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The main inspiration of this thesis were the two papers

of Schmidt (C1J & CH3 ) and th~ paper of Menegazzo (C.HI1).

Chapter One is concerned with establishing some basic
results concerning modular subgroups, and Chapter Two with
defining a class of groups 36 ( which includes the class of
locally finite groups) and extending the theorems in Schmidt
(L1J) to groups in this class. Chapter Three, which was the
first chapter of the thesis to be written, examines the
structure of modular subgroups in locally finite groups
with the minimum condition on subgroups (where there is
a definitive structure theorem to help us). Chapter Four
extends the results of Schmidt (till) to locally finite
groups. Finally, Chapter Five takes a (by no means
exhaustive) look at dual-dedekind subgroups ( i.e. subgroups
which are dual to modular subgroups). A few theorems in the
First section of Chapter Five are simply the dual of theorems
in Chapter One; for the sake of clarity, however, their

proofs are included.

After the main body of this thesis had been completed,
my supervisor, Dr. S_E.Stonehewer, produced a definitive
theorem concerning the structure of corefree modular subgroups
in locally finite groups analogous to the main theorem of
Schmidt (CB3). For the sake of completeness, this theorem

is included in an appendix.
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A Glossary of some Symbols and Notation used iIn this Thesis

1. Mm G: H is a modular subgroup of G (see Chapter One)".
2. M dd G: M is a dual-dedekind subgroup of G (see Chapter
Five)

3.Mgn Gt M is a quasinormal subgroup of G i.e, for all
subgroups H of G, <M,H> = MH

4. Mps the normal closure of M in G i.e. the smallest
normal subgroup of G containing M.

5. M.s the core of M in G i.e. the largest normal subgroup
of G contained in M.

6. Z(G); the centre of G , Z(g) = (alag = ga for all g«G).

7. Ng(M): the normaliser of M in G. Ng(m) = ~gtGl =M
8. CG,(m): the centraliser of M in G = £g* G)gm = mg for all mt Mi

9. LG/M3: the lattice of subgroups \H [IMtHiIG\ .

10. C.G3: = LGM3 i.e. the lattice of all subgroups of G.
ll.as I(mod p) sp) @)

12. G a P-group: see 2.2.2.

13« G a generalised P-group: here A (the maximal p-subgroup
of G which is elementary abelian and normal in G) is
infinite.

14 Lx.yls = xyx“ly-1 for any elements X,y of a group G.

15» P e Sylp(G): P is a Sylow p-subgroup of G.

16. CP the quasicyclic group . G 2 CP~ g% G = UiA'

-IT -



Ag = 1 and A?¥1 = for all i
17. Cqs the cyclic group of order g.

e "18 Z™Jg): the hypercentre, of G 1i.e. the greatest member
of the upper central series of G.

N N m[G/WY) N is amod\ilar element in the lattice CG/MD

(see 9 above)
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Introduction

We have that any normal subgroup of a group G must be
quasinormal in G and any quasinormal subgroup must be modular
(frr, suppose K gn G. Then, ifV 5- U, ¢K,U>nV = IOTAV =
(Khv)U = AV,TJ> (as KAV gn V). Similarly, ifV ~ K).

The converse of the latter assertion is not always true:
a subgroup may be modular but not quasinormal in G, For example:
let G = Sj, the symmetric group on the three elements 11,2,3* <
Then<(12)> m G, but (123)(12) = Q3)6 < (12),(13)> ~ <(12)X(13)>
so ”~(12)> is not quasinormal in G,

Perhaps the most important property df modular subgroups
is that under a. (subgroup) lattice isomorphism, modular subgroups
must always be mapped onto modular subgroups - such is not the
case with normal or even with quasinormal subgroups.

In (CI3), considering finite groups, Schmidt firstly investi ates
the situation when ((&1-Q ip a chain (@I m G), and then considers
how a modular subgroup differs from a normal subgroup: he investigates

H (which he finds is nilpotnnt), H” (supersoluble) and G (which

applying the main theorem of (£.113) nry be shown to be su”ersnluble).
In (LH3), again considering only finite groups, Schmidt

firstly investigates some conditions under which a m.od"-ljr subgroup

will permute with another subgroup, and then goes on to u™ove the

important theorem conce™gin"T the structure of core—free modular subgrou

viz. ifim G and r i, M« X , - . X 1HAK and

G=P"x . . . X P,, x K, where gt a prime, HAK gn G

P._ is a P-group for all i and V ::lt F,x:]<— PJ -t K, (Ix1| ,Ixot)

= (=t ,&kD) =1V i,j-
Itodulsx subgroups are referred to by some -writers as b"del”in

subgroups — hence the use of the term duai-Dedekind .by Mer.egazzo.



Inclusions, intersections end unions ere interchanged in the
defining axioms of dual-Dedekind subgroups as compared with those
of modular subgroups.

Again restricting his attention to finite groups, Menegazzo
prove* that a simple group can have no non-trivial dual-Dedekind
subgroups, and then oyoti on to investigate those groups all of whose
normal subgroups are dual-Dedelcind (a normal subgroup of a group G

need not necessarily be dual-Dedekind in G, see for example, p.60).
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Chapter One

Some basic facts about modular subgroups

A subgroup M of G is said to be modular in G (Ve write
M mG) if
M1. For all X,Y subgroups of G such that X 1 Y, we have that
<H,x>ny = Y,x> .
M2. For all X,Y 1 G, such that M < Y, we have that

<K,X>nY = 0i,X0Y>

The following propositions 1.1.X. - 1.1.5 a4® stated but

not proved in Schmidt CO .

Proposition 1.1.1
The following statements are equivalents
(@ MmG

(i) For all subgroups K of G, the map is a lattice

isomorphism where is defined as follows!
fy. s CtM,K>/M3 ----* [K/KOM]
L €«——=> L OK

(iii) For all subgroups K of G, the map<]>" is a lattice

isomorphism where is defined as follows:
s  [KIKR\M3 ----- *  C<M,K>/M3
R — * <R, M>
Moreover, in this situation, £nd BK are mutually
inverse.

-7 -



Proof

(Irtliil

Suppose L1fL2 6 C<M,K?/MJ and/K(X1) =/k (L2) i.e.
K7
LAK = Lgfl K_.Hc»c<E£ n K,M> =<L 2DK,M>

Hence <M,JOOL., = ¢M,K>nL2 by M2
i.e. = LO. So is injective.

Now let R e LK/Kn e{(n,K>/ M}.
y K(M,H>) = ¢MfR>n K .= (MF<K,R> by M1
=R
*W=*/K is surjective.

Also MK is its inverse, as for all L e L¢1, ]2/}

Hnn
AN(/rCI®)) =<I"JK,M> =4MtK>nL =L (*) -
by M2
Clearly preserves intersections. Also as " " f =

1 L™,K>/M3” £ k™ K~ A,B> = <A,B>

=<V / KgM'K/Kp))>

( as jj» clearly preserves unions) for all A,B KM, 10/ M3

Hence as ~ ” is the inverse of and hence a bijection
k(a®>) = ~ K(A),"K(B)> i.e. preserves
unions.

So”™ N is a lattice isomorphism.

T d DY



Proof

(@(Q

Suppose Ll L2 £ C<MtK>/MJ and /K(11) = /K({2) i,e*
LMK = L2nK.Me.ci”n K,M> =<L 20K,M>
Hence <M,JOnL., = ¢(M,K>nL2 by M2
i.e. =L1L2. So is injective.
Now let R ¢ LK/KnMjN«.c<M,R> Tc\/M,K>/ M3.
K / k«M,.R>) = (M,R>nK .= (Mr>K,R> by ML
=R
*U.nce/K IS surjective.

Also ~ is its inverse, as for all L &L
Ml
N K (™ = ALriKM> =<M,K>nL =L *)
by M2

Clearly j6" preserves intersections. Also as yTfy -

1 UM,K>/ML* F kN K N AB>N = NA,B>

- N K(/ZK(A)),FK(/K(B))>
=V N k@7 3"
(as g clearly preserves unions) for all A,B tKM,K>/m3
Hence as ~ ™ is the inverse of and hence a bi jection
/ kU a,B>) = ¢¢K(A), "K(B)> i.e. / K preserves

unions.

So ~ is a lattice isomorphism.

(ii)4 @in
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Given that $K is a lattice isomorphism, we want to prove that
d is. Firstly, we shall prove that Vs ¢ QCM,K?/MJ, ¢SjdC.M? = S.
M t<SF>K,M>FS % ~K(<Sn K,H?) ¢~ K(S). But ~K(S) = SnK

i (STiK,M>nK= ~K(<S ®K,M>) So 7/ K(S) = / K«SFtK,M>) and as

~ K is injective, S = <SCK,M> as required. )
Hence is surjective (V e CillT,K>/A3, »x (S”K) = 9)
Now suppose ¥ (M) = for some L, ,Lxt [ K/K™ M3. n
surjective » 3M( Mx e CW,K>/1i3such that )=1L,,

/ K(J -K ie.M,nK=L, ,L*-~(CL,)- 4x@J
SA<HNK,M> = "M (E MaBy (i). Hence L( = L”and
tH" is injective.

(i) shows that JlK is the identity map; 4*K clearly preserves
unions and can be shown to preserve- intersections using an argument
analogous to the one in the first part of the theorem.

(m)3 @)

Firstly we shall prove that V K,and L t QDKn MI, CL,M?0K = L.
L 6<L,M>r>K=>4 @O * PKEI.M0K) i.e. CL,M>i«lL,KX" K,M>.
But (<CL,MPAK,M> i1 <L,M>. So » k(1) = + k(0i,M>0K) and hence,
as N is injective, L = (L,M>\K (%)

We wish to prove M1 i.e. XFfeY ~¢.M.X"oy = iHnY,6X?,

XYr> ti/Y4dMq and hence by (**) with L = CX,YoM?, K=Y
we have that ¢X,YOM> =A<XrYnFAM>hY = <X,M>0Y as required.

For M2, we want to prove that MtY and X any subgroup of G

=} ML X> «Y = (M XFEY>.
M, X> fiYe MM XI/MIand as B is surjective, BRelLx/XnMA
such that "/":W = = (MEXANY*

By (**) with L = R and K = X, vie have that R = <R,M>0X



\Y; 4y *1i - & "
>, PR\ WiL. y

i.e. <R,M> = <4Rt\r\ X,M>

i.e. <M,X>0Y = <<H,X>AY®X,M> = £X«Y,M>ald requiredj)

Proposition 1.1»2

MmGand U4 G ~ MaUmT

Proof

By 1.1.1«, it is sufficient to prove that for all subgroups

K of 0, the map L <M« U.1I0/M a TJ3————- > LK/Kamau3l

L - Ln K
is a lattice isomorphism.

Let K @D

CMy 10aU

KnMnU s Kn«

As <M,K?aU = OInU,K>(by MI) and<M" TJ.10nM = <M, K>nUAM
= unH, we have, as the above diagram indicates, lattice
isomorphisms fI~ - [eMIK>/M3 > CK/Ka M3

and uso | 0 aM3-»COi.-MA U,K>/M3

(by 1.1.1.) where the notation is as usual.
Thus, their composition / K “~¢ma j,K> = ° ,say>

is a lattice isomorphism and ® (L) = / K(iL,M>) = ¢(.L,M>AK

<LMAUAK (as Ki T) = ¢L,MaU?nK (as Li O by M)

LK, for all L £ £iMn U,K?/MAU3 as required.]|



Proposition 1.1«5
N m CG/M} and M m G NmG

Proof

By 1.1.1., again, it is "enough to prove that for all subgroups

K of G, o L<N,K>/1G ““———* |K/ko NT 1is a lattice
L | > ‘LnK [~isomorphism.

As M i N, so <H,K>= <N,M,K> ar.d<M,JO t tG/H),thus we
have that UN,K>/N3 2; [<M,K>/<M,K>A N3 via L F—»Lr\<M, K>
(as N'm tG/MJ, using 1.1.1.). and S. CK/NnKI
as part of t<M,K>/M 3 = tK/K AKlvia R *» RhK.

<m>«yK> r <*/,0

Composing these two maps, we have L<stfK?/NI *  CKjNnK3

viaL -—» (Ln<M,K>)nK = L HK as required, I\

Proposition 1,1.4

mGand Mg mG £<M*, Mg>m G

Proof

Again by 1.1.1., we wish to prove that for all subgroups

K of G. themap 7/ k s c<m» m*” K>/<M.»V 33— * 1KAKn<M.» M ,>3



defined by (L) = LOK 1is a lattice isomorphism.

As M, m G, we have that CO*,, Mg, 10/M.,1 = Mggfr/M, n <Mg,K>D

via the map L H L and hence, by restriction, we have

LO*,, Mg, K>/&<M1, Mg>] S. C<M2, KVOy~WMg, 03 .
Mg r<Ml ,Mg">n(M2 ,K> and Mgm G =3>t<Mg,K>/Mg"\3? L K/KnNgl

by the map R »> RftK, so, by restriction, we have that

C<M2,.K>/<Kg, MAn~Mg, K>3 2 L K/*Mg, M,>n<Mg,K>n K3

=LK/<MX, MG&Gn kL
By map composition, we get that £<M , M\, K7 /<M%
= CK/¢M , nK3 by the map L (LnO I K> nK.

So, by CM, , Mg> m G as required.

Proposition 1,1,5
MmG and Vv :LG3 —-? Lrt3 a lattice isomorphism xr(m)

mWy.

Proposition 1,1,6

Let N £ M, N nprmal in G.






Section Two

The following theorem proves that when discussing non-normal
subgroups of G, there is no ambiguity involved in speaking of
maximal modular subgroups, as every non-normal subgroup maximal

in the set of modular subgroups, is a maximal subgroup of G.

Theorem 1.2.1.
(D) Let" M be maximal among the modular subgroups of G but not
normal in G. Then M is a maximal subgroup of G and for all
subgroups H of G, either H £ M or HnM is maximal in H,
@) .Let M "m G be such that for all subgroups H of G, either
H i Hor HnH is maximal in H. Then M is a maximal subgroup of
G which is modular, and may be normal.
Proof
() .We suppose M is not a maximal subgroup of G,
for a’l rro er subgroups V of Gsuch that K is contained in K,
we have_that M joO
For,suppose not. Suppose there is some subgroup K and an
element k of K such that ~ M. Then and by 1.1.4
and 1.1.5, <M,Mk> m G which contradicts the choice of M.
(b) . There exists an element x of G such that <M,x> = G.
For, suppose for each element t of G\ M, <M, x><G.
Then M is normal in (M,x> by (@), i.e. M* =M for all x, i.e.

M is normal in G, contradicting our choice of M.

(c) . Let Mc H. Then H m LG/M3.



For, £g/m3 = [<x>/Cx>01"0 which is a modular lattice.
Hence H m [GIMJ.

Hence by 1.1.3.,H m G which contradicts our choice of M,

So we have established that M is a maximal subgroup of G.
Now let us consider any subgroup H of G. Then either H 6 M
or <H,M) = G. In the latter case, CG/M3 = C”™H,M)/M33Ff C_H|HhM3
by so MnH is maximal in Hi
(&) Taking H = G, we see that M is maximal in G.

Now -we wish to prove
i. for all subgroups U,V of C, Bi V, <M,U>nV = ~HnV,U)
ii. for all subgroups U,V of G such that V contains M,
<M,U>nV = <M,Ur\V> .
1. U£ M gives <M,H>FtV = MOV =jl1 hV,U>

U N ¥4 gives CM,D>nV =GnV =V =<MnV,U> (as MnV is
maximal inV and U™ MnV).
ii. V=M gives <11,U>nV = M =01,Ur3\>.

V = G gives <M,U>nV = C1,U> = <MnV,U>.

So the theorem is proved. I

The following theorem demonstrates that local arguments can
be extensively used when examining the properties of modular
subgroups in infinite groups.

First a definitions
Definition

M is said to be locally modular in G if for any natural

number n and set of n elements ~"x™ x2, , , , , xn®* of G, M

to -



is modular in <M,x"

Theorem 1.2.2.
M is modular in G if and only if M is locally modular in
G.
Proof
Only if MmG M mH for all H such that Hi Hi G (by

1.1.2) ~ Ffor all natural numbers-n and elements ,ee<,xn

of G, Mm OI»x®, tttxny -

If Suppose for a contradiction. M is locally modular in G but
not modular in G. Then either
(@) there exist subgroups U,V of G s,uch that U 6 V but
<M, U>nv jl<ll nv,U> or
(b) there exist subgroups U,V of G such that Vi H but
<M,U>nV £ 0l.UnV?.

In case (@), as <HnV,U> 6-CI»u,>nV* there exists an element
y of G such that y t ¢M,U>0V " GInVfU>. Then y e V and there

exist elements u®, , £, , u nof U such that y tOl»u-)» , , un>
Let ™W = <u. u> (soU; £U0 Let vV, =<K, ». »UPY

(soVl tV (as Ul £ V)). Then M locally modular o> M m <M,Vl >

and <MQO\V~ £01InV,U> contradicting our choice of y.

So case (@) cannot hold.

For case (b), there exists some element y of G such that



y i(M,B)nV "(M,Un V», As before, y eV, and there exist

elements , » » » un of U such that vye , . S, u”n

Mm<M,ult , , , , ufty?. Thus yt <M,u(, , , un>ft<M,y">
=<M,<u(, , , udl n<M,y>>
¢<M,Unv>(as MiV.yt V)
contradicting our choice of y.

So M locally modular in G implies that M is modular in G

as required.il

Similarly:
Theorem 1.2.5.
M m G if and only if for all finite sets of elements
\a-p> , , , anj of li (n any natural number), Mn<a”n, , , &>
majt tt tape
Proof
Only if follows from 1.1.2
If Suppose M is not modular in G.
Suppose there are subgroups U,V of G, U V such that
i.e. there exists some element x e<MtU>cV
N<MFfET,U>. Then there exist elements m~, , , , mnof M, u®, , , u®
of U such that x* <,

>, .M, un, , , unDV.

Let A=, , , ™u, , ,u” . Then MPAmM A.

X 6 £ Mil AUAA}IrtVh A = <Mn AhVh A,Un A> =<M nVn ATJ nA>
£ ¢MHV,U) which is a contradiction to the choice of x.
So there exist subgroups U,V of G such that V contains M

and such that <M,TJ?nV 4 ;M,Un V> i.e. there exists an element



z6 weM,U V>, Legimy, , , me M, W, , , Uue U
be such that z t ., » », mg,ulf , , , ut>0V. As before,

= N ;M ? i
let A ml., . ’mS’F y ,u‘). Then z t ¢Mil A,UnA?nV/i A

=£MnA,UaVnA> (as MnA mA) 4 ¢{M,UnV> , contradicting
the choice of z.

So M must be modular in G and the theorem is proved. I

The next theorem establishes the connection between modular
and quasinormal subgroups and generalises a result of Heineken
quoted in Schmidt (ill}.

Theorem 1.2.4.

Let M be a subgroup of G.

Then M is quasinormal in G if and only if M is modular and
ascendant in G.

Proof
Only if Suppose M gn G and U,V are subgroups of G such that
V contains U. Then £M,U?f>V = MUnV = (MnV)U = CMr\V,U>.

Similarly, if U,V are subgroups of G and V contains M,
we have that V =MUnV = (UnV)M = ¢, UnV,M>. Hence M is
modular in G.

M gn G ~ M ascendant is proved by Stonehewer in (C-VII)
if Suppose M is ascendant in G in { steps where N is some
ordinal, i.e. there is a set of subgroups \M” \ ¢ an ordinal,
Yo x N such that Mg = M, for all < ,

M = UH *tfor all limit ordvi.rals p and M;F = G.

P oxxf

We proceed by induction on ~ . If g « 0, H * G and there is



nothing to prove.

Suppose that o is a limit ordinal, i.e, G =0 M . Let
g £ G. Then there exists an< (< “e ) such that gt and
as by the induction hypothesis, M gn , we have that M<g> =

i.e, M gn G as required.

Now suppose that ”~ is not a limit ordinal i.e. ™ -1 exists.
Mt*M~_(and by the induction hypothesis, Mgn M . Let K< G
and let y t CM,K>. Theny t ;M t,K> (asMb6 M )
<l G).

aMt*K(asM

1 Q-1
Thus there existd some k t K such that yk '"™i ¢M,K>FtMA_,
aiM,KhMe_,> (as M AM, MmG) = M(KFtMe_,) (as M gnM*_,)
Therefore y e MK. This is true for all y e ¢ MK2 and hence

<M,K> 1 MK , so <M,K> = MK.

Thus M is quasinormal in G as required.il

\U



Chapter TWo

, This chapter is concerned with the properties of modular

subgroups in a very wide class of groups which we shall

call
We define as follows:
Let A= IG |M maximal among the modular subgroups
of G and non-normal in G ~ IG:MI finite)
Let = S i.e. the largest subclass of ' which

is subgroup closed (so G ¢34 andHE£G ~ He*1).

By defining at in this way, we exclude from consideration
the Tarski group (in which every proper r.on-trivial subgroup
has order p where p is an odd prime, and the group itself is
infinite, (tVIIl p.97)« It is not known if such a group
exists, but if one does, every proper subgroup is modular,
maximal and non-normal, and the normal closure of any

subgroup is the whole group,).

Theorem 2,1,1»
Let G « y and let M be a non-normal maximal subgroup

which is modular in G. Then G is nonabelian of order pq where

- . . MG
p and g are two primes.
Proof
G t*5 \G:M\ fFinite G  Ffinite with M a non-normal
MG \

maximal modular subgroup of G (1.1.6), The result follows
«G

- »5"-



from lemma 1 of Schmidt (Cxi)

Notes if M is a non-normal subgroup of G, then by 1.2.1,
there is no ambiguity involved in describing M as a maximal
modular subgroup as M is maximal among the modular subgroups

of G if and only if M is modular and a maximal subgroup of G.

Theorems 211.2. and 2.1.5. were suggested by Dr. S.E.
Stonehewer .

Theorem 2.1.2
u*A c »J
Proof

Let G €L and let M be a non-normal maximal modular
subgroup of G. We want to prove that |GsMI is Finite.

1. There exists a finitely generated subgroup P of G such
that MhF P.

For, M G N there exists an element m * M and an
element X < G such that mx p MLet P = ¢.mx>. Then nMF
and mx 4 MFftP, so MFtF P.

By 2.1.1.,1.2.1. and the facts thatMftF m F and Gt t°i

we have that P is non-abelian of order pgwherepand
(MnP)p

g are primes, p >qg,say- So |P:MhP] =p

2. If Fl is any finitely generated subgroup of G such that
P F1, then |Fl M*PI\ = &

For MhPl m P*and M»1Pl o Fl would imply MAP~ P oPl /AP

~ 16 -



i.e. MFIF <1 F, which is not so. So MnP" is not normal in ™
and is a maximal modular subgroup of F* by 1.2,1, So |F*:MnF?|

is finite as G e *U.

(««™) f i

(Mn £,)F,n F
So, by 2.1,1., Fj is non—abelian of order p*"q, (p"f
(MHF"j,

q both primes, p > q ).

Consider F(Mn F1)F 2 F andFn(MnF~) £ Mr>F
(unsn™) | £ TTHh SEN Fl

and is normal in F, so Fh(MOF)f 6 MnF)Fi F

so {p,aj =[p".q""

and as p >q,p"> q°, p=p" and q = ql
3. IG:M] = p.-
For, suppose [|G:M] > p. Choose ., » »9 J§ so that each

element defines a different element of G i.e. g.g-l 1 M
M 13

for all i,J such that 1 £ 1 £ jsp+tl. LetK=<Fg.l], , ,g">

where F is the subgroup defined in 1.
Then,by 2, \K:MOK( = p 1i.e. there exist i,J(@ 1 i/ j i ptd)
such that g.g“ e HtIKi M, This contradiction shows our

supposition to be false and hence |G:M) & p, | FM sM]



=pand ¢(p,10 -G «=£ JGsM] = p.- So G t \J.as required.

Theorem 2.1.3.
36 = u 36
Proof
Let G fiJi, We wish to prove that for all subgroups H. of G,
Hle S

H6G =H t=6="H tuM ~ HE» (by 2.1.2).1J

Theorem 2.1.4.
- N = 21
Proof

Obvious from 1.1.6.

Theorem 2.1.5.
Proof
Let G * p~. Then there exists a normal subgroup,N, of G

such that Kt1l, and G tj . Let M be a maximal non-normal
N

modular subgroup of G. We want to prove that IG:M\ is Ffinite

IFNi H, HmG (1.1.6), M is maximal in G (as M is maximal
N N N - N
in G) and M is not normal in G (as H is not normal in G).
N N
So, asG t , |G sMI = |G:M] is finite.
N IN NI

Suppose now that NIl j; H, So M a maximal subgroup of G implies

NM = G.

e- l«"-






Section Two

Here we investigate the properties of modular subgroups in

groups following the pattern of Schmidt (trl).

Firstly we consider the case when (G/10 is a chain.
Theorem 2.2,1 *

Let MmG t* and let (JGMj be a chain of length n. Then
|GsMl = pn where p is a prime.
Proof

Firstly we note that 3ince (Gjl0Ois a chain, it is certainly a modular

Hence every subgroup in CG/10 is modular in LG/iiiand hence in lattice.
G (by 1 .1.3).
Let M = u*Mic ... CMm n=Gbe the chain CG/Mj.
So, as G and M . is a maximal modulax subgroup in
for all i, and Mi+™ t , thus ML+ _jt} is Ffinite for all if
whether M. is normal in M. . or not, and hence iGsMt is finite

So |G | is finite and the result follows from Schmidt lemma 2 &)

Lefinitlon

We call the group G a P-group (see (Lyin"])) if either G is

an elementary abelian p-group, or G = AB, where A =¢a®, a0, , , a%b
B=CD, ap=b>=1 for all i, a™a" - ajai "or and

b _lab = arfor all aEA, where r ~ 1(mod p),” = I(mod p).
It is well known that the lattice of subgroups of a P-
group is isomorphic to the lattice of subgroups of an elementary

abelian p-group of suitable size.



Theorem 2,3.2

G W3 andCG/K] a chain of length n implies that either G

L1

9

is a p-group or n = 1 and G is a P-group of order pg.

Proof
This follows from 2.2.1 which shows that with the given

hypothesis |G:M] and hence G is finite, and then from Schmidt
MG

(ra) t i As P-groups are lattice isomorphic to element”

-ary abelian p-groups, if G is a P-group, then ¢J™must be a
*G

chain of length | and thus G- has order pq.U

Theorem 2.2,5

Let G kK* and suppose that LGIM] is a chain. Then G =

*G
M P where P is a cyclic p-group.
« "
Proof
Without loss of generality, we may take = 1. By 2.2.2_,

we have that either G is a P-group of order pg, or G is a
p-group.

In the former case, we have that G = AM where A is a subgroup
of G of order p (p> 0Q)-

In the latter case, let H be a maximal subgroup of G

containing M and let x * G™H, Then ¢(.-M,x> £ H implies that



G o(M,x) . But G a p-group implies that M is subnormal in
G and hence quasinormal in G by 1.2.4». Hence G = M(x> and the

theorem is proved. ||

Theorem 2,2,4 |l«or U t

Let M m G and let x be an element of G such that x is
torsion-free and M A<x> = 1. Then M <i<M,x>.
Proof

M modular in G implies that — (bes<x>n K] by
1.1.1. So QCMjXb/Mi is a modular lattice. x?/«cp—2>3 is
a chain of length 2, where p is any prime, so by the lattice

isomorphism, #M,x>/4M,x" >3 is a chain of length 2.

the core of ¢(M,xp > in 4M,x>. So 3 4M.xN as a
2 2
>

maximal subgroup of a p-group, and hence 4M,xPb 0 4M,x>.
Hence setting K = §4m xP> , p running over all primes,

we see that K is normal in4M,x> . M £K and, in fact, M -

K, as otherwise Q4M,x")W/KJwould be finite.



So H < <M,x)as required. ||

This chives rise to some more general results:
Theorem 2.?.5.
let MmO **_ Then M e H({>nT),
G
Proof ‘
Without loss of generality, we may assume that M\, = 1.

Then v;e shall prove that H t (tuJ-) for all x e G.

(For, as M nM*, we have that ft x> & n M* = le

Henoe, M < R(n *7 ) as required).
We note that as M m G, we have that [0i,x)/M3 ar C<x>/oooMI
case a [()/ixX)n!ll a finite lattice.

Let M = MQ «& < e e < Mn = ¢(M,x>be a chain so that
is maximal among the modular subgroups of + N for all i.

If Mt MI+1, then IMi+l 1 is finite as G © . IF M M+ +

then M. ,.jH, 1 is Ffinite as ) is a group with a finite

1 ML+1

i
lattice. So (M,x>: M] is finite and hence so is I<M,x) :

i+l

so M é (Mi\5) by Schmidt Theorem 2 (t-HI).
1DI,x")

case b Ci.x> /ex? n M3 is an infinite lattice.
Here we have x having infinite order and <x>nM = 1. So, by

2.2.4«» we have that M <T OT,x> 1.e. M» = M.

Then the theorem is proved as indicated above,\]|



Corollary 2.2,6,

Gti13and Mm G =£

L1

Proof

(Notes G e <w% and hence G *~ by 2.1.3.)

Vie may assume, as usual, that the core of M in G = 1, Then
by 2.2.5., M* T2(tx@). Let<xf, , , ,x™ >Pg M(so F is

finite). MFcR(nni) =s there exists some index set | such that

AN |1 <a M. M =1 Hnce O N.nP =1 and
X 1 - N+ **r
F_ PIL L M f¥n , 30 Pt Rn , and as P isfinite, so only
N‘o P= N'i N..
i
finitely many of the subgroups P]i* 1 Bcan be distinct,
thus we have F*RqT) =N\ . ( in =5 ©AE)V. <

SoM e t("'nn3 ) as required. M

Theorem 2.2.7.

Let G tsi, and let M be a corefree nodular subgroup of G.
Then M t uass.
Proof

Let n be any natural number, \git , , gn\be any set of
elements of G, and J = N A
t. Then |JJ#*il is finite for all i.

Without loss of generality, we may take g™= 1, and M,W2 __
to he distinct conjugates of M. ™

We write Ji =iM,Mg2, . M eA>. Then it is enough to prove

-X6 -



that IJi;Jj_ (> is finite for all i such that 1< i* n*

(Without loss of generality, vie may take Msi to he Mgl 1i.e,

M). We note that (as M £ and Ji+l =~J ifMsi+l> )
and [< = C<eit+l"p/<ei+l>n (@as JxtmGby 1.1.5
and 1.1.4)» If this lattice is finite, e have NI

is finite, as G t3t ,and hence so is |I™+.]:3Y as required.
IT the lattice is infinite, we have that g\ i s torsion-free
and igj+1>n J. = 1. M£J+ 4>Hnig.-+1> =1, soby 2.2.4._,

g <M,gM+n i.,0. MSi+l =M which contradicts (*)
So 1J:Msil is finite for all 1,
2. J e 3\s$ for all i. 1
corej(K°i)
Let rll' = coreJ’(Msi). Without loss of generality we may take

KM =M and may assume that n > 2.

We know from 1, that J is finite.

Ni
TL
Let K =<MS3, , , , Mgn> _ Then let L = 4M,K,g2>
-7
=CJ.C2>»ImG~[a,g27/J] S \.<gerstger J]
and hence as in 1,we ha-e that |<J,g2>: J] is finite.
Vie know |JIsN~(is finite, hence |[Ls\ Jnust be finite, and,
in particular, |L:M] is finite. So L , which we will =M
core™(M)
1e cor. (NJZ W,

virite L, is finite.
C

, . =Cre tY)=c
As Hm L , we have that, by Schmidt, corollary to the main



theorem of (CIU)» that

L = P x xPer
cC C

and M = X ... X X Mr1 K
c" *“c

where the notation is as in Schmidt (CJI3) 1i.e. Qi = P»
c’ C-
for all i, Q. =9. and P* is a P*~group, M>K gn L .
T" C C

SoM, =P1lx . . . . x?r x (MnK)1
C cP “C C~

PN is supersoluble for all i, and as
C
any subgroup normal in P. is normal in L, so P. has an L—

r C r

invariant cyclic series for all i. H®K ) Z f.\ by
c ~(c;

Maier-Schmid (AIXI). Hence (Mo _K)L has an L-invariant cyclic
C
series. So has an L-invariant cyclic series. Thus HY> J
C uC

has a J-invariant cyclic seriesand thus so has M rJ ,
N1

Me2 i JOML, note).
We repeat this procedure,redefining K to omit M‘% and
replace Mg2, and letting L = C4,K>g-b and then omitting 1Y%

and replacing Ms3 etc. Then J is a subgroup of the product
N1

of the HJn J "s and as this product has a J-invariant cyclic
N.



series, so J is supersoluble as required.

fl

5. Finally , we let F be a finitely generated subgroup of

Vp. Then there exist elements g.» * * » gn of G such that

F £ , s s s s Mgnh. Let g be any element of G and let

Jj@ = Mel, K~An'> . Then if N(g) = corej"fr®, we have

by 2 that J(p) 1 5nss i.e. FI2@@ t i.e. F t Jail ,
H' @ N(®) F iN()

We reneat this for all g e G and note that H FnN(g) £ h N(Q)
i >

£ B = 1. Son (Mill JF,.F =1 1i.e. FfeRii.
% M

Q
So M « L(«.ss) as required.il

Corollary 2.2.8.
Let G tuiand let M be a corefree modular-subgroup of G.
Then lf' is locally supersoluble.
Proof
By 2.2.7., we have that M& is locally residually supersoluble.
Let F be any finitely generated subgroup of KG. Then F is finite

and F residually supersoluble 5 F Eqss = 1is as required®

Theorem 2.2.9.
Let G be a finite group and let M be a corefree nodular

subgroup of G. Then G * is supersoluble. (This result is

=7 «)
well-known but apparently unpublished).

Proof

- 7.7 -



By the main theorem of Schmidt (Ffill), we have that

G = P x X Pr x K and M = X X Q™ MnK (notation as

in Schmidt; MnK gn G). MG = Pl «x i Py x (MnK)G.

We consider the automorphism group induced on quy conjugation
by elements of G. As a P-group induces a supersoluble group

of automorphisms on itself by conjugation, and as by Maier-Schmid
(\.IX1)) we have that the group of automorphisms induced by K
on(M/\K)K (= (MOK)Q, note) is nilpotent, the theoraa is

proved, H

Lemma 2,2,10
Let G be locally finite, M a corefree modular subgroup of

G which is finite. Then G is locally supersoluble,”
CAMT™)

Proof

We write C for CVKMU)' Then any finitely generated subgroup

of G is of the form FC where P is a finitely generated
C C

(and hence finite) subgroup of G,

Let 4 =\K|K & G, K finite, CM,F> £ * 1

(as M is Ffinite, £/ f/as the intersection of only a finite

number of conjugates of JJ, , » » M*say, is trivial.
Hence <.M»F,g, , , g} is finite end belongs to 4)
Let K Then, as K is finite, by 2.2,9,, vie have that

is suoersoluble, Ve write C,, for C,(M"). as Co G,

c™) K



we have that KC is supersoluble,

CKC
Let t 4 be such that Ki (e;g. K = ¢K,x> for
Xt G~ K)
Then KC Cv C . K.C  which is supersoluble (where

- c”c u cKlc

C, = C, @S ) ) ..Hence KC is supersoluble.
K1 KChC, C
KR

So KC is “residually supersoluble, (@)

H KcCoC,, C

1
X, a kK
But consider ftC,, C = D,say. Obviously,C £ D, and we
* 4 K1

shall prove that DSC. For, let ytD, at MG . Then there
exist elements y», , , yn such that a* 0 1!—/1 s s s s Myn? i

Let K2 =(K,y1f , , ,yn> Kg«4 and yt D yt C/~C

(using our usual notation). But at M*2. So y centralises a.
n Q
This is true for all atM soy t Cg(M ) = C as required.

Hence C = D.

From (*), we have that KC is residually supersoluble
KC nD

So KC KC 1is resiSually supersoluble. Hence FC

KCn C “C c
(t KC\is residually supersoluble , and as FC is finite
1 ~C) * C e °
and ss = R FC is supersoluble as required.))

C

Theorem 2.2.11.

—c -



r*a*f LRl et L)

Let G be a locally finite group and let M be a corefree

modular subgroup of G. Then G _ is locally supersoluble.
£(mg)

Proof

We write as before C = Cg(MG).

Let A be a Finitely generated subgroup of G (Then A
C C C

= PC where P is a finitely generated, and hence finite,
C

subgroup of G.) We wish to prove that A is supersoluble.
C

Let X(F) = C<J1,P> = Then it is easy to see that M*(*) =

W<ME>  wx/poj = 1AF> . As M3 SrtJF/FFIKj is a Finite

lattice, and <OM,F>, inparticular, belongs to '3, we have that
UK,P>: HI and hence ¢M.F> 1is finite. So, in particular,

M

<M, P>

is finite, and by 2.2.10 .,we have that x(¥)

=

is locally supersoluble. Writing Cv/,\ for C,,/t.\(HX ( '\\
OK ®

we have that and C £ Cx(F)

Let L be the locally supersoluble residual of X(f) (such a
C C

residual exists because 6>*c3 We wish to prove that
in fact L = C. Let a t M5. 7ht« thrt wllexist elements y , , ,

y ,,of G such that a t CMyl1, , , , Mynb.

Let X(F®) = C™.F.y,, , , ,yn>. As Pl = <TFy(, , VY.,?



is finite, we have, as before, that M =M is Ffinite

X))

and hence XE-D is locally supersoluble.

Then
"X(Fi) cx(F1I)

which is locally supersoluble, so X(F* is locally
X(Fn CX(* )

supersoluble. Hence LE X(p) Cx™ j iz "(F )*
So a tMX<V =$ [h,a3 i. Mxp Repeating this argument

for all K such that P is oontained in K and K is finite,

gives us that x(x) is locally supersolubl» (where the notation

is locally supersoluble, so



L i X(P) n and at MXK™=» U,,a3 i nx(Yi)’ Hence

[L,a3 8 AM/x £ nMnM* =JL=1 i.e. L £ Cp@)-
K " Xt

n
This is true for all elements a of  so-L £ C 1i.e.
L =C.

Hence we have established that-X(F) is locally supersoluble
C

so as P & X(p), we have that FC is supersoluble as required.il
C

| R






*u' rfli-

b £ X(P) n CrKMand at MX» ~ U,,a3 £ M~j . Hence

tL,a3 £ A Mx/,\ S n MFtH* * IC - 1 1i.e. L £ Cp(a)-
K - xtc

This is true for all elements a of I so-L £ C i.e.
L =C.

Hence we have established that-X(f) is locally supersoluble
C

so as P fm X(P), we have that FC is supersoluble as required.H
C
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1 started my investigation into modular subgroups by
investigating their properties in locally finite groups with
the minimum condition on subgroups (it is well known that such
groups are finite extensions of a direct product of a finite
number of quasicyclio groups(an). This chapter is concerned
with that theory. More general results will be proved in

Chapter four.

Lemma 5.1.1«

Let G e («k)3-. Then G t ,
Proof

Let M be a maximal non-normal modular subgroup of a
nilpotent group G. But 1.2,1.~ N is a maximal subgroup of
G and hence normal in G. So 'nttc , Then by 2.1.3, K "c*

and by 2.1 5. &T9Di t tc ||

Lemma 3.1.2.

Suppose G = AM where 4 ?C pr Hs Cq where q and p are

distinct primes, and A<aG.
Then M G M not modular in G.
Proof

Consider the set of automorphisms °<-: A— »A defined by
otm(a), = mam-~ for all elements aof A. M4l G~ M A'SCF(a)
1 there exists some m such that (*'rln\ is not the identity

automorphism. As |qf>| = M| « o# has finite order. So



by Robinson, lemma 2,36 page 55# either p is odd and &
does not fix every element of order p in A or p = 2 and @,

does not fix every element of order 4» (@)

We write A = U A™ where Aq = 1, = A" and consider

IFMmG, then M m MAg by 1,1,2 and ¢M,TI>r\V =<H,UnV>
2
for all U,Vv6m2andH 1V (hote: Ag =<xeA) x9 = 1>

is characteristic in A and hence normal in G).
We choose V = A, U = “am").

Then /ITLUITYV = ¢m,am>A A™N,

We now investigate 4M,tfoV>. The possibilities for

2
IUl are p g,pq,q or p.

Ul = p2q is ruled out immediately, as then U = MAg
so MAg would be cyclic with M6 CG(Ag) contradicting (*)
[U=p "~ 0 tt Ag U = A which is impossible as MO A
= le
lUlI=pg =9 (as U is cyclic) that the subgroup of order

p in U (i.e. Al as the only subgroup of order p in MAg)

commutes with a subgroup of order q i.e, a conjugate of M
which implies that CM,A.p =1,

If p is odd, this contradicts (*), so the only possibility



is It =g. SOURA\V=Uor 1 i.e. <M,UnV? =<m> or

<m,am> (= MA2), neither of which equal A i.e. V (=

<JI,M>nv). SoM~ G ~ M not modular in G in the case
where p is odd.

If p is even, we consider the map = i M ——->Aut(Ag)
defined by <«(@n) = hfor all m e M. This is a homomorphism
and is injective (as M CGCA) Ny (™M)= s°  IM\\ITAUE(CE)I

i.,e. M = 2 which contradicts our hypothesis that p ~ q.

Thus p cannot be even and our result is proved. Il

Theorem 5.1.5.

Let MmG t"Xo min. Then M t  « 37

(Here G t min means that G has the minimal condition on
subgroups) .
Proof

Without loss of generality, let = le

Then by 2.2.3%,, H* R(-n A3-).

Let d = id h,I n some natural number, H. < M,M t t\n 3"
1 H

c*s 11

is non-empty. Let K be a minimal subgroup in d .So

K = (.)*Ii Suppose K 1 i.e. there exists an element x
i

such thatl ~ x i K. A M “ Rin n 3 ), so

HIH"3M, M 6 tIA there exists Nx a M
H
such that x 1 "Ny andH t Tl Let K = K » Nx.
N

-35" -



<5*vNii<iS&

Kem tad. K£ K (as x t K"vK) which contradicts the

minimality of K, So K =1 and M =Rq(Tu3r) = -nA3-as.

required, 1

We now come to the main theorem of this section:
Theorem 5.1.4

Let G t i3amin and let A be the minimal normal subgroup
of finite index in G, Let M be a corefree modular subgroup

of G. Then A& Cg(m).-

Proof
Firstly we assume that M is a p-group for some prime p.
(Note that by 3.1.3* we know that M is finite).

Let be the direct product of all the quasicyclic ¢-

n
groups for some prime q i.e. = (XtA]Xx» =1 for

some n). Then a characteristic subgroup of A 4

a normal subgroup of G.
case a p=q

It is easy to see that MH™ m*©* i.e, KH" is locally nilpotent.

Hp is countable so we let ~g”gg* ... gn, . . .~ be
the generators of Hp. <M,gl, . . 7 . ,gn> is nilpotent, so
<M,gl# .. . . jgn-1 > is subnormal in (M.g» , , , g»

for all n>1 i.e. M is ascendent in MH . So, by 1.2. 4-, M
is quasinormal in n is subnormal in
MHp (Csrj). So there exists a series of subgroups M = Mqg<

< . ...<-M=MH _ such that M <3M_1jfor all 1,
n p i it

-56 -



Then Mi is nilpotent for all i.
V/e prove this claim by induction. When 1 = 0, M = M which
is nilpotent by 3«1«3* When i> O, = MHph
<= (HonMDMi_l (@s M ™ «w *= Mm)
Mi Lo M and Mi_1 f&1 by induction. Also Hph M*a Mi
and Hpn ih is nilpotent as Hp is, so by Fitting"s theorem,ISFF) p uM,
Ih is nilpotent. This is true for all i , so in pariiasdar
is true when i = n 1i.e. MHp is nilpotent. So by Robinson,
(ivl) lemma 2.32 page 51» we have =1 1i.e. Hp
cg(m) as required.

case b pjig

Let H i Il ebe such that HS C «. By 4.1.1. and 3«li«l
q q
we have that MH = HM i.e. MH is a subgroup of MH".

MH * K4nmin so has a minimal (normal subgroup of finite
index), B,say. As IBHsHI = IBiBC"HI, and 1BH:HI \llcHiHI and
IMHsHI = \MI, so IBsBn H] is finite and hence so is

iMHsBhHI and hence |MH: (Br\H)TA\. This contradicts the
minimality of B unless B = (BdH)” =Bn H 1i.e. B£ H.

Suppose B < H. Then H is a finite complete group which
* B

is impossible, so H = B.
Hence H<SMH . If |[M(= p, Mm MH == M MH (by 3.1.2.)

[M,H3 i HHH = 1. So H @mCg (M) as required.

If \MI1= pn, we prove H Tt Cg (M) by using induction on n.

- 17 -



n = 1 is proved above. Suppose n > 1. Then there exists a

subgroup M <J M such that M ] = pn . MnHM m HM by 1.1*2.

but Mh HM = (HnM)M = M. It is easy to see that H is the
minimal normal subgroup of finite index in HM (proof as

above). So by the induction hypothesis, H £ Cg (M). This
implies, in particular, that M <3 HM. Now M m MH, we have
M M

= p, and it can be seen easily that HM is the minimal
M

[0
#*
subgroup of finite index in HM . So our previous argument

us that HM t C / \ . Thus, \ HM,M3£M and so”™H.M}* HRAM

So H £ Cq”M; as requirea.

So we have that A £ZCW(M) whenever M is of prime power

order.

We now drop the assumption that M is of prime power

order.

that

normal

gives

I}
[y

Let x t M. By splitting x up into its p-potent and p—prime

parts, we may assume that x is of prime power order.

MNA<Mand Mh A * =# MnA <3 AM. M mMA so
MnA Mh A

M AOrtA mix)A i.e. M rivwA =CAo M&> m 00X and by
Mnn  Mh A Moa MnA MnA MnA

our previous discussion, we have A £ CAM G (An M)

h A MnA AnM

i.e. La, xl £ MNAE M i.e. a xat M for all ae A.

This is true for every element x of M, so A £ Ng(M).

Thus M <3 MA, A <s MA,A and M both nilpotent (by

Pitting (CZE}) that MA is nilpotent. Hence by Robinson}



(m),LM,A3 =1 i.e. A mCg(m) as required. X



Section Two

Here we show that using 3.1.4« enables Schmidt™s results iIn
the finite case to be carried over easily to locally finite

groups with the minimum condition on subgroups.

Theorem 3.2,1.

M m G ® Lidmin (TS supersoluble.
*
G

Proof
Without loss of generality, let the core of M in G be 1,
Let A be the minimal normal subgroup of finite index in

G. Then A& Cg(m) (3.1.4.) A4 Ng(M) =* \G:Ng ()

which is the number of conjugates of M in G, is finite.
Let 1, . . . . Mxn be the distinct conjugates of M in G.

Let H =<M,x1f . .. . xn>. By 3.1.3. and as G is locally

finite, H is finite, so, by Schmidt (dl), theorem four,

is supersoluble and = MO, Mg = Mg =1, so the theorem is

proved. Jj

Theorem 3.2,2.

Let G e linmin, M m G = G_ ,, is supersoluble.

&€.)

Without loss of generality, we may take MG = 1. Then
A facu(m) = )G:N(i,r(m ) i.e. the number of conjugates of M

is finite as before (where A is the minimal normal subgroup



of finite index as usual). Let MX1, . . . M*n be the distinct

conjugates of M. A £ for all i such that 1£ i£ n, so
AE£C,MG) as MG = O™i1 |1£i£B> . Thus G is finite
G c“@g)
and as by 2.2. I, G _ is locally supersoluble, vie have
cg (n9)

that G is nupersoluble as required.*
cgTh )

Theorem 3.2,3.

Gt 1)nmin, M m G, e Syl [M\ QmG
"g n v
Proof
By 1.1.6 ., without of generality, we may take M_ =

=1 (soM e TLlo3'by 3.1.5.). Suppose Q is not modular in G,
then by 1.2.2», there exists a finite subgroup A of G such

that Q is not modular in <Q,A?. Let P = <M,A,x1F , , X n>

where MXl , = e« « _ Mxn are the distinct conjugates of M

as usual. Then F is finite, M, = 1 so Q is modular in F

by Schmidt (XI theorem 5. Hence Q m ¢Q,A> by 1.1.2. and

this contradiction proves the result. ll



Chapter Four

Here we investigate more generally the properties of

groups following the pattern of Schmidt CI13.

Theorem 4.1»1

Let GiX }MmG, Ui G be such that M and U are both
periodic, and for all me M, u tU we have that ( |mj , lul )
= 1. Then MU = UM.
Proof
Suppose that MU ™ UM. Then there exists an element u e U such
that M <u> N <u>M i.e. M <u> ” <M,u) . Consider <M,u” .

G *XC = |"M,u>sMl is Ffinite (as U is periodic and (<u>/iu>nM}

is a finite lattice), so ¢H.u> is finite , M m

M<M ,u >

Mou> by 1.1.6, and =1, so by

Schmidt£E3, theorem one, we have that M<u> = "M,u> i.e.
WM, u> <M,u>

M<u> = “MjUMwhich contradicts our hypothesis. So MU = UM k

Theorem 4.1.2.

Let Mm G tX. Let Q be a locally finite g-subgroup of G
(g a prime). Then either MQ = CM or M is maximal in<M,Q>
and IM,Q>: M) = p, p a prime, p> Q-
Proof

Suppose, for a contradiction, that MQ QJi and that M is
not maximal in <M,Q>.

Then there is an element r of Q such that Mirl ~ Oi,r}

Uux -
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£ H.r-> is finite, \k.r>  jF<M.r> , M m <M.rb and
M<M,r> M<_M,r> H<M, r> M<M, r> M<M, r?
<r?m -
<Mi£> a g-jrroup. Win~by Schmidt Cfil,theorem 2, M mis
<M, r> M<M >

maximal in<M,r> i.e. M is maximal in <M,r>. As M is not
M<M, r>

maximal in CK,Q> by hypothesis, this implies,in particular,

that <r> £ Q. Suppose now that Ki*r,s® = <r,s;> M for all

si Qn ¢»«™r/Then MQ = Qli. So there exists an element st Q" <Nno(r>
such that M<r,s> ji Cx,s?N. Q locally finite =<r,s> is a

finite g-subgroup and G WX (M, r,s} : K] is finite. So CK,r,s>

M<M,r,s>
is finite. Write M for M/m s. <«, o
Then N_ m M,r,s=> , <r,s>M is a
M M -——N-—-
mC«, e>
g-group and K<r,s> ~ ,r.sb ,
M N
so by SchmidtCjntheorem 2, we
have that K is maximal in Oi.r.s"
M M
4M, F >

i.,e. M is maximal in <M,r,s). So

M maximal in <J"1,r>implies that

M, r> =(i-lrs>. But <r> <r,s> X M

implies,as (&M,>i 10 S. L QQ.AM3 , that Ot,rv<?l,r,s> .
This contradiction proves the required results viz that

either MQ = Q4 or M is maximal in <M,Q) .

If the latter case holds, and MQ, E Qi (so M + <M,Q)),

then M( =pby 2..1,and p> twhere t =
IH I- qll0i, Q> Jand g=p2% CKM.GO ol
<M,Q>
- <41



i.e. Qi is a group ,which is a contradiction. So g = t. 1

We now investigate the situation when M is a g-group for

some prime Q-

Theorem 4.1.3.
Let G be locally finite, and let M m G be a g-group for
some prime g.TfcM is not quasinormal in G, tktn

G = Mp x K where for all xe-IP, y<K, (C IxI , Iyl )
\ % =m - MG

and where MQ' is a P-group, not necessarily finite,
MG

Conversely, if H is a subgroup of G for which G has the
*

above structure, M m G.
Proof

Let M be a g-subgroup of G such that M is modular in G but
not quasinormal in G. Thus there is an element y of G such that
M<y> ~

Let 'S = |f £ GJP is finite and ¢(y> F°

Then for all F * 1 ,KM,F>: M)and hence <M,F>is finite,

Mo, E>

M is a modular g—subgroup of ;M.F~ and as M<y> £ ;M,y> ,

Mowt,E> M Mon, >

M is not quasinormal in ¢M,F> . So by SchmidtLIT3, theorem 3»

we have <fM.F» = x K _  where is a P-group of
Mo, m> Mem, > <M,F>
order pnq (p>g, n ? 1) and for all xi yt K, (x1 ,lyD
M -
<M,P?

= 1. Note that as Pt ,F2 » == =4 <H, F2> * M,, the prime



p does not depend on F; note also that M I Q-
MM, P>

We establish the following facts:

1. Let F be any given subgroup belonging to the set & . Then

MG = MWM,F?*

For, clearly N N Suppose now that there is an element
x of G such that x t. p>but x t MG- Thus there exists an
element z of G such that x € Mz. Let Fl = <F,z?. Then G * 3’

= Fl ti.

(I =g and as M~ \ k ,F> olearly» ve
| m s q p y>
I"<M,P15] | cM,F? I

have M<r4fPi> - So X tM N F>- i M . This
contradiction to the choice of x proves that = Mt , F>as

required, for any choice of F in 1 ,

Now without loss of generality, we take MG = 1 (so IMI = q

and ¢(M,F> is finite for all Fit.

<H p>
2. For any given F e S, the direct complement K., of M P in
¢F,M> is unique.
For, suppose X A= X Kp. Then \Al =

which is a ~p,qy number. So any element of A is a (p, "

element. Let a t A. Then a = mk for some m t k« KN,
As Lm.k"S = 1, we have 1 = a*al = mlalk ,a and as M N\ Kp
=1, mJa@ =1=k"a" . But m is a (p,g” element and Ial is

a \JjP»gy number so m = 1 and a tKp. This is true for all a* A

so A = K,,



5. If Pl £ F2, then Ky”™.

For, let ki Ky . Then k * <M,FI> £ 4M,F2> and <M,F2>

= X Ky . So k = mk® where m t M<M,F2> ,k" < Ky ,

and mIHd = k™ Ikl =1 as above. But IK] a £p,g*" number and

m a (,g*s element Implies that m = 1. Hence Ky £ Ky ,

4. Let K =\JK . Then K <3 G.
P<SF
Firstly we show that K is a subgroup of G Let X,y t K,

Then there exist F.t i ,Faf:4 such that X 6 K_1 , th K, -

F- = <F.,FO> e i ,soby J, xtlL, andy i K. 1i.e.
3 1 2 *3 3

xy-1 £ K & K.
P3

Now let x t K,g t G. There exists F t i such that x t Ky,
Let F = <F,g>. Then F t 4 , and by 3. x e Kp K 0 <M,F>

x*6 ~ £ K as required.So K is a normalsubgroup of G,

5. For all xje MG, x2 e K, (% ,]Ixl ) =1
For, there exist elementsy”™, . , . , ,yn of G such that
X4t <Myl, . ... Myn>.let F=<yl.____....... yn ,y)wherey

is the defining element of"™> So Ft #x2 €K there

exists an F1 such that Xy © I?—A . Let Fj

My ,P3>1,1Ky 1) = 1 by the finite case, and as x2i Ky"

= <F,F€\. Then

(by 3) and xI €t M<M,R3", (Ix* | D =1

6.6 =M x K.

By 4& 5, MG XKE£ G. Let ge G, Ft5 . Then Fl =<F,g>



el «gb6<M,F1> = x Kj, i.e. ge MG x K as required .

7. We now show that MG is a (possibly infinite) P-group.
MG = U Let M = <m> (so by 1, = 1). Let A =
Fti
{x 6 MG|] xp = 1>. Then A<i MG and A is an elementary abelian

p-group. (For, let x,y e A. There exists F]Jt 4 ,F2 t-4 such
that x t M<M,PI\yt M<M,F2>. Let F? = OVj.F~. Then F? t i

and x,y £ ~3  which is a P-group. Hence xp = yP = 1
and (X,y] = 1). Also K G = MA. (For, clearly MA MG. Let g £ MG
R p\ mm m
Then there exists Fe 4 such that gt M * = MA where A =
<X £ M<H’F> IxP = 1} = An M*li,F> . So g € MA as required®
Also clearly for all a £A, there exists a positive integer
r such that m-l1am = ar where r I(mod p) but rg= I(mod p).

Q _
Hence M has the required structure.

We now consider the converse of the thecr-m, assuming, as
before, that M& = 1. We have G :% X K WhereGM = AB,

AO MG, Afe CLF(possibly infinite), B £ and for all b £B

a e A there exists a positive integer r such that b "ab =
ar where r I(mod p), r*= I(mod p).
Firstly we prove that |M] = q- For, suppose there is no
element of order g in M. Then M £ A and as all elements of
MG are of the form ba, we have that MO MG, and as (M;,K")
B 1, it follows that MO G. SoM = 1 (wK.-h 1ih oss.felU <>
Now suppose M has an element of order q i.e. there exists
g G such that Be6 M. Then M = (AB)™M M = ABgn M
= (An M)B*. Ah Mo MGH AnM G " (@aMg =1) AnM = 1.

So M ="BS i.e. [M] = q as required.

*1)



Suppose now that M is not modular in G. By 1.2.2_,
and the fact that G is locally finite, we have that there
exists a finite subgroup D of G such that M is not modular in
/M,D> (= B,say). Then, by the preceding paragraph, B is finite and
as G = MG x K, there exists a finite subgroup F (M £ F)
such that D £ MM(KRA\F) = X (KO"f) (as CIML.IKFiFl ) = |
and M <3 F, KOF<iF). Using the notation of the preceding
paragraph, we have = (ABA\ = AB™O = (AH i )Bh
i.e. MF is a P-group.-So, by SchmidtCnu, theorem 3> we have
M m X KFA\F and hence as X KOF, M m D.

This contradiction proves the result.

(Note: in the above, D should not be confused with the

core of D in G).

Corollary 4.1.4

let HmGa$S, and let M be a g-subgroup for 3ome prime g.

If M is ot nuasinormal in G, then M j= g and MI

is a maximal g-subgroup Pf G.
Proof
The last assertion is the only one to require proof.

Without loss of generality, we may take = 1. Suppose

for a contradiction, that M is not a maximal g-subgroup of G
i.e. there exists a g-subgroup Q such that Q ~ M i.e.
there exists a g-element x,say, such that x«Q™-M. By
4.1.3* G = MG x K where |MI = g. Thus there exists

some Ffinite subgroup F of G such that xt " X Kp where

the notation is as in the previous theorem. Mt Syl"(MCM* X )



but M 6 M m.ps X Kj, and <M,”~is a g-subgroup.

This contradiction proves the result. D

Corollary 4.1.5«

Let Ho G aisbe such that M is a g-subgroup of G for

r*
some prime g and H is not quasinormal in G. Then H" is a

~p,g” group, and N*(m) contains all {p,q\ elements.

Proof
Without loss of generality we take Mg to be 1. Then
G=M6 x K (by 4.1.3.). Let y be a \p,qj > element of G.

Then y = mk for some m e MG, k <« K. i.e. y*1 = m}¥ =Kk
= 1. But m a ™p,q" element implies that m = 1, so ye K,

(M ,KI = 1 implies that K6 N&(m) so the corollary is
proved, (in fact, N\,(H) = MGKn N*(M) = (MGAN,(@))K = MK

as MG is a P-group.) D

Having dispensed with modular subgroups which are g-
groups for some prime g, we now consider locally nilpotent

modular subgroups.

Theorem 4.1.6
Let M m Gti1%, Mtty. Let Q be a maximal g-subgroup of

M. Then either Q gn G or Q is a maximal g-subgroup of G. and

Iadl * 1 »

Proof
Suppose that Q is not quasinormal in G i.e. there exists

an element y of G such that Q<y> £ 4.Q,y) i.e. there exists



an element z of G such that z 6 <q,y}v Q<y>e lLet gql, = = 1n

be elements of Q such that z«(q ", . . . ., qfty>.
Suppose also that Q is not a maximal qg-subgroup of G i.e.
there exists a t e G such that Q ™ <Q,t> and <.Q,t)is a g-
subgroup, Let F = <q.j, ® ® = = * y) «Then G 1 1J N
F is finite. MPF mF and MOF*r> . AsM =Q x A where
A is a g"—group, QnF £ SyI*(MhP). By Schmidt in],lemma 4»

either QO F is quasinormal in F or QhF t SyIn(F).

But z e <QOF.,y> x (qoF)<y>- so QoF 1is not quasinormal
in F and Qn F (.<QnF,t> which is a g-subgroup of F. So
this contradiction proves the result that either Q gn G
or Q, is a maximal g-subgroup of G.

Suppose the former case does not hold i.e. Q is not

quasinormal in G., and suppose that)\%\{ > @ "i.e. there

» yq +l.of Q such that
yryMlo £ for all ijj such that 16 i ~ jiqtl i*e«
there exist elements x~ o< G such that yYy.. 1 QX;"B'
e*yqg+l” Xij M 6 1 * 34 qgHi;>
Then F is finite, MOF mF, QOF tSyl (MpF), MOF 1IN

and (QOF)(y> i Q.oF,y> (where the notation is as above).

By SchmidtfLSl,lemma 4*tQftF 1 = g. Elements y.., . = » yg+i
Ug”rFTpl

£ (grvF so there exist i,j where | t i~ j t g+, such that
viifi e (QnF)p. In particular, y+y"® (gnF) ij.

This contradicts our choice of the elements -

"o .






Chapter Five

Here we turn our attention to the investigation of dual-

Dedekind subgroups following the pattern of Menegazzo (CJIII1 )=

Definition

A subgroup H of G is said to be dual-Dedekind in G
(written H dd G) if it obeys the following two properties:
D1. For all subgroups X and Y of G such that X £ Y, we have
that <H,X> Y = <H nY,X>.
D2. For all subgroups X and Y of G such that Y 6 H, we have
that <X,Y>nH = <XnH,Y>.

(Note: D1 is a property shared by both dual-Dedekind and

modular subgroups.)

Section One

In this section, we consider some elementary properties
of dual-Dedekind subgroups of which 5.1.2-.-5.1 .6. are

stated but not proved in Menegazzo (LIII1I).

Theorem 5.1.1. (cf 1.1.1.)
The following statements are equivalent:
i. Hdd G

ii. For all subgroups K of G the map <~ defined as follows

/ K: - > CH/HMO



Moreover, in this situation, fad. K are mutually

i > il
Let L],Lg t UK,H>/K)he such that ~ k(L1) = y K(L2),

<K, H>
So L1ftH ~ L20H 1i.e. (LM"H.K) = <L2nH,K>

Hui1A<H,K>0L1 = <_H,K>ftl2 by D1
arj S. L1 =12 . So <Py is injective. K

Now let Re C«/HnK3. So K i <R,K> i <H,KI

Thus 7/ k(<R,K>) = (R,K>«H ="R,K nH> by D2

Hence d is surjective.
J WnK r K

Thus fiy. is a bijection and f K is its inverse as 4 K "KL
= ~"K(LnH) =a.ftH,K?, V Lt UK,H>/FJ,But<Ln H,K> =&,K>0L
(by D1) and™i,K>riL = L. So ®K is the identity map on[£K,H>/ KI =

~N N preserves intersections clearly, and also preserves unions

as for all subgroups L,N e C.OC,HtyKIf P yi N N<L,N>)) =

<L,N>= <tK("KD), "k kM) = y.K(<*KOD, KN>)

(as ¥~ clearly preserves unions). Hence ™ K(<L,N?) =



<"~"k( L a s K being the inverse of fdy must be injective.

Thus ~ is a lattice isomorphism.

Given that ™ ~ is a lattice isomorphism, we wish to show

that so i3 fy. Let R WCCH,K?/K3. Firstly we shall prove that

<RNH,K> =R (*) . <RhH,K>£R = - H,K>) £?IT-(R)
but <R nH,K>FIH £ ¢Rn H}, so /7 k(<RNH,K>) = / k(r) sad as
Ay is injective, (*) is proved. Hence Ty is surjective as

K@RFH) =<ROH,K> =R V Rt GOW/KJ.

Also is injective. For suppose k(") =t ~or
L1, L2 € LH]Hn K3 , K surjective » M2 t (\(H,K>/ jOsuch
- rex o H » »».

that /kM,) = L,,/KMi) = La i.e. MnH o <t . So<M,a H,K>
=™Nar>H,K> ,hence by (*) M( =Hi and hence L,* = L.

g preserves unions and as by (*) we have dyfy" is ih*
identity map, so is the inverse of and as before we
can prove easily that By preserves intersections,

ili > «

Firstly we shall prove that for all subgroups K of G, L £
CH/KnH3~<L,K>hH = L (**). LE<L,K?hH viK(L) - FK(L,K>nh)
i.e. ¢L.K"J £<<L,K>SH,K>_But «L,K>r>H,K> so ™ K@,
= 72<1,10nh), and as is injective, () is proved.

We wish to prove D1 i.e. X6 Y =£ ¢(H,X7GY «¢HnY, Z?

«Xf <H,X>SY £CH,X> Hence as <4y is surjective, 3 a subgroup
R t tH/HN\X3 such that ™ x(r) = £R,X> ¢(H,X>ftY (**). By
(*) withL =R and K = X, we have that R = (R,X)AH =

<H,X>nY«H = YnH. So by(***), we have that £Yn H,X'> =4H,X>FlY

.



which was to prove.

For D2, consider subgroups X,Y of G such that X~ H. Ve
wish to prove that ¢X,Y?nH = <X,YnlD« YFftH s4_X,YA\IO * H
so by ** with K =Y, L = 4X,YnH>, we have that 4X,Y nH> =

4X,YnH,Y?nH = 4X,Y>0H as required.«

Note The fact that L<-H,K}/K3 = i_H/Kn Hi does not necessarily
imply that the map L =» LnH for all subgroups L belonging
to £411,10/K3 is a lattice isomorphism.

For example, let G = i.e. the permutation .group on

five elements. Let K = ~(1234)*(13)?* H - 4(2345)"*
As (13)(1234)(13) = (-432) = (1234)3, we have that K is
isomorphic to the dihedral group of order eight.
Let L be the symmetric group on the four, elements ™1,2,3)Ff

Then K * L and 1 claim that L is the only”subgroup containing

K.

For, let K * J. 1G:K) = 13 and C having no subgroup of
index 3 implies that tJ] = 24. So J must have an element of
order 3»

Suppose J contains (abc) where a,b,c t £1,2,3»4".

e use here the properties that may be generated by
(Wi h h i hat s" b d b

a3-cycle and a 2-cycle whose product is a 4-cycle, and

by (abed) and (ab) (see e.g. (&XI) p.253 andp.320)).

"Also recall J > K.

As (abc)(abc) = (bac), we need only consider four



possibilities,vizs
i. (124) But(124)(13) = (1243) and hence (124) and (3)
generate S so J = L.
ii. (234) But (234)03) = (1342),s0 J =1L
iii. (123) But (123)(13) = (12) and (1234) and(i2) generate
SA-so J=1L
iv. (134) But (134)(1234) = (1423) and (15)034) = (14) so
J= L.

So J must have an"element (@b5). As (ab5) = (ba5), there
are only six possibilities:
1.(125) So J contains (1234)(125) = (15)(234). As((15)(234) T
= (324) and (324)03) = (1324) so J = L.
ii. (135) J contains (1234)0 35) = (125)(34) and as((125)@BH»
= (21h), this situation is covered by i.
iii. (145). J contains (4)(145)(24) = (125), the situation
already covered by i (note: (Q4) =(1234)p"03) is in K).
iv. (235) J contains 0 3)(235)(13) = 052) covered by i.
v. (245) J contains (1234)(245) = (14)(235). Squaring, we see
that (325) belongs to J, a situation covered by iv.
vi. (345) Here J contains (14)(23)(345)(23)(14) = 052) covered
by i. (Note that (14)(23) = (13)(1234) is in K)

So we have that the only subgroup of G containing K

is L. As K< 4.K,H and <K,H> J L, we have that <.K,H> =G
As H 1is cyclic of order 4, it is lattice isomorphic with
C.G/K1 and HftKk =1. But Lilli"s 1, and hence this example
does exhibit the required property, viz that(4.H,K>/K} ~r

C.H/HO Kjdoes not necessarily imply that the map Lw LFftH is



a lattice isomorphism,

Theorem 5.1.2. (cf 1.1.2.)
Hdd G and Ki G~ Hil K dd K
Proof

By 3.1.1.« it is"sufficient to prove that for all subgroups

L of K, the map [<HnK,L>/Ll —-——9 LH<\K]H«KnL3
R Rn H ftK
i3 a lattice isomorphism.
fw.iw
<HOK,L> i ¢H,L>
and the map£<HfL>/LI
A » LH)HnLI via
RnH is a
lattice isomorphism as B
Hu dd G. So the restriction
of this map to GCHnK.LWIJis an isomorphism i.e.

UHh K,L7]L1 ——> CCH rn\K,L>AH|HnNn L3

R Rnh (= RnHnK as Rt K)
and this is the required map as ¢HOK,L>nH = <HhKfHhL> ty

HNt)
sHnK(asLSK) and HnL = Kn Hn L.7I

Theorem 3.1.3. (cf 1.1.3)

H dd K and K dd G ~ H:dd G.

By 5.1.1., it is sufficient to prove that for all subgroups

L of G, LtHjL"?/LI —> LB/HnL"Jgiven by R ¥-->RnH 1is a






Proof s obvious.]]|

Examples of dual-Dedekind subgroiips

1. It is clear that both the identity element and the whole
group G are dual-Dedekind in G.
2. IfH i Z(@), then"H di G.
For if X,Y are subgroups of G such that X 6 Y,<_.H,X>AY =
HXAY = (HAY)X = £Ha Y,X> (hence D1). Also if X is a subgroup
such that X 6 H and Y is any other subgroup, we have that
a,Y?nH = XYAH = (YnH>X =<Yn H,X> (hence D2).
5 I¥f N is normal in G and N is locally cyclic, then S dd G.
Firstly we consider the case when N is normal in G and N
is cyclic. N<BG ~ D1 holds (for i£ X <Y, ¢(N,X)nY =
NXAY = (NAY)X =<NAY,$. For D2, we note that X4 N implies
X a characteristic subgroup of N, and so X is normal in G.
So, for any other subgroup Y of G, we have that £X,Y?an =
XYAN = (Y N)X = ¢YALLX>as required.
Now suppose that N is a locally cyclic normal subgroup of
G and that N is not dual-Dedekind in G. So D2 must be the
axiom that cannot hold as D1 is always true for a normal
subgroup. Hence there exist subgroups X and Y such that X
is contained in N and <X,Y>AN fiZ.X,YAN7 i.e. there is
an element z t :X,Y?n N ~<X,YAN2. Hence there are elements

K, , , ,x"of Xfori# , , y*of Y such that z *tX,, , x"y.,,""

AN Let F=¢X§, , , xpCy , , ,y4>. Then z c<XAF,Y AF >



N ®>P) and as N is locally cyclic, WFIP is cyclic and NriF
is normal in F. So, by the previous argument, HnF dd F and as
XQA\F £ NGF, z t ¢ XnF,YnHFIF? i.e. z i.4X,Y fliDwhich contradicts
the choice of z. So D2 must hold, and X dd G.

(Notes a normal subgroup of a group need not be dual-

dedekind in the group. For example, let G = $®, the symmetric

group on the four elements »2, 3,4V» Then the alternating
groun Az1 is normal in 521 but not dual-dedekind in SZI' For,
(123) «® a4d. <(123),(34)n ad>= 4(123)>,but ((123)(34))? =

(1243)(1243) = (14)(23) * <(123),(54)> n A C (123)¢ (37 AM).

4. Any subgroup of the kernel ( = NAC) | X €6\ ) is dual-

dedekind in G.*

¢ A



Section Tv;0

Here we investigate some slightly more complex properties

of dual-Dedekind subgroups.

Definition
H is locally dual-Dedekind in G if and only if for all

natural numbers n and for all sets of elements L, o, XN

of G ,HddOl,x( 9 t tx™.

Theorem 5.2,1.
H dd G if and only if H is locally dual-Dedekind in G.
Proof

only if:follows from 5.1.2.

if s Suppose H is locally dual-Dedekind in G but not dual-
Dedekind in G 1i.e. either A. there exist subgroups K,L of G
such that K £ h and <H,K>nL <Hn L,K>.

or B. there exist subgroups K and L of

G such that K# H and CK,L>0H ™

Suppose A.holds. Then ifl,K*r>L ~ 4Hi\L,K> 1i.e. there is
some element y t ¢H,K>n L A~ (HnL,K> 1i.e. there are elements

h~, , ,hn of H and kit , , kf of K such that yt~, ,hR,” , , kr>

ftL N 4HsL,K}>. H locally dual-Dedekind implies that H dd

EH,KIF , , k) = K"say. Soy t "H,KnK*>n LnI" =

<Hr>LAK , KFtK”~ (as Kf»K1 i iie. y t (HUL,K>



which contradicts our choice of y. So case A. cannot hold.
Hence case B.holds. So there exists some element y such that

yi<K,L7nH % <K,Lft H? i.e. there exist elements k(, , , ko

of K, 11, , , Ir of L such that y t <k1, , kn, 11, , Ir'>nH
H*dd<H,k1lt , , , kn, 12f , Ir> »”" ,say. Soy t(Knl~lny
HH implies that ye ¢KnL”, Lniln > (as t H)

Ny t dK,LnH> contradicting our choice of y.

So H locally dual-Dedekind in G does imply H dual-Dedekind
in G as required
Notes this does not appear to be anything like as useful a

result as 1.2.2,

We now investigate the relationship between dual-Dedekind
and quasinormal subgroups in locally nilpotent groups.

The results H dd G H gn G if G is a finite nilpotent
group is due to Napolitani; the proof reproduced below is

due to me.

Theorem 5.2,2.
Let G be nilpotent (not necessarily finite). Then H dd G
implies that G is quasinormal in G.
Proof
We wish to prove that for all subgroups K of G, HK = £H,K7
As K is a subgroup of a nilpotent group, K must be subnormal

in G inn steps,say. Ifn =1, K is normal in G, so HK =



(H,K> obviously.
We consider the following induction hypothesis: H permutes
with all subgroups subnormal in G in n-1 steps,n ? 2.

Let K be subnormal in i in n steps. Then K =K g KN <]
N _Gg*
We wish to prove that <H,K) = HK. Let y t ¢H,K>. We wish
to prove that y t HK. y t (H,K> £y
~ y £EHK" (by the induction
hypothesis)

4 y = hkr (for some h t H,kM & K»
4 h"V = k{

4 h*ly t<H,K>nK1l

~

h1ly tCHn Kl tK> (as H dd G)
4 h"ly t HnKt)K (as Hn K, £ Ngk))

4 y é HK as required. ||

Theorem 5.2.3.

Let G be a locally nilpotent group. Then H ddG $ H gn G.
Proof

Suppose H dd G and H is not qu*inormal in G. Then there is
an element x of G such that H<x> ~.<H,x> 1i.e. there is some

element y C <H,x>"~ H<x) 1i.e. there are elements *, , , h»

of H such that y t <ti(, , , hn,x> = F,say. Then F is nilpotent,
HnF dd F and hence HnF gn F by 5.2.2. Soy T (Hn F,x>=

(HnF)(x>. Hence y t HCx> as required. ||



Section Throe

Here, following the pattern of Menegazzo, (LIHI), section
three, we investigate the structure of subgroups which are n o n \«x
minimal in the set of dual-dedekind subgroups of a locally
finite group, and establish that a locally finite group which

has such a minimal dual-dedekind subgroup cannot be simple.

Theorem 5.5.1.(cf Schmidt (til) lemma 1)
abA

Let H be minimalAamong the dual-dedekind subgroups of a
locally finite group G" Then either H is normal in G or the
order of H is p, for some prime p,

it 1H" * p

In the former case” we have in addition that

1. if H has an element of order p, then all elements of G

having order p lie inH and

2. CgGh)= ¢glag*G, (lai , Ih]) b 1 for all hi H.

Proof

(Note: this proof follows very closely that of Menegazzo
in the finite case).

Suppose |H( £ p, for any prime p. Then we wish to prove that
H is normal in G.

i. Suppose 1 A & H. Then NgG@) ™ Ng (H)

For, for all g k G,Hgdd G (56.1.5.) and hence HhHg dd G
(5.1.4.) Thus, by the minimality of H, either HAH® = 1 or
HAHg = H. So, for all ge G, HnHg ~ 1 =$ g t Ng (k).

Now g a Ng(a) ( where A is a non-trivial subgroup of H) ~



11 A=ArvApE HnHs i.e. gfcN-,(H) as required.

ii. Suppose there exists an element x of H such that the order
of x is p, for some prime p. Then all elements of G having order
p belong to H.

For, suppose 3 g t such that |g] = p and g does not belong
to H. Then Cxi = ¢x,g>FUl (by D2 as <g>r)H = 1) dd ¢x,0>
(by 5.1.2.).

G locally finite (R = ) <x,9) is finite, so by Menegazzo
(thil3) lemma 2.1., we have |R|] = pp or R\ = pg (gq a prime,
R> p)*

In the former case, L.x»s3 = 1} in particular,g £ NG(.%)

and hence g e N_(H) by i. Let y be any element of H. Then
Iy) = <gy,g’nH (D2,as cg>hH = 1) and ¢y,g>nH o<y,g>, SO

g normalises every element of H 1i.e. g belongs to the kernel
of H. Similarly, 0,g3 =1 N\ =pand g gH ™ xgM H
so by the above argument,xg belongs tc the kernel of H. Hence
X belongs to the kernel of H and so <x> dd H. Hence<x> dd G
by 5*1.3. which contradicts the minimality of H.

So we must have pg and as iXI and <”> are both Sylow
p-subgroups of R, they must be conjugate in R. As xtH, this
means there exists some element r of R such that g e HX_

As Hr £ H, we have by 1., that HAH1 = 1. <g>= <g,H>nHr
(by D2 as Hr dd G) and <g,H)nHI dd <g,H5 (5.1.2.) so (g
dd <g,H>, and as R £<g,H>, so x is conjugate to g in~g,H),

ex”) dd ¢g,H5 and hence by 5.1.2.,Cx>dd H, contradicting the



minimality of H.

So if there is an element x of H having order p there
cannot he an element g having order p such that g does not
belong to H Hence ii ( and If is proved,

ili. Here we prove that H is normal in G.
Let g « G. We may assume that |g] = pn for some prime
p, n? 1.
There are two possible cases:
a. there is some element x in H of order p. Then,by ii,
an_l £ Il, and g t HG(an_l) N gt NgO®) byi.
b. There is no element in H of order p. Let y e H have
prime order. Then g“lygt <y,g> n H (by ii) = <y>(by D2
as <g)n = 1). So g t G(<y>) and hence g e NGAD as required.
We now turn our attention to eesertion 2.

Let giG be such that |g] = gn, and H has no element of
order q. Let x tH, and let us assume for the moment that
M =P (P some prime, p E g,obviously). Then<x>s<x,g'>n H
(by D2) o <X,0>. So |<x,g>l = pgm. Consider locg>). IFf
p divides |]ixg>], then cx> i <xg>(as <x> is the unique
Sylow p-subgroup of <x,g” ), SO ¢xg> =4xg,x> = <X,g>
and [&] = I«

Now suppose p does not divide |<xg?l . So <xg> 1is a
q element and hence like g, normalises every subgroup of H.
So Cxg> £ Ker H ,<got Ker H = £x>e Ker I =£ <> dd H
and hence <x> dd G by 5.1.2., which contradicts the minimality
of H. So p must divide |<g>] and £52.x1 = 1.

We now take W( = pn (n ? 1) and prove Lx.g} =1.



by induction on n.

(X> @ ¢x,g> =£ xe = xk, say. CxP,gl = 1 by the
induction hypothesis, and(xp)® = xkp = x5 1i.e. as |x] = pn
pn Jpk-1) so pn”~ 1 (k-=1) 1i.e. there exists some integer s

such that k = 1 + spn ™.

-1
Consider {1+Spn s.p_

1+ psp.n—l + p282p2n—2 +

So Cx,gP3 =1 and as gl = gm,gp generates cg>, and

hence gfc CN(<x>).

So £g(gt G, (lg],lhi) =1 for all h * H*S C- Cg()

Conversely suppose y t Cg(h) and G\ = pn, where H
has some element of order p. Then, as above, we can show
that <y?r>H ~ 1, and hence Z(h) ~ 1. But Z(h) dd H and
hence Z(h) dd G which contradicts the minimality of H.

Hence, [gt G|(|gl ,Ih) = 1 for all ht H) = Cg(t) Il

GF course we now consider the situation when |[Hl "= p.
Theorem 5,3.2.

Let H dd Gtt.3, and let |H = p. Then either
i. H 1is an elementary abelian p-group or &
ii. G = S(N x K) where N is a maximal g-subgroup (g a
prime) which is elementary abelian.andnormal in G, K =

t .
Cﬁ(Hp) is a maximal $p,gS subgroup of G, and S is a maximal

p subgroup of G which is either locally cyclic or locally



general« quaternion, and H 4 S. HQ = HIT is a Q,-group.
Proof
Suppose HG is not elementary abelian. Then there exists
seme finite subgroup of G,F,say, such that HF is not elementary
abelian. Let 1 £ G (P finite and Fj S F j . Then
for all P t f ,I-Tfl is not elementary abelian. So,by

Henegazzo (Lilli) theorem 3»2., F. = S_ (I, x K, ) for all
1 *1*1 1

FA * & where Sp e SyI™(F®) is either cyclic or generalised

quaternion, H,,» t Syl (F ) is elementary abelian, X, i3
*1 Nl *1

is a |p,gS" subgroup such that K_ = C_ (H‘D
*1 F1
1. Let N = O . Then H «q G, .and is an elementary
| F1

abelian g-group.

Firstly, we note that F1 i N Np - Np (*H2=
HK,, and A, is the unique Sylow g-subgroup of F,)). Thus N

i 2 “2
is a subgroup of G which is an elementary abelian g-subgroup

(for, let x t N,y 4 N. Then there exist subgroups FAFgOf 'S

such that x cNp ,y e Np . Let F? -CF~AF~_. Then F?* *

and hence xy“1 a N,, , by .the note above. Also, x and y are
3

both g elements and Cx,y) = 1) Also MT< G. For, let na W,
g e G. Thus there exists a subgroup F* je 1 such that n t

Np . Let F5 = <F*,0> . F4 s F5 =2 n t Np» nge Np»

—b((—



(as MT < FF) + N.

2. Let K = %K- . . Then K is a maximal tp,q( " subgroup of
1pv

G and X = Cg (HG)

V/e note that F. It F_ X t K .For, letk tL

1 £ 0 * 1

Then k tF_= S# (N x K_ ) and hence there exists
2 J2° 72 2

elements s of S_ ,n i - ,k" t K,, such that k = snkl.
2 2 2

Then Jck* = (sn),k!Ic" for some k' e X- . Kl (p-g»
2
Bn a }0,gS element find (8- N- ) Ok- =1 sn=1
2 2 2
i.e, k=k”sok t Kﬁ( as required.
Hence K is a ”"p,qgkl subgroup of G and is clearly a
maximal such subgroup (for, let y be any $,g*! * element.

Then I, = ¢F,y> 14 , end hence y e - K

Q
Also let k t K, (so k t Kp ,say) and let h t H
i

(so there exists ?, 1 1 such that he H*j). Let R = iF.A,F->

0

Then Kk tK = kt Cr(HR) ~» Ik,hj = 1. This is true
for all h t HG so X £ Cg (HG). Conversely, if ytC"), there

exists F,l «£ "such that y e F., and hence y t C—I(H D
X ® r
i.e. y tkKv F K . So K = Cg(HG).

3. G 1is a ngroup. For let NKy e G . Let T be a subgroup
NX NK

e3 such that y t T. Then T:K~_ T
NK TnNK STIMKT niTK

<



T 3™ which is a p-grc”™p and is
(STn EK) HtKt

either cyclic or generalised guaternion.
How let 3 be a maximal p-subgroup of G. Let F be c finite
subgroup of £. Then there exists a’subgroup L of 4 such that

F £L and LHK o; L “ st * as before} which is either
UK L n NK L

cyclic or generalised quatemio*”. So F (9-FI:KE LHK ) is
vo* NK HK

either cyclic or generalised quaternion.

Suppose S is locally cyclic. Then G 1is locally cyclic

i.e. G
NK

~ such that FINC < Fi+INK for all i, and U~ANK) - G.
Without loss of generality, we may take the to belong

to i .F.NK i S, 4 we may take Sylow p-sub.groups $S K

nr pi i
of the\F.\such that S £ S_ for all i. Let S=U S_
71 Pi Pitl ‘< Pi
Then as L{ (Fl_HK) = V' (SI_i NK), we have that G = S(N x K)

Suppose now that there exists a subgroup M belonging

to 4> such that S™ is generalised quaternion. We redefine
i so that 4 = (FilFi finite, 9 Then Spis

generalised quaternion for all F e "i and G is locally
NK

generalised quaternion. So, by for example (CX0) p-191»






Section Four

Finally, 1 consider a theorem in finite group theory. That
there a wealth of theorems yet to he proved concerning
dual-dedekind subgroups in finite groups (e.g. dualizing
Schmidt®s results)l have no doubt; hut their proof will have

to wait until some future date.

Theorem 3.4»1.
Let H dd G he such that H is a maximal subgroup of G where
G is finite. Then |G:H) = q and either

i.H <G or

ii. H is modular in G and G = H_N where = q and 1

Proof
Suppose that H is not normal in G and without loss of

generality, take the core of H in G to he 1.

in H. 3y Menegazzo,(Lilli), theorems 3.1. & 3«2.Ff either H.

is normal in G (which cannot he as the core of H in G is

trivial) or | = p, where p is some prime, and either H.
iS an ciementary abelian p-group, or Hl (= 1) is
a Q.—group.



In the former case, we have that HaH"G is normal in H and
also in HF " (as the latter is an abelian group), so, as by
G
the maximality of H ad the fact that its core is trivial ,H#"

G,

= G, we have that Hn G is normal in G and hence HoH™ ™~ = 1.

Q
But 1 "H|] £ HriH* , so this case cannot hold.
G
In the latter case, we have that &s N «3 H, G, then

N «3 G so HN = G, by the maximality of H and the fact that H
has a trivial core inG, HnB -a H (as N i3 an elementary
abelian a-group (g some prime)) and HnN <a H, so HnH = 1.
Thus IG:H] = |HNsHI = t\NsNrvHi = IN].
Let L be such that L4. N, |JLJ = g- AsHnL =1, G = ¢H,L>
N = <H,L?nN =CHnH,L> (by D1) = L so [N = q and |G:H]=q (*)
Now et K = Cgﬂ-ll,:). By (tlllj), theorem 3.2., K is a (p,qSt

1
subgroup. K<aG ~ G = HK, so 6] = IKIM = H x (p,q) number
JHNn K1

But.(*) gives I8l = Hx g, so K = 1. Hence by (till?3),
3.2., G = SN where S is a Sylow p-subgroup of G which is either
cyclic or generalised quaternion. Choosing S so that HE S,

we Ffind by (*), that H = S
Let C = CG(IY). Then, as NS C», we have that H £. C. Suppose

T C. Then C = HNnC =(Hnc)N and N<.C ~ HOC is non-trivial.

But HoC o H and hence HAC o G which is impossible as H. = 1.

G
SoC =N, and G = G 1is isomorphic to a subgroup of Aut(N). Thus
C N
g_ is abelian and hence so isH_ . As HisN = 1, we have that H is
HhN

abelian and so is cyclic.

Now let N = <x), and consider H*. H £ H* and so G = ¢.H,HX>.
QMH,HX?/ Hx Z CH|HA Hx3 gives us that Hn is a maximal subgroup
in H. But H and H*! both abelian implies that Hn Kx -a G and hence

HAKX = 1. So, )h) = p as required.
Thus G is a Q-group, and hence has a modular lattice.

Hence H is modular in G 1



APPENDIX

The following major theorem is due to Dr. S._E.Stonehewer:
Theorem

Let M mG€1 M, = 1. Then there exist subgroups K,P*, Pg..
of G such that
(@ G=KxPl xP2 x .

(i) Pz is a generalised P™-group for all i

(iii) For all x. t P.",x. t P_,k t K, we have (|x-] ,Ix 1)
= (X! ,ki}y =1 for all i,j, i ™ j.

(v) M = 140K x Q1 x Q2 .... where N is a maximal o\,-
subgroup of PA for all it and MhK gn G»

Proof

We may suppose that Il is not quasinormal in G (for otherwise
we may take G = K).

By 2.2.6., we have that Mich. So M is a direct product of
its maximal p-subgroups (p a prime). Let Q.j,Qg- = be the msxinal
qC,g” — . , subgroups of M which are not gquasinormal in G and
let R be the product of all those maximal p-subgroups which
are quasinormal in G.

SoM =R x Q(x Q™ .
a). For all i, there exists an Xi such that [Xi*W is finite

and QIMX is not quasinormal in X,.
I

Suppose not. Suppose 3 i such that V X,IXdMl Ffinite =
Q X. Let g e G. Then we shall prove that Q~g> is a
subgroup which cannot be, as is not gquasinormal in G.

Let A = WX\ IXaMl is Finite and X ><M,g>).

-2 L~



So, V X£A,Q>_(Mx<g> is a subgroup of X.

Let B = A VX*A.
n
Let be B. Then b = qkAng where ds e Qk" mX@M\A(a.rd nX

is such that 1 £ nx & oV X.

Let A= XtA)nx=mj forn=1,2, . . . |g - Then there
exists an n such thatX,E‘AX =G O)
For, suppose not. 3 g.tG*U X for i = 1,2,....]|d\

Xt A;
Let X =<M,9,9-,, , > > g (P = Then XeA and henceXt Afi for

some n . So g e U X, which contradicts our choice of g . Hen
n “<m
our supposition was incorrect and 3 r. such that,,» X =G
n
So b*A* Q).(Mx<g>_ Let T be the q).(—complement of M. So M =

X T, M= (Q.nHx) x (TnMx).

N
So X EATX = XEA “I(CTIn M0 X TrMX)) = xeAQi x (Tnhx)
= ~EXXEATNMX
HUt xnAT OM 'S w1 by (1) SOXRAIN X ™V

Now, by the definition of An, we have that” @iM<G> =
n

CX?A *m&<*>e So bt x?A W e># bt (¥ AQiMX)ie> *

n n Ae n
b € This is true for all b tB. So B f g>. But
Qi<g> = B obviously. So B = Q+s™ 1i.e. MAg"? is a subgroup
which was to prove.

Thus, our original supposition is incorrect _ ’y

3 XI such that IX.:M\is finite (and hence so i$ WX :M \)
i i

and Q.My is not quasinormal in Xi#
1 Ai



Let S = <X |X?Xit |X:M) is finite

b). V XfrS,QJIx is not quasinormal in X.
M
For,»»cpcit ctWor/ii*™™ Then 0/Y% is quasinormal in X quasinormal

Xl' Let g e Xl' ThEn Q.M)—(,\<g> = Q1<g>M (as M O XM)

6 <sQ.IMxwx . = <g>QiMx
- i

-
@

A gn XN which cannot be so.

We now investigate the structure of for all i and then

*

the structure of

0). /Q+(= q.
For suppose )8.) >m g. Then 3 X* S such that y q (as

V. Mx
MG =1 |.e.|Q1NB( I - Qq, M= Qi X T where T is the qi—complement
Mx 1
of M ".N{t = inlx ,THX. hence QiM( tSyl-M . As Xt S, Qi’\4< is

* MXx Mx Mx Mx

not quasinorraal in X (by b).) so Q,.M 13 not quasinormal in X ,
M
X

AlsoM * iHandM aé& n M*T\ e

My My

Hence by Schmidt UO lemma 4F applied to X j we have that

QMx = g. This contradiction proves the result.

Mx
d). Q is a maximal g™-subgroup of G.

For, suppose not. Suppose 9 a finite g™-subgroup A such that
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Qi A. Then as Q" is not quasinormal in G, 3g <G such that
nNCe'"? N<N*6) e Let P =<A,g> . MFIF m F and Syl (MO F).
MhF ®A and Q* not quasinormal in F implies (hy Schm?(:it tn3
lemma 4 ) that Q.< Syl (f). This contradiction proves the
result.
So all the maximal g™-subgroups of G are of order g™ and
lie InQ G.
We now investigate the structure of ¢ .
e). Q™" is a group.
Let F he a finite subgroup of G in which QHs not quasinormal
(Q*< F). Then by lemma 5 Schmidt QM is a subgroup
T*
but (Q,ii = qland Q. not quasinormal inF ~ Q. =1 i.e. Q.

Q

is a group. Hence so is

) . M has no elements of order p".
For, suppose x *M has order p., W, = 3 htG such that x $ H<.
Let X = ¢X.,h) . Then XfcS and x~"Mx. So pi | [M:Mx]. To clarify
notation, let us, for the moment, take Mx = 1. By the corollary
to the Main Theorem of Schmidt, we have

X =P, X X PT X K and

1
M = Q1 x XI™"xKtiK, where QX = Pj. As ( |JrPi] ,]P

CIPiLIKD =1V i,j, Hi £ j*, P4 |Kland p~r*~for

JEi (as, if so, Qj a maximal g..- subgroup of G 4 Q.X =
arid hence Q’j].is normal ( and hence of course gquasinormal ) in X).
So p”™ |MJ. Hence M has no elements of order p”

g) -Px~Pj ifQi tQj

For, let X be such that Mi X, neither ~ nor Q. are quasinormal

in X and |[X:M] is finite. Then, by the Main Theorem of Schmidt

the result follows



h)* (° Px,say) is a generalised P-group..
For. let XfeS. Then by the Main Theorem of Schmidt ic»”

M
is a P-gTOup of order png (p>q)-. But Q/%n Mx £ by f).and
as |Q,i\ = g, QxXn Mx = Q% or - 1. C~n N =9
Ql'éMx $MX = QTMX which is normal in X. So, as QiMx is not

quasinormal in X, we have that X =11i,e, N X :X’\i
V * Mx

OiX)M is a P-group.

Hence, as S is a local system of G, Q_"Q is a generalised P-
group.

Let be the (unique) maximal p”~-subgroup of PA.
i). Ai is the unique maximal p”~-subgroup of G.
For. let x» be a p™-element of G such that x*~ AN, Let XtS

be such that x. e X. By the Main Theorem of Schmidt Ln:3,

X
contains the unique Sylow p~subgroup of X ~ So X6
X
=% (A.nXOMV £ Q.A”N. But Q.MxAi ? \ \ which is a
Al ¥ X nAi
p--"—group by ). So x+* A" as required.
So (Q1 x Q2 x G =Pl x P2 x

Let IMT= \pi,gi\i = 1,2 - e %
J)- The «T elements of G form a subgroup of G.
Suppose not. Suppose y is a Tfelement and X", = -ejXxnare
elements of G such that y t
By 1). and d). we may suppose that y has prime power order and
that ytPj~for some i.

Let X be such that X £  ..... x>, |X:M] is Finite and
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is not quasinormal in X.
Then,by the main theorem of Schmidt (WXC3), we have that if

(where the not ;ion is as in Schmidt (cffl)),

x~, , , xn and hence y e K. This contradiction proves j).

So G=K x Pl .x.P2 x .

and M MIIK x A x N X

where MAK = R as requiredty

Considering the main body of the thesis (which, of course,
was completed before the above theorem was proved), we see
that the first part -of theorem 4 .1 .3 . and theorem 4 .1 6.

both follow directly from Dr.Stonehewer®s theorem.

Corollary 1._(cf theorem 5 of Schmidt (IT1.))

Let M m Geu=,M = 1. Let Q be a mz;(mmal g-subgroup of M.
Then Q m G.
Proof
By 1.1*2., it is sufficient to prove that Q is locally modular
in G.

Using the notation of the main theorem, we have either that
Q 6 MnK and Q gn G, in which case there is nothing to prove,
or Q =Ql,say, and )] = gl. Let P be any finite subgroup of G
containing Q. Then it is enough to prove that Q m F.

Using the same notation as in the main theorem, we have that



G =K y X P2 x.... i.e. G = PAXxH (where H = PA x

T K). Thus P= (MP”~ x (FDH) and ((FAP~ \Fnh D =1

Now FI\P( 1is a P -group containing Q and thus, as any P-group
has a modular lattice of subgroups, Q m FliP . So, by Schmidt

(tm), lemma 5 Q mF as required})

From this follows immediately:
Corollary 2
“"iFHmGal "7 11:3)_= 1, then M a minimum modular subgroup of
G~ M a g-group-11
Corollary 3«
If Gill is simple, G can have no non-trivial modular

subgroups. 1
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