,0 Rn ,0 be a quasi-contraction of degree m and 
characteristic (a*,c*) on X, with Df m-tangent to the identity 
at 0 .

Then for each point xfcX there exists an open subset 
X'C x with xgX' such that f(X' ) = X' near 0 .

Moreover, for all integers k > m.a* + c* , the diffeomorphism 
f is (k,m)-stable on all such open sets.
Proof

Firstly, given x eX, let U C X  be a neighbourhood of x.
oo •

Then the set X' = f (U) i X is open, invariant under f 
and contains x, as required.

Secondly, let g: R^O — > 1^,0 be a diffeomorphism which 
is k-tangent to f at 0 and equal to f outside X'. Then 
X' = g(X') and q is a quasi-contraction of degree m and 
characteristic (a*,c*) on both X and X'.

For each positive integer i and point x fc R n , let 
Xi - fx(x) .

Notice that if xi+1eX' then & X' and |lxi+1l! •
Now, g is k-tangent to f, so for any strictly positive 

real number e, any ^eX, and for any sufficiently large i,
|/f (si )-g(xi )/l 4» e .liatiW k •

By the Mean Value Theorem, for some point ji between fij^) and 
gij^), not necessarily in X,

l/g”i_1fi+1 (x)-g”ifi(x)W ^ /tog-1”1 i-gCati)//
v< llugl+1(i)-1||.e.llil/lk ,

where i «* g“i_1(u) .
By lemma 2.19, for s sufficiently large and ||xll sufficiently small

ik-m



On the other hand, if £ ^ X  then g and f agree at x., so 
|lg"i_1f i+1(x)-g“if i (5)|| = 0 .

Hence, in either case, one has by Theorem 2.18 and Lemma 3 .9
five

that for some constant D, independen^f ¿c, for all^ integers 
i, j, with i sufficiently large,

/lg“1_;if :L+;3 (z)-g"i fi (j)H
« (D/(|/xl|-8.|lsl|k"m )m ).e.(l!xlK8./Wlk-m )k.Mk , (A)

where M = sup {  (||x.jj/(llx./l-s.llxM k-m))} is finite for 
iiXj^e X* i

IJxll sufficiently small, depending on s.
Hence the sequence { g ' *  f*(£)} j_ t  u is Cauchy for all 

2  6 Rn sufficiently close to Q . Let h(x) denote the limit.
Then h is the identity outside X, since f and g agree there.

Prom (A) it is clear that the function h is (k-m)-tangent 
to the identity at 2 (in the sense for C° functions), and in 
particular is continuous at Q ,

It also follows from (A) that for l/x|J sufficiently small, 
for each e>0, for all sufficiently large integers i, 

/lg_ifi(at)-h(x)U ie .
Each function g-ifi is uniformly continuous, so for y 
sufficiently close to x,

fe'1fi (I )-g'1i i (l)ll i  is .
Now by the triangle inequality,

||h(y)-h(x)M ^ e .
Thus h is continuous away from Q also.

By swopping the functions f and g in the above calculations 
one obtains a continuous function h' which is easily seen to be 
the inverse of h. These two functions satisfy the equalities 
of Definition 4.1.

This completes the proof of Theorem 4.3»



In the next section it will be shown that the conjugating 
germ, h, is unique. Consequently whenever the two quasi- 
contractions, f and g, are C°°and infinitely tangent to each 
other, the germ of the diffeomorphism h, constructed in this 
section as a limit, is the same as was shown in 3.4 to exist 
as a fixed point of a map.

The methods used in the proof of' theorem 3.4 can be used 
to show that quasi-contractions also have a type of stability 
analogous to that of 3.4, namely that for perturbations 
which are only given to be 'small1 on some pyramid-like 
invariant set,there exist conjugating germs, h, defined on 
'cores' of the invariant set.
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Quasi-Oonl: actions have Small Centralisers.

In section 3 it v/as shovm that C°°quasi-contr«acticns are 
not only flat stable but uniquely flat stable: their 
centralisers are small in the sense that they only contain 
one g e m  (the identity) vhose Taylor series is the identity. 
Here a similar result appropriate to the finitely 
differentiable diffeonorphisms of the previous section will 
be proven which will also give a stronger result for the C°" 
case. First the notion of a 'small centraliser' is made 
explicit:
Definition 5.1

The centraliser of a function f: Rn,0 —y Rn,£> is said to 
on Xbe small of order l^if and only if all functions 

g: Rn ,0 -y Rn,Q satisfying
i) g is the identity outside X,
ii) g is 1-tangent to the identity, and
iii) g commutes with f near 0, 

are the identity near 0.
The main result may nov: be stated.

Theorem ~.2
Let f: Rn ,0 —y R,0 be a quasi-contraction of degree m 

and characteristic (a'-,c";:) on X £ n n.
Then for any integer k>na* + c* , the centraliser of 

f is small of order k-(m+1) on X.

Since f is m-tangent 
to the identity and commutes with f, the centraliser of f 
is not snail of order m. In one dimension the above theorem 
asserts that the centraliser of a Cm+1 function f is. small 
of order n+1 so in this case the result is the best possible. 
Before proving it consider the following:
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Example 5.3.
Let f: Rn,0 —♦ Rn,0 be the standard quasi-contraction

about the x^-axis (see 2.10) given by the following formula:
r r

(x.,,..^) »-> (x̂  (1-X^‘) 1, ...x^l-x“) *), 
where 0 <r1< r^.. ¿rn .

Suppose that the quotient rn/r.j is an integer. Then the 
given function f commutes with the function given by:

r /ri
(x1**,,xn) *  ̂ x̂i»••,xn— 1 ,xn+x1  ̂ *

This latter function is a C^diffeomorphism near 0, and is
(rn/r^-1)-tangent to the identity at 0, and so the centraliser
of the given function, f, is not small of order max'Cm+l ,r /r^-1.
Theorem 5.2 asserts that the centraliser is small of order
nax(m+1,rn/r^}, end so in this case cannot be bettered.

Loro generally hov/ever the lower bound for 1: given in 5.2
is not the greatest lower bound.
Proof of 5.2.

Let the diffeomornhism f and the integer k be as in the

statement of the theorem.Let l=k-m. By A3.5, l>m+1. Let giR11,^-* 
Rn,Q be a function which is the identity outside X, 1-tangent 
to the identity, and commutes with f near 0, as in 5.1.

Let Kg = Df.g-Df.id+f-feg . near U
Then by the Lean Value Theorem, for all xfeR1̂ there exist' a 
point v between x and g(x) such that one has the following:

/jH g (x )l| ^  IlDf ( x ) - D f  ( v ) l ! . I |g (x ) -x l l ,

4  L . | )x -v l | .  I |g ( x ) -x l l ,

^ L. |\g(x)-2ll2»
where L is a Lipschitz constant for the map Bf,near Q ,

Let h = g-id , and 
define Th = Df.h-h#f , as in A1.10.
Then Th = Hg near Q, .

*N.B. c*> max(m+1 ,rn/r1) : See 2.12



Now, Theorem 3.7 asserts that, under the additional hypothesis 
that Bf is (m-1 )-tangent to the identity, f is a Belickii type 
quasi-contraction of degree m, and hence the map T restricted to 
the infinitely flat C°°map8 has an inverse set, 1, of order m. 
Thus: UhMj - IlLThllJ $c.|lThll° for some constant c,

= ejHgdJ 
< c.L./!hl!°Jlhl|P .

In fact, for this limited application of Lemma 3.9 (which is 
where the extra hypothesis in Theorem 3.7 is used), the 
perturbation function h need only be C1 and 1-flat at £, and 
Df need not be (m-1)-tangent to the identity at Q •

Now, h is 1-flat, and in particular is (m+l)-flat, so for 
any strictly positive reed number e, one has, close to Q, that

I M °  i - •
Hence llhll̂  i.|lhj|̂  , (by taking e = l/(2cL) ), 
and so llhll̂  = 0 ,
and the commuting function, g = h+id, is the identity near Q, 
as required.

Before stating a few easy corollaries, we need the following: 
Notation.

Let G be the group of germs at 0 of C°°diffeomorphisms 
1^,0 — * R ^ O  . For each ffcG let Z(f) be the centraliser of f, 

Z(f) - { g*G | g0f = f0g] .
For each integer 1, let G-̂ S. G be the subgroup of G consisting 
of all those germs whose 1-jet is the identity.

One can now state:
Corollary 5.4.

For any f £G which is the germ of a quasi-contraction of 
some finite degree on Rn there exists an integer 1 (as in 5.2) 
such that G ^  Z(f) - £idj .



Corollary 5.5.
For any diffeomorphisni f e 6 which is the germ of a 

standard quasi-contraction of finite degree there exists 
an integer 1 (as in Theorem 5.2) such that every 1-flat 
member of the centraliser of f is infinitely flat, i.e.: 

G1AZ(f) « G^AZ(f) .

This second result follows from the same line of reasoning 
as Theorem 3.7, showing that each member of the left-hand 
group is equal to the identity on a 'pyramid* associated with 
f (see 2.11), and hence infinitely flat on Rn at 0.

In the next section a standard quasi-contraction, f, is 
constructed for which GAz(f') = id for any diffeomorphism 
f' which is infinitely tangent to f. This contrasts with a 
result of section 7, where GAZ(f') is shown to be 'large* 
for any diffeomorphism f' which is in a specified open set.



6 Diffeomornhism Germs v/lth Discrete Centralisers.
In the previous section it was shown that C60 quasi­

contractions on Rn have small centralisers, in the sense that 
each Taylor s^ies which formally commutes v/ith the Taylor 
series of the given germ can be represented by exactly one 
germ which commutes with the given germ. (The 'at most one' 
part follows from 5,2 end the 'at least one' part from 
In this section a type of germ is constructed which has an 
even smaller centraliser, consisting only of integer pov/ers 
of itself. These germs are common in the same sense that quasi­
contractions are common: compare 2.14. They provide the first 
common examples of germs which are not flat stable. That they 
are not flat stable is a consequence of their having discrete 
centralisers and the following veil known result:
Theorem 6.1.

Given any C*° diffeomorphism f: Rn,0 —* Rn,0 with Df(0) 
equal to the identity, there exists a one parameter group 

of diffeomorphisms Rn,0 — * Rn,0 such that f1 is
infinitely tangent to f at 0.
Proof.

By theorem A?-. 2 the Taylor expansion of f is embedded in a
canonical one-parameter group of power series, associated to
v/hich is a unique formal vector field on R11. By a well known 

*
theorem of 3. Borel there exists a representative vector field, 
V, say, for this formal vector field which has time t integrals 
for all times t. Call these integrals f^. Then the Taylor 
expansion of f1 is the formal time 1 integral of the formal 
part of V, and hence equal to the Taylor expansion of f, as 
required.

Before constructing the germs with discrete centralisers 
the following notation is introduced:

*In his Thesis.
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flotation.
Let f: Rn,g. —*  Rn,0 be a C °°diffeoinorphisin.

The roots of f are those members of the centraliser of f whose 
Taylor series lie in the canonical one parameter group of A2.1.

The integral roots of f are those members of the centraliser 
of f whose Taylor series are integral powers of the Taylor 
series of f.

In section 7 some 'partly hyperbolic' germs will be given 
for which the integral roots are not all integral powers. In 
this section though the aim is to constuct a type of diffeo- 
morphism whose only roots are integral powers. One of the key 
properties of such germs is as follows:
Definition 6.2.

Given a C1 diffeomorphism f: Rn,0 -» Rn,0 and a set U C R nf 
let orb(f,U) = r̂ zfm (U, and 

orb+(ftU) = ¿¿NfD+1(U).
A point x*?" is said to be a forcing point for f if and 

only if there exists a neighbourhood, U, of jc. such that
a) orb(f,U) is a subset of the ball of radius 2.llx l l ,  

centre 0, and
b; for some integer m, the diffeomorphien f is a

quasi-contraction of finite degree on orb+(f»f^CUj;,
If there exist points arbitrarily close to 0 which are

_1simultaneously forcing points for f and f thenf is forced.
flote that the property of being forced depends only on the 

germ of of the diffeoiiiorphism. Also the iterates f^U) can be 
made to lie in any given neighbourhood of 0 simply by taking 
m to be sufficiently large. The following may now be stated:
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Theorem 6»
Any forced diffeomorphism which lies in a one-parameter 

group of C°*diffeomorphisms is infinitely tangent to a diffeo- 
morphism v;hose only roots are integral.
Froof.

let if*] R be a group of diffeor.orphisms with f"* forced.

for all positive integers i,
a) Xi 0 as i h-» 
h ) ^  & UA ,
c) for all ueU^JIull >||x^||/2 , and
d) fn (Ui) O f n(Ui) is empty unless m=n and i=j.

These are derived in two stages. Firstly by taking subsets
if necessary', one ha? (c). Bow, for m sufficiently large (or 
large and negative), fr‘(Ik) is contained in the ball of radius 
IIXjJI/2 centre 0, hence for only finitely many integers m does 

intersect Ik non-trivially. 3y making smaller, if 
necessary, one has (d; for i=j and n=0 . But f is a diffeo- 
morphism, so (d) follows for any value of n, provided i=j. For 
the rest of (c), simply discard X-̂ 's and until one has

Then for no integer m is 0 in the closure of Vm , and for each 
neighbourhood of 0 there exists ah integer M such that for 
•In/ > H the set fn (Vm ) is contained in the given neighbourhood. 
Hence for n sufficiently large

Then there exists a sequence { x P t  . , v  of forcing noints for4 ~ c o 1 lfeX<
one has the follov/ing:

llxi+il|< IISill/6.
One then has the required property by (a) of 6.2*

How for each integer m define the open set V byHi

fn (Vm >/r|Vxn is empty
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Nov/ replace Vm by a subset V^q V f also open, such that
a) is empty unless n=0,
*> I t£(0,1)]cv; , and
c) £ Vm for a11 n*

Suppose that have been constructed as above.
Then the set of integers i such that

( U  f ^ V J ) ) { )  ( \ J  VI ) is non-empty 
t€R "

is finite. Haice without loss of generality one may suppose 
that the sets have disjoint iterates. Let V be the union 
of these sets.

Let h:Rn,0 — » R ^ O  be a C°° diffeomorphism which is 
infinitely tangent to the identity, equal to the identity 
outside V, but which moves each point of the set given by:

{ f * ^ )  I t 6 (0,1) , me N] .
Such a diffeomorphism may be constructed inductively.

Let f* = f 0h • Suppose that g is a non**integral root of f*. 
Then g0f1 = f1og on the set Rn-(VU g“1 (V)) . (1)

Now, g is a root of f*, and f* is infinitely tangent to f1, 
so the Taylor expansion of g lieB in the canonical one-parameter 
group containin^the Taylor expansion of f. So by Theorem 5.2 
there exists a real number t, not an integer, such that

g * f* on orb+(f,fi,(2m))f (2)
for some integer i'. Since t is not an integer there exists an 
integer j such that ft(f^(im ))6V : i.e. such that t+j6(0,1). 
Without loss of generality suppose that j-0 . (Then for |n| large,
■ g = f* on «“ (j^) .

Thus g0f*+1(^) - gof.f’H s J  = g . f V “ ^ )
- f^gof“ ^ )  - fofif^Z*) (for ni<0)

« f ^ 1^ )  •
Similarly for nj*1,

\
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Thus, by a process of induction from the extreme values, 
g * ft on f1̂ ^ )  for n^O .

^  f.g.f1(2n) = f.flf'1^ )  = f * ^ )  ,
and f.g.f’1^ )  = ftg.f*"1^ )  * g(â ,) »
so g(^) = f * ^ )  .
Hence f . f * ^ )  = f ^ f i ^ )  = »

- *.*•**<*,> ’  

so h , t H x j  = f̂ ijSjjj) ,
contrary to hypothesis.

This completes the proof of Theorem 6.5.
Theorem 6.4

For each pair of integers n, m with m even and n, m$ 2 
there exists a non-empty open subset of Gffl, the vector space 
of germs at 0 of C"° diffeomorphisms which are m-tangent to 
the identity, every member of which is forced.

Recall that the sets Gffi are topologised by the coefficients 
of order m+1. A germ is forced if and only if it has a forced 
representative, in which case every representative is forced.

For n*1 it is easy to show directly that no member of Gm is 
forced. For m=0 members of G^ are generically either contractions, 
the inverse of contractions, or hyperbolic, anyone of these 
can be forced.
Proof of Theorem 6.4

Let di = fO for each integer i«1...m-1 ,
(. 1 for i >, m .

Let g:Rn,£ —9 R11,0 be the C*° diffeomorphism given by
g(x^,...x^) ” (x1 - x-|L.j,...,xn - x^L^) »

where for each integer i«1,..n one has



= ((1+d.^.x2 - (n+1+d^i-d^J.x^). JI(x1,..xn )llE“2 .
Note that the L^s increase v;ith i unless x^=x =0.

In standard form about the x^-axis (see 2.10) one has 
r^ = i+dĵ  for i=1...n.

If one employs the linear change of co-ordinates
(x1 fx2,...xn ) k-» (xn,.. .x2,x1)

U.e. reverse the order of the axes) then one gets the same
standard fom, so by 2.12 any diffeomorphism whose m+1-jet
is sufficiently close to that of g is a quasi-contraction of
degree m on some •pyramid', X, about the x^-axis and is the
inverse of a quasi-contraction of degree m on some 'pyramid',
Y, about the x -axis.n

The following calculations hold for each function g in some 
fixed neighbourhood of the function specified above.
Let x = (x.j, l2x^,... lnx^) for some non-zero real number

x. and some non-zero real numbers l„...l . Then for i=2...ni 2 n
le(x)il < *1 IjJ » since

provided only that x is sufficiently close to the origin.
For each integer j, let x^ and ljj...l^ be given by 

g*kx) = (x.., l^Xj,...l^X^) .
Then for each integer i, the sequence {!?} j€j,is monotone towards 
0 and bounded by 0. Let the limit be If. Let k be a positive 
integer, and let e be a strictly positive real number. Then for 

11^| < n“^ and X y sufficiently small, 
the sequence {x-j]-jen is nonotone after k, and so has a limit, x*. 

Clearly (x*, l|x*,.,l£x*) is a fixed point of g, and so 
x* = 0 .

How, for i«2...n, for each integer j, for all e > 0  and for 
all x. sufficiently small one has the following inequalities:
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llf+1- ifl )  (1-e).|li|.|xj|B and 
U j +i- x3| ^  (l-n.(l*)2+e).|x^| mt1 

Hence ll^+1- |/ lx^+1- x_.|^ (1-e).|1^|/(|x^l(1+e-n.(1£)2J) .
Thus lv = 0 for i=2...n.

Nov/ let x' = (x,0,...0,n-5.x) for some sufficiently small 
strictly positive real number, x. Then for each integer i«£- 2, 

|ISi(x,)ll i  |1 x*l| and
||g(x')||< 2.||x'|| .

Hence orb+(g,x') is contained in the ball of radius 2.JJx'JI , 
centre 0, and eventually x' iterates under g into the region X 
on v/hich g is a quasi-contraction of degree m.

Similarly it can be shown that for x sufficiently small 
orb+(g”\x') is contained in the ball of radius 2 . jjx'lj centre 0, 
and that x' eventually iterates under g”  ̂ into the region Y on 
v/hich g is a quasi-contraction of degree m. Thus g is forced, 
as required.
Theorem 6.5

For each pair of integers n,m^ 2 with m even, there exists 
a non-empty open set, D, of &m every member of v/hich is in­
finitely tangent to a germ, f, of a diffeomorphism Rn,0 Rn,£
whose centraliser contains only germs of the form f* for some 
integer i and germs whose derivatives at Q is minus the identity.

Moreover every member of D is m+1-tangent to a germ f whose 
centraliser is simply { f i  I i 6 z} .
Proof.

Let g, X, Y be as in the proof of 6.4. Then every point of 
Rn v/hich is sufficiently close to 0 is either eventually moved 
by g into X or eventually moved by g into Y. The result now 
follows from 5.2 and the algebra of A2.3 and A2.9,



¿he importance of the previous result is highlighted by 
the folloving application:
Theorem 6,6

For each pair of integers n, vs>,2 with m even, there 
open

exists a non-empty^set, D, of G^, no member of v/hich is 
flat stable.
1 roof

By 6.5 and 6.1 there exists a subset of 3 , every member 
of v.’hich is infinitely tangent to a pair of diffeomorphisms 
v/hose centralisers are not isomorphic.
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7 Diff eom.orphism serins with large centralisers.
Nancy Kopell [6] has shown that the centraliser of a hyper­

bolic germ is large in the sense that it contains many germs 
that are infinitely tangent to the identity. The ’partly 
hyperbolic' germs, introduced below, are a more general type 
that have large centralisers, i-.oreover it will be shown that 
for each positive integer m there exists an open set of G-̂ , 
the vector space of germs of diffeomorphisms which are m- 
tangent to the identity at 0, every member of which is partly 
hyperbolic. A partly hyperbolic germ nay also be a quasi­
contraction on some invariant subset, and may even be forced. 
Nonetheless these results complement those of the previous 
sections.

Recall the notation ’orb(f,U)' and ’orb+(f,U)' introduced 
in the previous section (6-2-).
Definition 7.1

A diffeomorphism f: Rn ,0 —* En ,0 is said to be 
partly hyperbolic

if ana only if there exists a neighbourhood, U, of 0 and a 
sequence of open subsets of Rn such that one has

a) for each integer i, orb+(f,b\ ) is empty,
b) the distance between 0 and IL tends to 0 as i 
tends to infinity, but is never actually zero, and
c) for each integer i, only finitely many sets of the 
form f^(U^) (j€Z) have a non-empty intersection with U.

Note that each IL has only vandering points that avoid some 
fixed neighboui'hood of 0. Moreover f has such wandering points 
arbitrarily close to 0.
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Theorem 7.?
Every C°°partly hyperbolic diffeomorphism germ has a large 

centraliser, in the sense that many germs, infinitely tangent 
to the identity at 0, commute with the given germ.
Proof.

Firstly, assume without loss of generality, that each ILC U, 
and that the sup. distance from 0 to tends to 0 as i . 
Secondly, assume that for each integer j, either f^(IL)CU 
or f^iU^) is disjoint from U.

A C*" partly hyperbolic diffeomorphism germ may be represented 
by a diffeomorphism, f, say. Every such representation is partly 
hyperbolic. By taking subsequences and subsets if necessary, 
assume also without loss of generality that the sets orb(f,IL ) 
are disjoint, and that there are no points of accumulation of 
Uorb(f,U^) in U other than the origin and those points which 
are accumulation points of some orbifjlh).

For each positive integer i, let gi : Rn ,0 •— ► Rn,0 be an 
arbitrary C°° map such that

a) %  ■ 0 on R11-!^ and
b) gi(xi) t  0 for some point x ^ U  .

Let be a sequence of real numbers. Define the map
g : R11,©— *Rn,0 by the formula 

g - id + S  .
If the numbers 1L are sufficiently small then g will be a 

C°° diffeomorphism, and it will also be infinitely tangent to 
the identity. Define the function h: Rn, 0 — *Rn,0 by 

h ■ id outside U  orbifjU^AU 
■ f^g.f-  ̂ on the set f^(TJ^)^U .

The conditions which have been imposed on the sets ensure 
that the function h is well defined.
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Claim 7.3
If the real numbers are sufficiently snail then h is C00 

and infinitely tangent to the identity at Q.
The theorem follows easily from the claim, since h clearly 

commutes with f. 
iroof of claim.

It is obvious that h is C°° away from 0.
For xef'Ulh) one has the following inequalities:

let U be a neighbourhood of 0 such that for each integer i

non-empty.
Eow, for each integer i the distance between 0 and orb(f,lL ,/ 

is non-zero, so for sufficiently small one has that

low, h is the identity outside U  orb(f,U.) , so 
||h(x)-x|| < exp(-||x||-2) for all xfeU.

Hence h is C*°at 0 and infinitely tangent to the identity 
at 0, as required. This completes the proof of theorem 7.2. 
Example 7.4

Suppose n£2. Then given an integer m >,\, let f be the germ 
of the C^diffeomorphism Rn ,0 —i  Rn,0 given by the following:

This clearly lies in G , and any germ sufficiently closem

| lh ^ x ) -x l l  = | l f ^ g f - ^ ( x ) - f ^ f ~ ^ ( x ) l l  

« L j . l l g f " ;)( x ) - f " ;i(x ) | l

constant for f*1 near Q .

only finitely many sets of the form f^(U^) (j€Z) have a non­
trivial intersection with U. Then for every xeUOf'U'U^) ,

1.. for which UOf-kl^) is



to f must be partly hyperbolic. To see this, for each strictly
-2positive integer i, let be the ball of radius i about 

(2.i~1,2.i_1,0,...0).
Explicit claculation confirms that jfuJ ̂  satisfies the 

condition of 7.1, for U the unit ball. Note that the seperation 
between iterates of each is at least i r̂aT̂ ,  and the 
iterates f3 (tL) all eventually move away from 0, so (a) and 
(c) of 7.1 hold for nearby germs with the same and U 
sufficiently small. Now (b) of 7.1 is trivially satisfied by 
these, and so they are partly hyperbolic.

Note that, for the case v.'here the number of variables, n, 
is one, there are no partly hyperbolic germs.



e Applications
Theorem 8.1

Let Y C X C R n , with Y a core of X (see 3.2). Then given a 
C*“ quasi-contraction f : Rn,0 —» Rn,0 of finite degree on X 
there exists a one-parameter group {f^ttR Of 0“ diffeo- 
morphisms Rn,0 —► Rn,0 such that on Y the germs of f1 and 
f are identical.
Proof.

By 6.1 there exists a one-parameter group with g1
infinitely tangent to f at 0. By 3.4 there exists a diffeo- 
morphism h: Rn ,0 —*  JLn,0 , infinitely tangent to the identity 
at 0, such that for some sufficiently small real number r, 

g10h = h.f on Y r  .

Por each real number t let the diffeomorphism f^ be given 
by ft = h_10 gt0h .

Then is clearly the one-parameter group required.
It often happens, for example in the standard case (2.10), 

that f(X) is a core of X. In these cases one may obtain the 
above equality on the germ of the whole of X.

If one takes a fixed quasi-contraction , f, as above end a 
given point x6^r (f°r r sufficiently small), then the map 
P : [0, 00) —f  Rn given by the following formula: 

t >— * f^(x)
is clearly well defined. Since f^x) h O as n the image
of the map is a path which goes to 0. Y/hat does it look like?
Theorem 8.2 •

Given an integer m which is both even and at least two, 
let f: R ^ O  — » Rn,0 be a standard quasi-contraction of degree 
m about the x.-axis. Suppose that none of ?2 ****^ji are
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Then there exists ajp** diffeomorphism f*: Rn,Q —♦ 1^,0 which 
is conjugate to f (in G, the vector space of germs of diffeo- 
morphisms of Rn), m+1-tangent to f, and which leaves the x^- 
axis invariant.
Proof.

The x^-axis is formally invariant under the action of the
m+1-jet of f. The Taylor expansion of f is formally conjugate

mapped to,itself.
to a Taylor expansion for v/hich the x^axis is formally ^
This is easily proven by induction. The above result is now a 
straight-forward corollary of 5.4. Note that the linear part of 
the conjugate constructed here is the identity.
Corollary S.3 satisfying

Given a diffeomorphism f: R, 0  — * R ,0 ^ the hypothesis
of the above theorem, there exist C°° functions k: R,0 — » R11 »0
and g: R,0 —* R,0 such that k is flat at 0 and one has: 

f(idxk) = (idxk)cg near 0.
Proof.

The conjugation given in the preceeding theorem gives rise 
to k and g in the obvious way. The point is that the graph of 
the C*° function k is invariant under f, just as the x^-axis is 
invariant under f*.

The following example shows that the Corollary above can 
not be generalised to arbitrary quasi-contractions.
Example 8.4

Given an integer 2, let f: R2,0 — * R2,0 be the C"*
standard quasi-contraction about the x^-axis given by the 

*
following formula:

f(x,y) = ( x-xm+1, y-2.xmy+x?n+2 ) .
Then there do not exist functions k: R,0 —* R,0 and 

g: R,0 — ► R,0 with k of class C"*which satisfy

f(idxk) - (idxk),g near 0 .



Proof.
Suppose that on the contrary such functions do exist. Let

0 m+1Firstly, suppose that 3 m+2 . Then the first /  non-trivial
terms in the Taylor expansion of f(idxk) are

This situation is insoluble, so one must have j>m+2. But now

This situation is also insoluble, so such a function k can not 
possibly exist, even on a formal level.

Thus once again the formal behaviour and the properties of 
the germ are closely related.
Example S.5

Given an even integer m £ 2  and a positive real number r, 
let f: R % 0  —» R^,0 be the C°" diffeomorphism given by

This is a standard quasi-contraction of degree m about the 
x^-axis with r2=r and r1 = 1. The x^axis is clearly invariant. 

For each real number, t, let k^ be the function given by

Then for each real number t, one has the following equality: 
f(idxkt) = (idxkt)0g , where g(x) » x-xm+1.

If r is an integer then each k^ is of class C* . Thus one has 
in this caBe a one-parameter family of invariant curves.

*Except for j-1, when the last term is omitted.

the Taylor expansion of k be Let j be the least
integer such that a. is non-zero.J

It is clear that g(x) = x-xm 1, 
Taylor expansion of keg are as follows:

the first term in the Tayor expansion of f(idxk) is xm+2 , 
whereas the first term in the Taylor expansion of k 0g is â x..

f(x,y) = ( x-xm+1, y.(l-xm )r ) near 0.

kt(x) = t.xr .
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The above situation in which r is an integer is unusual in 
that for each real nunber t the diffeomorphisn given by the 
following formula commutes with f: 

gt(x,y) = ( x , y+kt(x) ) .
By A2.3 germs like this are uncommon, in the sense of that 
section.
Theorem 8.6

Let f: Rn,0 —* Rn,0 be a C" standard quasi-contraction of 
degree m about the x^axis with none of r2,...rn being integers, 
as in 8.2.

0O fl'lThen there exists exactly one flat C function k: R,0 —* R,0
whose graph is invariant under f.
iroof.-

By 8.2 it suffices to consider the case where the x^axis is 
invariant under f. The zero function is then a solution.
Suppose that one had another solution given by

i
k —1 k2x..*k^ ,

where for i=2...n , k^: R,0 —> R,0 is C"and flat at 0. Then 
a) To show that each k^ is infinity flat:

Suppose otherwise. Choose an int^er j such that no function 
k. is flatter than k.. Let k. have a Taylor expansion given by— t) J

kj(x) = a ^ 5 + ... .
The Taylor expansion of the j-th part of f is by hypothesis 

f(x1,...xn ) = Xj-r^.x^x^+p+higher order terms, 
where p is a homogenous polynomial of degree m+1 which does 
not contain any terms of the form x^x^.

It is now easy to show that the Taylor expansion of f(idxk) is 
f(x,k(x)) = a1.xp+...aJ2.xp m-r^.a1 .xp+m+higher terms.

(Note that p does not contribute any terms of order less than 
m-1+p and by hypothesis p is greater them one.)
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How the Taylor expansion of f restricted to the x^-axis is

Thus the Taylor expansion of f restricted to the x^-axis 
followed by k is given by the following formula!

which is a contradiction, because a 1 is supposed to be non-zero,

b) To show that the only infinitely flat solution is zero; 
Given a real number, t, let V(t)C.Rn be defined by

where K is some integer that is much bigger than rn.
Clearly for any t > 0 there exists a real number d > 0 such 
that for all xt(0,d) one has the following!

(x,k(x)) feV(t) .
Let x = (x1,.. .xn ) €. X with x ^ £ .

Then for any sufficiently small real number t, 
x £  V(t) .

Now it suffices to show that for any t with 0 <t< 1 , 
f(X-V(t)) CX-V(t) ,

for then each k^ must be the zero function to avoid a contra­
diction.

To show that the above inclusion is in fact true, consider 
x £ X-V(t) as before, and let 

f(x) = (x},...x^) .

f(x,0,...0) a x-xm+1+higher order terns.

terms of order more than p+m

higher order terms. 
Equating terms of order p+m one has

but p is an integer while r^ is not sn integer

V(t) = £(x.j,.. .xn) 6  X | x ^ O  and
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The pyramid, X, of 2,11 is described by constants l2,,#,^n ' 
^n+2'***^2n r* ^  these are sufficiently small then one has 

xj < x 1-i.x^l+1 and

x i  * xr (rd+1),xix3 '
where j is some integer with the property that for no integer i 
is ¡ x j  > 1x̂ 1 . Now if K>2.(rn+1) and r is sufficiently
small then one has the following inequalities, as required: 

x j > t.x^(l-(rn+1 ).^) >t.x^.(l-i.x^)K >t.(xJJ )Ik .
The above calculations are done for x.. positive, but this 

does not lose generality as the situation is entirely symmetric 
about the x^axis.

By argu^ing as above but calculating as in 4.3 it is 
possible to show that for a general quasi-contraction of degree 
m and characteristic (a*,c*), there do not exist two curves in 
X which are more than (m.a*+c*-m-1)-tangent to each other. As 
a corollary one may deduce a result very similar to that of 5.2, 
namely that such germs have small centralisers. The only 
difference is that recently our attention has been restricted 
to C°° quasi-contractions, using the results of section 3, but 
section 4 can equally well be applied to give analogous results 
for only finitely differentiable germs.

Notice that if one has a fixed curve in mind, then by 
restricting one's attention to a possibly smaller set (such as 
the cores of 3.2) one can make a* equal to 1 without loss of 
generality. This makes the formulae much simpler, and shows 
that the arbitrary quasi-contractions aren't very different from 
the standard ones.



55

Appendix 1:
Details of Belickii's Theory of Quasi-Contractions. Modified.

✓The basic concepts underlying Belickii's work are as follows:
Let MC.Rn be compact. For each e>0 , let V=T(lj,e) be

the closed e-neighbourhood of K. Let Jg(M) be the space of
maps h: V —► Rn with the usual topology given by the norms

M l *  = max max ||Dlh(x)|| , for non-negative integers, k. itk xeV
Let J(M) be the indirect limit as e tends to zero of 

1j*e^3e>0 * 311(1 Jq (M)CJ(M) be the subspace of all
germs which vanish on H together with all (derivatives.

Given and an operator T: an
operator Tg: is a representative of T if and only if 

iboth i) is a representative of J'L for 1=1,2 ,
and ii) for each h é J1 and each representative hg€. J1,

Tg(hg) is 3 rePre£en'ta‘tive of the germ T(h) .
*1A subset J C i s  suitable if and only if it is complete 

and closed under the following: subtraction; multiplication by 
members of J; and the maps induced by composition and the 
tel: ing of inverses in the space {id^ + J1 .

be a linear opei’ator. A set * - W „ o  
> J1 is right inverse to T if and only if 

there exists a set of representatives ^ T g ] q of T such that 
leoLç is the identity operator.

Belickiï supposes that in addition to the norms II ||k one 
has, for each J* and each integer k^O, a non-decreasing
sequence [jj j|J)ncH o f  norms» with 11 IIq “ II l/k •

1 „ ■

Let T: J1 J
operrjjbrs L : e e

A set L of linear operators Le: Jg Je is a set of order r 
if and only if there exists a constant c such that:

for each integer k ^ O  and each sufficiently large integer 
m (depending on k) there exists a positive integer m' such that:

for each e>0 there exists d such that for all h 6 J
l|Leh|g 4c.|lhll*+r+ k.d.llhll*;1 .

*Only such sets will be considered from now on.
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1 2A linear operator T:J — > J is an operator of order r 
if there exists a set of representatives of T which are of 
order r.

The infimum of the numbers c above is denoted nr(L) (or 
n^(T) ). The function nr is a semi-norm on the space of 
linear operators of order r.

Belickii gives the following example:
Lemma A1.1

Suppose the norms II ||̂ are defined by the formula
||h|ĵ  = sup sup {||D̂ h(x)ll/|Jxllm} , 

i<k xeV
and that f 6 J(H) has order of at most r (that is,

inf (̂ |lf(x)ll/Hxllr} is strictly positive ), xeV
then the operator L:J0(ll) —* J,.(M) defined by the formula 

h t-* h/f 
has order r .

The proof is straightforward: the constant c is simply 
the inverse of the above infimum, and each d is zero.

Operators of finite order combine as follows:
Lemma A1 ♦2
The composition of an operator of order r with an operator 

of order s is an operator of order r+s.
The proof is trivial. Note also that an operator of order 

r is also sin operator of order s for each integer s which is 
grater than r.

ifThe next result is based on Belickii's Proposition 1.2 [ 3 ] ,

but is significantly more general:
Theorem A1 , 3

1 iLet T:J J be a linear operator. Suppose that there 
exists a constant c such that:

for each non-negative integer k and for each sufficiently 
large integer m there exists a positive integer m' such that:
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sufficiently small
for each/strictly positive real number e there exi^s

a real number d such that for every integer fo and every

(Belickii's hypothesis is that r is 0 and Hq (T) is less than i.)

limit by Ih. Clearly -L is a linear operator of order r and 
= -T0L = (I-T)el-L.T = I-L^ and so -1 0(I-T) = I^.Thus I-T has an inverse.

Replacing T by -T proves that I+T has an inverse of order r,
as required.

The next important concept is as follows:
Definition A1.4

1 lAn operator H:J —} J is small if and only if for each 
non-negative integer s there exists an integer'! such that:

of H such that:
for each non-negative integer 1c one has:
i) there exist non-decreasing functions c:R,0 —* R,0 } a/tA
ii) for each sufficiently large integer m there exists

Note that the sum of two small operators is also small.
The composition of a small operator and an operator of finite 
(either way round)
order^is small. Belickii gives the following results:
Lemma A1.5 [3]

For each function feJQthe operator H:JQ— ♦ JQ defined by 
h t-> f *(id+h) - f is small.

hC.Jg one has the following inequality:

Then the linear operator I+T has ah inverse set of
order r. (Here I denotes the identity operator.)
Froof:

1=0

for every pair of strictly positive real numbers e 
and K there exists a ret of continuous representatives { ^ I ^ q

an integer m' such that for all h€Jg with Ilhll^K,

nv-Cs < e-i|h,!S * .
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Lerjna A 1.6 c a
Let T:Rn*Rn —f  Rn be C°*. Then the operator H:J^ —» J^given by

h T(id,h) - T(id,0) - D2T(idffi).h
is small, where D^ denotes partial differentiation with respect
to the second variable,

✓
Belickii goes on to introduce the following notion!

Definition A1,7
An operator B:J1 -* J2 is differentiable at Q £ J 1 if aind

only if there exists a linear operator T:J* —* J2 and a 
1 2small operator H:J —*■ J such that one has 

B * T + H + B(0) .
In general the derivative is not uniquely defined.

Theorem A1.8
1 2Suppose that an operator B:J — » J is differentiable 

at 0, and that one of its derivatives has a right inverse 
set of finite order. Then B is surjective. Moreover,

b '(b(o )} = [ o ]  .
Proof

Belickii prove* the first part. The second part is
new, and is vital to the application of Belickii's work.

right
Suppose Bh = 3(0), then Th = -Hh. Let L be the^inverse 

of T. Then HLh = -h .
However L is of finite order, say of order r, so there 

exists a constant c such that for m sufficiently large
M °  < oim;w  .

But H is a small operator, so choosing e = 1 / 2 c ,

" < +r 4 llHttC r  4 elllhllj < Jllhll°+r
for m sufficiently large.

0
Hence ■ 0 * and so h must be the zero function,

as required.
This completes the preliminary results. These relate to 

concepts of stability as follows:



Definition A1.9
A map f:Rn,0 — * R ^ O  is -stable if and only if

1 1 for each he J there exists a germ k €J such that
(id+k).f * (f+h).(id+k) .

The map f is said to be uniquely J1-stable if and only if 
the germ k above is unique.
Definition A1.10

A C°° map f i R ^ O — * R^O is a -quasi-contraction of 
degree m if anc^mly if the linear operator on J1 defined by 

T(f):h •-* Df.h - h0f 
has a right inverse set of order m.

(Note that T(f) = Df.T(f“^)0f , so the inverse of a 
Belickii-type quasi-contraction is also a quasi-contraction!)

The main result may now be stated:
Theorem A1.11

1 1 Every J-quasi-contraction is J -stable.
Proof (after Belickii).

Let f t R ^ O— > R ^ O  be a quasi-contraction. Let he .
1 1Define the operator A:J — » J by the formula 

A(k) = (f+h)0(id+k) - (id+k)0f .
It suffices to show that A maps onto 0. Let T be the linear 
operator defined in A1.10 above. Let H be the operator given by 

H(k) » (f+h)0(id+k) - (f+h) -Df.k .
Then A » T + H + A(0) , so by Theorem A1.8 it suffices 

to show that the operator H is small in the sense of definition 
A1.4 . This is, however, a simple application of Lemmas 
A1.5 and A1.6 : simply take T(x,y) * f(x+y) in A1.6 •

In fact Theorem A1.8 has a stronger consequence:
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Theorem A1,12
1 1 Every J -quasi-contraction is uniquely J -stable.

Proof
Otherwise there exists a J -quasi-contraction, f, together

with germs h, k and l € J 1 (with k and 1 distinct) such that
(id+k)0f = (f+h),(id+k) and
(id+l)0f = (f+h)#(id+l) .

Let g€ J be defined by the following formula:
g = (id+k)"10 (id+l) - id .

1 1Define the operator A:J — ► J by the equality 
A(d ) - f 0(id+j) - (id+j)ef .

Then (id+k)0A(g) = 0 , 
so A(g) = 0 = A(O) , 
hence by Theorem A1,8 ,

g - 0 .
Thus the germs k and 1 are equal, as required.

Besides quasi-contractions, Belickii introduces the following 
Definition A1.15

Let f:rf*,0 — * Rn ,0 . Let J1 » ¿ J .  C J .  ,
i=1 1 u

Suppose that for each integer i, f is a J^-quasi-contraction 
of degree mi 4 m.

•iThen f is J -quasi-hvnerbolic of degree m .

Recall that quasi-contractions need not be topological 
contractions. This definition corresponds to the hyperbolic 
functions of Kopell £6]. Belickii [3] proves the following: 
Theorem A1.14

1 1 Every J -quasi-hyperbolic diffeomoiphism is J -stable.

However the stability is not always unique: see Theorem 7.2



Appendix 2:
Taylor Series of Diffeomorphisms.

For each non-negative integer m, denote by Tffi the set of 
n-tuples of formal power series in n variables.whose m-jet 
is the identity map. By a well known theorem of E.Borel any 
such power series is the Taylor series of some C°° diffeo- 
morphism that is m-tangent to the identity at 0. Let T have 
the group structure induced by composition of germs of diffeo • 
-morphisms. This composition is by substitution. For each 
integer n the quotient space Tni/TII1+̂ is a finite dimensional 
Euclidean vector space. Give each Tffi the topology induced by 
the usual topology on Euclidean vector space. In other words 
two power series in Tm are said to be close if and only if 
the coefficients of their n+1-linear parts are close.

Given any integer m and any t GTm the group generated by 
t is a subgroup of the centraliser of t, and so there is an 
obvious homomorphism of the integers into the centraliser of 
t which sends 1 to t. For each integer r this homomorphism 
gives rise to a map from the integers into the space of r- 
linear maps Hn —» Rn. Suppose now that m is not zero and r 
is at most twice m. Denote by a the r-linear part of t. Then 
the homomorphism described above takes an integer i to the 
r-linear map i.a. This homomorphism extends uniquely to a 
polynomial map of the reals into the space of r-linear maps, 
namely i t—> i.a , where now i is an arbitrary real number. 
Putting the maps for individual values of r together produces 
a canonical homomorphism from the reals into Tm/T2m+1* ^  
will now be shown that this'lifts canonically to a map into 
the whole of the topological vector space T̂ .

x



As a first step, consider an arbitrary monomial of order
2m+1. Let c(n) be the coefficient of that monomial in tn.
Since tn+1=t(tn ),c(n+1) can be expressed in terms of the
coefficients of t and tn . Let g=c(2)-2.c(l). Then since the
terms of order m+1 of tn are^just n times the terms of order
m-<-1 of t, one has that

c(n+1) = c(n)+c(l)+n.g .
n-1

Hence c(n) = n.c(l)+g.Sr #r=1 0
= n.(cO J-irgJ+n^.ig ,

a polynomial of degree tv/o in n.
How, suppose that for r at most some rp the coefficients

of terms of order 2m-ir are polynomials of degree r+1 in n.
Then, as above, for r^r^+1 one has the following:

c(n+l) = c(n)+c(l)+ a sum of polynomials of degree r(- +1. 
* from 1 to m in nAs is veil known the sum^of polynomials^of degree at most rQ+1 

is a polynomial of degree Tq+2 ̂ hence by induction on rQ all 
the coefficients of all the terms of the Taylor expansion of
t are polynomials in n. Thus one has a canonical map, z, from 
the reals into T^ extending the original map from the integers 
n »-* tn. Let X:R^ — * T^ be given by 

X:(s,t) •—* z(s+t)-z(s)-z(t; .
Then X is a polynomial map which is zero on the integer lattice, 
and so is identically zero. Thus z is a homomorphism, and the 
following result has been proven:
Theorem A2.1

Given any strictly positive integer m and any t £Tm there 
exists a canonical homomorphism of the reals under addition 
into T^ which maps 1 to t.

* As can be deduced from the following school-book formula: 
n
2  r(r+l)...(r+d-l) = n(n+l)...(n+d)/(d+l) . 
r=1

*The 'cross terms' are ̂ &jXj(n£]ajXj)
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When t£Tr is the identity map this homomorphism maps
everything to the identity. For every other map, t£ Tfc for
some least integer k, and the canonical map takes the real
number s to an element of Tk whose k+1_st order term is just 

k+1 sts times the “ order term of t, and so the canonical map is 
injective. Kote also that the 'component maps' into the spaces 
of multi-linear maps are continuous, and the canonical map is 
the only homomorphism from R into T^ which takes 1 to t and 
has this property, t

Some power series have a centraliser which contains many 
more elements than those in the image of the canonical map, 
as here:
Example A2.2

Let t£T.j be a power series in two variables given by 
t = (p(x),p(y)), for some pe^.,» in one variable.

Then any power series q of the form
q = (pa(x),pb(y)) for some real numbers a, b, 

lies in T1 and commutes with t.
It is tempting to suppose that the centraliser of a map 

Rn,0 —* Rn,0 will 'often' contain an image of Rn, as above. 
This is not the case however, as the following important result 
shows:
Theorem A2.3

For each strictly positive integer m there exists a generic 
subset of Tffl for which the image of the canonical map given 
by A2.1 is the intersection of the centraliser with T^

Moreover for each strictly positive integer k there exists 
an open dense subset U^CT^ such that for every t €.Uk the 
image in T ^ / T ^  °* the canonical map is the centraliser of t

in V Tk+1*
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Thus if one restricts one's attention to terms of finite 
order it is open dense for the image of the canonical map 
(a one-parameter group) to contain the intersection of the 
centraliser with T1. The TQ part of the centraliser is studied 
later. The proof of A2.3 utilises the following:
Lemma A2.4

Let (W W l } be the quotient
map of M :(Tr )x(Tk) —* Tm+k defined by the following:

(r,t) rtr"1t"1.
Then M* is a continuous bi-linear map between finite dimensiona] 

Euclidean vector spaces.
Proof.

Given any remand t eTk^rt-tr STffi+k, so rt(tr)"1£. Tm+k. 
Moreover the term of order m+k+1 of rt-tr depends bi-linearly

Pon the leading terns of r and t. This projjrty is preserved by 

multiplication by (tr)_1, so M is bi-linear, as required.
,

Proof of A2.3.
It suffices to show that for some t£Tr the map II* restricted 

to < M / V i 1 x(Tk/Tk+i) has nullity at most one or zero, depend- 
ing on v.’hether k=m or k^n , for then this property will be open 
dense for Ta. Thus it suffices to find a single t 61^ such that 
the centraliser of t in Tk/'Tk+i is equal to the image of the 
canonical map of A2.1 in Tk/Tk+..
Example A2.5.

Consider first the case where n, the number of variables, is
just one. Given a strictly positive integer m and a non-zero
real number a, let t £ T  bem

x+axm+1+ higher order terms.
Suppose that qCT^ commutes with t up to terms of order m+2.

Let b be the coefficient of the linear part of q and let c be

*By A3.4.
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the coefficient of the m+1-st order term of q. Then comparing

term6 of order m+1 of tq and qt one has 
c+abm+^= ba+c,

and so b is either plus or minus one: it cannot be 0 because 
q is supposed/to be invertible. Moreover if m is odd then b 
can only be plus one.

Suppose now that r£T^ commutes with t up to terms of order 
m+1+1, for some non-zero positive integer 1. Let b be the 1-th 
coefficient of rf let c be the m+l+1-st coefficient of r, and 
let d be the m+1+1-st coefficient of t. Then comparing terms 
of order m+1+1 of tr and rt one has 

c+aj(m+1 ).b+d = d+b.(l+l)a+c .
Hence either b=0 or l=m . Thus for m y  element of T̂  other than 
the identity the canonical map given by A2.1 maps onto the 
centraliser of t in T.. For the cases where there is more than 
one variable it was shown in example A2.2 that this is not the 
case.
Example A2.6.

More generally now, given a strictly positive integer m and 
a set of real numbers ,e^,,. . en"̂ which are linearly independent 
over the reals, define a power series p £ T n to be the identity 
plus the m+1-linear map a given by the following: 

a^x) » eixixi+xi+1 for
where x= (x^,««.x^y t aix̂ Coi-j • • • • c^(x)) and ê  =0 .

Let 1 be a positive integer. Let q£T^ be the identity plus 
an 1+1-linear map b . Suppose that p and q commute up to terms 
of order m+1+1. Then to complete the proof of A2.3 it suffices 
to show that either b is the zero map or l=m and b is a scalar 
multiple of a.

As in the case n**1, compare terms of order m+1+1 appearing
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in the first co-ordinates of the power series pq and qp. Then
(m+1 ).x^h.j(x) = terms of order m+1+1 in b^pix)) .

Suppose that the lowest power of x1 occuring in b 1 is x°.
Let b1 (x) = x®. (u(x)+x.jv(x)), where x1 does not appear
in u(x). Then substitution in the above equality gives rise to

(m+l).u(x).x®+m+(m+1).v(x).x®+m+1
= (x1+x“+1 )c. (u(p(x) ) + (x1+x^l+1 ).v(p(x;))

to order m+1+1. Now let u (x )=S ujXj . Then
(m+1) .x° ,m5 u IxI= x° ̂ Uj Se^^Xj+cx^^u-j-Xj.

Hence m+1 = 2  e,+c .for each index I. But the e.'s are linear- i«si 1 1
ly independent, so u must be constant and c=l+1.In other words

1+1one has b^(x) = b.x^ for some constant b. The equality is now 
(m+1 ).b = b^lt)) .

Hence either l=m or b=0, as required.
If 1 =m then the power series q may be composed with the 

canonical power series corresponding to the constant -b to 
give a power series q' commuting with p such that b1 is zero.

Now compare the i-th co-ordinates of pq and qp. One has: 
e ^ x ^ . b ^ x M m + l  J.X^b^x)

= terms of order m+1+1 in b^(p(x}).
Again, let c be the highest rov/er of x1 occuring in 1^, 
and let b^x) = x°. 2JUJX-T+¿VjXj .
Then eix°+m2 u TxT « c.x‘IAI
and so

c^m r>¿ujxi+x; *ix i »r  ejU]
- I J M  \  1■oe. for each index I. But n,e.,...e jare jér1 u 1 n

linearly independent over the integers, so is zero.
This completes the proof of A2.3.

Example A2.7.
Let p 6 Tq contain only terms of odd order. Then the map 

x —> -x commutes with p.
It is easy to construct further examples where the centraliser



contains elements whose linear term is not the identity. However: 
Theorem A2.8.

Consider first the case where the number of variables, n, 
is one. Let m be a strictly positive integer, and let t £Tm 
with Then one has the following statements:

a) if m is odd then the linear part of every member 
of the centraliser of t is the identity.

b) if m is even then there exists a power series
which commutes with t and has -identity as its 
linear part. Moreover the m-jet of each member 
of the centraliser of t is either +identity or 
-identity.

Theorem A2.9.
Consider the case where the number of variables, n, is more 

than one. Let m be a strictl^ositive integer. Then one has:
a) if m is odd then it is generic for T^ that the 

linear part of every member of the centraliser 
of a member of Tm is the identity.

b) if m is even then it is generic for t SI^ that
i) the linear part of every member of the centraliser 
of t is either the identity or -identity, and 
ii/ it is open dense for pov?er series
u €.Tm+1 that the centraliser of t+u contains
only power series whose linear part is the identity. 

Proof of A2.S.
Part (a) was proven in A2.5. To prove part (b), let t be

x+a1.xjn+1+a2.xm+2+...,
wherefa^ag,... are arbitrary real numbers, save that a1 is not 
zero. Let p be an arbitrary power series with linear part 
-identity. Let b^ be the coefficient of x* in p for each integer 
i, at least two. It suffices to solve inductively for the b̂ -S
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so that t stnd p commute, given that b1 is minus one.
Suppose that bave been found in terms of a^...ar_̂

so that t and p commute up to terms of order m+r-1. Compare 
terms of order m+r of tp and pt. One has the following:

(-l)r.ar+blD+r+(m+i).a1.hr = r-br. a r ar+cr+V r »
where cr depends only on a1#..ar_^. Simplifying, one has 

((m+1)-r).a1.br = cr~ar.(1+(~1)r).
When r^m+1 this has a unique solution for br. Since -identity 
commutes with t up to terms of order 2m, b2,...bm=0 are the 
solutions for r less than m+1. The coeffient bffi+̂ may be chosen 
arbitrarily, the choice determining the higher order terms. This 
completes the proof of A2.8.
Proof of A2.9.

Let p £.Te be as in A2.6. Let q €. T(, be given by the formula
VI y.

q(x)  = ( b i x i +*«*bnxn » • • •»  b i x i + , **bnxn)»
where as usual x= (x^,... ,xn ) .

Comparing the first co-ordinates of pq and qp up to terms 
of order m+2 gives rise to the following equality:

Comparing the coefficients of x^'1in the above renders 
(b?)m+1 = bl for i=1...n.

Similarly, comparing coefficients of x^x^ for i^1 gives rise to
(m+1).(b^)m .b^ - b}ei for i=2...n.

Since e2..en are not integers and q is invertible the above two
■1equalities imply that b1 is either plus or minus one and the 

other b|*s are all zero.
Now comparing the i-th co-ordinates of pq and qp up to terms 

of order m+2 gives rise to the following equality: for i=2...n, 
ei.x®.(b^x1+...b^xn)+(b^x1+...b£xn )in

-  bÎx? +1+b2 ^ 2 x1x2+x2 +1)+**-bÎ (enxl V atS+1) *
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Comparing coefficients of xr̂T  ̂ in this gives rise to 
o vi./'vi'im+1 vi^1 = *̂j•

For j=2...n comparing coefficients of renders

( ^ )m+1 -.*î •
Similarly the coefficients of x^Xjlead to the following: 

ei.bj-+(n+1 ).(b̂ )Tl)j- = bj.e^ for 3-1...n .
As with the first co-ordinate the only solution is for i=2...n 

bf = +/- 1 and b^ - 0 for 3=1»*«n» 3^i •
To complete the proof of A2.9 (a) note that if m is odd then 

(-l)m i  1» so q can only be the identity. The required property 
is generic by A2.4.

For the case where m is even it has been shown that the 
linear part of any power series which commutes with t is diagonal 
and that each entry on the diagonal is either plus or minus one. 
If arbitrarily small coefficients of the terms of the form 
x.j x^ are introduced into the first co-ordinate of t then 
the maps (x1,...xif..,xn ) •—* (x1,...-xit...x^) no longer 
commute with t. By A2.4 no new elements have "been introduced 
into the centraliser of t. Clearly -identity commutes with any 
power series of the form the identity plus a homogenous poly­
nomial of odd degree, so one cannot hope to do any better than 
A2.9 (b), of which part (i) has now been proven. In order to 
prove part (ii), consider the higher order terms:

As in A2.4 each (m+1)-linear map a induces a linear map 
M*: <T2/T3) -♦ (Tm+2/IB+3) .

and if -id+b2 commutes with id+a+a’ up to terms of order m+4 
(where b2 is a 2-linear map,and a' is an m+2-linear map) then 

M*(b2) - 2.a+c(a'),
where c(a') is an m+2-linear map depending only on a'.

Nov/ K* is a linear map, and the dimension of (Tg/T^) is less
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than the dimension of iTn+2/Tr.+3 ̂ ior n Sweater than one and m 
positive. Thus K* cannot be onto for any a, and so for any fixed 
_a it is generic for a' that 2.a+c(a') is not in the range of M*. 

This completes the proof of A2.9.
To summarise then:

For n=1 and m odd the centraliser of any element of T -T .ism m+l
a one-parameter group.
For n=1 and m even the centraliser of any element of T -T . ism m+1
of the form Z2xR «
For n^1 and m odd it is generic that the centraliser of a member 
of Tq is a one-parameter group.
For n^1 and m even it is generic that the centraliser of a member
of T^ is either a one-parameter group or of the form Z x R .

ULoreover it is generic for^T^ that it is generic for r6Tm+^hat 
the centraliser of t+r is a one-parameter group.
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Appendix 3:
Miscellaneous Analysis Results.

Some well known results, vital to this thesis, are given. 
Theorem A3.1 (A special case of Leibniz's Formula.)

Let f,g: R ^ O  — >Rn,0 be m times continuously differentiable, 
and let * : R* R11— ► Rn be a continuous bilinear map.
Then the product function f.g: R^O — ► Rn,0 given by

(f.g)(x) - f(jc).g(x) 
is m times continuously differentiable.

The derivatives are given by the formula
(f.g) (m)

where C™ are the
S  (¡mf(m-p)ig(p) ( 
p=o R

Binomial Coefficients, m!/p!/(m-p)!

No proof of this result is given, but the formulation of the 
next result is sufficiently novel to warrant a proof.
Theorem A3.2 (A re-formulation of the Chain Rule.)

Let f,g: Rn,0 — ^R11,̂) be m times continuously differentiable. 
Then the composite function, g0f, is m times continuously 
differentiable.

In order to formulate the derivatives, the following 
notation is used:

u is a q-tuple (u1f...u^) of non-negative integers.
Iq is the set of all q-tuples, ¡¿, with u1 + ...ua = m . 
f ^  is the product of derivatives (i.e. the composition 

of linear maps) f^U1 ̂ . f ..,f^U<1̂  . 
g^f(x) is the q-th derivative of g at the point f(jt) .

The derivatives (for m>0) may now be given by the formula

for some real numbers c„ with c/. . \ ■ 1 and
Cjj = 0 whenever any is zero.
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Proof
The case where m is one is the ordinary Chain Rule,

D(g0f) - (Dg)ef.Bf .
Proceeding by induction on m, one has 

(g„f)("il) . D((g„f)<n))

q-1 U<Slq *

= £  (g(q+l)f.!)?.5 c f(ll)*g(i)f.])(2 c i(a))) 
q=1 11 u f l  Uq q

(Applying the ordinary Chain Rule above and Leibniz's Formula)

( y )

The first term in the above expansion contributes only to 
Y * (l»3l) .

The second term contributes only to terms of the form 
v = (u^, . • •ur ,ur +1»ur+ ^, • •  .uq ) •

Thus

C0,...l)(*Iqtl)“ C0,...l)(feI?)= 1 » 321(1
for each v with some v^ zero, the corresponding u^ was zero, 
and so

cv ■ 0 t
as required.

Corollary A3.^
Let f,g: I? , 0  -* 1^,0 be m times continuously differentiable. 

Suppose that for each integer i = 2...m-1, 
f < i > ( g < G ) )  -  Q .

Then D(feg)(fi) « Lf(g(fl)).Dg(£i) ,
( f 0g)(m)(Q) -  ¿ mUg(Q)).I)g(Qp+I>r(g([i)).g(n) (Q) ,
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and intermediate derivatives vanish.
Moreover, if g is invertible, and if for each integer 

i = 2,..m-1 ,
(g"1)(i)(f0g(Q)) = g(i)(Q) = Q ,

then
(g'1«fog)(m)(a> - (g-1)(m)(f#g(Q)).f(in)(g(2)).Dg(fi)ni, 
D(g'10 f0g)(2> - D(g-1)(feg(2)).Df(g(2)).Dg(fi) , 

and intermediate derivatives vanish .

Theorem A3.4 ,
Let U,V,W be finite dimensional Euclidean Vector Spaces.

Let B: UxV —> W be a continuous bilinear map.
Suppose that for some ufiU,

B| {ji]xV has rank r.
Then it is open dense for u 6 u that 

B| fiJxV has rank at least r.
In other words some restriction maps can have smaller ranks 

than the majority, but never greater rank.

Choose an arbitrary basis for U,V,W.
Then for each basis element 6 the map B ^  UxV —* W ,

* the i-th component of B(]i,e ) , 
is a continuous bilinear map into a one-dimensional Euclidean 
Vector Space. Hence there exists a matrix representation 
such that

^(31,1) - ,
where the elements of U,V are treated as row and column vectors 
respectively.

Suppose that lliiA xV has rank r. Then, re-ordering the 
basis of V if necessary, for i ■ 1.,,r, ^|{l^xV has rank 1,
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which implies that is non-zero, hence is non-zero,
and so kernel(M^) is a proper subspace of U, 

r
Now, for u kernel(U )f for i = 1...r, uM. is non-zero

ir i 1=1 1so Bi|(ujxv has rank 1.
Hence for such u, E|{u,^xV has rank at least r, as required.

Theorem -5
Let f! Hn,Q —>Rn,£) be C^t m-tangent to the identity, 

bet a^.c* be the characteristic constants for f (as in 4.2). 
Then c* ^,a*(m+l) . /
Proof

One has
r1

f(x) = \Df(tx)dt.2C .
0

Let h(x) = Bf(x)-id .
A

Then f(x) = x+ \h(tjc)dt.x .
if !!h(x)l| 4 d!'x||m 

then l'f(x)-xll  ̂l|h(tx)|| dt. ||xj|
$ d||x||m+1/(m+l) .

Hence a* $ d/(m+l) .
But c* Is a lower bound for the admissable d's. (See the note 
following the proof of 2.18). Hence 

c* ^ a*(m+1) ,
as required
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