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The main inspiration of this thesis were the two papers 
of Schmidt (CIJ & C H 3  ) and th~ paper of Menegazzo (C.HI1).

Chapter One is concerned with establishing some basic 
results concerning modular subgroups, and Chapter Two with 
defining a class of groups 36 ( which includes the class of 
locally finite groups) and extending the theorems in Schmidt 
(LIJ) to groups in this class. Chapter Three, which was the 
first chapter of the thesis to be written, examines the 
structure of modular subgroups in locally finite groups 
with the minimum condition on subgroups (where there is 
a definitive structure theorem to help us). Chapter Four 
extends the results of Schmidt (till) to locally finite 
groups. Finally, Chapter Five takes a (by no means 
exhaustive) look at dual-dedekind subgroups ( i.e. subgroups 
which are dual to modular subgroups). A few theorems in the 
first section of Chapter Five are simply the dual of theorems 
in Chapter One; for the sake of clarity, however, their 
proofs are included.

After the main body of this thesis had been completed, 
my supervisor, Dr. S.E.Stonehewer, produced a definitive 
theorem concerning the structure of corefree modular subgroups 
in locally finite groups analogous to the main theorem of 
Schmidt (CB3). For the sake of completeness, this theorem 
is included in an appendix.
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A Glossary of some Symbols and Notation used in this Thesis

1. M m G: H is a modular subgroup of G (see Chapter One)'.
2. M dd G: M is a dual-dedekind subgroup of G (see Chapter 
Five)
3 . M qn Gt M is a quasinormal subgroup of G i.e, for all 
subgroups H of G, <M,H> = MH

p4. M s  the normal closure of M in G i.e. the smallest 
normal subgroup of G containing M.
5. M_s the core of M in G i.e. the largest normal subgroup 
of G contained in M.
6 . Z(G); the centre of G , Z(g ) = (a|ag = ga for all g«G).
7. Ng(M): the normaliser of M in G. Ng (m ) = ^gtGl = M .

8 . C„(m ): the centraliser of M in G = £g* G)gm = mg for all mt Mi ■
G

9. LG/M3: the lattice of subgroups \H | M t H i G \ .
10. C.G3: = LGM3 i.e. the lattice of all subgroups of G.
1 1 . a s l(mod p) s p ) (â -1 )
12. G a P-group: see 2.2.2.
13« G a generalised P-group: here A (the maximal p-subgroup 
of G which is elementary abelian and normal in G) is 
infinite.
14 Lx.yls = xyx“1 y- 1  for any elements x,y of a group G.
15» P e Sylp(G): P is a Sylow p-subgroup of G.

16. C the quasicyclic group . G 2 C ~ =7* G = U A.P P i
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Aq = 1 and A?+1 = for all i

17. C s the cyclic group of order q.
<1

• ' 18 Z^Jg ): the hypercentre, of G i.e. the greatest member 
of the upper central series of G.
1̂ . N m[G/M̂ ) : N is a mod\ilar element in the lattice CG/MD

(see 9 above)
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Introduction

We have that any normal subgroup of a group G must be 
quasinormal in G and any quasinormal subgroup must be modular 
(frr, suppose K qn G. Then, if V -5 - U, ¿K,U>nV = IOT A V =
(Khv)U = AV,TJ> (as KA V qn V). Similarly, if V ^ K).

The converse of the latter assertion is not always true: 
a subgroup may be modular but not quasinormal in G, For example: 
let G = Sj, the symmetric group on the three elements 11,2,3* • 
Then<(l2)> m G, but (123)(12) = (2 3 ) 6 < (12),(13)> ^  <(12)X(13)> 
so ^(12)> is not quasinormal in G,

Perhaps the most important property df modular subgroups 
is that under a. (subgroup) lattice isomorphism, modular subgroups 
must always be mapped onto modular subgroups - such is not the 
case with normal or even with quasinormal subgroups.

In ( Cl3), considering finite groups, Schmidt firstly investi ates 
the situation when (.G/I-Q ip a chain (II m G), and then considers 
how a modular subgroup differs from a normal subgroup: he investigates 
H (which he finds is nilpotnnt), H” (supersoluble) and G (which

applying the main theorem of ( £.113) nr y be shown to be su^ersnluble).
In ( LH3), again considering only finite groups, Schmidt 

firstly investigates some conditions under which a m.od'-ljr subgroup 
will permute with another subgroup, and then goes on to u^ove the 
important theorem conce’",ein'T the structure of core—free modular subgrou 
viz. if li m G and r 1, M « x , - . x IIAK and
G = P̂  x . . . x P„ x K, where q̂  a. prime, HA K qn G
P. is a P- group for all i and V :: t P,x. <- P,’: t K, (lx.| ,lx. t)- 1 1 J J 1  O
= (|=c±l ,(k|) = 1 V i,j.

Itodulsx subgroups are referred to by some -writers as b'del'in 
subgroups — hence the use of the term duai-Dedekind .by Mer.egazzo.



Inclusions, intersections end unions ere interchanged in the 
defining axioms of dual-Dedekind subgroups as compared with those 
of modular subgroups.

Again restricting his attention to finite groups, Menegazzo 
prove* that a simple group can have no non-trivial dual-Dedekind 
subgroups, and then oyoti on to investigate those groups all of whose 
normal subgroups are dual—Dedelcind (a normal subgroup of a group G 
need not necessarily be dual-Dedekind in G, see for example, p.60).
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Chapter One

Some basic facts about modular subgroups

A subgroup M of G is said to be modular in G (v/e write 
M m G) if
M1. For all X,Y subgroups of G such that X i Y, we have that
<H,x>n y = Y,x> .
M2. For all X,Y i G, such that M < Y, v/e have that 
<K,X>nY = Oi,XOY> .

The following propositions 1.1.X. - 1.1.5 a-r® stated but 
not proved in Schmidt C O .

Proposition 1.1.1
The following statements are equivalents

(i) M m G
(ii) For all subgroups K of G, the map is a lattice

isomorphism where is defined as follows!

fy. S CtM,K>/M3 ----* [K/KOM]
L «----> L OK

(iii) For all subgroups K of G, the map<|>̂  is a lattice 

isomorphism where is defined as follows:

s [.K|Kf\M3 -----* C<M,K>/M3
R I---- * <R,M>

Moreover, in this situation, £ nd i}>K are mutually 
inverse.

•• Z  -



Proof

..(llrtliil
Suppose L1fL2 6 C<M,K?/MJ and / K(X1) = / k (L2) i.e.

K7
L^K = Lgfl K.Hc»c<£ n K,M> =<L 2DK,M>

Hence <M,JO OL., = ¿M,K>nL2 by M2 

i.e. = L0. So is injective.

Now let R e LK/Kn e{(n,K>/ M}.
y K(<M,H>) = ¿MfR>n K .= ¿Mf<K,R> by M1

= R
.. R

Ifn n

* W * / K is surjective.

Also ^ K is its inverse, as for all L e- L ¿1, fc? / r\l} 

^ ( / r C1*)) = < I','K,M> = 4 M tK>nL = L (*) •
by M2

Clearly preserves intersections. Also as ^ ̂  f  =

1 L^M,K>/M3’ f k ^ K ^ A,B>^  = <A,B>

= < V / k(a)M'k(/k(b))>

( as jj ̂  clearly preserves unions) for all A,B KM,10/ M3 

Hence as ^ ̂  is the inverse of and hence a bijection 

k (^a»®'>) = ^ K(A),^K(B)> i.e. preserves

unions.
So ̂  ^ is a lattice isomorphism.

iiiM  (ili,),



Proof

(Q=»(iQ
Suppose L1 fL2 fe C<MtK>/MJ and / K(l1) = /K(L2) i,e*

L ^ K  = L2n K.Me.ci^n K,M> =<L 2OK,M>

Hence <M,JOnL., = ¿M,K>nL2 by M2

i.e. = L2. So is injective.

Now let R e  LK/KnMjN«.c<M,R> fc\/M,K>/ M3.
K / k «M,.R>) = ¿M,R>nK .= ¿Mr>K,R> by M1

= R
*U.nce/K is surjective.

Also ^ is its inverse, as for all L fc- L *7 /

'//'k ^ K (L^  = ̂ LriK'M> = <M,K>n L = L (*)
by M2

Clearly ¡6^ preserves intersections. Also as yfy -

1 UM,K>/M 1 * f k ^ K ^ A’B>^  = ̂ A,B>
- ^ K( / K(A)),fK(/K(B))>

= V ^ k (a)’ /  Ic3^

.. R

)fn (1

(as ijj ̂  clearly preserves unions) for all A,B t KM,K>/ m3 

Hence as ^ ̂  is the inverse of and hence a bi jection 

/ k U a ,B>) = ¿¿K(A),^K(B)> i.e. / K preserves

unions.
So ^ is a lattice isomorphism. 

(ii)4 (iii)



Given that <j>K is a lattice isomorphism, we want to prove that 
(Ji is. Firstly, we shall prove that V s  c QCM,K?/MJ, ¿SjdC.M? = S.

M t<Sf>K,M>fS =$> ^ K(<Sn K,H?) ¿ ^ K(S). But ^ K( S) = SnK 
i (SfiK,M>nK= ^ K(<S ft K,M>) So / K(S) = / K«SftK,M>) and as 
^  K is injective, S = <SCK,M> as required. (i)

Hence is surjective ( V  e CilIT,K>/K3, »̂ k (S^K) = S)
Now suppose 1̂ ( 1^) = for some L,,Lx t [_K/K^ M3. ^

surjective ^  3 M (, M x e C^N,K>/Ii3such that ) = L,,
/ K(lJ - K  i.e. M,nK = L , , L * - ^ ( L , ) -  4 k(lJ
s^<HnK,M> = ^ M ( = M a By (i). Hence L( = L^and
tf»̂ is injective.
(i) shows that j1 K is the identity map; 4 *K clearly preserves 

unions and can be shown to preserve- intersections using an argument 
analogous to the one in the first part of the theorem.

( m ) 3  (i.)

Firstly we shall prove that V K,and L t Q[)Kn Ml, CL,M?0 K = L.
L 6 <L,M>r>K=> 4  (L) * *j> K(<I.,M? 0 K) i.e. CL,M>i«L,KX' K,M>.
But ¿<CL,M?r\ K,M> i <L,M>. So ^ k (l ) = + k(Oi,M>OK) and hence, 
as ^  is injective, L = ¿L,M>*\K (**)

We wish to prove M1 i.e. XfeY ^¿.M.X^oy = iHnY,X?,
¿X,Yr> ti/Y <1 M -] and hence by (**) with L = CX,YoM?, K = Y 
we have that ¿X,Y O M> =^<XrYnF^M>hY = <X,M>OY as required.

For M2, we want to prove that MtY and X any subgroup of G 
=} ¿M,X> «Y = ¿M.Xft Y>.

¿M,X> ft Ye ̂ ¿M,Xl/Mland as tf>x is surjective, BReLx/XnM^ 

such that '/'¿W = = ¿Mtx^^Y*
By (**) with L = R and K = X, vie have that R = <R,M> OX



v 4 y * v i • •* '“ > , ■ *" * • '\ •* V** i. . y . ;

i.e. <R,M> = <4RtM>r\ X,M>
i.e. <.M,X>0 Y = <<H,X>A Y ft X,M> = £X«Y,M>a 3 requiredj)

Proposition 1.1 »2
M m G and U 4 G ^  M a U m TJ 

Proof
By 1.1.1«, it is sufficient to prove that for all subgroups

K of 0 , the map L <M« U.IO / M a TJ3-----> LK/Ka m a u 3

L i----- > Ln K
is a lattice isomorphism.

Let K £■ TJ

CMy IOa U

K n M n U s K n «

As <.M,K?aU = OlnU,K>(by Ml) and<M" TJ.lOnM = <M,K>nUAM 
= unH, we have, as the above diagram indicates, lattice 
isomorphisms f!^ : [̂ ¿MfK>/M3 > CK/Ka M3

and U 50 1 O  a M 3 -»COi.MA U,K> / M3

( by 1.1.1.) where the notation is as usual.
Thus, their composition /  K ^¿m a :j,K> = ° ,say> 

is a lattice isomorphism and ® (L) = /  K(iL,M>) = ¿.L,M>AK

= <_L,M> A U A K (as K i TJ) = ¿L,M A U? n K (as Li O by M1 )
= I. r\K, for all L £ £iMn U,K?/M A U3 as required.||
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Proposition 1.1«5
N m CG/M} and M m G N m G 

Proof
By 1.1.1., again, it is "enough to prove that for all subgroups

K of G, : L<N,K>/lG “---- * LK/k o NT is a lattice
L I > ‘LnK [^isomorphism.

As M i N, so <H,K> = <N,M,K> ar.d <M,JO t tG/H),thus we
have that UN,K>/N3 2; [<M,K>/<M,K>A N3 via L I--- »Lr\<M, K>
(as N m tG/MJ, using 1 .1.1.). and S. CK/NnKl
as part of t<M,K>/M 3 = tK/K AKlvia R *-» RhK.

<rn>«yK> r < * / , 0

Composing these two maps, we have L<»tfK?/Nl * CKjNnK3 
via L ---» (Ln<M,K>)nK = L HK as required, 1\

Proposition 1,1.4
m G and Mg m G =£> <M^ , Mg> m G

Proof
Again by 1.1.1., we wish to prove that for all subgroups 

K of G. the map / k s c<m»» m*’ K>/<M. » V 3 — * 1 K/Kn<M.» M ,>3



defined by „(L) = L O K  is a lattice isomorphism.

As M, m G, we have that CO*,, Mg, lO/M.,1 = Mgjfr/M, n <Mg,K>D

via the map L H  L and hence, by restriction, we have
LO*,, Mg, K>/<M1, Mg>] S. C<M2, K V O y ^ W M g ,  03  .

Mg r < M 1 ,Mg'>n(M2 ,K> and Mgm G =3> t<Mg,K>/Mg'\3? L K/KnMgl

by the map R ►—> RftK, so, by restriction, we have that
C<M2,.K>/<Kg, M ^ n ^ M g , K>3 2  L K/^Mg, M,>n<Mg,K>n K3

= LK/<MX, M(>n k L
By map composition, we get that £< M , M^, K7 /< M%.,

=  CK /¿M , n K3 by the map L ( L n 0 lt K>) n K.
So, by CM, , Mg> m G as required.

Proposition 1,1,5
M m G and v : LG3 —? Lrt3 a lattice isomorphism <r (m )

m V4 .

Proposition 1,1,6
Let N £ M, N nprmal in G.

-7-





Section Two

The following theorem proves that when discussing non-normal 
subgroups of G, there is no ambiguity involved in speaking of 
maximal modular subgroups, as every non-normal subgroup maximal 
in the set of modular subgroups, is a maximal subgroup of G.

Theorem 1.2.1.
(1) Let' M be maximal among the modular subgroups of G but not 
normal in G. Then M is a maximal subgroup of G and for all 
subgroups H of G, either H £ M or H n M is maximal in H,
(2 ) . Let M ',<■ G be such that for all subgroups H of G, either 
H i H or Hn H  is maximal in H. Then M is a maximal subgroup of 
G which is modular, and may be normal.
Proof
(l).We suppose M is not a maximal subgroup of G, 

for a’l rro er subgroups V of Gsuch that K is contained in K,
we have_that M jO ____________

For,suppose not. Suppose there is some subgroup K and an 
element k of K such that ^ M. Then and by 1.1.4
and 1 .1 .5 , <M,Mk> m G which contradicts the choice of M.
(b) . There exists an element x of G such that <M,x> = G.

For, suppose for each element t of G \ M, <M,x><G.
Then M is normal in ¿M,x> by (a), i.e. M* = M for all x, i.e.
M is normal in G, contradicting our choice of M.
(c) . Let M c H. Then H m LG/M3.



For, £ g /m 3 = [<x>/Cx>oI'0 which is a modular lattice.
Hence H m [_Gl MJ.

Hence by 1.1.3.,H m G which contradicts our choice of M,
So we have established that M is a maximal subgroup of G.

Now let us consider any subgroup H of G. Then either H 6 M
or <H,M) = G. In the latter case, CG/M3 = C^H,M)/M33f C.H|HhM3
by so M n H  is maximal in Hi
(2) Taking H = G, we see that M is maximal in G.

Now -we wish to prove
i. for all subgroups U,V of C, B i V, <M,U>nV = ̂ HnV,U)
ii. for all subgroups U,V of G such that V contains M,
<M,U>nV = <M,Ur\ V> .
1. U £ M gives <M,H>ftV = MOV =<¡1 hV,U>

U ^ 14 gives CM,D>nV = G nV = V = <MnV,U> (as MnV is 
maximal in V and U ̂  M n V).
ii. V- = M gives <11,U> n V = M = 0l,U r>V>.

V = G' gives <M,U>nV = C1,U> = <MnV,U>.
So the theorem is proved. II

The following theorem demonstrates that local arguments can 
be extensively used when examining the properties of modular 
subgroups in infinite groups.

First a definitions 
Definition

M is said to be locally modular in G if for any natural 
number n and set of n elements ^x^ x2, , , , , xn^ of G, M

to -



is modular in <M,x^

Theorem 1.2.2.
M is modular in G if and only if M is locally modular in

G.
Proof
Only if M m G M m H for all H such that H i H i  G (by 
1 .1 .2 ) ^ for all natural numbers-n and elements , • • • ,xn

of G, M m OI»x^, t t t xny •

If Suppose for a contradiction. M is locally modular in G but 
not modular in G. Then either
(a) there exist subgroups U,V of G s,uch that U 6 V but
<M,U>nv jl <11 nv,U> or
(b) there exist subgroups U,V of G such that V i  H but 
<M,U>nV £ Ol.UnV?.

In case (a), as < H nV,U> 6-Cl»u,>nV* there exists an element 
y of G such that y t ¿M,U>oV " G‘!nVfU>. Then y e V and there 
exist elements u^, , f , , u nof U such that y t OI»u-)» , , un>

(so V 1 t V (as U1 £ V)). Then M locally modular o> M m <M,V1 >

and <M(\V^f £ OlnV,U> contradicting our choice of y.

So case (a) cannot hold.
For case (b), there exists some element y of G such that

Let TJ.J = <u. u > (so U. £ U). Let V n ' 1 ' I = <«.,. » . » un» y

-  II -
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y i(M,B)nV ̂ (M,U n V^, As before, y e V, and there exist 
elements , , , , un of U such that ye , , , u ^

M m <M,u|t , , , , uft,y?. Thus yt <M,u(, , , un>ft<M,y'>
= <M,<u(, , , u a7  n<M,y>> 
¿<M,UnV>(as MiV.yt V)

contradicting our choice of y.
So M locally modular in G implies that M is modular in G 

as required.il

Similarly:
Theorem 1.2.5.

M m G if and only if for all finite sets of elements 
\a-|» , , , an 5j of li (n any natural number), Mn<a^, , , â >

m Ca-j t t t t an> •

Proof
Only if follows from 1.1.2 
If Suppose M is not modular in G.

Suppose there are subgroups U,V of G, U V such that
i.e. there exists some element x e<MtU>cV 

N<MftT,U>. Then there exist elements m^, , , , mnof M, u^, , , u^

of U such that x * < 1̂ , , , ,mn, u.̂ , , , u^DV.
Let A = <m.|, , , m^.u^, , , u ^  . Then M f\A m A.

x 6 £  Mil A,U A A}rt V h  A = < Mn A h V h  A,Un A> =<M nVn A,TJ n A>

£ ¿MHV,U) which is a contradiction to the choice of x.
So there exist subgroups U,V of G such that V contains M 

and such that <M,TJ?nV 4 ¿M,Un V> i.e. there exists an element



z 6 '■» ¿M,U ft V>, Letjm^, , , m^e M, (u^, , , u^e U

be such that z t , , , mg,u1f , , , ut>OV. As before,

let A = ^m., , , , m ,u , , , u ). Then z t ¿Mil A,UnA?nV/i A1 S I  li
= £ M n A,U a V n A> (as M n A ro A) 4 ¿M,UnV> , contradicting 
the choice of z.

So M must be modular in G and the theorem is proved. II

The next theorem establishes the connection between modular 
and quasinormal subgroups and generalises a result of Heineken 
quoted in Schmidt (ill}.
Theorem 1.2.4.

Let M be a subgroup of G.
Then M is quasi normal in G if and only if M is modular and 

ascendant in G.
Proof
Only if Suppose M qn G and U,V are subgroups of G such that 
V contains U. Then £M,U?f>V = MUnV = (MnV)U = CMr\V,U>.

Similarly, if U,V are subgroups of G and V contains M, 
we have that V = MUn V = (UnV)M = ¿.U nV,M>. Hence M is
modular in G.

M qn G ^  M ascendant is proved by Stonehewer in (C-VIl)
if Suppose M is ascendant in G in { steps where  ̂ is some
ordinal, i.e. there is a set of subgroups \,M ̂  \ •*. an ordinal,
*• * ^  such that Mq = M, for all < ,
M = U H  for all limit ord v'.nals p and M _ = G.P ** f *t *

We proceed by induction on ^ . If g « 0, H * G and there is

’ l

-  13 -
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nothing to prove.
Suppose that o is a limit ordinal, i.e, G = O M . Let 

g £. G. Then there exists a n < ( < ‘ e ) such that g t and 
as by the induction hypothesis, M qn , we have that M<g> = 

i.e, M qn G as required.
Now suppose that ^ is not a limit ordinal i.e. ^ -1 exists.

Mt*M^_( and by the induction hypothesis, Mqn M . Let K <- G
and let y t CM,K>. Then y t ¿M^_t ,K> (as M 6  M ,)

a M ,K (as M <1 G). t*1. «2 - 1
Thus there existd some k t K such that yk "'i ¿M,K>ftM^_,
aiM,KhMe_,> (as M ^ M, M m G) = M(KftMe_,) (as M qnM^.,) 
Therefore y e MK. This is true for all y e ¿_M,K2> and hence 
<M,K> i MK , so <M,K> = MK.

Thus M is quasinormal in G as required.il

\U



Chapter TWo

, This chapter is concerned with the properties of modular 
subgroups in a very wide class of groups which we shall 
call .

We define as follows:
Let 'A = I.G | M maximal among the modular subgroups

of G and non-normal in G ^  IG:MI finite)
Let = iSs i.e. the largest subclass of "d which

is subgroup closed (so G c 34 and H £ G ^ H e * 1 ).
By defining at in this way, we exclude from consideration 

the Tarski group (in which every proper r.on-trivial subgroup 
has order p where p is an odd prime, and the group itself is 
infinite, (tVIIl p.9 7 )« It is not known if such a group 
exists, but if one does, every proper subgroup is modular, 
maximal and non-normal, and the normal closure of any 
subgroup is the whole group,).

i
Theorem 2,1,1»

I
Let G « y and let M be a non-normal maximal subgroupi

which is modular in G. Then G is nonabelian of order pq where
< . - . . MG

. p and q are two primes.
Proof

G t *5 \G:M\ finite G finite with M a non-normal
MG \

maximal modular subgroup of G (1.1.6), The result follows
«G

- »S'-



from lemma 1 of Schmidt (Cxi)

Notes if M is a non-normal subgroup of G, then by 1.2.1, 
there is no ambiguity involved in describing M as a maximal 
modular subgroup as M is maximal among the modular subgroups 
of G if and only if M is modular and a maximal subgroup of G.

Theorems 211.2. and 2.1.5. were suggested by Dr. S.E. 
Stonehewer.
Theorem 2.1.2

u'A c »J
Proof

Let G fc L'j and let M be a non-normal maximal modular 
subgroup of G. We want to prove that |GsMl is finite.
1. There exists a finitely generated subgroup P of G such 
that M h F  P.

For, M G ^  there exists an element m * M and an
element x < G such that mx jfe M. Let P = ¿.m,x>. Then nuMflF
and mx 4 MftP, so MftF P.

By 2.1.1.,1.2.1. and the facts that MftF m F and G t t'i
we have that P is non-abelian of order pq where p and

(MnP)p

q are primes, p > q,say. So |P:MhP| = p
2. If F1 is any finitely generated subgroup of G such that

P F1, then | F 1 M * P1 \ = f>

For M h P 1 m P^and M»1P1 o  F1 would imply M ^ P ^  P o  P1 /) P

~ 16 -
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i.e. MflF <1 F, which is not so. So M n F̂  is not normal in F̂  

and is a maximal modular subgroup of F̂  by 1.2,1, So |F^:MnF^| 

is finite as G e *-U.

( « « *,) fi

¿Mn f,)f, n F
So, by 2.1,1., F.j is non—abelian of order p'q,: (p'f

(MHF^j,

q both primes, p > q ).
Consider F(Mn F 1 )F 2  F andFn(MnF^) £ Mr>F

(uns^) 1 f TT ĥ Sf ^  F 1

and is normal in F, so F h (M 0 F)f 6  (M n F)F i F

so {p,qj =[p',q'^

and as p > q,p' > q', p = p' and q = q1

3. IG:M| = p.
For, suppose |G:M| > p. Choose , , , g .j so that each

element defines a different element of G i.e. g.g.- 1  i M
M 1 J

for all i,j such that 1 £ i £ j s p+1. Let K = <.F,g.|, , , g ^ >

where F is the subgroup defined in 1.
Then,by 2, \K:MOK( = p i.e. there exist i,j(1 i i/ j i p+1) 

such that g.g“ e HtlKi M, This contradiction shows our 
supposition to be false and hence |G:M) & p, | FM s M|

I f  -
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= p and ¿p,lO - G •=£ JGsM| = p. So G t VJ . as required.

Theorem 2.1.3.
36 = u 36

Proof
Let G fiJi, We wish to prove that for all subgroups H. of G,
H1 e S .

H 6 G => H t *-16 =? H t uM ^ H fc » (by 2.1.2).IJ

Theorem 2.1.4.
- ^ = <? ‘i
Proof

Obvious from 1.1.6.

Theorem 2.1.5.
y = Py

Proof
Let G * p^. Then there exists a normal subgroup,N, of G

such that K t 1, and G tj . Let M be a maximal non-normal 
N

modular subgroup of G. We want to prove that lG:M\ is finite .
If N i H, H m G (1.1.6), M is maximal in G (as M is maximal

N N . N . N
in G) and M is not normal in G (as H is not normal in G).

N N
So, as G t , |G s Ml = |G:M| is finite.

N IN NI
Suppose now that II j; FI, So M a maximal subgroup of G implies 

NM = G.

• - I«'-
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Section Two

Here we investigate the properties of modular subgroups in 
groups following the pattern of Schmidt (trl).

Firstly we consider the case when (G/lO is a chain. 
Theorem 2.2,1 *

Let M m G t *= and let (jG/Mj be a chain of length n. Then 
|GsMl .=, pn where p is a prime.
Proof

Firstly we note that 3ince (GjlOis a chain, it is certainly a modular 
Hence every subgroup in CG/lO is modular in LG/iiiand hence in lattice.
G (by 1 .1 .3 ).

Let M = * M, c . . .  C M  = G be the chain CG/Mj.u 1 n
So, as G and M . is a maximal modulax subgroup in 

for all i, and Mi+  ̂t , thus |ML+.jtL} is finite for all if 

whether M. is normal in M. . or not, and hence iGsMt is finite 

So |G | is finite and the result follows from Schmidt lemma 2 (t-'l)

Lefinitlon

We call the group G a P-group (see (Lyin'])) if either G is 
an elementary abelian p-group, or G = AB, where A = ¿a^, a0, , , a^b

B = CD, a^p = b̂ - = 1 for all i, a^a^ - ajai ^or and

b_1ab = arfor all a£A, where r ^  1 (mod p),^ = l(mod p).
It is well known that the lattice of subgroups of a P- 

group is isomorphic to the lattice of subgroups of an elementary 
abelian p-group of suitable size.

- 1.0



Theorem 2,3.2
G *■ 3* and CG/K] a chain of length n implies that either G

”g
is a p-group or n = 1 and G is a P-group of order pq.

Proof
This follows from 2.2.1 which shows that with the given

hypothesis |G:M| and hence G is finite, and then from Schmidt
MG

(ra) t i As P-groups are lattice isomorphic to element"
-ary abelian p-groups, if G is a P—group, then ¿J^^must be a

*G
chain of length 1 and thus G- has order pq.U 

Theorem 2.2,5
Let G k * and suppose that LGIM] is a chain. Then G =

*G
M .P where P is a cyclic p-group.
«  "g
Proof

Without loss of generality, we may take = 1. By 2.2.2.,

we have that either G is a P-group of order pq, or G is a 
p-group.

In the former case, we have that G = AM where A is a subgroup 
of G of order p (p > q).

In the latter case, let H be a maximal subgroup of G 
containing M and let x *. G^H, Then ¿.M,x> £ H implies that



G o(M,x) . But G a p-group implies that M is subnormal in 
G and hence quasinormal in G by 1.2.4». Hence G = M(x> and the 
theorem is proved.||

Theorem 2,2,4 L«.r U t

Let M m G and let x be an element of G such that x is 
torsion-free and M A<x> = 1. Then M <i<M,x>.
Proof

M modular in G implies that —  (<lx>//<x>n K] by
2

1.1.1. So QCMjXb/Mi is a modular lattice. x?/«cp-> 3 is
a chain of length 2 , where p is any prime, so by the lattice

2
isomorphism, t_4M,x>/4 M,x^ > 3  is a chain of length 2 .

we see that K is normal in 4M,x> . M £ K and, in fact, M - 

K, as otherwise Q4M,x')/K'J would be finite.

M

the core of ¿M,xp > in 4M,x>. So <3 4 M.x^ as a
2 22

’>

maximal subgroup of a p-group, and hence 4 M,xPb o 4 M,x>.
Hence setting K = <3 4m ,xP> , p running over all primes, p

' l l -



So H <  <M,x)as required. ||

This chives rise to some more general results:

Theorem 2.?.5.
let M m O * *•. Then M e H(r> nï),

ÏÏG

Proof ‘

Without loss of generality, we may assume that M̂ , = 1.
Then v;.e shall prove that H t (tu J-) for all x e G.

(For, as M n M*, we have that ft x> é. n M* = 1 •

Henoe, M < R(n * ï ) as required).
We note that as M m G, we have that [Oi,x)/M3 ar C<x>/oooMl 

case a [(x)/ix)n!ll a finite lattice.
Let M = MQ «i- < . . . .  <- Mn = ¿M,x>be a chain so that

is maximal among the modular subgroups of +  ̂ for all i. 

If M± Ml+1, then lMi+1 I is finite as G ^  . If M. M± +

then |M. .¡H I is finite as M. . is a group with a finitei+ 1 1  M 1 + 1
" i

lattice. So (<M,x>: M| is finite and hence so is l<M,x) :

so M  é (Tii\.5) by Schmidt Theorem 2 (t-Hl).
1IOI,x')

case b Ci.x> /ex'? n M3 is an infinite lattice.
Here we have x having infinite order and <x>n M = 1. So, by 
2.2.4«» we have that M <T Oî,x> i.e. M ^  = M.

Then the theorem is proved as indicated above,\|



G t l3- and M m G =£
”g

Proof
(Notes G e <■% and hence G * ^ by 2.1.3.)
Vie may assume, as usual, that the core of M in G = 1, Then

by 2.2.5., M* T?(t>«a). Let < xf , , , , x ^  > P & M (so F is
finite). MfcR(nni) =$ there exists some index set I such that
fl ̂_N. |i <a M. M = 1. Hence 0 N. n P = 1 and
!,X 1  - N± **r

F__ PTL L M fr n , 30 Pt Rn , and as P is finite, so only
N. o P = NT N.l l i
finitely many of the subgroups P|i* I is can be distinct,

thus we have F*RqT) = T\ . ( i n  *- ■‘5, (t.xita') v. <,<|)

So M e t("nn3 ) as required. M

Theorem 2.2.7.
Let G t si, and let M be a corefree nodular subgroup of G.
- aThen M t uass.

Proof
Let n be any natural number, \glt , , gn \ be any set of 

elements of G, and J = , , , , M^n>.
t. Then |JjM*il is finite for all i.

Without loss of generality, we may take g^= 1, and M,M^2 .. 
to he distinct conjugates of M. (*)

We write Ji =iM,Mg2, . M eA>. Then it is enough to prove

Corollary 2.2,6,

-X6 -



that I Ji; Jj_ (» is finite for all i such that 1 < i * n* .

(Without loss of generality, vie may take Msi to he Mg1 i.e,
M). We note that (as M £ and Ji+1 =^JifMsi+1> )

and [< = C<ei+1'p/<ei+1'> n (as J± m G by 1.1.5

and 1.1.4)» If this lattice is finite, vie have :J\ I

is finite, as G t 3t ,and hence so is |J^+.|:Ĵ ) as required.

If the lattice is infinite, we have that g \ i s  torsion-free 

and igj+1>n J. = 1. M £ J± 4> Hnig.+1> = 1, so by 2.2.4.,

II <i <M,g^+^ i.,o. MSi+1 = M which contradicts (*)
So !J:Msil is finite for all i,

2. J e 3-r\ s$ for all i. 1
corej(K°i)

Let IT. = coreT(Msi). Without loss of generality we may take1  J
K^i = M and may assume that n > 2.

We know from 1, that J is finite.
Ni

Let K =<MS3, , , , Mgn> . Then let L = 4M,K,g2>

= CJ.G2 > » J m G ^ [ a , g 27/J] S  \ . < g £ / t g £ *  J]
and hence as in 1,we ha-e that |<J,g2>: J| is finite.

Vie know |JsN^(is finite, hence |LsN̂  Jmust be finite, and,

in particular, |L:M| is finite. So L , which we will
core^(M)

virite L, is finite.
C

As H m L , we have that, by Schmidt, corollary to the main

T L

-- 7
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t*) = c.
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theorem of (CIU ) » that
L = P x x P x K r __

C C
and M = x . . .  x x Mr! K 

C" “c
where the notation is as in Schmidt (CJI3) i.e. Qi = P^

C” C-
for all i, Q. = q. and P^ is a P^-group, Mf> K qn L . 

T "  C C

So M1, = P 1 x .  . . .  x ? r  x (Mn K )1

C cP “C C~

P̂  is supersoluble for all i, and as 
C
any subgroup normal in P. is normal in L, so P. has an L—

r  c r
invariant cyclic series for all i. (H ft K ) Z fL\ by

c ~ ( c ;

Maier-Schmid (lIXl). Hence (Mo_K)L has an L-invariant cyclic
C

series. So has an L-invariant cyclic series. Thus Ĥ f> J 
C ■ C

has a J—invariant cyclic seriesand thus so has M r> J ,
N1

(M®2 i JOML, note).
<yWe repeat this procedure,redefining K to omit M°3 and

replace Mg2, and letting L = C4,K>g-b and then omitting 1-1̂4
and replacing Ms3 etc. Then J is a subgroup of the product

N1
of the HJjn J 's and as this product has a J-invariant cyclic

N.



series, so J is supersoluble as required. 
f 1

5. Finally , we let F be a finitely generated subgroup of 
Vp. Then there exist elements g.» * * » gn of G such that

F £ , , , , , Mgn^. Let g be any element of G and let
j(g) = ,M®1, K^n"> . Then if N(g) = corej^^fr®, we have

by 2 that J(p) i 5 nss i.e. FI?(g) t i.e. F t Jail ,
H'(g) N(g) F ri N(g)

We re neat this for all g e G and note that H F n N(g) £ h N(g)
*V >

£ f> = 1. So n (Mill <J F,.F = 1  i.e. FfeRii.
% M

QSo M «, L(«.ss) as required.il

Corollary 2.2.8.
Let G t uiand let M be a corefree modular-subgroup of G.

Q,Then 11 is locally supersoluble.
Proof

Q.By 2.2.7., we have that M is locally residually supersoluble.
GLet F be any finitely generated subgroup of K . Then F is finite 

and F residually supersoluble =5 F Eq ss = is as required^

Theorem 2.2.9.
Let G be a finite group and let M be a corefree nodular 

subgroup of G. Then G ' is supersoluble. (This result is
=7 «°)

well-known but apparently unpublished).
Proof
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By the main theorem of Schmidt (fill), we have that 
G = P̂  x x Pr x K and M = x x Q^x Mn K  (notation as

in Schmidt; M n K  qn G). MG = P1 x  i Py x (MnK)G.
qWe consider the automorphism group induced on M by conjugation 

by elements of G. As a P-group induces a supersoluble group 
of automorphisms on itself by conjugation, and as by Maier-Schmid 
(\.IX1) we have that the group of automorphisms induced by K

K Qon(M/\K) ( = (MOK)', note) is nilpotent, the theoraa is 
proved, H

Lemma 2,2,10
Let G be locally finite, M a corefree modular subgroup of

G which is finite. Then G 

Proof
C^M')

is locally supersoluble,'

We write C for C„(MU). Then any finitely generated subgroupVJ
of G is of the form FC where P is a finitely generated 

C C
(and hence finite) subgroup of G,

Let 4 =\K|K i: G, K finite, CM,F> £ * 1

(as M is finite, •£ ̂  f/as the intersection of only a finite 
number of conjugates of JJ, , , , M^say, is trivial. 
Hence <.M»F,ĝ , , , g^} is finite end belongs to 4)

Let K Then, as K is finite, by 2.2,9,, vie have that
K__ „ is suoersoluble, V/e write C„ for C„(M^). As  C o  G,
c ^ )  K K

1 *  -



we have that KC is supersoluble,
CKC

Let t 4 be such that K i  ( e;g. K^ = ¿K,x> for 
x t G ̂  K)

Then KC Cv C K.C which is supersoluble (where
"  — —

— c^c ■ cKlc

C„ = C„ (m S ) ) .. Hence KC
K1 KC h C„ C

is supersoluble.
K

So KC is ' residually supersoluble, (*)
H KCOC„ C 

1x, a K
But consider ft C„ C = D,say. Obviously,C £ D, and we 

*,‘ 4 K1
Gshall prove that D S C .  For, let y t D, a t  M . Then there

■y y .exist elements y^, , , yn such that a* 0 1 -1 , , , , M n?
Let K2 =(K,y1f , , , yn > Kg « 4 and yt D yt C^C

(using our usual notation). But at M^2. So y centralises a.
n Q

This is true for all at M so y t Cg(M ) = C as required. 
Hence C = D.

From (*), we have that KC___ is residually supersoluble
KC nD

So KC
KCn C

KC is resiSually supersoluble. Hence FC
“ C c

(t KC \ is residually supersoluble , and as FC is finite 
l ~C ) * C • ' .
and ss = R FC is supersoluble as required.))

C

Theorem 2.2.11.
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r*a*f tm .*’•* -***'#11%

Let G be a locally finite group and let M be a corefree
modular subgroup of G. Then G _ is locally supersoluble.

c£(mg)
Proof

G * 1We write as before C = Cg(M ).

Let A be a finitely generated subgroup of G (Then A 
C C C

= PC where P is a finitely generated, and hence finite,
C

subgroup of G.) We wish to prove that A is supersoluble.
C

,*(*) =
M'"»*', Mx/pj = I ^ F> . As M3 SrtJF/FflKj is a finite

lattice, and <CM,F>, inparticular, belongs to "3» , we have that

Let X(F) = C<J1,P> • Then it is easy to see that M
4<Mt?>

UK,P>: HI and hence ¿M.F> is finite. So, in particular,
M<M,P>

_ is finite, and by 2 .2 .1 0 .,we have that x(f )M

we have that and C £ Cx(f)

x ( \is locally supersoluble. Writing Cv/„\ for C„/t.\(H ' \
x(p) ()K (P))

Let L be the locally supersoluble residual of X(f ) (such a 
C C

residual exists because 6> * c3 We wish to prove that
in fact L = C. Let a t M5. 7ht« tWrt wJlexist elements y , , ,
y „ of G such that a t C My1, , , , Mynb.

Let X(F^) = C^M.F.y,, , , , yn>. As P1 = <TF,y( , , y„?

-  3 o  -



is finite, we have, as before, that M = M is finite
" x ^ )

and hence X(F.|) is locally supersoluble.

Then

" x ( F i )  c x ( F l )

which is locally supersoluble, so X(F^
X(F)n C

is locally
X(*,)

supersoluble. Hence L£ X(p) Cx p̂ j i: ^^(F )*

So a t MX< V  =$ [_h,a3 i. Mx p̂ Repeating this argument

for all K such that F̂  is oontained in K and K is finite, 

gives us that x(x) is locally supersolubl» (where the notation

is locally supersoluble, so



L fi X(P) n and at MX K̂  ̂=» U,,a3 i nx(Yi)’ Hence

[L,a3 £■ r\ M / x £ n Mn M* = JL = 1 i.e. L £ Cp(a). 
K ' ' x t <*

nThis is true for all elements a of M- so- L £ C i.e.
L = C.

Hence we have established that-X(F) is locally supersoluble
C

so as P Sr X(p), we have that FC is supersoluble as required.il
C

- n -
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*■' rf!i-

b £ X(P) n C ^ K  ̂and a t MX^  ^  U,,a3 £ M ^ j .  Hence

tL,a3 £ A  Mx/„\ S n MftH* * IC - 1 i.e. L £ Cp(a).
K ' ' x t c.

This is true for all elements a of vf' so-L £ C i.e.
L = C.

Hence we have established that-X(f ) is locally supersoluble
C

so as P £■ X(P), we have that FC is supersoluble as required.H
C
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I started my investigation into modular subgroups by 
investigating their properties in locally finite groups with 
the minimum condition on subgroups (it is well known that such 
groups are finite extensions of a direct product of a finite 
number of quasicyclio groups(an). This chapter is concerned 
with that theory. More general results will be proved in 
Chapter four.

Lemma 5.1.1«
Let G e («-Tk ) 3-. Then G t ,

Proof
Let M be a maximal non-normal modular subgroup of a 

nilpotent group G. But 1.2,1.^  N is a maximal subgroup of 
G and hence normal in G. So "n t tc , Then by 2.1.3, l-T' c *• 
and by 2 .1 .5 . (*-T') i t tc ||

Lemma 3.1.2.
Suppose G = AM where 4 ? C  ,, H s  C where q and p areP q

distinct primes, and A <a G .
Then M G M not modular in G.

Proof
Consider the set of automorphisms °<-: A — ►A defined by 

ot (a) = mam-  ̂ for all elements a of A. M 41 G ^  M A  C_(a)m' ' 'Sr

there exists some m such that «*. ̂  is not the identity 1 m
automorphism. As |<nf> | = |M| « q# has finite order. So



by Robin s o n , l e m m a 2,36 page 55# either p is odd and at 

does not fix every element of order p in A or p = 2 and cc

does not fix every element of order 4 » (*)
We write A = U  A^ where Aq = 1, = A^ and consider

i

If M m G, then M m MAg by 1,1,2 and ¿M,TJ>r\V =<H,UnV>
2

for all U,V 6 m 2 and H i V (note: Ag = <xe A ) x9 = 1 >

is characteristic in A and hence normal in G).
We choose V = A^M, U = âm').
Then ¿I'I,U)l'V = ¿m,am>A A^N,

We now investigate 4M,tfoV>. The possibilities for
2|U| are p q,pq,q or p.

2|U | = p q is ruled out immediately, as then U = MAg

so MAg would be cyclic with M 6  CG(Ag) contradicting (*)

|U|= p ^  0 fc Ag U = Â  which is impossible as M O  A 

= 1 •
|UI= pq =9 (as U is cyclic) that the subgroup of order 

p in U (i.e. A1 as the only subgroup of order p in MAg)

commutes with a subgroup of order q i.e, a conjugate of M 
which implies that CM,A.p = 1 ,

If p is odd, this contradicts (*), so the only possibility

U



is lut = q. So Uf\V = U or 1 i.e. <M,UnV? = <m> or 
<m,am> (= MA2), neither of which equal A^M i.e. V (=

<JJ,M> nv). So M ̂  G ^  M not modular in G in the case 
where p is odd.

If p is even, we consider the map ■< i M ---> Aut(Ag)

defined by «¿(in) = for all m e M. This is a homomorphism in
and is injective (as M C(,(Ag) ^y (*))• S° IM \ \ l(Aut(C^))I

i.e. M = 2 which contradicts our hypothesis that p ^ q.
Thus p cannot be even and our result is proved. II

Theorem 5.1.5.
Let M m G t "X o min. Then M t f» « 3”

(Here G t min means that G has the minimal condition on 
subgroups).
Proof

Without loss of generality, let = 1 •

Then by 2.2.3',, H * R(-n r\ 3- ).
Let -d = id h , I n some natural number, H. < M,M t t\ n 3-"̂

c  *s l 1  1 1  H

is non-empty. Let K be a minimal subgroup in d .So
K = OH,. Suppose K 1 i.e. there exists an element x • * * i
such thatl ^ x i K. As M ‘ Rin n

H | H' <3 M, M 6 tl A
H

such that x l 'N and H t Tl
~ X N

3- ), so
there exists Nx <a 

Let K = K r> Nx.

M

- 3 5 " -



•' 5*vNii<iS& .

*

K e ■i t and. K £ K (as x t K'vK) which contradicts the 
minimality of K, So K = 1 and M *= Rq ( Tu3r) = -nA3-as.

required, II

We now come to the main theorem of this section:
Theorem 5.1.4

Let G t i3 a min and let A be the minimal normal subgroup 
of finite index in G, Let M be a corefree modular subgroup 
of G. Then A & Cg (m ).

Proof
Firstly we assume that M is a p-group for some prime p.

(Note that by 3.1.3* we know that M is finite).
Let be the direct product of all the quasicyclic q-

n
groups for some prime q i.e. ■- ( x t A | x^ =1 for

some n). Then a characteristic subgroup of A 4

a normal subgroup of G. 
case a p = q

It is easy to see that MH^ *■ *.©* i.e, KH^ is locally nilpotent.

Hp is countable so we let ^g^gg* . . .  gn, . . .^ be

the generators of Hp. <M,g1, . . .' . ,gn> is nilpotent, so

<M,g1# . . . . j gn - 1  > is subnormal in (M.g^ , , , gn>

for all n>1 i.e. M is ascendent in MH^. So, by 1.2. 4- , M

is quasinormal in ^ is subnormal in

MHp (Csrj). So there exists a series of subgroups M = Mq <-

<- . . . . < - M = M H  such that M, <3 M. j for all i,n p i i+1

- 5 6 -



Then Mi is nilpotent for all i.

V/e prove this claim by induction. When i = 0, M^ = M which 

is nilpotent by 3«1«3* When i> 0, = MHph

< = (HpnMi)Mi _ 1 (as M ^  «w  ± M ■ )

Mi 1 o  Mĵ  and M i _ 1 fcTI by induction. Also Hph M^ a  Mi 

and Hpn ih is nilpotent as Hp is, so by Fitting's theorem,ISff) p uM, 

Ih is nilpotent. This is true for all i , so in pariiasdar 

is true when i = n i.e. MHp is nilpotent. So by Robinson,

(iVl) lemma 2.32 page 51» we have = 1 i.e. Hp

cg (m ) as required. 

case b p ji q
Let H i  II • be such that H S  C «. By 4.1.1. and 3«1«1

q q

we have that MH = HM i.e. MH is a subgroup of MH^.

MH * i-4 n min so has a minimal (normal subgroup of finite 
index), B,say. As IBHsHl = IBiBC'Hl, and IBH:HI \lIdHiHI and 
IMHsHI = \MI, so IBsBn H| is finite and hence so is 
iMHsBhHl and hence |MH: (Br\H)ffl\. This contradicts the

minimality of B unless B = (BdH)^ = Bn H i.e. B £ H.

Suppose B -<• H. Then H is a finite complete group which 
* B

is impossible, so H = B.
Hence H <3 MH . If |M(= p, M m MH =* M MH (by 3.1.2.)
[M,H3 i H HH = 1. So H £■ Cg (M) as required.

If \M l = pn, we prove H fc Cg (M) by using induction on n.

- 1 7 -
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n = 1 is proved above. Suppose n > 1. Then there exists a 
subgroup M <J M such that | M | = pn  ̂. M n HM m HM by 1.1*2. 
but Mh HM = (H n M)M = M. It is easy to see that H is the 
minimal normal subgroup of finite index in HM (proof as
above). So by the induction hypothesis, H £ Cg (M). This
implies, in particular, that M <3 HM. Now M m MH, we have that

M M
= p, and it can be seen easily that HM is the minimal normal

M
subgroup of finite index in HM . So our previous argument gives

us that HM t C /m \ . Thus, \_HM,M3£M and so^H.M}* Hf\ M = 1 
So H £ Cq M̂; as requirea.

So we have that A £z C_(M) whenever M is of prime powerVT '

order.

We now drop the assumption that M is of prime power 
order.

Let x t M. By splitting x up into its p-potent and p—prime
parts, we may assume that x is of prime power order.

M n A <2 M and Mh A * =# MnA <3 AM. M m MA so
MnA Mh A

M f\ OrtA mix')A i.e. M rivx̂ A =(Ao M&> m OOX and by
Mnn Mh A M o a  M n A  MnA MnA
our previous discussion, we have A £ C... Cx> (An M)

Mh A AM
MnA A n M

i.e. La , xl £ M n A £ M i.e. a xa t M for all a e A. 
This is true for every element x of M, so A £ Ng(M).

Thus M <3 MA, A <s MA, A and M both nilpotent (by
Pitting (CZE}) that MA is nilpotent. Hence by Robinson}



(m),LM,A3 = 1 i.e. A £■ Cg (m ) as required. )(
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Section Two

Here we show that using 3.1.4« enables Schmidt's results in 
the finite case to be carried over easily to locally finite 
groups with the minimum condition on subgroups.

Theorem 3.2,1.
:,gM m G fe Lid min M is supersoluble.
*G

Proof
Without loss of generality, let the core of M in G be 1, 
Let A be the minimal normal subgroup of finite index in 

G. Then A & Cg (m ) (3.1.4.) A 4 Ng(M) =* \ G:Ng (m )1>

which is the number of conjugates of M in G, is finite.
Let 1^1, . . . . Mxn be the distinct conjugates of M in G. 

Let H =<M,x1f . . . .  xn>. By 3.1.3. and as G is locally

finite, H is finite, so, by Schmidt (dl), theorem four,

is supersoluble and = M0, Mg = Mq = 1 , so the theorem is 

proved. |j

Theorem 3.2,2.
Let G e linmin, M m G =* G_ „ is supersoluble.

C€ .)

Without loss of generality, we may take MG = 1. Then

A fe. C„(m ) =? ) G:N„(m )) i.e. the number of conjugates of M
It (jr

is finite as before (where A is the minimal normal subgroup

*



of finite index as usual). Let MX1, . . . M*n be the distinct 
conjugates of M. A £ for all i such that 1£ i£ n, so

A £ C„(MG) as MG = O ^ i  | 1 £ i£B> . Thus G is finite
G c“(mg)

and as by 2.2. II, G _ is locally supersoluble, vie have
cg(mg)

that G is nupersoluble as required.*
cgTh ’)

Theorem 3.2,3.
Gt i)n min, M m G, e Syl [ M \ Q m G

"g n V
Proof

By 1.1.6 ., without of generality, we may take M_ •

= 1 (so M e T1 o 3" by 3.1.5.). Suppose Q is not modular in G, 
then by 1.2.2», there exists a finite subgroup A of G such 
that Q is not modular in <Q,A?. Let P = <M,A,x1f , , x n>

where MX1 , • • • . Mxn are the distinct conjugates of M 
as usual. Then F is finite, M̂ , = 1 so Q is modular in F

by Schmidt (XI theorem 5. Hence Q m ¿Q,A> by 1.1.2. and 
this contradiction proves the result. II



Chapter Four

Here we investigate more generally the properties of 
groups following the pattern of Schmidt Cl3.

Theorem 4.1»1

= 1 . Then MU = UM.
Proof
Suppose that MU ^ UM. Then there exists an element u e U such 
that M <u> ̂  <u> M i.e. M <u> ^ <M,u) . Consider <M,u^ .
G * XC =̂> |^M,u>sMl is finite (as U is periodic and (<u>/iu>nM} 
is a finite lattice), so ¿H.u> is finite , M m

Schmidt £E3, theorem one, we have that M<u> = ^M,u> i.e.

Theorem 4.1.2.
Let M m  G tX. Let Q be a locally finite q-subgroup of G 

(q a prime). Then either MQ = CJM or M is maximal in <M,Q> 
and l<M,Q>: M) = p, p a prime, p> q.
Proof

Suppose, for a contradiction, that MQ QJi and that M is 
not maximal in <M,Q>.

Then there is an element r of Q such that Mirl ^ Oi,r}

Let G i X  } M m G, U i G be such that M and U are both 
periodic, and for all me M, u t U we have that ( |mj , lul )

M< M ,u >

¿M.u> by 1.1.6, and = 1 , so by

M Mu<M,u> <M,u>

M<u> = ̂ MjU^which contradicts our hypothesis. So MU = UM It

U X  -
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£ H.r~> is finite, M<.r> j* <M.r> , M m <M.rb and 
M<.M,r> M<.M,r> H<M,r> M<M,r> M<M,r?
<r?M

M<Mi£> a q-jrroup. Win^by Schmidt Cfil,theorem 2, M
M

■is
<M,r> <M,r>

maximal in <.M,r> i.e. M is maximal in <M,r>. As M is not 
M<M,r>

maximal in CK,Q> by hypothesis, this implies,in particular,
that <r> £ Q. Suppose now that Kî r,ŝ  = <r,s;> M for all
si Qn ¿»«^r/Then MQ = ,QJi. So there exists an element st Q' <Nno(r>
such that M<r,s> ji Cx,s?N. Q locally finite =^<r,s> is a
finite q-subgroup and G *■ X ̂ l(M,r,s} : K| is finite. So CK,r,s>

is finite. Write M for M/m s.

Then N_ m <M,r,s~> , <r,s>M is a
M M ---n---

q-group and K<r,s> ^ , r. s b ,
M N

so by SchmidtCjn theorem 2, we
have that K is maximal in Oi.r.s^ 

M M
i.e. M is maximal in <M,r,s). So
M maximal in <J'!,r>implies that
<M,r> =(i-I,r,s'>. But <r> <r,s>

M<M,r,s> 

<«, »>

■ C «, e>

4 M ,  f  >

X M

implies,as (<M,Q>i lO S. L  Q/Q. A M 3  , that Ot,rV<?I,r,s> .
This contradiction proves the required results viz that 

either MQ = QJ4 or M is maximal in <M,Q) .
If the latter case holds, and MQ, ■£ QJi (so M + <M,Q)), 

then M-( = p by 2 .1 .1 , and p > t where t =
I H |. q | | Oi,Q,*> | and q = p 2$ (̂ 1<M.G> 0  **

<M,Q>

- <4 Î ”
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i.e. QJi is a group ,which is a contradiction. So q = t. II

We now investigate the situation when M is a q-group for 
some prime q.

Theorem 4.1.3.
Let G be locally finite, and let M m G be a q-group for

some prime q.TfcM is not quasinormal in G, tktn
G = Mp x K where for all xe-lP, y < K, ( |xl , |y| ) 
\  %  ■ • MG

Q.and where M is a P-group, not necessarily finite,
MG

Conversely, if H is a subgroup of G for which G has the
' . *  •

above structure, M m G.
Proof

Let M be a q-subgroup of G such that M is modular in G but 
not quasinormal in G. Thus there is an element y of G such that 
M<y> ^

Let "S = |f £ G J P is finite and ¿y> F^
Then for all F * i , KM,F>: M)and hence <M,F>is finite,

M<M,F>
M is a modular q—subgroup of ¿M.F^ and as M<y> £ ¿M,y> ,

M<M,F> M M<M,F>
M is not quasinormal in ¿M,F> . So by Schmidt LIT3, theorem 3» 

we have <fM.F̂  = x K _ where is a P-group of
M M<M,F> J1<M,F> <M,F>

order pnq (p> q, n ? 1 ) and for all xi yt K_, (|xl ,|yi)
M *<M,P?

= 1. Note that as F̂  t ■<, ,F2 » -<> =4 <.F1 , F2 > * ■i, , the prime

- U U



p does not depend on F; note also that fM I-- q.
IM<TM,F>

We establish the following facts:
1. Let F be any given subgroup belonging to the set -5> . Then

MG = M̂ M,F?*
For, clearly ^  ^  Suppose now that there is an element

x of G such that x t. p;>but x t MG- Thus there exists an

element z of G such that x <̂ Mz. Let F1 = <F,z?. Then G * t-3"

=* F1 t i .

s° is m s  rl"<M,P1’>| | cM,F? I
= q and as M ^ p  \ k ,F> olearly» v,e

have M<r4fPi> - So x t M ^ F>- i M . This

contradiction to the choice of x proves that = MtI4,F>as 

required, for any choice of F in i ,

Now without loss of generality, we take MG = 1 (so IMI = q 

and ¿M,F> is finite for all F i t .
<H p>2. For any given F e -S , the direct complement K., of M in

¿F,M> is unique.
For, suppose x A = x Kp. Then \Al =

which is a ^p,qy number. So any element of A is a (p,q  ̂

element. Let a t A. Then a = mk for some m t k« K ,̂

As Lm.k̂ S = 1, we have 1 = a*al = m lalk ,a* and as M f\ Kp

= 1, m |a' = 1 = k'a ' . But m is a (p,q^ element and lal is 
a \jP»qy number so m = 1 and a t Kp. This is true for all a* A
so A = Kj,,



5. If P1 £ F2, then Ky^.

For, let k i Ky . Then k * <M,F1> £ 4M,F2> and <M,F2>

= x Ky . So k = mk' where m t M<M,F2> ,k' <. Ky ,

and m llcl = k' lkl =1 as above. But Ik] a £p,q^' number and 
m a (p,q*s element Implies that m = 1. Hence Ky £ Ky ,

4. Let K = VJ K_. Then K <3 G.F* S F
Firstly we show that K is a subgroup of G‘. Let x,y t K,

Then there exist F.t i ,F„ fc 4 such that x 6 K_ , y t K_, .
' d 1 2

F- = <F.,F0> e i ,so by J, x t L, and y i K. i.e.3 1 2  * 3  3

xy- 1  £ K & K.
P3

Now let x t K,g t G. There exists F t i such that x t Ky, 

Let F = <F,g>. Then F t 4 , and by 3. x e K p  K^ o  <M,F> 

x^ 6 ^  £ K as required. So K is a normal subgroup of G,

5. For all x.j e. MG, x2 e K, ( ]x̂ i , ]x2l ) = 1

For, there exist elements y^, . , . , , yn of G such that

x 4t <My1, . . . .  ,Myn>. Let F = < y 1 ........... yn,y)where y

is the defining element of'!>. So F t #x2 t- K there

exists an F. such that x„ e K,-, . Let F, = <F,FA. Then1 d r ̂ j i
(]M<̂ 1,P3>I , IKy I ) = 1 by the finite case, and as x2i Ky^

(by 3 ) and x1 t M<M,F3^, (Ix^ ,|x2 l) = 1

6 . G = M° x K.
By 4 & 5, MG x K £ G. Let g e G, F t 5 . Then F1 = <F,g>

H <o ~



e. i • g 6 <M,F1> = x  Kj, i.e. g e MG x K as required .
7. We now show that MG is a (possibly infinite) P-group.

MG = U Let M = <m> (so by 1, in* = 1). Let A =
Ft i

{x 6 MG | xp = 1>. Then A <i MG and A is an elementary abelian 
p-group. (For, let x,y e A. There exists F.] t -4 ,F2 t -4 such

that x t M<M,Pl \ y t  M<M,F2>. Let F? = OVj.F^. Then F? t i

and x,y fe  ̂3 which is a P-group. Hence xp = yP = 1
and (x,y] = 1). Also K G = MA. (For, clearly MA MG. Let g fe MG

p\ mmm mmmThen there exists F e -4 such that g t M * = MA where A =
<x fc M<H’F> l xP = 1} = An M^li,F’> . So g fc MA as required^

Also clearly for all a fe A, there exists a positive integer 
r such that m-1am = ar where r l(mod p) but rq = l(mod p).

QHence M has the required structure.

We now consider the converse of the thecr-m, assuming, as
G Gbefore, that M& = 1. We have G = M x K where M = AB,

A O  MG, Afe CLf(possibly infinite), B £ and for all b fe B

a e A there exists a positive integer r such that b  ̂ab = 
ar where r l(mod p), r* =  l(mod p).

Firstly we prove that |M| = q. For, suppose there is no 
element of order q in M. Then M £ A and as all elements of 
MG are of the form ba, we have that M O  MG, and as (_MG,K")
B 1, it follows that M O G. So M = 1 ( wK.-h ih oss.feU •*:> * 1 )
Now suppose M has an element of order q i.e. there exists 
g fe G such that Be 6  M. Then M = (AB)^l M = ABgn M
= (An M)B*. Ah M o  MG=5> A n M G ^  (as Mq = 1) A nM = 1 .
So M ='BS i.e. |M| = q as required.

U > '



Suppose now that M is not modular in G. By 1.2.2., 
and the fact that G is locally finite, we have that there 
exists a finite subgroup D of G such that M is not modular in 
/M,D> (= B,say). Then, by the preceding paragraph, B is finite and 
as G = MG x K, there exists a finite subgroup F (M £: F) 
such that D fc M^(K f\F) = x (KO'f) (as ClM^l.lKfiFl ) = 1 

and M <3 F, KOF<iF). Using the notation of the preceding 
paragraph, we have = (AB)̂ f\ = AB^O = (AH li )Bh
i.e. MF is a P-group.- So, by Schmidt Cnu, theorem 3» we have 
M m x Kf\F and hence as x KOF, M m D.

This contradiction proves the result.
(Note: in the above, D should not be confused with the 

core of D in G).

Corollary 4.1.4
Let H m G a S ,  and let M be a q-subgroup for 3ome prime q.

If M is ot nuasinormal in G, then

is a maximal q-subgroup Pf G.
Proof

The last assertion is the only one to require proof.
Without loss of generality, we may take = 1. Suppose

for a contradiction, that M is not a maximal q-subgroup of G 
i.e. there exists a q-subgroup Q such that Q ^  M i.e. 
there exists a q-element x,say, such that x «. Q''- M. By 
4.1.3* G = MG x K where |Ml = q. Thus there exists 
some finite subgroup F of G such that x t ' x Kp where

CMthe notation is as in the previous theorem. Mt Syl^(M * 'x )j

M j= q and Ml
WU
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✓ m p sbut M 6 M ’ x Kj, and <M,^is a q-subgroup.
This contradiction proves the result. I)

Corollary 4.1.5«
Let H o  G aisbe such that M is a q-subgroup of G for

r*some prime q and H is not quasinormal in G. Then H' is a 
^p,q^ group, and N^(m ) contains all {p,q\ elements.
Proof

Without loss of generality we take Mg to be 1. Then 
G = MG x K (by 4.1.3.). Let y be a \p,qj ’ element of G.
Then y = mk for some m e MG, k «• K. i.e. y*1̂ = m1-̂ = k
= 1. But m a ^p,q^ element implies that m = 1, so ye K,
(.MG,Kl = 1 implies that K 6  N&(m ) s o  the corollary is

proved, (in fact, N̂ ,(H) = MGKn N^(M) = (MGf\ N̂ ,(m ))K = MK

as MG is a P-group.) I)

Having dispensed with modular subgroups which are q- 
groups for some prime q, we now consider locally nilpotent 
modular subgroups.

Theorem 4.1.6
Let M m G t l%, M t try. Let Q be a maximal q-subgroup of 

M. Then either Q qn G or Q is a maximal q-subgroup of G. and

la I * 1 »IqJ
Proof

Suppose that Q is not quasinormal in G i.e. there exists 
an element y of G such that Q<y> £ 4.Q,y) i.e. there exists



an element z of G such that z 6 <q,y}v Q<y> • Let q1, • • 1n

be elements of Q such that z « ( q ' , . . . . ,  qft,y > .

Suppose also that Q is not a maximal q-subgroup of G i.e. 
there exists a t e G such that Q ^ <Q,t> and <.Q,t)is a q- 
subgroup, Let F = <q.j, • • • • * y) • Then G i lJ ^

F is finite. MPF m F and MO F *r> . As M = Q x A where 
A is a q'—group, QnF £ Syl^(MhP). By Schmidt in],lemma 4» 
either QO F is quasinormal in F or QhF t Syl^(F).

But z e <QOF.,y> x (qoF)<y>- so QoF is not quasinormal
in F and Qn F ¿.<QnF,t> which is a q-subgroup of F. So
this contradiction proves the result that either Q qn G
or 0, is a maximal q-subgroup of G.

Suppose the former case does not hold i.e. Q is not
quasinormal in G., and suppose that) £ i > q 'i.e. there\%\

, y .of Q such that
’ J q +1

y^y^- 1  £ for all ijj such that 16 i ^ jiq + 1 i*e«
l x.there exist elements x ^  o<- G such that ŷ y.. * Q *3'

• * yq+1 ’ Xij M  6 1  * 3 4  q+i;>
Then F is finite, MOF m F, QO F t Syl (Mp F), MO F i T\

and (Q OF)(y> ¡i CQ. o F,y> (where the notation is as above).
By SchmidtfLSl,lemma 4* t Q ft F i = q. Elements y.., . • » yg+i

Uq^FTpl

£ qrvF so there exist i,j where 1 t i ^ j t q+1 , such that 
yjjfj e (QnF)p. In particular, y±y^ (qnF) ij.

This contradicts our choice of the elements •

. ".'f '
I





Chapter Five

Here we turn our attention to the investigation of dual- 
Dedekind subgroups following the pattern of Menegazzo (CJIIl )•■

Definition
A subgroup H of G is said to be dual-Dedekind in G 

(written H dd G) if it obeys the following two properties:
D1. For all subgroups X and Y of G such that X £ Y, we have 
that <H,X> r>Y = <H nY,X>.
D2. For all subgroups X and Y of G such that Y 6  H, we have 
that <X,Y>nH = <XnH,Y>.

(Note: D1 is a property shared by both dual-Dedekind and 
modular subgroups.)

Section One

In this section, we consider some elementary properties 
of dual-Dedekind subgroups of which 5.1.2-.-5.1 .6. are 
stated but not proved in Menegazzo (LIIIl).

Theorem 5.1.1. (cf 1.1.1.)
The following statements are equivalent:

i. H dd G
ii. For all subgroups K of G the map <f> ̂  defined as follows

/ K: -------> C H / H M O

- rx -



Moreover, in this situation, 'and. vj>K are m u t u a l l y

<K, H>

i =» ii
Let L.| ,Lg t UK,H>/K)he such that ^ k (L1) = y K(L2),

So L1 ftH ^ L2OH i.e. (L^H.K) = <L2nH,K>

HuiiA<H,K>OL1 = <.H,K>ftL2 by D1

arj So. L1 = L2 . So <f>y is injective. K

Now let Re C«/HnK3. So K i <R,K> i <H,Kl 
Thus / k (<R,K>) = ¿R,K>«H =^R,K n H> by D2

Hence d  is surjective.J. WnK r K
Thus fiy. is a bijection and f K is its inverse as 4> K ^ K(L)

= ̂ K(LnH) =a.ftH,K?, V L t UK,H>/FJ,But<Ln H,K> = &,K>OL
(by D1) and^i,K>riL = L. So i■j'K is the identity map on[£K,H>/ Kl *

^  ̂  preserves intersections clearly, and also preserves unions 
as for all subgroups L,N e C.OC,HtyKJf P yi ̂  ^(<L,N>)) =

<L,N>= < t K( ^ K(L)), ^ k ( ^ k (M)) = y.K( < ^ K(L), K(N)>)

(as <}/ ^ clearly preserves unions). Hence ^ K(<L,N?) =



<"^k( L a s  K being the inverse of fdy must be injective. 
Thus ^ is a lattice isomorphism.

ii iii
Given that ^  ̂  is a lattice isomorphism, we wish to show

that so i3 f y. Let R *■ CCH,K?/K3. Firstly we shall prove that
<RnH,K> = R  (*) . <RhH,K>£R =* H,K>) £ ?L(R)"■ "■
but <R n H,K>fl H £ ¿Rn H}, so / k (<Ri\H,K>) = / k (r ) sad as
^y is injective, (*) is proved. Hence fy is surjective as
f>K(Rf>H) =<RO H,K> = R V Rt G O W / K J .

Also is injective. For suppose k (L̂  ) = t ^or
L1, L2 t LH|Hn K3 , ^ K surjective ̂  M2 t (\CH,K>/ ¡Osuch

• rtx o H » »-».
that / k (M,) = L,,/K(Mi) = La i.e. MnH o <-t̂  . So<M,a H,K>
= ̂'iar>H,K> ,hence by (*) M ( = H i and hence L,* = L .̂

ijj ̂  preserves unions and as by (*) we have d> yfy^ is ih* 
identity map, so is the inverse of and as before we
can prove easily that if> y preserves intersections, 
ili =» «

Firstly we shall prove that for all subgroups K of G, L £ 
CH/KnH3^<L,K>hH = L (**). L£<L,K?hH vfK(L) - f K(<L,K>n h ) 
i.e. ¿L.K'J £<<L,K>SH,K>.But «L,K>r>H,K> so ^ K(l,)
= ^(<1,10 n h ) , and as is injective, (*-*) is proved.

We wish to prove D1 i.e. X 6 Y =£ ¿H,X7GY «¿HnY, Z?
•Xf <H,X>SY £CH,X> Hence as <fj y is surjective, 3 a subgroup 
R t tH/Hr\X3 such that ^  x(r) = £R,X> ¿(H,X>ftY (***). By 
( **) with L = R and K = X, we have that R = ¿R,X)AH =
<H,X>nY«H = YnH. So by(***), we have that £Yn H,X"> =4H,X>flY

- S'*, -



which was to prove.
For D2, consider subgroups X,Y of G such that X ̂  H. V/e 

wish to prove that ¿X,Y?nH = <X,YnI!)« YftH s4.X,Yf\lO * H 
so by ** with K = Y, L = 4X,Y n H>, we have that 4X,Y nH> = 
4X,YnH,Y?nH = 4X,Y> 0 H as required.«

Note The fact that L<-H,K}/K 3 = i_H/Kn Hi does not necessarily 
imply that the map L •— » LnH for all subgroups L belonging 
to £411,10/K3 is a lattice isomorphism.

For example, let G = i.e. the permutation .group on

five elements. Let K = ̂ (1234)*(13)?* H - 4(2345)^*
As (13)(1234)(13) = (-‘432) = (1234)3, we have that K is 

isomorphic to the dihedral group of order eight.
Let L be the symmetric group on the four, elements ̂ 1,2,3»4)f 

Then K * L and I claim that L is the only^subgroup containing 
K.

For, let K * J. IG:K) = 13 and C having no subgroup of 
index 3 implies that tJ| = 24. So J must have an element of 
order 3»

Suppose J contains (abc) where a,b,c t £1,2,3»4^.
(We use here the properties that S^ may be generated by

a3-cycle and a 2-cycle whose product is a 4-cycle, and 
by (abed) and (ab) (see e.g. (tXl) p.253 andp.320)).
'Also recall J > K.

As (abc)(abc) = (bac), we need only consider four
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possibilities,vizs
i. (124) But(l24)(l3) = (1243) and hence (1 2 4 ) and (1 3 ) 
generate S^ so J = L.
ii. (234) But (234)03) = (1342),so J = L
iii. (12 3 ) But (12 3 )(13) = (12) and (1234) and(i2) generate
S..so J = L4
iv. (134) But (134)(12 3 4 ) = (1423) and (15)034) = (14) so 
J = L.

So J must have an'element (ab5). As (ab5) = (ba5), there 
are only six possibilities:
1.(125) So J contains (1234)(125) = (15)(234). As((15)(234)f 
= (3 2 4 ) and (324)03) = (1324) so J = L.
ii. (135) J contains (1234 ) 0  35) = (125)(34) and as((l25)(34)^ 
= (21h), this situation is covered by i.
iii. (145). J contains (2 4 )(145)(2 4 ) = (125), the situation

p
already covered by i (note: (2 4 ) =(1234)"03) is in K).
iv. (2 3 5 ) J contains 0 3)(235)(13) = 052) covered by i.
v. (245) J contains (1234)(245) = (14)(235). Squaring, we see 
that (325) belongs to J, a situation covered by iv.
vi. (345) Here J contains (14)(23)(345)(23)(14) = 052) covered 
by i. (Note that (14)(23) = (13)(1234) is in K)

So we have that the only subgroup of G containing K 
is L. As K < 4.K,H> and <K,H> J L, we have that <.K,H> = G 
As H is cyclic of order 4, it is lattice isomorphic with 
C.G/K1 and H ft K =1. But Lilli's 1, and hence this example 
does exhibit the required property, viz that(4.H,K>/K } ~r 

C.H/HO Kjdoes not necessarily imply that the map Lw LftH is



a lattice isomorphism,

Theorem 5.1.2. (cf 1.1.2.)
H dd G and K i  G ^  Hil K dd K 

Proof
By 3.1.1.« it is'sufficient to prove that for all subgroups

and this is the required map as ¿HOK,L>nH = <.H h KfH h L> tyr\i\ Hnt)
s H n K ( a s L S K )  and Hn L = Kn Hn L.'l

Theorem 3.1.3. (cf 1.1.3)
H dd K and K dd G ^  H: dd G.

Proof
By 5.1.1., it is sufficient to prove that for all subgroups 

L of G, LtHjL'?/LI — > LB/H n L'Jgiven by R i---> R n H  is a

L of K, the map [<.H n K,L>/Ll ---- 9 LH<\K|H«KnL3
R Rn H ftK

i3 a lattice isomorphism.
f w .i ■>

<HO K,L> i  ¿ H ,  L>

and the map£<Hf L>/Ll
H

------ » L H ) H n L l  v i a

R n H is a
lattice isomorphism as B

H u dd G. So the restriction
of this map to GCH n K.LWlJis an isomorphism i.e. 

U H h  K,L7|L1 --> CCH r\K,L> r\ H|H n L3
R R n h ( =  R n H n K  a s  R t  K)
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Proof s obvious.||

Examples of dual-Dedekind subgroiips

1. It is clear that both the identity element and the whole 
group G are dual-Dedekind in G.
2. If H i Z(g ), then'H di G.
For if X,Y are subgroups of G such that X 6 Y,<.H,X>AY =
HXAY = (HAY)X = £Ha Y,X> (hence D1). Also if X is a subgroup 
such that X 6 H and Y is any other subgroup, we have that 
a,Y? n H = XY A H = (Y n H>X = <Yn H,X> (hence D2).
5, If N is normal in G and N is locally cyclic, then S dd G.

Firstly we consider the case when N is normal in G and N 
is cyclic. N <3 G ^  D1 holds (for i£ X < Y, ¿N,X)nY =
NX AY = (NAY)X = <NAY,$. For D2, we note that X 4  N implies 
X a characteristic subgroup of N, and so X is normal in G.
So, for any other subgroup Y of G, we have that £X,Y?a n  =
XYA N = (Y N)X = ¿Y A ll,X> as required.

Now suppose that N is a locally cyclic normal subgroup of 
G and that N is not dual-Dedekind in G. So D2 must be the 
axiom that cannot hold as D1 is always true for a normal 
subgroup. Hence there exist subgroups X and Y such that X 
is contained in N and <X,Y>AN fi Z.X,YA N 7 i.e. there is 
an element z t ¿X,Y?n N ^<X,YAN2. Hence there are elements 
K ,  , , , x^of X,for1# , , y^of Y such that z * t X,, , x^y.,,^'

A N. Let F = ¿Xj, , , xp( y , , ,y4>. Then z c <X AF,Y A F >
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f\ (Kr> P) and as N is locally cyclic, WflP is cyclic and NriF 
is normal in F. So, by the previous argument, HnF dd F and as 
X(\ F £ NGF, z t ¿XnF,YnHflF? i.e. z i.4X,Y flil)which contradicts 
the choice of z. So D2 must hold, and X dd G.

(Notes a normal subgroup of a group need not be dual
dedekind in the group. For example, let G = Ŝ , the symmetric

group on the four elements »2, 3,4V» Then the alternating
groun A. is normal in S. but not dual-dedekind in S„. For,4 4 4
(123) <• a4. <(l23),(34)n a4>= 4(l23)>,but ((123)(34))? = 
(1243)(1243) = (14)(23) * <(123),(54)> n A4 C (123)¿(34)^ A^).

4. Any subgroup of the kernel ( = N^(x) | X fc G\ ) is dual—
dedekind in G.'
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Section Tv;o

Here we investigate some slightly more complex properties 
of dual-Dedekind subgroups.

Definition
H is locally dual-Dedekind in G if and only if for all 

natural numbers n and for all sets of elements . , , x^

of G , H dd Ol, x (, 9 t t x^^.

Theorem 5.2,1.
H dd G if and only if H is locally dual-Dedekind in G.
Proof

only if:follows from 5.1.2.
if s Suppose H is locally dual-Dedekind in G but not dual- 

Dedekind in G i.e. either A. there exist subgroups K,L of G 
such that K £ h and <H,K>nL <Hn L,K>.

or B. there exist subgroups K and L of 
G such that K £• H and CK,L>0 H ^

Suppose A.holds. Then ifl,K‘r>L ^ 4Hi\L,K> i.e. there is 
some element y t ¿H,K>n L ^  (HnL,K> i.e. there are elements 
h^, , , hn of H and k1t , , kf of K such that y t ^ ,  , hR, ^ , , kr >

ft L ^ 4.H sL,K}>. H locally dual-Dedekind implies that H dd 
£H,k|f , , kr) = K^say. So y t  ̂H,K n K^> n Lnl^ =

<Hr>LAK , KftK^ (as Kf»K1 i i.e. y t (HU L,K >
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which contradicts our choice of y. So case A. cannot hold.
Hence case B.holds. So there exists some element y such that 

yi<K,L7nH *'• <K,Lft H? i.e. there exist elements k( , , , k o 
of K, 11, , , lr of L such that y t <k1, , kn, 11, , lr"> n H

H'dd<H,k1t , , , kn, l1f , lr> =» ̂  ,say. Soy t ( K n l ^ l n y

H H implies that y e  ¿K nL^, L nil n > (as t H)

^  y t dK,LnH> contradicting our choice of y.
So H locally dual-Dedekind in G does imply H dual-Dedekind 

in G as required
Notes this does not appear to be anything like as useful a 
result as 1.2.2,

We now investigate the relationship between dual—Dedekind 
and quasinormal subgroups in locally nilpotent groups.

The results H dd G H qn G if G is a finite nilpotent 
group is due to Napolitani; the proof reproduced below is 
due to me.

Theorem 5.2,2.
Let G be nilpotent (not necessarily finite). Then H dd G 

implies that G is quasinormal in G.
Proof

We wish to prove that for all subgroups K of G, HK = £H,K7 
As K is a subgroup of a nilpotent group, K must be subnormal 
in G, in n steps,say. If n = 1, K is normal in G, so HK =
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We consider the following induction hypothesis: H permutes 
with all subgroups subnormal in G in n-1 steps,n ? 2.

Let K be subnormal in i in n steps. Then K =K^ <j K̂  <]

. . . .  ^  — G *
We wish to prove that <H,K) = HK. Let y t ¿H,K>. We wish 

to prove that y t HK. y t ¿H,K> =£ y

^ y fc HK^ (by the induction
hypothesis)

4  y = hk^ (for some h t H,k^ & K̂

4  h" V  = k-|

4  h“1y t <H,K>nK1

4  h"1y tCHn K1 tK> (as H dd G)
4  h"1y t (H-n Kt)K (as Hn K., £ Nq (k )) 
4  y é HK as required. ||

(H,K> obviously.

Theorem 5.2.3.
Let G be a locally nilpotent group. Then H ddG $ H qn G. 

Proof
Suppose H dd G and H is not qu^inormal in G. Then there is 

an element x of G such that H<x> ^.<H,x> i.e. there is some 
element y C <H,x>'^ H<x) i.e. there are elements ĥ  , , , h^

of H such that y t <ti(, , , hn,x> = F,say. Then F is nilpotent, 
H n F dd F and hence HnF qn F by 5.2.2. So y f (Hn F, x>= 
(Hnf)(x>. Hence y t HCx> as required. ||
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Section Throe

Here, following the pattern of Menegazzo, (LIHl), section 
three, we investigate the structure of subgroups which are n o n \ «.*<! 
minimal in the set of dual-dedekind subgroups of a locally 
finite group, and establish that a locally finite group which 
has such a minimal dual-dedekind subgroup cannot be simple.

Theorem 5.5.1.(cf Schmidt (til) lemma 1)
atvA

Let H be minimalAamong the dual-dedekind subgroups of a
locally finite group G^ Then either H is normal in G or the
order of H is p, for some prime p, 

ife 1H' * p
In the former case^ we have in addition that

1. if H has an element of order p, then all elements of G
having order p lie in H and
2. Cg (h ) = ¿g | g * G, ( |gj , |h|) b 1 for all hi H.

Proof
(Note: this proof follows very closely that of Menegazzo 

in the finite case).
Suppose |H( ± p, for any prime p. Then we wish to prove that 

H is normal in G.
i. Suppose 1 A & H. Then Ng (a ) ̂  Ng (H)

For, for all g k G,Hgdd G (5.1.5.) and hence HhHg dd G
(5.1.4.) Thus, by the minimality of H, either HAH® = 1 or
HAHg = H. So, for all g e G, H nHg ^ 1 =$ g t Ng (k ).

Now g a N_(a ) ( where A is a non-trivial subgroup of H) ^
G



1 i A = ArvAp £ H n H s i.e. gfcN-,(H) as required.

ii. Suppose there exists an element x of H such that the order 
of x is p, for some prime p. Then all elements of G having order 
p belong to H.

For, suppose 3 g t such that |g| = p and g does not belong 
to H. Then Cxi = ¿x,g>fUI (by D2 as <g>r)H = 1) dd ¿x,g>
(by 5.1.2.).

G locally finite (R = ) <x,g) is finite, so by Menegazzo
p(tlil3) lemma 2.1., we have |R| = p or |R\ = pq (q a prime,

R >  p)*
In the former case, L.x»s3 = 1} in particular,g £ NG(<.x>)

and hence g e N_(H) by i. Let y be any element of H. Then
iy') = <£y,g?n H (D2,as cg>hH = 1) and ¿y,g>nH o<y,g>, so
g normalises every element of H i.e. g belongs to the kernel
of H. Similarly, 0,g3 = 1 \xg\ = p and g ij H ^  xg^ H
so by the above argument,xg belongs tc the kernel of H. Hence
x belongs to the kernel of H and so <x> dd H. Hence<x> dd G
by 5*1.3. which contradicts the minimality of H.

So v/e must have pq and as i.x'l and <^> are both Sylow
p-subgroups of R, they must be conjugate in R. As xtH, this

xmeans there exists some element r of R such that g e H .
As Hr £ H, we have by 1., that HAH1 = 1. <g>= <g,H> n Hr 
(by D2 as Hr dd G) and <g,H)nHI dd <g,H5 (5.1.2.) so ¿g 
dd <g,H>, and as R £<g,H>, so x is conjugate to g in^g,H), 
ex') dd ¿g,H5 and hence by 5.1.2.,Cx>dd H, contradicting the
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minimality of H.
So if there is an element x of H having order p there 

cannot he an element g having order p such that g does not 
belong to H Hence ii ( and If is proved,
iii. Here we prove that H is normal in G.

Let g « G. We may assume that |g| = pn for some prime 
p, n ? 1.

There are two possible cases:
a. there is some element x in H of order p. Then,by ii,
n-1 n—1

gP £ II, and g t HG(fT ) ^  gt NqO') byi.
b. There is no element in H of order p. Let y e H have 
prime order. Then g“1ygt <y,g> n H (by ii) = <y>(by D2
as <g)n II = 1). So g t 1IG(<y>) and hence g e NG(ll) as required. 

We now turn our attention to eesertion 2.
Let giG be such that |g| = qm, and H has no element of 

order q. Let x t H, and let us assume for the moment that 
M  = P (P some prime, p ?£ q,obviously). Then<x>s<x,g"> n H 
(by D2) o  <x,g>. So |<x,g>l = pqm. Consider locg>). If 
p divides |ixg>|, then cx> i <xg>(as <x> is the unique 
Sylow p-subgroup of <x,g^ ), so ¿xg> = 4xg,x> = <x,g>

and [&tx] = 1«
Now suppose p does not divide |<xg?l . So <xg> is a 

q element and hence like g, normalises every subgroup of H.
So Cxg> £ Ker H , <g>t Ker H =4> £x> e Ker II =£ <x> dd H 
and hence <.x> dd G by 5.1.2., which contradicts the minimality 
of H. So p must divide |<xg>| and £j?,xl = 1.

We now take \x( = pn (n ? 1) and prove Lx.g} =1.
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by induction on n.
¿x> «3 ¿x,g> =£ xe = xk, say. CxP,g1 = 1 by the 

induction hypothesis, and(xp)^ = xkp = x5 i.e. as |x| = pn 
pn |p(k-l) so pn”  ̂I (k—1) i.e. there exists some integer s
such that k = 1 + spn ^.

Consider
/. n-1\p(1+sp )F
. .n-1 2 2 2n-21 + psp + p s p +

So Cx,gP3 = 1 and as |g| = qm,gp generates cg>, and
hence gfc C^(<x>).

So £g(gt G, ( I g|, I hi ) = 1 for all h * H*S C- Cg (h ) 
Conversely suppose y t Cg (h ) and (y\ = pn, where H 

has some element of order p. Then, as above, we can show 
that <y?r>H ^ 1, and hence Z(h ) ^ 1. But Z(h ) dd H and 
hence Z(h ) dd G which contradicts the minimality of H.

Hence, [gt G|(|gl , I hi) = 1 for all ht H) = Cg (h ) II

Gf course we now consider the situation when |H| '= p. 
Theorem 5,3.2.

Let H dd Gtt.3, and let |H| = p. Then either
i. H is an elementary abelian p-group or -a#
ii. G = S(N x K) where N is a maximal q-subgroup (q a 
prime) which is elementary abelian.andnormal in G, K =

p t .C_(H ) is a maximal $p,qS subgroup of G, and S is a maximalGr
p subgroup of G which is either locally cyclic or locally



Qgeneral« quaternion, and H 4 S. H = HIT is a Q,-group.
Proof

GSuppose H is not elementary abelian. Then there exists
Fseme finite subgroup of G,F,say, such that H is not elementary

abelian. Let i £ G ( F̂  finite and F.j S F ¡j . Then
• ffor all P̂  t f, ,H 1 is not elementary abelian. So,by

Henegazzo (Lilli) theorem 3»2., F. = S_ (ll„ x K̂ , ) for all
1 * 1 * 1  1

F.̂ * i> where Sp e Syl^(F^) is either cyclic or generalised

quaternion, H„• t Syl (F ) is elementary abelian, 5C, i3 
*1  ̂ 1 *1

is a |p,qS' subgroup such that K_ = C_ (H‘ 1)
*1 F1

1. Let N = O  . Then H «q G, .and is an elementary 
<■,»* F1

abelian q-group.
Firstly, we note that F1 i ^  Np - Np ( '• ‘ H* 2 =

HK„ and JL, is the unique Sylow q—subgroup of F„). Thus N 
i 2 ‘2

is a subgroup of G which is an elementary abelian q-subgroup 
(for, let x t N,y 4 N. Then there exist subgroups F^FgOf "S

such that x c Np ,y e Np . Let F? - C F ^ F ^ .  Then F? * * 

and hence xy“1 a N„ , by .the note above. Also, x and y are
3

both q elements and Cx,y) = 1) Also IT < G. For, let n a IT, 
g e G. Thus there exists a subgroup F^ ¡e i such that n t 
Np . Let F5 = <F^,g> . F4 s= F5 =? n t Np  ̂ nge Np^
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(as IT f <J Ff) ± N.
2. Let K = UK.. . Then K is a maximal tp,q( ' subgroup of

fit i pv
G and X = Cg (HG)

V/e note that F. fc F_ X _ t K_ . For, let k t L  
1 £ *-\ *2 1

Then k t F_ = S.til (N_ x K_ ) and hence there exists
2 J 2 2 2

elements s of S_ ,n i IT— ,k' t K„ such that k = snk1.
2 2 2

Then }c'k' = (sn),k!lc" for some k" e X- . |K| (p.q^
2

B n  a }o,qS element f i n d  (S- N- )  0 K -  =1 sn =  1
2 2 2

i.e, k = k’ so k t K, as required.f-x
Hence K is a ^p,qk1 subgroup of G and is clearly a 

maximal such subgroup (for, let y be any $p,q*! ’ element.
Then I, = ¿F,y> i 4 , end hence y e - K)

Q
Also let k t K, (so k t Kp ,say) and let h t H

i
(so there exists ?. i 1 such that he H^j). Let R = iF. ,F.> 0 A «J
Then k t K => k t Cr(HR) ^  lk,hj = 1. This is true

for all h t HG so X £ Cg (HG). Conversely, if ytC^H), there

exists F, « £ ' such that y e F., and hence y t C- (H l)1 x • rl

i.e. y t Kv i= K . So K = Cg(HG).

3. G is a n—group. For let NKy e G . Let T be a subgroup 
NX NK

e 3, such that y t T. Then T: K ~ T = T_______NK T n NK STI!TKTni!K
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(STn EK) HtKt
T 3^ which is a p-grc^p and is

either cyclic or generalised quaternion.
How let 3 be a maximal p-subgroup of G. Let F be c finite

subgroup of £>. Then there exists a’subgroup L of 4 such that
F £ L and LHK o; L “ S t  * as before} which is either

UK L n NK L
cyclic or generalised quaternio*'. So F ( 9- F!:K £ LHK ) is 

' * NK HK

either cyclic or generalised quaternion.
Suppose S is locally cyclic. Then G is locally cyclic

NK
 ̂ such that FJNC <- Fi + 1 NK for all i, and U ^ N K ) -  G. 

Without loss of generality, we may take the to belong

to i . F.NK i S, 4  we may take Sylow p-sub.groups $S K
nr pi i

of the\F.\such that S_ -£• S_ for all i. Let S = U S_
’ 1  Pi Pi+ 1 ‘ Pi

Then as U (F.HK) = V (S_ NK), we have that G = S(N x K)i. 1  <■ i i

Suppose now that there exists a subgroup M belonging 
to 4> such that S^ is generalised quaternion. We redefine

•i so that 4 = (FilFi finite, 9- Then Spis

generalised quaternion for all F e 'i and G is locally

i.e. G

NK
generalised quaternion. So, by for example (CXO) p.191»





Section Four

Finally, I consider a theorem in finite group theory. That 
there a wealth of theorems yet to he proved concerning 
dual-dedekind subgroups in finite groups (e.g. dualizing 
Schmidt's results)l have no doubt; hut their proof will have 
to wait until some future date.

Theorem 3.4»1.
Let H dd G he such that H is a maximal subgroup of G where 

G is finite. Then |G:H) = q and either 
i. H <1 G or

ii. H is modular in G and G = H _N where = q and 1

Suppose that H is not normal in G and without loss of 
generality, take the core of H in G to he 1.

in H. 3y Menegazzo,(Lilli), theorems 3.1. & 3«2.f either H. 
is normal in G (which cannot he as the core of H in G is 
trivial) or | = p, where p is some prime, and either H.

Proof

is an e l e m e n t a r y  abelian p-group, or H1 ( = 1 ) is

a Q.-group.
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S5|<
TJ

GIn the former case, we have that HaH^ is normal in H and 
also in Hf ' (as the latter is an abelian group), so, as by

Gthe maximality of H a.nd the fact that its core is trivial,HH^
G G= G, we have that Hn is normal in G and hence HoH^ ’ = 1.

QBut 1 ^ H.| £ H riĤ  , so this case cannot hold.
GIn the latter case, we have that ‘as N « 3 H, G, then

N «3 G so HN = G, by the maximality of H and the fact that H 
has a trivial core in G, HnB -a H (as N i3 an elementary 
abelian a-group (q some prime)) and HnN <a H, so HnH = 1.

Thus IG:H| = |HNsHl = tNsNrv Hi = IN|.
Let L be such that L 4. N, |L| = q. As H n L = 1, G = ¿H,L>

N = <H,L?n N =CHnH,L> (by D1) = L so |N) = q and |G:H|= q (*)
P tNow )et K = Cg (H, ). By (tlllj), theorem 3.2., K is a (p,qS

Isubgroup. K <a G ^  G = HK, so |G| = I Kl ITTI = |H| x (p,q) number
|Hn Kl

But.(*) gives IGI = |H| x q, so K = 1. Hence by (till 3), 
3.2., G = SN where S is a Sylow p-subgroup of G which is either 
cyclic or generalised quaternion. Choosing S so that H !=. S, 
we find by (*), that H = S
Let C = CG(lt). Then, as N S C^, we have that H £. C. Suppose 

IT C. Then C = HN n C =(Hnc)N and N<.C ^  H O C  is non-trivial.
But H o C  o  H and hence HAC o  G which is impossible as H. = 1.G
So C = N, and G = G is isomorphic to a subgroup of Aut(N). Thus 

C N
is abelian and hence so is H_ . As H rs N = 1, we have that H is

HhN
abelian and so is cyclic.

Now let N = <x), and consider H*. H £ H* and so G = ¿.H,HX>. 
Q^H,HX?/ Hx Z. CH|HA Hx3 gives us that H n is a maximal subgroup 
in H. But H and H* 1 both abelian implies that Hn Kx -a G and hence 
H A K X = 1. So, )h) = p as required.

Thus G is a Q-group, and hence has a modular lattice.
Hence H is modular in G II
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APPENDIX

The following major theorem is due to Dr. S.E.Stonehewer: 
Theorem

Let M m G € l ,M̂ , = 1. Then there exist subgroups K,P^, Pg.. 
of G such that
(i) G = K x P1 x P2 x . . .
(ii) P± is a generalised P^-group for all i
(iii) For all x.. t P.',x. t P.,k t K, we have (|x.| , lx .1 )
= (IX;! ,lkl} = 1 for all i,j, i ^ j.
(iv) M = 140 K x Q1 x Q2 .... where ^  is a maximal q̂ ,-
subgroup of P^ for all it and MhK qn G»
Proof

We may suppose that II is not quasinormal in G (for otherwise 
we may take G = K).

By 2.2.6., we have that Mich. So M is a direct product of 
its maximal p-subgroups (p a prime). Let Q.j,Qg. • be the msxinal 
q(-,q^ — . , subgroups of M which are not quasinormal in G and 
let R be the product of all those maximal p-subgroups which 
are quasinormal in G.

So M = R x Q.( x Q^x . .
a). For all i, there exists an Xi such that |Xi*M\ is finite
and Q.My is not quasinormal in X..1 A. *1

Suppose not. Suppose 3 i such that V X,IXsMI finite ==)
Q, X. Let g e G. Then we shall prove that Q^g> is a
subgroup which cannot be, as is not quasinormal in G.

Let A = \X\ IXsMI is finite and X ><M,g>).
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So, V X£ A,Q.Mv<g> is a subgroup of X.
X A

Let B = <\ VX*A.
n

Let b e. B. Then b = q. mYg where q. e Q,. , mY«sMYa.nd nY
X ^  A X ^  X A  A A

is such that 1 £ nx $. | pf) ̂ V X.
Let A^ = ^X t A ) nx = n*j for n = 1,2, . . . |g) . Then there

exists an n such that„^,X = G X t  A (I)

For, suppose not. 3 g. t G ** U  X for i = 1,2,....|g\
Xt A;

Let X =<.M,g,g.,, , , , g (fr|> • Then XeA and henceXt Afi for
some n . So g e U X, which contradicts our choice of g . Hen 

n -“‘An
our supposition was incorrect and 3 r. such that„^ X = G

n
So b* Q.Mv<g>. Let T be the q.-complement of M. So M = A*A x A xY1
x T, M^= (Q.nHx) x (TnMx).

So =X.tAiX n
r\
Xt A °l((°'in Mx) X (Tr'MX)) = xtAQi x (T n M x)

= ^ i XX£AT n M X n
r.SHut xnAT 0M " 1 by (I)‘ S°X*AiiV 1X " V

Now, by the definition of An, we have t h a t ^  (ii!'1x<G> =
n

(X?A *■&<*>• So bt x?A W e> #  bt (Y° A QiMX)ie> *n n Ae n
b fc This is true for all b t B. So B £■ g>. But

Qi<g> ± B obviously. So B = Q.±<s'> i.e. ^Ag'? is a subgroup
which was to prove.

Thus, our original supposition is incorrect _ ’y
3 X such that IX.:M \ is finite (and hence so i$ \X :M \ ) l i i
and Q.My is no't quasi normal in Xi#

1 Ai

V.
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Let S = -<X |X?Xit | X:M ) is finite
b). V XfrS,QJlx is not quasinormal in X.

..Hx

..M

For, » »çpcit ctWtrr/ii** Then 0,̂r'x is quasinormal in X quasinormal
X.. Let g e X,. Then Q.M- <g> = Q. <g>M (as M O  X )1 1 1  X^ 1 M

6 <s>Q.iMxwx . = <g>QiMx. i

i.e.  ̂ qn X^ which cannot be so.

We now investigate the structure of for all i and then
G *the structure of .

o). / Q±( = q.
For suppose )§.) >■ q. Then 3 X* S such that y q (as

V Mx
M_ = 1) i.e.iQ.M I -, q, M = Q. x T where T is the q.-complementG I 1 X I 1 1

M x 1
of M ^ M  = Q M  ,TH . hence Q ,M t Syl- M . As Xt S, Q.M is ' tt i x  x i x  q __ i x

* Mx Mx Mx Mx

not quasinorraal in X (by b).) so Q,.M Ì3 not quasinormal in X ,
~  MM x» x

Also M * i/H and M a & ^  M * T\ •
M Mx x

Hence by Schmidt UO lemma 4f applied to X j we have that
ut

QMx = q. This contradiction proves the result.
Mx

d). Q is a maximal q^-subgroup of G.
For, suppose not. Suppose 9 a finite q^-subgroup A such that
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^Ce"? ^ <^*6) • Let P = <A,g> . Mfl F m F and Syl (MO F).
If

M<h F tv\ and Q* not quasinormal in F implies (hy Schmidt t n-3

Qi A. Then as Q,̂  is not quasinormal in G, 3 g • G such that

lemma 4 ) that Q. <e Syl (f ). This contradiction proves the
result.

So all the maximal q^-subgroups of G are of order q^ and 
lie in Q G.

Q.We now investigate the structure of .
e). Q^' is a group.
Let F he a finite subgroup of G in which QHs not quasinormal 
(Q^< F). Then by lemma 5 Schmidt Q,̂" is a subgroup

T*
Fbut (Q,.i = q and Q. not quasinormal in F ^  Q. =1 i.e. Q,. 1 1  *

Q.is a group. Hence so is .

f) . M has no elements of order p^.
For, suppose x * M has order p., llj, = 3 ht G  such that x $ H*1.
Let X = ¿X.,h) . Then XfcS and x^Mx. So pi| |M:Mx|. To clarify
notation, let us, for the moment, take Mx = 1. By the corollary
to the Main Theorem of Schmidt, we have

X = P„ x x P_ x K and1 r
M = Q1 x xi^xKtiK, where Q±X = Pj_. As ( |Pi| ,| P

= ( |Pi |,|K|) = 1 V i,j, H i  £ j**, Pj-4 |K| and p ^ ^ ^ f o r
X xj £ i (as, if so, Qj a maximal q..- subgroup of G 4  Q. =

arid hence Q*.is normal ( and hence of course quasinormal ) in X).J
So p ^  |MJ. Hence M has no elements of order p^

g) . P± ^ Pj if Qi t Qj
For, let X be such that Mi X, neither ^  nor Q.. are quasinormal 
in X and |X:M | is finite. Then, by the Main Theorem of Schmidt
the result follows



Q
h)* (° P±,say) is a generalised P-group..
For. let XfeS. Then by the Main Theorem of Schmidt ic»^

M . x
is a P-gTOup of order pnq (p > q). But Q,̂xn Mx £ by f).and 
as |Q,i\ = q, Q±Xn Mx = Q± or - 1. C^n ^  =9

Q.éM =$ M = Q..M which is normal in X. So, as Q.M is not 1  x ' x i x • - i x
X X Xquasinormal in X, we have that ^  = 1 i,e, ^  = ^i

V *  Mx
0 X M— i x  is a P-group.

QHence, as S is a local system of G, Q.̂ is a generalised P- 
group.

Let be the (unique) maximal p^-subgroup of P^.
i). Ai is the unique maximal p^-subgroup of G.
For. let x^ be a p^-element of G such that x^ ̂  A^. Let X t S 
be such that x. e X. By the Main Theorem of Schmidt Ln:3,

M
X

contains the unique Sylow p^subgroup of X  ̂So x^6
^x

= %  (A. n X)MV £ Q . A ^ .  But Q.MxAi ? \ \  which is a
Ai ¥ x nAi

p..'-group by f). So x±* A^ as required.
So (Q1 x Q2 x )G = P1 x P2 x

Let IT = \pi,qi\i = 1,2 - • • *J
j). The tT elements of G form a subgroup of G.

___ /
Suppose not. Suppose y is a Tf element and x^, • - • j xnare
elements of G such that y t .......x^b.
By i). and d). we may suppose that y has prime power order and 

that ytPj^for some i.
Let X be such that X £ .....,xn>, |X:M| is finite and
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is not quasinormal in X.
Then,by the main theorem of Schmidt (bXC3), we have that if

x^, , , xn and hence y e K. This contradiction proves j).

So G = K x P1 . x . P2 x . . . 

and M = MilK x ̂  x ̂  x . . .

where M A K = R as required ty

Considering the main body of the thesis (which, of course, 
was completed before the above theorem was proved), we see 
that the first part -of theorem 4 .1 .3 . and theorem 4 .1 .6 . 
both follow directly from Dr.Stonehewer's theorem.

Corollary 1.(cf theorem 5 of Schmidt (LIT!.))
XLet M m G « u*-,MG = 1. Let Q be a mammal q-subgroup of M. 

Then Q m G.
Proof
By 1.1*2., it is sufficient to prove that Q is locally modular 

in G.
Using the notation of the main theorem, we have either that 

Q, 6 MnK and Q qn G, in which case there is nothing to prove, 
or Q = Q1 ,say, and )Q| = q1. Let P be any finite subgroup of G 
containing Q. Then it is enough to prove that Q m F.
Using the same notation as in the main theorem, we have that

(where the not ;ion is as in Schmidt (cffl)),
M.X M.It

- -3 S "



G = K y: x P2 x.... i.e. G = P.̂ x H (where H = P^ x
T K). Thus P = ( M P ^  x (FDH) and ((FA P^ ,\Fn h |) = 1

Now Fi\ P( is a P -group containing Q and thus, as any P-group 
has a modular lattice of subgroups, Q m FliP . So, by Schmidt 
(tm), lemma 5» Q ra F as required j)

From this follows immediately:
Corollary 2

"if H m G a l ,  ft, = 1, then M a minimum modular subgroup of7 V»'
G ^  M a q—group.II 
Corollary 3«

If Gill is simple, G can have no non-trivial modular
subgroups. II
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