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Abstract. Recent works in single-image perceptual super-resolution (SR)
have demonstrated unprecedented performance in generating realistic
textures by means of deep convolutional networks. However, these con-
volutional models are excessively large and expensive, hindering their
effective deployment to end devices. In this work, we propose a neural
architecture search (NAS) approach that integrates NAS and genera-
tive adversarial networks (GANs) with recent advances in perceptual SR
and pushes the efficiency of small perceptual SR models to facilitate on-
device execution. Specifically, we search over the architectures of both
the generator and the discriminator sequentially, highlighting the unique
challenges and key observations of searching for an SR-optimized discrim-
inator and comparing them with existing discriminator architectures in
the literature. Our tiny perceptual SR (TPSR) models outperform SR-
GAN and EnhanceNet on both full-reference perceptual metric (LPIPS)
and distortion metric (PSNR) while being up to 26.4× more memory
efficient and 33.6× more compute efficient respectively.

1 Introduction

Single-image super-resolution (SR) is a low-level vision problem that entails the
upsampling of a single low-resolution (LR) image to a high-resolution (HR) im-
age. Currently, the highest-performing solutions to this problem are dominated
by the use of convolutional neural networks, which have left limited space for
traditional approaches [6,26]. Nevertheless, with the super-resolution task being
inherently ill-posed, i.e. a given LR image can correspond to many HR images,
SR methods follow different approaches. In this respect, existing supervised so-
lutions can be mainly grouped into two tracks based on the optimization target:
distortion and perceptual quality.

To improve perceptual quality, Ledig et al. [27] first empirically showed that
the use of generative adversarial networks (GANs) [15] results in upsampled
images that lie closer to the natural-image manifold. This observation was later
backed theoretically [5] through a proof that using GANs is a principled approach
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to minimize the distance between the distribution of the upsampled image and
that of natural images. Until today, there have been several works focusing on
using GANs for perceptual SR, leading to prominent networks such as ESR-
GAN [48] and EnhanceNet [39].

Although these proposed perceptual SR solutions achieve promising results,
they remain extremely resource-intensive in terms of computational and mem-
ory demands. Existing efficient SR solutions [22,21,47,11,10,1,8,9,44,28], on the
other hand, are mostly optimized for distortion metrics, leading to blurry results.
Hence, in this work, we pose the following question: Can we build an efficient
and constrained SR model while providing high perceptual quality?

In order to build such SR models, we apply neural architecture search (NAS).
In particular, we run NAS on both the discriminator as well as the generator
architecture. To the best of our knowledge, our study is the first to search for a
discriminator in SR, shedding light on the role of the discriminator in GAN-based
perceptual SR. Our contributions can be summarized as follows:

– We adopt neural architecture search (NAS) to find efficient GAN-based SR
models, using PSNR and LPIPS [52] as the rewards for the generator and
discriminator searches respectively.

– We extensively investigate the role of the discriminator in training our GAN
and we show that both existing and new discriminators of various size and
compute can lead to perceptually similar results on standard benchmarks.

– We present a tiny perceptual SR (TPSR) model that yields high-performance
results in both full-reference perceptual and distortion metrics against much
larger full-blown perceptual-driven models.

2 Background & Related Work

In SR, there is a fundamental trade-off between distortion- and perceptual-based
methods [5]; higher reconstruction accuracy results in a less visually appealing
image and vice versa. Distortion-based solutions [46,29,53] aim to improve the
fidelity of the upsampled image, i.e. reduce the dissimilarity between the upsam-
pled image and the ground truth, but typically yield overly smooth images.

Perceptual-based methods [27,32,48,39], on the other hand, aim to improve
the visual quality by reducing the distance between the distribution of natural
images and that of the upsampled images, resulting in reconstructions that are
usually considered more appealing. These perceptual SR models are usually com-
monly evaluated using full-reference methods such as LPIPS [52] or no-reference
methods such as NIQE [34], BRISQUE [33], and DIIVINE [36], which are de-
signed to quantify the deviation from natural-looking images in various domains.

Hand-crafted Super-resolution Models. Since the first CNN was pro-
posed for SR [10] there has been a surge of novel methods, adapting successful
ideas from other high- and low-level vision tasks. For instance, state-of-the-art
distortion-driven models such as EDSR [29], RDN [54], and RCAN [53] use resid-
ual blocks [17], and attention mechanisms [2], respectively, to achieve competitive
fidelity results. Independently, state-of-the-art perceptual-driven SR models have



Tiny Perceptual Super-Resolution 3

been primarily dominated by GAN-based models such as SRGAN [27] (which
uses a combination of perceptual loss [24] and GANs), and ESRGAN [48] (which
improves on SRGAN by employing the relativistic discriminator [25]).

Towards efficiency, Dong et al. [11] and Shi et al. [42] proposed reconstructing
the upsampled image at the end of a network, rather than at its beginning,
to reduce the computational complexity during feature extraction. Since then,
numerous architectural changes have been introduced to obtain further efficiency
gains. For instance, group convolutions [17] were adopted by Ahn et al. [1],
channel splitting [30] by Hui et al. [22,21], and inverse sub-pixel convolutions by
Vu et al. [47], all of which significantly reduced the computational cost.

Similar to one of our goals, Chen et al. [7] explored how the discriminator
would affect performance in SR by introducing two types of attention blocks to
the discriminator to boost image fidelity in both lightweight and large models.
Unlike their approach, we optimize for a perceptual metric and explore a wide
range of discriminators using standard popular NN operations instead.

Neural Architecture Search for Super-resolution. Recent SR works
aim to build more efficient models using NAS, which has been vastly successful
in a wide range of tasks such as image classification [57,55,38], language mod-
eling [56], and automatic speech recognition [12]. We mainly focus on previous
works that adopt NAS for SR and refer the reader to Elsken et al. [13] for a
detailed survey on NAS. Chu et al. [9,8] leveraged both reinforcement learning
and evolutionary methods for exploitation and exploration respectively, consid-
ering PSNR, FLOPs and memory in a multi-objective optimization problem.
Song et al. [44] argued that searching for arbitrary combinations of basic oper-
ations could be more time-consuming for mobile devices, a guideline that was
highlighted by Ma et al. [30]. To alleviate that, they proposed searching us-
ing evolutionary methods for hand-crafted efficient residual blocks. Although we
agree with their approach to utilize platform-specific optimizations, we decided
to keep our approach platform-agnostic and only consider models that fit in the
practical computational regime based on the models used in the current SoTA
SR mobile framework [28]. Most importantly, our work differs from previous NAS
with SR approaches as we focus on optimizing the perceptual quality rather than
the fidelity of the upsampled images.

Neural Architecture Search for GANs. Recently, Gong et al. [14] pre-
sented a way of incorporating NAS with GANs for image generative tasks, ad-
dressing unique challenges faced by this amalgamation. Combining NAS with
GANs for SR, on the other hand, presents its own set of challenges. For ex-
ample, as perceptual SR only requires one visually appealing solution, mode
collapse might be favorable so their proposed dynamic-resetting strategy is not
desirable in our context. Another major difference is that GAN-based methods
for SR usually start with a pre-trained distortion model, avoiding undesired lo-
cal optima and allowing GAN training to be more stable with high-fidelity input
images. Therefore, naively applying their approach is not suitable for the task.
With fewer restrictions, we are able to search for a discriminator as opposed to
manually tuning it to fit the generator.
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Fig. 1. Structure and search space of the generator (left) and discriminator (right).
Orange nodes represent operations which are selected by the controller from the set of
available candidates. In the case of the generator, the controller additionally selects only
one of the incoming edges as input for each node and, after connections are selected,
all leaf nodes are added together to create the cell’s output. Linear(n) represents a
linear layer with n output units. Operations in yellow blocks are fixed.

3 Searching for Tiny Perceptual SR

In the proposed scheme, we extend the original REINFORCE-based NAS frame-
work [56] in order to search for a GAN-based super-resolution model. As a first
step, we split the process into two stages. First, we search only for the best
generator, using a selected distortion metric to assess different architectures.
Next, we utilize the best found model and search for a matching discrimina-
tor which would maximize the generator’s performance on a selected perceptual
metric. Although the same backbone algorithm is used in both cases to conduct
the search, the differences between distortion- and GAN-based training require
us to approach the two stages with a dedicated methodology, addressing the
respective challenges in critical design decisions, including defining the search
space and generating reward signals.

We begin with a short introduction to REINFORCE and NAS in Section 3.1
and continue to discuss the details related to the specific use-case of percep-
tual SR. The skeleton models for both the generator and the discriminator are
shown in Figure 1 and the search methodology for both of them is presented in
Sections 3.2 and 3.3 respectively, with a summary shown in Algorithm 1.

3.1 Searching Algorithm

We can formulate our NAS problem in a generic way as:

S = O1 ×O2 × · · · ×On

E : S→ R
s? = argmax

s∈S
E(s)

(1)

where S is a search space constructed from n independent decisions, Oi is a set
of available options for the i-th decision, and E is a selected evaluation function
which we aim to optimize.

Usually, E is implemented as a sequence of steps: construct a model according
to the selected options s, train and evaluate it, and return its performance. In
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Algorithm 1: A summary of the proposed two-stage approach to searching
for a perceptually-good compact SR model

Input: search space for the generator SG and discriminator SD, maximum number of steps
when searching for generator TG and discriminator TD, Mult-Adds limit for the
generator f

Output: trained perceptual model G•
best

1 Function search(S, T, E):
2 s∗ ← None
3 θ ∼ N
4 for t ← 0 to T do
5 st ∼ πθ,S
6 mt ← E(st)
7 if mt = None then
8 go back to line 5
9 end

10 update s∗ using mt
11 θ ← update θ using ∇θ log πθ,S(st)R(mt)

12 end
13 return s∗

14 End Function

15 Function EG(s):
16 G ← construct model according to s and initialize its weights with the cached ones
17 fs ← calc Mult-Adds required to run G
18 if fs > f then
19 return None
20 end
21 m ← train and evaluate G on the proxy distortion task
22 update cached weights according to Eq. 5
23 return m

24 End Function

25 s∗G ← search(SG, TG, EG)

26 Gbest ← construct model using s∗G, initialize from cache, and train on the full dist. task
27 Function ED(s):
28 D ← construct discriminator according to s
29 return performance of G on the proxy perc. task after fine-tuning using D
30 End Function

31 s∗D ← search(SD, TD, ED)

32 Dbest ← construct discriminator according to s∗D
33 G•

best ← fine-tune Gbest with Dbest on the full perceptual task

our case specifically, E represents a trained model’s performance on a validation
set – see the following sections for the details about training and evaluation
of different models. Because training takes an excessive amount of time and
it is hard to predict the performance of a model without it, brute-forcing the
optimization problem in Eq. (1) quickly becomes infeasible as the number of
elements in S increases. Therefore, a standard approach is to limit the search
process to at most T models (steps), where T is usually decided based on the
available time and computational resources. Given a sequence of T architectures
explored during the search τ(T ) = (s1, s2, · · · , sT ), we can approximate the
optimization problem in Eq. (1) with its equivalent over the values in τ(T ):

s? ≈ s∗ = argmax
s∈τ(T )

E(s) (2)
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We then use REINFORCE [50] to guide the search and ensure that, as T in-
creases, sT optimizes E thus providing us with a better approximation. More
specifically, we include a probabilistic, trainable policy πθ (a controller) which,
at each search step t = 1, 2, · · · , T , is first sampled in order to obtain a candi-
date structure st and then updated using E(st). We use the following standard
formulation to optimize this policy:

J(θ) = Es∼πθR(E(s))

θt+1 = θt + β∇θtJ(θt)
∇θtJ(θt) ≈ ∇θt log πθt(st)R(E(st))

argmax
θ

J(θ) ≈ θT

(3)

where R : R → R is a reward function used to make values of E more suitable
for the learning process (e.g. via normalization), and β is a learning rate. Please
refer to the supplementary material for further details.

3.2 Generator Search

When searching for the generator architecture, we adopt the micro-cell approach.
Under this formulation, we focus the search on finding the best architecture of
a single cell which is later placed within a fixed template to form a full model.
In conventional works, the full model is constructed by stacking the found cell
multiple times, forming in this way a deep architecture. In our case, since we aim
to find highly compact models, we defined the full-model architecture to contain
a single, relatively powerful cell. Furthermore, the single cell is instantiated by
selecting 10 operations from the set of available candidates, Op, to assign to 10
nodes within the cell. The connectivity of each node is determined by configuring
the input to its operation, selecting either the cell’s input or the output of any
previous node. Thus, our generator search space (Figure 1 (left)) is defined as:

SG = Scell = Op× Z1 × · · · ×Op× Z10︸ ︷︷ ︸
20 elements

(4)

where Zm = {1, 2, · · · ,m} is a set of indices representing possible inputs to a
node. We consider the following operations when searching for the generator:

Op = { Conv(k, n) with k = 1, 3, 5, 7; Conv(k, n, 4),
DSep(k, n), and InvBlock(k, n, 2) with k = 3, 5, 7;

SEBlock(), CABlock(), Identity }

where Conv(k, n, g=1, s=1) is a convolution with kernel k×k, n output channels,
g groups and stride s; DSep(k, n) is depthwise-separable convolution [18]; SEBlock
is Squeeze-and-Excitation block [19]; CABlock is channel attention block [53]; and
InvBlock(k, n, e) is inverted bottleneck block [41] with kernel size k×k, n output
channels and expansion of e. In the case where a cell constructed from a point in
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the search space has more than one node which is not used as input to any other
node (i.e. a leaf node), we add their outputs together and use the sum as the
cell’s output. Otherwise, the output of the last node is set as the cell’s output.

We use weight sharing similar to [37]. That is, for each search step t, after
evaluating an architecture st ∈ SG we save trained weights and use them to
initialize the weights when training a model at step t + 1. Because different
operations will most likely require weights of different shape, for each node i
we keep track of the best weights so far for each operation from the set Op
independently. Let s(i) be the operation assigned to the i-th node according
to the cell structure s. Further, let Po,i,t be the set of architectures explored
until step t (inclusive) in which o was assigned to the i-th node, that is: Po,i,t =
{s | s ∈ τ(t) ∧ s(i) = o}. Finally, let θi,o,t represent weights in the cache, at the
beginning of step t, for an operation o when assigned to the i-th node, and θ̂i,o,t
represent the same weights after evaluation of st (which includes training). Note
that θ̂o,i,t = θo,i,t if st(i) 6= o as the weights are not subject to training. We can
then formally define our weight sharing strategy as:

θo,i,0 ∼ N

θo,i,t+1 =

θ̂o,i,t
if st(i) = o and
E(st) > maxsp∈Po,i,t−1 E(sp)

θo,i,t otherwise

(5)

As SR models require at least one order of magnitude more compute than classi-
fication tasks, we employ a variety of techniques to speed up the training process
when evaluating different architectures and effectively explore a larger number of
candidate architectures. First, similar to previous works [57], we use lower fidelity
estimates, such as fewer epochs with higher batch sizes, instead of performing full
training until convergence which can be prohibitively time consuming. Moreover,
we use smaller training patch sizes as previous studies [48] have shown that the
performance of the model scales according to its training patch size, preserving
in this manner the relative ranking of different architectures. Lastly, we leverage
the small compute and memory usage of the models in our search space and dy-
namically assign multiple models to be trained on each GPU. We also constrain
the number of Mult-Adds and discard all proposed architectures which exceed
the limit before the training stage, guaranteeing the generation of small models
while, indirectly, speeding up their evaluation.

After the search has finished, we take the best found design point s∗ and
train it on the full task to obtain the final distortion-based generator G, before
proceeding to the next stage. When performing the final training, we initialize
the weights with values from the cache θo,i,T , as we empirically observed that it
helps the generator converge to better minima. Both the proxy and full task aim
to optimize the fidelity of the upsampled image and are, thus, validated using
PSNR and trained on the training set T̂ using the L1 loss, defined as:
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L1 =
1

|T̂ |

∑
(ILR,IHR)∈T̂

|G(ILR)− IHR| (6)

with ILR the low-resolution image and IHR the high-resolution ground-truth.

3.3 Discriminator Search

After we find the distortion-based generator model G, we proceed to search
for a matching discriminator D that will be used to optimize the generator
towards perceptually-good solutions. The internal structure of our discriminator
consists of 5 reduction blocks. Each reduction block comprises a sequence of two
operations followed by a batch normalization [23] – the first operation is selected
from the set of candidate operations Op which is the same as for the generator
search; the second one is a reduction operation and its goal is to reduce the spatial
dimensions along the x- and y-axes by a factor of 2 while increasing the number
of channels by the same factor. To only choose reduction operations from the
set of operations derived from Op, we only consider standard convolutions with
the same hyperparameters as in Op, but with stride changed to 2 and increased
number of output channels:

ROp = { Conv(k, 2n, 1, 2) with k = 1, 3, 5, 7 and
Conv(k, 2n, 4, 2) with k = 3, 5, 7 }

As a result, the search space for the discriminator can be defined as:

SD = Op×ROp× · · · ×Op×ROp︸ ︷︷ ︸
10 elements

(7)

After the 5 reduction blocks, the extracted features are flattened to a 1-D vector
and passed to a final linear layer (preceded by an optional bottleneck with m
outputs), producing a single output which is then used to discriminate between
the generated upsampled image, G(ILR) and the ground truth, IHR. Figure 1
(right) shows the overall structure of the discriminator architecture.

To optimize for perceptual quality (Eq. (8)), we use the perceptual loss [24],
Lvgg, and adversarial loss [15], Ladv, on both the proxy and full task. The
discriminator is trained on the standard loss, LD. As observed by previous
works [48,39,7], optimizing solely for perceptual quality may lead to undesir-
able artifacts. Hence, similar to Wang et al. [48], we incorporate L1 into the
generator loss, LG. Additionally, we validate the training using a full-reference
perceptual metric, Learned Perceptual Image Patch Similarity [52] (LPIPS), as
we find no-reference metrics such as NIQE to be more unstable since they do
not take into account the ground truth. Our generator loss and discriminator
loss are as follows:
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Lvgg =
1

|T̂ |

∑
(ILR,IHR)∈T̂

(φ(G(ILR))− φ(IHR))2

Ladv = − log(D(G(ILR))

LG = αL1 + λLvgg + γLadv

LD = − log(D(IHR))− log(1−D(G(ILR)))

(8)

Unlike the generator search we do not use weight sharing when searching for the
discriminator. The reason behind this is that we do not want the discriminator
to be too good at the beginning of training to avoid a potential situation where
the generator is unable to learn anything because of the disproportion between
its own and a discriminator’s performance. Similar to the generator search stage,
we used a lower patch size, fewer epochs, and a bigger batch size to speed up the
training. Additionally, from empirical observations in previous works [24,27], the
perceptual quality of the upsampled image scales accordingly with the depth of
the network layer used. Therefore, we use an earlier layer of the pre-trained VGG
network (φ) as a fidelity estimate to save additional computations. In contrast to
the generator search, we do not impose a Mult-Adds limit to the discriminator
as its computational cost is a secondary objective for us, since it does not affect
the inference latency upon deployment.

After the search finishes, we collect a set of promising discriminator archi-
tectures and use them to train the generator on the full task. At the beginning
of training, we initialize the generator with the pre-trained model found in the
first stage (Section 3.2) to reduce artifacts and produce better visual results.

4 Evaluation

In this section, we present the effectiveness of the proposed methodology. For all
experiments, the target models were trained and validated on the DIV2K [45]
dataset and tested on the commonly-used SR benchmarks, namely Set5 [3],
Set14 [51], B100 [31], and Urban100 [20]. For distortion (PSNR/Structural Sim-
ilarity index (SSIM) [49]) and perceptual metrics (Natural Image Quality Eval-
uator [34] (NIQE)/Perceptual Index [4] (PI)), we shaved the upsampled image
by its scaling factor before evaluation. For LPIPS, we passed the whole upsam-
pled image and evaluated it on version 0.1 with linear calibration on top of
intermediate features in the VGG [43] network4. For the exhaustive list of all
hyperparameters and system details, please refer to the supplementary material.

4.1 TPSR Generator

Following Algorithm 1, we began by running the first search stage for the gener-
ator architecture to obtain a distortion-driven tiny SR model. During the search,
4 Provided by https://github.com/richzhang/PerceptualSimilarity
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Fig. 2. Discovered cell architecture for the TPSR generator. Each operation is followed
by a PReLU [16] activation.

we trained candidate models to perform ×2 upscaling (i.e. with one upsampling
block) and we set the number of feature maps (n) to 16. Each model was eval-
uated using PSNR as the target metric and the final reward for the controller
was calculated by normalizing the average PSNR of a model.

To obtain the final generator model, we run the generator search for 2,500
steps and stored the highest-performing cell architecture as evaluated on the
proxy task. Figure 2 illustrates the obtained cell structure. We refer to this
model as TPSR (Tiny Perceptual Super Resolution). For the rest of this section,
we use the notation TPSR-X to refer to TPSR when trained with discriminator
X and TPSR-NOGAN when TPSR is distortion-driven.

After the end of the first search stage, we trained the discovered TPSR model
on the full task for ×2 upscaling and ×4 upscaling, starting from the pre-trained
×2 model, to obtain TPSR-NOGAN. Our NAS-based methodology was able
to yield the most efficient architecture of only 3.6G Mult-Adds on ×4 upscaling
with performance that is comparable with the existing state-of-the-art distortion-
driven models that lie within the same computational regime. Given that our
goal was to build a perceptual-based model, we did not optimize our base model
further, considering it to be a good basis for the subsequent search for a discrim-
inator. The distortion-based results can be found in the supplementary material.

4.2 Discriminator Analysis

To obtain a discriminator architecture, we utilized the TPSR-NOGAN variant
trained on the ×4 upscaling task and searched for a suitable discriminator to
minimize the perceptual LPIPS metric. To minimize the instability of the per-
ceptual metric, we evaluated each model by considering the last three epochs and
returning the best as the reward for the controller. We also incorporated spectral
normalization [35] for the discriminator on both the proxy and the full task. We
have found that discriminators of varying size and compute can lead to percep-
tually similar results (LPIPS). Upon further examinations, we have also found
that these upsampled images look perceptually sharper than TPSR-NOGAN’s.
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Fig. 3. Performance of TPSR after adversarial training using different discrimina-
tors found via NAS (D1, D2, D3) vs. existing discriminators designed for (SRGAN,
ESRGAN, JAGAN). TPSR trained on searched discriminators, which are optimized
for LPIPS, outperform fixed discriminators in the literature for the targeted metric
(LPIPS). Each GAN training was performed 5 times

In order to evaluate the fidelity of the proxy task, we took the three best per-
forming discriminator candidates based on their performance on the proxy task.
We then evaluated our TPSR model when trained with these discriminators on
the full task. To compare to models from the literature, we also considered the
discriminators that were used in SRGAN [27], ESRGAN [48], and the recently
proposed Joint-Attention GAN [7] (JAGAN). Note that the discriminator’s ar-
chitecture in SRGAN and ESRGAN is the same but the latter is trained using the
relativistic GAN (RGAN) loss [25]. For more details on how RGAN is adopted
for SR, please refer to Wang et al. [48].

Each GAN training was performed 5 times and the best performing model,
based on the achieved LPIPS on the validation set, was evaluated on the test
benchmarks. Specifically, we took the weighted average (based on the number of
images) over the test benchmarks of three metrics: PSNR, NIQE, and LPIPS,
and present our findings in Figure 3. Our chosen discriminators (TPSR-D1,
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Table 1. We compare our ×4 upscaling TPSR models, which are optimized for LPIPS,
with perceptual-driven models in the literature. Higher is better for PSNR and lower
is better for LPIPS and PI. red/blue represents best/second best respectively. On the
optimization target metric, LPIPS, our model (TPSR-D2) achieves the second best
result while it is the smallest among all. Our model outperforms EnhanceNet and
SRGAN in visual quality metrics (PSNR & LPIPS) while being 26.4× more memory
efficient and 33.6× more compute efficient than SRGAN and EnhanceNet, respectively

Model Params
(K)

Mult-Adds
(G)

Set5
PSNR/LPIPS/PI

Set14
PSNR/LPIPS/PI

B100
PSNR/LPIPS/PI

Urban100
PSNR/LPIPS/PI

ESRGAN 16,697 1034.1 30.40/ 0.0745 /3.755 26.17/ 0.1074 /2.926 25.34/ 0.1083 /2.478 24.36/ 0.1082 /3.770
SRGAN 1,513 113.2 29.40/0.0878/3.355 26.05/0.1168/2.881 25.19/0.1224/2.351 23.67/0.1653/3.323
EnhanceNet 852 121.0 28.51/0.1039/2.926 25.68/0.1305/3.017 24.95/0.1291/2.907 23.55/0.1513/3.471
FEQE 96 5.64 31.29/0.0912/5.935 27.98/0.1429/5.400 27.25/0.1455/5.636 25.26/0.1503/5.499
TPSR-D2 61 3.6 29.60/ 0.076 /4.454 26.88/ 0.110 /4.055 26.23/ 0.116 /3.680 24.12/ 0.141 /4.516

TPSR-D2, TPSR-D3) have led to better results as compared to the existing dis-
criminators (TPSR-DSRGAN , TPSR-DESRGAN , TPSR-DJAGAN ) in the partic-
ular perceptual metric (LPIPS) that they were optimized for. The discriminator
of TPSR-D2 can be found in Figure 5.

Finally, we compared the best performing GAN-based generator (TPSR-D2)
on common full-reference and no-reference perceptual metrics with various well-
known perceptual models (Table 1). Considering our optimized metric, our model
outperforms SRGAN and EnhanceNet while being up to 26.4× more memory
efficient when compared to EnhanceNet and 33.6× more compute efficient com-
pared to SRGAN. Additionally, our model also achieves higher performance in
distortion metrics, indicating higher image fidelity and, therefore, constitutes a
dominant solution for full-reference metrics (PSNR & LPIPS) especially with
our tiny computational budget. Visual comparisons can be found in Figure 4.

5 Limitations and Discussion

In this paper, we have presented a NAS-driven framework for generating GAN-
based SR models that combine high perceptual quality with limited resource re-
quirements. Despite introducing the unique challenges of our target problem and
showcasing the effectiveness of the proposed approach by finding high-performing
tiny perceptual SR models, we are still faced with a few open challenges.

The usefulness of NAS approaches which utilize a proxy task to obtain feed-
back on candidate architectures naturally depends on the faithfulness of the
proxy task with regards to the full task. As GANs are known to be unstable
and hard to train [40], providing the search with a representative proxy task is
even more challenging for them than for other workloads. We were able to par-
tially mitigate this instability by smoothing out accuracy of a trained network,
as mentioned in Section 4.2. Nevertheless, we still observed that the informative-
ness of results obtained on the proxy task for GAN-training is visibly worse than
e.g. results on the proxy task when searching for a generator in the first phase
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Fig. 4. Visual comparisons among SoTA perceptual-driven networks and TPSR mod-
els, with their no. of parameters (left) and mult-add operations (right). Despite the
quantitative results that show that TPSR-D2 is better than eg. SRGAN (Table. 1),
the qualitative results are arguably worse-off in some images, highlighting a limitation
and the need for a better perceptual metric. However, TPSR-D2 still produces better
reconstructions than FEQE - the current SoTA for constrained perceptual models.

of our method. This instability is reinforced even more when using no-reference
perceptual metrics such as NIQE [34] and PI [4] - in which case we observed that
training a single model multiple times on our proxy task can result in a set of
final accuracies with variance close to the variance of all accuracies of all models
explored during the search - rendering it close to useless in the context of search-
ing. In this respect, we adopted LPIPS which, being a full-reference metric, was
able to provide the search with a more robust evaluation of proposed architec-
tures. While the strategies we used to improve the stability of the search were
adequate for us to obtain decent-performing models, the challenge still remains
open and we strongly suspect that overcoming it would be a main step towards
improving the quality of NAS with GAN-based perceptual training.

Another important challenge comprises the selection of a metric that ade-
quately captures perceptual quality. Identifying a metric that closely aligns with
human-opinion scores across a wide range of images still constitutes an open
research problem with significant invested research effort [36,34,52,4]. In this
respect, although we show that optimizing for LPIPS on the average leads to
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Fig. 5. Discovered architecture of the TPSR discriminator (D2). Convolutions are
followed by batch normalization and PReLU. k = output tensor depth, s = stride

better quantitative results, the inherent limitations of the metric itself might not
result to qualitatively better results on certain images.

With our work targeting highly compact models optimized for perceptual
quality, it is currently challenging to find appropriate baselines that lie within the
same computational and memory footprint regime, as FEQE [47] is, to the best
of our knowledge, the only perceptual SR model that meets these specifications.
As a result, in this paper, we also present comparisons with significantly larger
models, including SRGAN and EnhanceNet, which our method outperforms in
our optimized metric. We also compare with ESRGAN which is more than an
order of magnitude more expensive than all examined models. Although our
design did not outperform ESRGAN, we could extend our method to explore
relaxed constraints to allow a slightly larger generator and employ a relativistic
discriminator [25]. As our focus is on pushing the limits of building a constrained
and perceptual SR model that can be deployed in a mobile SR framework [28],
we leave the trade-off between model size and perceptual quality as future work.

Lastly, our method resulted in discriminators that are slightly better than
existing discriminators in terms of perceptual performance. Nevertheless, even
though the performance gains on LPIPS are marginal, our resulted discrimina-
tors are orders of magnitude smaller in terms of model size and computational
cost and the obtained gains are consistently better across multiple runs.

6 Conclusion

In this paper, we investigated the role of the discriminator in GAN-based SR
and the limits to which we can push perceptual quality when targeting extremely
constrained deployment scenarios. In this context, we adopted the use of NAS
to extensively explore a wide range of discriminators, making the following key
observations on NAS for GAN-based SR: 1) Discriminators of drastically vary-
ing sizes and compute can lead to similar perceptually good images; possible
solutions for the ill-posed super-resolution problem. 2) Due to this phenomenon
and the high variance in the results of popular perceptual metrics, designing a
faithful proxy task for NAS is extremely challenging. Nevertheless, we are able
to find discriminators that are consistently better than existing discriminators
on our chosen metric, generating a tiny perceptual model that outperforms the
state-of-the-art SRGAN and EnhanceNet in both full-reference perceptual and
distortion metrics with substantially lower memory and compute requirements.
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Experiment Details

Neural Architecture Search: Similar to previous approaches, we use a sin-
gle LSTM layer with 100 hidden units as the trainable policy, πθ. It takes an
empty embedding as input and generates a sequence of l outputs, where l is the
number of decisions to make in order to decide about a generator’s structure.
Each element of the sequence at position i is then passed through the follow-
ing composition of functions, including a tanh constant of 2.5 and a sampling
logit temperature of 5.0, in order to reduce its dimensionality and produce a
probability distribution:

softmax ◦ 2.5 · tanh ◦ 0.2 · linear ◦ li (9)

Each search is ran on five servers, totalling to 40 NVIDIA GeForce GTX
1080 Ti, and each GPU can fit up to three models which are trained in parallel
depending on the sampled model’s memory usage at each step. Our generator
search took 2 days and our discriminator search took 10 days due to the mem-
ory requirement needed for the pre-trained generator, sampled discriminator,
and two VGG networks to compute Lvgg and LPIPS respectively in each train-
ing pipeline. Due to the huge resource needed to run discriminator search, we
limit the number of mult-add operations and run a constrained search for a
generator, as mentioned in the paper. The performance of our generator for the
discriminator search is listed in Table 2.

Table 2. Our TPSR-NOGAN model serves as a good basis for the ×4 upscaling
discriminator search as it is the most computationally efficient and has performance
that is comparable with other distortion-driven models in the literature within the same
computational regime. Given that our goal is to build a perceptual-based model, we
do not optimize our base model further. Higher is better for distortion metrics. red/blue
represents best/second best respectively

Scale Model Params
(K)

Mult-Adds
(G)

Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

FSRCNN [11] 12 6.0 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020
×2 MOREMNAS-C [9] 25 5.5 37.06/0.9561 32.75/0.9094 31.50/0.8904 29.92/0.9023

TPSR-NOGAN 60 14.0 37.38/0.9583 33.00/0.9123 31.75/0.8942 30.61/0.9119
FSRCNN [11] 12 4.6 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280

×4 FEQE-P [47] 96 5.6 31.53/0.8824 28.21/0.7714 27.32/0.7273 25.32/0.7583
TPSR-NOGAN 61 3.6 31.10/0.8779 27.95/0.7663 27.15/0.7214 24.97/0.7456

Each training pipeline is run by a separate process/worker and each worker
asynchronously samples the probability distribution (Eq (9)), trains the result-
ing model, and returns the result (PSNR for generator search and LPIPS for
discriminator search) from the validation set, V̂ , of the proxy task. The result
would then be normalized using a minmax normalization, N , to scale it from
0 to 1 with a exponential moving average baseline, EMA, (decay of 0.95) to
obtain the reward. We then add the sampled entropy, H, (ζ = 0.0001) to the
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reward and use it to update πθ via REINFORCE using an Adam optimizer
(β1 = 0.9, β2 = 0.999, ε = 10−8) with learning rate of 3.5e− 4. The training pro-
cess is detailed in Eq. 10 where M̃ is the metric of choice (PSNR, LPIPS, etc),
and L̃ is the training loss (LG and LD for generator and discriminator search
respectively).

R(s) = EMA(N(E(s))) + ζH(π)

E(s) =
1

|V̂ |

∑
(ILR,IHR)∈V̂

M̃(Gs(I
LR,W ∗s ), I

HR)

W ∗s = argmin
Ws

1

|T̂ |

∑
(ILR,IHR)∈T̂

L̃(Gs(I
LR,Ws), I

HR)

(10)

Super-resolution: The set of hyper-parameters chosen for both the proxy task
and the full task is summarized in Table 3.

Table 3. Hyper-parameters for the searching (proxy-task) and training (full-task) of
the generator and discriminator. The generator search is done on ×2 upscaling and the
discriminator is done on ×4 upscaling. We use the features before activations in the
pre-trained VGG19 network provided by PyTorch to compute Lvgg. Each input patch
is an RGB image. We used the same model in both proxy and full task to closely align
the performance between both tasks. For speed ups during the search, we use lower
fidelity estimates, lower patch size etc, that have been shown in previous works such
as ESRGAN to preserve the ranking of the model.

Search Hyper-parameter Proxy-task Full-task
Generator Epochs 50 450

Batch size 64 16
Input patch size 12×12 96×96

LG (α) 1 1

Discriminator Epochs 50 450
Batch size 32 16

Input patch size 24×24 48×48
VGG19 Features 22 54
LG (α, λ, γ) (0.01, 1, 0.005) (0.01, 1, 0.005)

For all experiments, we use 800 images for training and 100 images for val-
idation from the DIV2K dataset. We train for the stated number of epochs in
Table 3 using an Adam optimizer (β1 = 0.9, β2 = 0.999, ε = 10−8) with learning
rate of 1e − 4 at the beginning and 5e − 5 after 200 epochs for the full task.
All training patches are randomly flipped, both horizontally and vertically, ro-
tated 90◦, and subtracted by the mean RGB values of the DIV2K dataset. All
operations in the generator is followed by a PReLU and all operations in the
discriminator is followed by batch normalization and PReLU.
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Finally, all experiments are built on top of EDSR’s [29] code base5 using
PyTorch 1.2. PSNR and SSIM [49] were evaluated on each image’s Y-channel
and NIQE [34] and PI [4] were evaluated using the official code for the PIRM 2018
SR Challenge6 on Matlab R2018b. As mentioned in the main paper, all images
are shaved by their scaling factor before evaluation apart from that of LPIPS
(version 0.1), which we evaluate using the linear calibration of the features in
the provided VGG network7. In order to compare to previous works, the number
of Mult-Add operations are calculated by upscaling to an 1280 * 720 image.
Images from state-of-the-art models are taken from Wang et al. [48]8 and Thang
et al. [47]9 or generated using provided model by Dong et al. [27]10.

5 https://github.com/thstkdgus35/EDSR-PyTorch
6 https://github.com/roimehrez/PIRM2018
7 https://github.com/richzhang/PerceptualSimilarity
8 https://github.com/xinntao/ESRGAN
9 https://github.com/thangvubk/FEQE

10 https://github.com/tensorlayer/srgan
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