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SUMMARY

The rea c tio n  of alum inium  h y d robo ra te  with a lcoho ls and th io ls is 

d isc u sse d , and th is  is extended to  co v e r possib le  m ech an ism s for 

alum in ium  hydroborate h y d ro ly s is . T he co u rse  of the rea c tio n  was 

found to be dependent on the s tru c tu ra l type of alcohol o r  thiol used . 

Substitution of a thio alkyl group  fo r hydroborate led to p rep a ra tio n  

of the ty p e  of compound RSA1(BH^ )̂  (w here R = m ethy l, ethyl, 

benzyl) and  p ro p e r tie s  of these  com pounds a re  d is c u s s e d . Using an 

exchange reaction  of alum inium  h y d ro b o ra te  with alky l b o ra te s  , 

co rrespond ing  com pounds of the type ROAl(BH^>2  (R = m ethyl, 

ethyl) w e re  p re p a re d , and th e ir  p ro p e r tie s  a s c e r ta in e d .

The behaviour of alum inium  h y d ro b o ra te  with tr ie th y l  and tr im e th y l 

borane is co n s id ered . T h is  w ork su g g ests  that th e re  Is an exchange 

between the te rm in a l hydrogens of the hydroborate g ro u p s  and the 

borane a lky l g ro u p s, resu ltin g  in B-a!kylated alum inium  h y d ro b o ra tes . 

B -alkylated hydrobora tes a r e  a lso  believed to be fo rm ed  from  a novel 

rea c tio n  between tr ie th y l a lane and te trae th y l d ib o ran e .

Som e c h e m is try  of the o c tah y d ro trib o ra te  g roup  linked to alum inium  

Is a lso  d isc u sse d . S tarting  from  dim ethyl alum inium  o c tah y d ro tr ib o ra te  

an exchange reac tio n  with ex c ess  alum inium  hy d ro b o ra te  yields 

alum inium  o c tah y d ro trib o ra te  b is h yd robo ra te . The p ro p e r tie s  of both 

com pounds a re  d isc u sse d , and the re le v an c e  of the la t te r  to alum inium  

hyd robo ra te  decom position is noted .

T h e  p ra c tic a l work involved ex tensive  use of vacuum  line and 

inert a tm o sp h e re  techniques, and in f ra - re d  and n . m . r .  sp e c tra l 

d e ta ils  w ere  v e ry u se fu l.
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CHAPTER 1 

Introduction 

N om enclature

In this w ork boron hydrides w ill be described  by adding the suffix  

'b o ran e ' to the p refix , signifying th e  num ber ofboron  atom s in the 

m olecule (1 2 ) .  The num ber of hydrogen atom s is then indicated by 

enclosing the co rrespond ing  A rabic num era l in p a ren th eses  a f te r  the 

nam e. It is p e rm iss ib le  in those c a s e s  w here no am biguity a r is e s  to 

leave out the num era l designation, e .g .

In o rd e r  to d iffe ren tia te  between b r  idgingatom s, u sua lly  hydrogen, and 

te rm in a l a to m s, the p refix  V  w ill r e f e r  to a bridging atom  and ' t * to 

a te rm in a l a to m .

D eriva tives of borane w ill be nam ed by putting the nam es of the groups 

attached to the boron atom before th e  borane suffix , e .g .  tr lm e th y l 

borane, except in spec ia l c a se s , e . g . boron tr if lu o r id e . D eriva tives of 

alane will be s im ila rly  d escribed  , e . g . chloro dim ethyl a lane .

Boron anions a re  borates and boron hydride anions h y d ro b o ra tes .

T he num ber ofboron  atom s is indicated  by the p re fix  im m ediately p rio r  

to  th e b o ra te ' suffix  and the num ber of hydrogen atom s by the p re fix  

im m ediately  p r io r  to the 'h y d ro '. The charge on the ion is added in 

p a re n th ese s , e . g .

W here no am biguity  a r is e s ,  the num ber of hydrogens and the charge  may 

be absen t. In th is  work the te rm  ’hydroborate’ w ill be used in all 

re fe re n c e s  to  the BH^ entity  (even in the ti t le )  and the te rm  o c tah y d ro tri-

BHg borane

B„H. d iborane
2 o

but B5M9 penta borane (9 )

and pen taborane (11 ).

LiBH4 Lithium te trah y d ro b o ra te  (1 - )

NaB„H Sodium o c tah y d ro trlb o ra te  (1 -)O O

borate fo r the BQH en tity . F o r  ea se  of understanding the compound 
0 0  *
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It could a lso  be nam ed as 2, 2 -d lm e th y l-2 -alum lnate te trabora_ ie (1 0 ). 

The w ords b is  and t r is  w ill be u sed  for em phasis  on s to ich iom etry  

w here n e c e s sa ry .

Units

The un its u sed  in the work a r e  predom inantly  those recom m ended  by 

the In ternational O rganisation fo r  S tandard isation  (ISO ) and designated 

S I. F o r som e p a ra m e te rs  w here  convention u ses units not s tr ic tly  SI 

but closely  r e la te d  to it, these  un its  w ill be u sed . As such te m p era tu re s  

for cold baths a r e  m ore eas ily  quoted as  negative values °C , in fra -re d  

frequencies as  cm   ̂ and p re s s u re s  as mm Hg.

The sign convention for ^1B n .m . r .  w ill be that which keeps it in 

line with conventions with o ther nuclei in th a t signa ls upfield from  the 

re fe ren ce  a r e  quoted as negative and those  downfield from  the 

re fe ren ce  as p o s itiv e . T he re fe re n c e  in a l l  ^ B n . m . r ,  being boron 

trifluo ride  d ie thy l e th e ra te . T he Bruker WH 90 m achine u se s  this sign 

convention au tom atica lly  and Is in line with the suggestion put forw ard 

at the 3rd IME Boron conference In 1976.

H ydroborates - H isto rical

Probably the  f ir s t  obse rva tion  of a compound of boron and hydrogen 

was by Sir H um phrey Davy who found that hydrogen produced  by acidifying 

boric oxide and po tassium  had a d isa g re ea b le  odour and bu rn t with a blue 

flam e tinged w ith g reen  (3a, 3 b ) . It was not until the developm ent of 

vacuum technique byA lfred Stock in the e a r ly  1900's that boron hydrides 

w ere p re p a re d  and c h a ra c te r is e d . Stock review ed his own work in 1933 

(4). H ydroborates w ere f i r s t  p rep a re d  when S chlesinger and his 

co -w o rk ers ,In  attem pting to p re p a re  a com pound with a borane group and 

a tr lm e th y l a lan e  unit iso lated  alum inium  hydrobora te  ( 5 ,6 ) .  T his w as 

the m ost v o la tile  compound of the elem en t known (b .p t. 44° C ), and its 

d iscovery  w as c losely  followed by the Isolation  of bery llium  hydroborate, 

again v o la tile , and lithium  h yd robo ra te , which was involatlle and s a l t -



13.

the se a rch  fo r  a vo la tile  d eriv a tiv e  of u ran ium  for u se  In isotope 
235 238separation  of U from  U. T h is w as accom plished when

uranium  hydroborate was p rep a re d  from  uranium  te tra flu o rid e  and 

alum inium  hyd robora te  (9 ). The w ork a t th is tim e a lso  produced 

new m ethods of p rep a rin g  lith ium , sodium  and po tassium  hyd robo ra tes 

and recogn ising  th e ir  rea c tio n  with w a te r being usefu l for reducing 

p u rp o se s .

Many e lem en ts  in a ll p a r ts  of the period ic  table a re  now known to 

form  h y d ro b o ra tes , and they a re  tabulated  in T able 1 .1 .

H ydroborates - P ro p e rtie s

A detailed  d iscussion  of the p ro p e r tie s  of a ll hydrobora tes is  out o f 

place h e re . A fa ir ly  re c e n t, exhaustive review  of m eta l h yd robo ra tes  

ex ists  (10a )  a s  does one on covalent hydrobora tes (10b) and se v e ra l on 

the p ro p e r tie s  and p rep a ra tio n  of d iborane and of the in te rconversion  of 

the boranes (11,12, 13). T he d iscussion  in th is  introduction, th e re fo re , 

will d e a lp r im a rily  with alum inium  h y d ro b o ra te , but w ill include d e ta ils  

of o ther com pounds w here they a re  re le v a n t to g en e ra l trends in 

s tru c tu re , spec tro sco p y  o r  chem ical re a c tio n .

The physical p ro p e r tie s  of the m e ta l hydrobora tes vary  a c ro ss  th e  

spectrum  from  typically  ionic and s a lt- l ik e  tc highly covalent,and 

p a rticu la rly  the covalent com pounds can  p re se n t handling d ifficu lties 

e ith e r  due to  ex trem e m o is tu re  and oxygen sen sitiv ity  o r to tox ic ity .

The p ro p e r tie s  of som e se lec ted  hydrobora tes a re  tabulated in 

T able 1 .2 .

The chem ica l p ro p e r tie s  of the hyd robo ra tes have not been 

ex tensively  studied  except fo r the a lk a li m eta l hydrobora tes ,in  

p a r tic u la r  in re la tion  to th e ir  reduction  reac tio n s with organic functional 

g ro u p s. D iborane, too, has found m any u ses  with the now w ell-know n 

technique of hydrobora tion .

The chem ica l rea c tio n s  that seem  to be common to a ll the h y d ro -
Ivirafpc oro roontiAn o urit-t-« oviman on/i urnlar
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NaBH + O 0 4 2
400 C v NaBO + 2H 

2 2/

B2H6 + 3° 2 B2 °3  + 3H2 °/

The ionic h y d ro b o ra tes  a r e  s tab le  in a lka line  aqueous solution but re a c t 

under acid ic co n d itio n s . O ther h yd robo ra tes  r e a c t  ra p id ly ( liberating  

hydrogen im m edia te ly  ̂ e .g .

2H+ H2 °
2BH4 + H 20  — -----* B2H6 + 2 H 2 ---- ----- > 2B(OH)3 + 3H2

A1(BH . )„ + 12H O ------------ > Al(OH) +3B(OH) + 12H „4 6 1 6 o L

i . e .  com plete hyd ro ly sis  w ith each B-H b o n d re leasin g  1 m ole of hydrogen .

T his p ro p erty  is  frequently  u tilised  fo r  ana ly sis  of alum inium  hydroborate

com pounds.

The m ore com m only ava ilab le  hy d ro b o ra tes  have been used to p re p a re  

the h y d ro b o ra tes  o f le s s  rea d ily  ava ilab le  e lem en ts . T he alkali m etal 

hydroborates h av e  been m ost com m only u sed j but alum inium  hydroborate 

has also  been u se fu l, e . g .

Na(BH4 ) + RbOH --------------» RbBH4 + NaOH

3UF . + 4A1(BH ) ------------- * 3U(BH ) . + 4A1F4 4 d 4 4 d

The h y d ro b o ra tes  undergo exchange re a c tio n s  of v ario u s s o r ts .

( I ) D euterium  exchange

e . g . NaBH4 + D2 ------------ > NaBH^D + HD

(il)  Exchange of te rm in a l  hydrogen fo r  alkyl g roups (see  l a t e r ), e . g . the 

p rep a ra tio n  of alkyl d iboranes

B2H6 + B E t3 ------------»  E t4B2H2

(lil)  Exchange of in tact hydrobora te  g ro u p s with alkyl g ro u p s ( e . g . the 

alkyl alum in ium  h yd robo ra tes  (see  la te r ) .

A 1(BH4 )3 + A l2E t6 ---------- » 3E t2AlBH4

T hose h y d ro b o ra tes  w hose m e ta l h as  ava ilab le  em pty bonding o rb ita ls  can  

also  add v a rio u s  ligand m olecu les o r  ions. The form ation  of adducts w ith



Lewis bases  Is w ell known esp ec ia lly  fo r borane and alum inium  h y d ro ­

borate  w ith m olecu les like tr im e th y la m in e . Beryllium  and alum inium  

hydrobora tes can add ce rta in  anionic sp e c ie s  to form  com plex  ions, e . g .

17.

Be(BH4 )2 + X ------------f [XBe(BH4 )2 ] (X = C l, Br, BH4> H )

The ex istence of the hydrobora te  ion is an analagous rea c tio n  to tha t of

borane with h y d rid e . *

BH. + H* ------------> BH"
o 4

T h ese  rea c tio n s  and the c h e m is try  of hyd robo ra tes a re  d iscussed  

ex tensively  by Jam es and W allbridge (1 0 a) cr.d th£t of d ibo rane  by Long (11).

H ydroborates - S tru c tu res

T he hy d ro b o ra tes  show an in te res tin g  d iv e rs ity  in th e ir  s tru c tu re s . 

Evidence for the p re se n t accep ted  s tru c tu re s  has com e fro m  se v e ra l 

physical techniques although d ire c t s tru c tu ra l evidence from  d iffraction  

m ethods is only availab le for a few h y d ro b o ra tes .

T he s im p les t hydrobora te , the BH4 ion, has been stud ied  by neutron 

d iffraction  of po tassium  hydrobora te  (14) a t 25° C and shows the expected  

te tra h e d ra l a rran g em en t of the hydrogen atom s round the boron atom  

with a boron-hydrogen d istance of 126.0 pm .

D iborane has been exam ined by gas phase e lec tro n  d iffraction  (15, 16) 

and c ry s ta l X -ray  d iffraction  (17),and a l l  these  s tu d ie s  ag ree  on a m olecule 

with D2h sy m m etry  with two hydrogens bridging betw een the two boron 

a to m s. The Inform ation obtained (16) showed B-B, 177. 5 pm; B-Hr, 120 pm; 

B-Hn, 134pm ; BBHt > 120°; ¿1 HuBHn, 97°.

The s tru c tu re  of alum inium  hydrobora te  has been assig n ed  on the basis  

of elec tron  d iffraction  data (18 ). T h is  shows a p la n a r  alum inium  boron 

skeleton AIB^, with each boron su rrounded  by four hydrogen a to m s. The 

boron is bound to the alum inium  by a double hydrogen b ridge, (F ig. 1 .1 ), 

the exact sym m etry  of the b ridge s t i l l  being un d eterm in ed . If the p lane of 

the bridge is such that a p r ism a tic  a rran g e m en t of the  bridge hydrogens is 

form ed, then the sym m etry  is ob tained. H ow ever, the bridge p lanes 

m aybe  som ew hat tw isted  to produce an o v era ll sy m m etry  to the m olecu le.
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F ig . 1.1

S tru c tu re  of d iborane

S tru c tu re  of alum inium  hyd robo ra te

o
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Alum inium

Eoron

Hydrogen



19.

The distance and ang le  p a ra m e te rs  obtained w ere : Al-B, 214.3 pm ;

A l-Hu, l8 0 p m ;B -H u , 128pm ; B-Ht , 120pm ; Z  HuAlHy., 73°;

.¿1 HuBHu( 114°; Ht BHt> 116°.

The gas phase s tru c tu re  of beryllium  hydrobora te  has produced much 

d iscussion  (see re f .  19a and other re fe re n c e s  th e re in , 19b, 196). The 

conclusion rea ch ed b y  Lipscom b (19a ) ( using S .C .F .  calcu lations , 

re je c te d  a ll s tru c tu re s  based on a tr ia n g u la r BeBB fram ew ork and 

suggested  that the vapour phase m ight contain a m ix tu re  of lower 

s tru c tu re s  containing double and tr ip le  hydrogen b rid g es . The m ost 

re c e n t inform ation on the subject (196) e s tab lish es  that, in the g as  phase, 

bery llium  hyd robo ra te  contains m agnetically  equivalent BH^ g roups in which 

th e re  is rap id  hydrogen exchange. A lin ear B-Be-B fram ew ork is the only 

explanation for the reco rd ed  ^ B  and ^ H n .m .r .  sp e c tra , although 

w hether double o r tr ip le  bridged hydroborate g ro u p s a re  favoured is not 

c le a r .  The solid p h ase  c ry s ta l s tru c tu re  (20), how ever, shows only 

doubly bridged hydrobora te  groups in a helical po lym eric  s tru c tu re .

The hydrogens form  an approxim ately trigonal p rism a tic  a rrangem en t 

round the b e ry lliu m .

In co n tra s t the c ry s ta l  s tru c tu re  of uranium  h y d ro b o ra te , U(BH^)^ , 

shows interlocking h e lica l chains,and ,Instead  of th re e  hydroborate g roups , 

in the case  of bery llium  hydroborate th e re  a re  s ix  hydroborate g roups 

assoc ia ted  with the c e n tra l a tom . T h ere  a re  two te rm in a l g roups bridged 

via a tr ip le  hydrogen bridge, and four fu rth e r g roups bridging uranium  

atom s with two p a i r s  of hydrogen b ridges (21, 2 2 ). A trip ly  bridged 

s tru c tu re  in the g as  phase is In ferred  from  an in fra -re d  study (23).

T he g en e ra l s tru c tu re  trend in the covalent hyd robo ra tes would seem  to be, 

then ,that they a re  bonded by double and tr ip le  hydrogen bridged s tru c tu re s  

fro m  boron to the c e n tra l atom . T o do th is , the d istance of the bridge 

hydrogen to the boron atom , B-Hn, becom es longer than the boron 

hydrogen distance In the hydroborate ion and a t the sam e tim e the boron 

to te rm in a l hydrogen, B-Ht , becom es co rrespondingly  s h o r te r .
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S tru c tu res  of bery llium  hydroborate

O  Beryllium  

Boron

Q  Hydrogen



H ydroborates - Bonding

Before con s ide ring  the in fra -re d  s p e c tr a  of se v e ra l h yd robo ra tes 

which w ill Involve such te rm s  as  ’b ridge bond s tre tc h in g ', it would seem  

to be ap p ro p ria te  to consider in g e n e ra l te rm s  the bonding involved in 

the boron -hydrogen bonds.

The re a lisa tio n  that the s tru c tu re  of d iborane contained a bridge 

s tru c tu re , which was suggested by sy m m e try  co n sid era tio n s in the 

in fra -re d  sp ec tru m  (discussed la te r )  an d  confirm ed by d iffraction  m eth o d s, 

req u ired  a new concept of bonding to exp lain  its s ta b ility  . On o rig ina l 

bonding th e o rie s , each  link between any  two adjacent atom s w as considered  

to contain 2 e le c tro n s . D iborane on th is  basis has 8 such links and would 

th e re fo re  need 16 bonding e lec tro n s . T h e  constituen ts of d iborane , i . e .

2 boron a tom s and 6 hydrogen a tom s, c a n  only supply 14 bonding e lec tro n s 

and th is has led to the m isleading (as it im plies in s tab ility ) ti t le  of 

e lec tro n  d efic ien t. The accepted th e o ry  of the s tru c tu re  of the bridge 

bond is that an o rb ita l from  each of the boron atom s and the o rb ita l of 

the hydrogen atom  a re  com bined to fo rm  an 3 -ce n tre  m o lecu la r o rb ita l.

2 e lec tro n s  in the bonding m olecu lar o rb ita l  a r e  su ffic ien t to fo rm  the 

bond.

T h ere  a r e  two ways in the old fash ioned  valence th eo ry  In which the 

o rb ita ls  Involved m ay be considered  w ithout too deta iled  an approach .
3

The boron a tom s m ay be considered  to  be sp hybrid ised  with 2 conventional

covalent bonds to the te rm in a l h y d ro g en s . The rem ain ing  o rb ita ls  then

In terac t w ith the o rb ita ls  of the hydrogen  to produce the b ridge sy s tem .
2A lte rna tive ly , the boron atom s can be co n sid ered  as sp hybrid ised  again

with two conventional covalent bonds to  the te rm in a l a to m s, the rem ain ing  
2

sp o rb ita l pointing tow ards the o ther boron atom . T h is then a lso  leaves 

the boron pz o rb ita l available for the b rid g e  sy s tem .

A d esc rip tio n  of m olecu lar o rb ita l theory  and bonding sch em es, using 

m u lti-cen tre d  bonds, can also  be developed for the m e ta l h y d ro b o ra tes . 

D etailed tre a tm e n ts  a re  described  e lse w h e re  (3 3 ,3 4 ).
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H ydroborates - V ib ra tiona l Spectroscopy

The inform ation tha t can be in ferred  from  the study of the 

v ibration  of sp e c tra  'i hyd robo ra tes m ust f i r s t  come from  a knowledge 

of the v ib ra tions produced by an entity  of known sym m etry . T he te tr a -  

hyd robo ra te  ion has nine n o rm al v ib rations and has full Td sym m etry .

The v ib ra tio n s tran sfo rm  so that two bands only turn  out to be in fra -re d  

ac tiv e> and four Ram an ac tiv e . The in f ra - re d  ac tive bands a re  the 

a n ti-sy m m e tric  B-H s tr e tc h j and the an ti-sy m m e tric  s tre tc h  BH2 

deform ation  and these  have been observed  n e a r  2300 cm  ̂ and 1100 cm  ̂

re sp e c tiv e ly  (24) and have been shown to be sligh tly  solvent and cationic 

dependent (see  re f .  25 and re fe re n c e s  th e re in ) .  The four Ram an active 

bands a re  the two above plus the sy m m etric  B-H s tre tc h ( and the 

sy m m etric  BH2 d efo rm ation .

D iborane, being an eight atom  m olecu le ,has th e re fo re  a possib le  

eighteen n o rm al v ib ra tio n s . T he v ib ra tio n s, in te rp re ted  in te rm s  of the 

bridge E) s tru c tu re , p red ic t a spectrum  with eight in f ra - re d  active

m odes, n ine Raman ac tiv e  m odes, and a uniquely inactive band as th e re  

a re  no co in c id en ces. Bands with frequenc ies  n ea r 2500 cm  1 a re  again 

assigned  to  s tre tch in g  m odes, and those around 1100 cm  ̂ to  BH2 

defo rm ation . In addition, som e new a re a s  a re  defined. T he regions 

around 1850 cm   ̂ and 1600 cm   ̂ show bands which a re  assigned  to 

v ib rations of the BH2B bridge (26, 27).

As w as suggested  by the d ire c t s tru c tu ra l  evidence that in form ing

a covalent B-H en tity  com pared  to BH^ the new te rm in a l B-H bonds

becam e s h o r te r ,  and thus s tro n g e r  than in BH^, and the bands due to

B-H s tre tc h in g  move to h igher w avenum bers. Two B-Ht bands a re

observed  a t  2614 cm  1 and 2525 cm   ̂ co rrespond ing  to the an tisym m etric

and sy m m etric  s tre tch in g  m odes re sp e c tiv e ly . The BH deform ation also
-1 i

m oves to h igher w avenum ber a t 1175 cm . The s tre tch in g  mode of the

BH B b ridge (tending tow ards form ation  of a linear BH* and te trah ed ra l
- -1

BH ) is the s tro n g es t band in the sp ec tru m  at 1602 cm . The other

L
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T h ese  two sp e c tra l assignm ents a re  a t opposite  ends of the hydro - 

bo rate  sc a le . The hydroborate Ion is at one s id e  and the en tire ly  

covalent dlborane at the o th e r. M etal te trah y d ro b o ra te s  would be 

expected to lie  som ew here between these e x tre m e s , and band positions 

can be used as  an in ference to the degree of covalency  in the p a r tic u la r  

m olecu le.

T h e  spectrum  of alum inium  hydroborate f i r s t  rep o rted  by P rice (24) 

will be d iscussed  in d e ta il la te r  and is th e re fo re  only d esc rib ed  in 

g e n e ra l te rm s h e re . The B-Ht bands a re  o b se rv e d  at 2556 cm  ̂ and 

2490 cm  and those from  the bridgingBH2 a t 2032 cm  ̂ and 1940 cm  1 . 

This im plies an in c rease  in ionic c h a ra c te r  of th e  bonding o v er that in 

d iborane as  the bonds for te rm in a l and bridg ing  s tre tc h e s  have com e c lo se r  

to g e th e r . Obviously in the ca se  of the hy d ro b o ra te  ion they co incide . In 

addition, the A1H0B bridge m odes a re  at 1501 c m   ̂ and 1440 cm  . T he 

deform ation mode is observed  at 1113 cm

T h e  sp ec tra  of hydroborates containing a t r ip le  hydrogen bridge a re  

obviously going to be slightly  d iffe ren t. The B-Ht s tre tc h  reg ion  of the 

in fra -re d  spectrum  of zirconium  hyd robora tes which has an es tab lish ed  

tr ip ly  hydrogen bridged gas phase s tru c tu re  (28) shows only one B-Ht 

s tre tc h  and no band in the BH2 deform ation reg io n  (23, 2 9 )( and as 

u ran ium  hydroborate has a very  s im ila r  sp e c tru m ,it  too is assigned  a 

tr ip ly  bridged s tru c tu re  In the gas phase (23f 3 0 ) .

T h e  in fra -re d  spectrum  of beryllium  hy d ro b o ra te  (3 1 ), u sing  the 

above c r i t e r ia > can then be in te rp re ted  as a m ix tu re  w here the boron is 

attached  to beryllium  by both double and tr ip le  hydrogen b r id g es t as it 

shows bonds in the positions expected fo r both s tru c tu ra l  ty p es .

Some g en e ra l ru le s  for p red ic ting  s tru c tu re  types a r e  p resen ted  in 

F ig . 1 .7 . Also see  r e f .  32.

H ydroborates - N uclear Magnetic Resonance S p ec tra l P ro p e rtie s

Boron has two na tu ra lly  occurring  Iso topes, both of which have n u c lea r

spin: * 1B (81.2% abundance), I = 3 /2  and 1(̂ B (1 8 . 8% abundance ), 1 = 3 .
27Aluminium has the one Isotope A1 (100% ab u n d an ce), I = 5 /2 .
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The m agnetic reso n an ce  ^ . te tra h e d ra l BH^ Ion shows the

equ ivalence of the four p ro to n s . T he 1H n . m . r  .• sp ec tru m  is a 

1 :1 :1:1 q u a r te t, due to coupling to the 11B nucleus, and th is  is s u p e r ­

im posed on aw eaker 1 :1 :1 :1 :1 :1:1 sep te t due to coupling to the ^ B  

n u c leu s . The coupling constan t (J 1^ ^ ) w a s  82 H z. The ^ B n . m . r .  

is a 1:4:6:4:1 quintet (J 1^ j_j , 82 H z) obtained by the coupling to the 

four equ iva len t hyd rogens. Sharp lines indicate the high sy m m etry  of 

the field  around the boron atom  (35).

E xam ination of the sp ec tru m  cf d ib o ran eh as  beat undertaken by sev era l 

w o rk e rs  (3 5 ,3 6 a -e ) . The ^ B n . m . r .  sp e c tru m  c o n s is ts  p r im a rily  of 

a t r ip le t  of tr ip le ts  fo rm ed  by sp littin g  of the o rig in a l sig n a l into th ree  

by the n e a r e s t  two te rm in a l p ro tons and into th re e  again by the two bridge 

p ro tons which have a sm a lle r  coupling constan t (J 11^ 133 Hz,

J 11b H • T h e  ^  n . m . r .  spec trum  show s, when the boron is

not decoupled, a q u a r te t fo r the te rm in a l p ro tons due to coupling to one 

boron a to m  and a sep te t fo r the b ridge  p ro tons due to coupling with two 

boron a to m s . When the boron decoupled sp ec tru m  is taken, the fine 

s t r u c tu re  d isap p ea rs  to  leave two reso n an ces ra t io  2:1 co rrespond ing  to 

the fou r te rm in a l p ro tons and the two bridg ing . The te rm in a l pro tons 

a re  a t lo w er field .

If, how ever, the sp ec tru m  is taken in e th e rs , a m arked  tem p era tu re  

dependence Is o bse rved  (37). In d ie thy l e th e r  a t 30° C, the sp ec tru m  

was a b ro ad  non-L oren tz ian  signal which, on w arm ing to  84°C becam e a 

seven - lin e  m ultlp le t co n s is ten t w ith com plete sc ram b lin g  of a l l  the 

p ro tons to  ren d e r them  equ ivalen t. On cooling below -36° C, the tr ip le t 

of t r ip le ts  observed fo r  the nea t sam ple  was r e s to re d .  T he seven line 

m u ltlp le t is observed  a lso  if the sp e c tru m  is taken in an ethylene glycol 

d im eth y l e th e r solution a t room  te m p e ra tu re . E th e rs  would th e re fo re  

seem  to  ca ta ly se  the In tram o lecu la r sc ram b ling ,and  the m o re  basic the 

e th e r , th e  m ore effec tive  the sc ra m b lin g .
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A poss Lble equation would be

R H

v = = ^  H - B - H - B - H

R O H
/ \

R R

R

R

T he n . m . r .  sp e c tra  of alum inium  hy d ro b o ra tes  w ill be d iscu ssed  

l a t e r ( but the g e n e ra l fea tu re s  w ill be pointed out h e re  as they d iffer

a b road  s tru c tu re le s s  hump a t room  te m p e ra tu re  caused  by coupling to 

both alum inium  and boron nucle i (38 ). T he alum inium  can be m ade to 

decouple by irra d ia tio n  a t the alum inium  frequency to p roduce a 1 :1 :1:1 

q u a rte t due to the rem ain ing  boron coupling . The spec trum  is te m p era tu re

a 1:4:6:4:1 qu in te t, showing tha t a m echan ism  is in operation  to  produce 

equivalence of the p ro to n s . At no te m p e ra tu re  can any d istinction  be 

found between bridging and te rm in a l p ro to n s indicated by the prev iously  

m entioned d iffraction  w ork . T h is  is a fea tu re  com mon to a ll the covalent 

te tra h y d ro b o ra te s . In te rm o le cu la r  m echan ism s would seem  to be ru led  

out since exchange of e ith e r  BH g ro u p s o r  BH groups would re su lt  inJ 4
lo s s  of coupling to the boron and alum inium  nuclei re sp e c tiv e ly , and th is 

is not ob se rv ed .

In tram o lecu lar p ro c e sse s  that m ight be considered  Involve form ation 

of an ex tra  b ridge bond followed by b reak ing  of a d iffe ren t one, l . e .

s lig h tly  from  those  observed  fo r  d ibo rane . The H n . m . r .  c o n s is ts  of

dependent in solution (see la t e r ) .  T he ^ B n . m . r .  sp ec tru m  c o n s is ts  of



A lum inium  H ydroborate 

P reparation

S ch lesinger et a l. f i r s t  p rep a re d  alum inium  hyd robo ra te  in y ie lds of 

up to 70%, from  the reac tio n  of tr im e th y l a lane with d lborane (5 ,6 ) .

A12(CH3 )6 +4B2H6 ---------* 2A1(BH4 )3 + 2BMe3

The reac tio n  is inconvenient p rep a ra tiv e ly  s in ce  it is slow , with the 

form ation  of in te rm ed ia te  p roducts which a r e  difficult to s e p a ra te . The 

best y ield w as obtained by adding d iborane in sm a ll quan titie s, and 

frequen tly  rem oving the tr im e th y l bo rane p roduced .

S evera l m ethods using  co -o rd ina ting  so lven ts have a lso  been tr ie d , 

but these  two su ffe r from  the draw back of the  d ifficulty  of p roduct 

pu rifica tion  a t the end of the re a c tio n . An 88% yield w as found when an 

e th e r  solution of alane (alum inium  hydride , A lH g) was rea c te d  with boron 

tr ic h lo r id e . The alum inium  hydrobora te  fo rm ed  as an e th e ra te  w as freed  

of the e th e r  by tre a tm e n t with aluminium ch lo rid e  (4 0 ,4 1 ,4 2 ).

4AlH3 .O E t2 + 3BC13 ------------ 1 A1(BH4 ) y O Et2 + 3A1C1.J.OEt2

S evera l o th e r m ethods u sing  alum inium  hydride sp ec ie s  have been used 

with o r  without a co -o rd in a tin g  so lven t (usually  e th e r )  (40,41 ),

LiAlH 4 + 2B2H6 ---------> A1(BH4 )3 + LiBH4

3LIA1H 4 + 3BC13
e th e r  _ A1(BH4 )3 + 2A1C13 + 3L1C1

3LIA1H4 + 3BF3 - e th e r  . 
* A1(BH4 )3 + 2A1F3 + 3L1F

T h ese  re a c tio n s  a lso  su ffe r  from  being low yield ing and slow , and a lso  

w astefu l a s  not a ll the boron and alum inium  contents of the s ta rtin g  

m a te r ia ls  a re  tr a n s fe r r e d  to the p ro d u c t.

Again it w as S ch lesinger et a l . who f i r s t  used  the double decom position 

rea c tio n  of the alum inium  ch lo ride  with a lk a li m eta l te trah y d ro b o ra te s  (43).

A1C1, + 3MBH, ------------ ) A1(BH )_ + 3MC13 4 4 3

The rea c tio n s  take p lace  in the solid  phase  and the y ield of the product 

depends on the ra tio  of the re a c ta n ts , and th e  n a tu re  of the cation M.
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o r  break ing  of a bridge bond followed by ro tation  and refo rm ing> i . e .

H H H H H

N - ' '

o r  quantum  m echanical tunnelling (38).

Although the la s t m ethod cannot be ru led  out, the m echanism  that su g g e s ts

the p re se n c e  of a tr ip le  hydrogen bridge seem s very  p lausib le since th e re

a re  h yd robo ra tes  in which it ex is ts  p re fe ren tia lly , e . g . U(BH^ ) 4 and one

bery llium  hydroborate which may have both a doubly bridged and a trip ly

bridged hyd ro b ra teg ro u p  sim ultaneously .

The n . m . r .  sp e c tr /? o f  bery llium  hydroborate proved difficult to

obtain due to its  low so lub ility  in non -co-o rd inating  so lven ts. As was

m entioned e a r l ie r  th is has now been overcom e and the ^ B a n d  n . m . r .>
sp e c tra  have been re c o rd e d . T he ' b spec trum  shows a quintet and the 

sp ec tru m  a 1 :1 :1 :1 q u a rte t, showing the equlvalance of the protons by 

exchange p ro c e s s e s . T h ese  sp ec tra  a lso  es tab lish  a linear B-Be-B f r a m e ­

w ork . The n . m . r .  spec trum  of m ethyl beryllium  hydroborate in 

benzene/to luene solution at room  tem pera tu re ,how ever, again shows th a t 

th e re  is a m echanism  fo r equivalence of the hydroborate protons as a 

1:1:1:1 q u arte t 011., . ..  86 H z) is observed  (39).

,.v ,i . i  *
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Alum inium  H ydroborate

P reparation

S ch lesinger e t a l. f i r s t  p rep a re d  alum inium  h y d ro b o ra te  in y ie lds of 

up to 70%, from  the reaction  of tr lm e th y l alane with d tbo rane  (5 ,6 ) .

A12(CH3 )6 +4B2H6 ---------*  2A1(BH4>3 + 2 B M e 3

The rea c tio n  is inconvenient p rep a ra tiv e ly  since it is  slow , with the 

form ation of in te rm ed ia te  p roducts which a re  d ifficu lt to  se p a ra te . The 

best y ield  was obtained by adding diborane in sm a ll q u an titie s , and 

frequently  rem oving the tr im e th y l 'oorane produced.

S ev era l m ethods using co -o rd inating  solvents have  a lso  been tr ie d , 

but th ese  two su ffer from  the draw back of the d ifficu lty  of product 

p u rifica tion  at the end of the rea c tio n . An 88%  y ield  w as found when an 

e th e r  solution of alane (alum inium  hydride, A lH ^) w as rea c te d  with boron 

tr ic h lo r id e . The alum inium  hydroborate form ed as  an e th e ra te  w as freed  

of the e th e r  by trea tm e n t with aluminium ch lo ride (4 0 ,4 1 ,4 2 ) .

4AlH3 .O E t2 + 3BC13 ------------ =) A1(BH4 )3 .O E t2 +  3A1C13 .O E t2

S ev era l o th e r  m ethods using alum inium  hydride sp e c ie s  have been used 

with o r  without a co -o rd ina ting  solvent (usually e t h e r ) (40, 41 ),

LiAlH 4 + 2B 2H6 --------> A1(BH4 )3 + LiBH4

3LIA1H 4 + 3BC13 e th e r  „ A1(BH4 )3 + 2A1C13 + 3LIC1

3LIA1H4 + 3BE3 -
e th e r  v A1(BH4 )3 + 2A1F3 + 3LIF

T h ese  re a c tio n s  a lso  su ffe r from  being low yielding and slow, and a lso  

w astefu l a s  not a l l  the boron and alum inium  conten ts of the s ta rtin g  

m a te r ia ls  a re  tra n s fe r re d  to the p roduct.

Again it w as S chlesinger e t a l . who f ir s t  used th e  double decom position 

reac tio n  of the alum inium  ch lo ride with alkali m e ta l te trah y d ro b o ra te s  (43).

A1C1, + 3MBH, ------------ » A1(BH ). + 3MC13 4 4 3

T he re a c tio n s  take p lace In the solid  phase and th e  yield of the product 

depends on the ra tio  of the re a c ta n ts , and the n a tu re  of the cation M.



(in  ex cess  of  1 0 Z)'  j
T he g re a te s t  yield j o ccu rs  when alum inium  ch lo ride  r e a c ts  with 

lith ium  te trah y d ro b o ra te  In r a t io s  c lo se  to s to ich io m e tric . T h e  reac tio n  

p ro ceed s a t room  te m p era tu re  if th e  alum inium  hyd robora te  is continually  

rem o v e d  and com pletion can be a ffo rd ed  by w arm ing to 100° C . The 

alum inium  hydrobora te  is ea sily  p u rified  by d is tillin g  in v ac u o . When 

sodium  te trah y d ro b o ra te  is used , the yield is considerab ly  le s s ,  but the 

yield can be in c reased  by adding e x c e s s  alum inium  ch lo rid e  and heating to 

120° C. With po tassium  h y d ro b o ra te  alone the yield of alum inium  h y d ro ­

bo rate  is e s se n tia lly  zero  but can  be put up to 40-60% by adding lithium  

ch lo ride  o r  lith ium  hydroborate re sp e c tiv e ly  (44 ).

T he co u rse  of the reaction  is believed  to go through in te rm ed ia te  ch lo ro -  

alum inium  hydroborates which a r e  fo rm ed  in sequence. T hey  a r e  not s tab le  

in isolation , dbp ro p o rtio n a tln g  to  alum inium  ch lo ride  and alum inium  

hydrobora te  (45,46).

LiBH + A1C1- ----------4 3 — > C1-A1BH + LiCl 2 4

LiBH + Cl A1BH —  4 2 4 ------ > C1A1(BH4 )2 + LIC1

LIBH . + C1A1(BH ) - 4 4 2 -------------» A1(BH4 )3 + LiCl

3 C1A1(BH4 )2 ---------- —> A1C13 + 2A1(BH4 )3

O ther m ethods , using alkali m e ta l h y d ro b o ra tes , have used  m in e ra l oil 

o r  benzene as  so lven ts, w hilst an  e a r ly  m ethod used ca lc iu m  hydrobora te 

in te trah y d ro fu ran  solution (47).

O vera ll m any m ethods have b een  published for alum in ium  hydroborate 

p re p a ra tio n . The main rou tes h av e  been covered  h ere , but sm a ll 

v a ria tio n s  ex is t espec ia lly  in the  m any paten ts taken out (4 8 -5 8 ).

Synthetic R eactions using A lum inium  H ydroborate - U ses

Alum inium  hydro borate has been  used to  p re p a re  o th e r m e ta l h y d ro ­

b o ra te s , the f i r s t  of which was u ran iu m  hydrobora te by the reac tio n



3 4 .

NaMFg + 2A1(BH4 )3 ---------- > M(BH4 >4 + 2F 2A1BH4 + NaF (M = Hf, Zr )

MF4 + 2A1(BH4 )3 ---------- > M(BH4 )4 +  2 F 2A1BH4 (M = T h , Np, Pu)

Attempts have been made to p re p a re  hyd ro b o ra tes  of s ilico n , tin  and 

lead using alum inium  h y d ro b ra te . The p ro ce d u re  was u n su c c e ss fu l 

the products iso la te d  being shown below :-

6Me_SiCl + 2A1(BH )„ ---------)  A l.C l, + B .H , + 6M e,SlH (60)
o 4  6 Z o  Z o  6

MMe. + 2A1(BH ) ---------- )  2MeAl(BH ) + M + B.H Me + 2H (61)4 4 6 4  Z. Z 4  Z Z
(M = Snt Pb)

Aluminium h y d ro b o ra te  and its  anionic d e riv a tiv e s  have found the 

occasional u se  in organic reduc tions ( e .g .  62) and could be an in te r ­

m ediate in red u c tio n s  w here sodium hyd robo ra te  is used in conjunction 

with alum inium  choride (63( 64 ). A lum inium  hydrobora te has a lso  been 

considered a s  a  p ropellan t fo r ro ck e t and je t  engines and as  an ignition 

agent for je t  eng ines (65-79).

Aluminium H ydroborate - S tru c tu re  and Bonding

Soon a f te r  i ts  d isc o v e ry , alum inium  hydrobora te  w as being sub jected

to an e lec tro n  d iffraction  s tudy . The f i r s t  re s u lts  (80) indicated  that the

th ree  boron a to m s  w ere a rran g e d  in a p lane around the alum inium  t»t

angles of 120°. The boron w as said  to  be n ea r the c e n tre  of a trigona l

bipyram id fo rm e d  by the four hydrogens and the alum inium .

The exact positions of the hydrogen a to m s is s ti l l  not fully se ttle d .

In 1949 P rice  exam ined the in fra -re d  sp e c tru m  of alum inium  hydrobora te

(24) and concluded that the s tru c tu re  w as a bridged one s im ila r  to

diborane. P r ic e  adopted the suggestion put forw ard by Longuet-H iggins

(81) that the hydrogen atom s round the alum inium  atom  could be a rran g ed

either in a p r is m a tic  m anner (overall sy m m etry  D ) w here a lineon
joining the b r id g e  hydrogens is p e rp en d icu la r to the Al-B3 p lane, o r  an 

an tip rlsm atlc  (n ea r o c tah ed ra l, sy m m etry  D3 ) a rran g e m en t w here  the 

hydroborate g ro u p  is ro ta ted  through 54°44' (half the te tra h e d ra l an g le ) .

In addition an arran g em en t in te rm ed ia te  between the two could a lso  be 

envisaged. T h is  is also  sym m etry  D3 and te rm ed  a p r lsm a tlc . P rice  

concluded th a t the p rism a tic  m odel w as m ore  likely .

f M I M i
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T he e a r ly  d iffraction  w ork w as rean aly sed  and found to be co n sis ten t 

w ith the bridged s tru c tu re s  (82( 83). M ore rec en tly  a m ore re fined  

e lec tro n  d iffraction  study (18) produced a re s u lt  In favour of e i th e r  the 

p r ism a tic  o r  a sligh tly  a p r ism a tic  fo rm . The m o lecu lar p a ra m e te rs  

w ere  found to be Al-B, 214.3 p m i Al-Hu, 180 pm f B-Hu, 128 pm ,

B-Ht > 120 p m , /  HuAlHn, 73°, Z  HuBHu, 114°, /  HtBHt , 116°. 

U tilising  these  p a ra m e te rs ,  a  th e o re tic a l ca lcu lation  of the e lec tro n ic  

s tru c tu re s  of the p r ism a tic  and oc tah ed ra l m odels of alum inium  h y d ro ­

bo rate  w as undertaken (84). U sing the se lf-c o n s is te n t m olecular o rb ita l 

m ethod, it was concluded tha t the p r ism a tic  m odel w as m ore s tab le  by 

about 9 eV and thus a rg u es tha t th e re  ought not to be a lab ile  equ ilib rium  

between the two fo rm s . Inclusion of the 3d o rb ita ls  of alum inium  

sligh tly  s tab ilised  each  s tru c tu re .  T h is paper a lso  sta ted  tha t it was 

the n u c lea r repulsion  energy  that decided the favoured geom etry , 

being le s s  for the p r ism a tic  fo rm , and m o re  than com pensating  fo r the 

g re a te r  e lec tro n ic  energy  of the o c tah ed ra l fo rm . The e lec tro n  

d en s itie s  w ere  a lso  s ta ted  a s  being 1.99 fo r alum inium , 3 .1 2 fo r  boron, 

0 .9 6  fo r Hr and 1.15 for Hu.. T h is  shows that the alum inium  ch a rg e  has 

been p a r tia lly  rem oved  into the  hydrogen bridges and leaves the 

alum inium  positively  charged  to the extent of about one un it. The 

ca lcu la tions a lso  showed that th e re  was som e d ire c t Al-B bonding and that 

the alum inium  and boron o rb ita ls  involved in the bridge bonds w ere  

predom inantly  the alum inium  3s and 3pl( and the favourably  o rien ta ted  

2p_i o rb ita l of the boron .

A schem e showing the bonding m o lecu lar o rb ita ls  is a ttached . The

e ' and â ' m o lecu lar o rb ita ls  m ight be r e v e rs e d . T his u til is e s  ju s t

the alum inium  s and p o rb ita ls  a s  suggested  by ca lcu la tion , but an e a s ie r

qualita tive m anner to d e sc rib e  the bonding m ight be to co n sid er the

system  analagous to  d lborane as  follow s. The b ridge system  would then
2

be considered  to be m ade up an sp  and a p ^ o rb i ta l  from  each boron,
3 2the bridging hydrogen s o rb ita ls  and alum lum  sp d o rb ita ls .
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Fig- 1- 9_
M olecular E nerg ies  of A1(BH^)

E n erg ie s  eV

E lectron ic

N uclear

P rism atic

-1917.82

1524.70

O ctahedral

-1947.07

1563.15

Total -393.12 -383.92

Bond O rd e rs (trigonal p r ism a tic  )

Al-Hu B-Hu

3s 0 .284 0.374 2s

Spy 0.099 0.286 2py

3pz 0.213 0 .682 2pz

Bonding m o lecu lar o rb ita ls  ”5 3  h T ruw oH c
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Alum inium  Hydro borate  - P ro p e rtie s

P hysical P ro p e rtie s

Alum inium  h yd robora te  is  the only m e ta l hydroborate w h ich is a 

liq u id â t room  te m p e ra tu re . It is c o lo u rle ss  and m obile in the liquid 

p h ase , vo la tile  and unstab le  a t  room  te m p era tu re , evolving hydrogen 

(see la t e r ) .  In the condensed phase th e re  is very  little  in te rac tio n  

between the m olecu les,w hich  m ay explain the low m elting and boiling 

points (10b ) .

Selected Physical P ro p e rtie s  

P ro p erty  Magnitude

M elting p o in t/° C  -64 .5

Boiling p o in t/°C

V apour p ressu re /frim  Hg 1 19.5 at 0 C

log p = 9 .5 6 7 9 5 -1 7 9 9 .1 /T  

7. 808 - 1515/T 

-301

+ 44 .5  (ex trapo lated )
„o

log p

Heat of fo rm a tio n /k j rnol

R e fe ren ce

6

6

6

87

6

D ensity  / g  cm
-3 0.544

0.7866  - 0 . 000793/T  

R eactions

85
Ref. 85 a lso  g ives h ea t of
com bustion  and heat of,  h y d ro ly s is .

86

A lum inium  H ydroborate

Probably the m ost n o ticeab le  p ro p e r tie s  of alum inium  h y d ro b o ra te  a re  

its e x tre m e  m o is tu re  and a i r  sen s itiv ity . Aluminium hy d ro b o ra te  explodes 

v io len tly  in a i r ,  but it has been rep o rted  not to explode In d ry  oxygen at 

20° C ov er a p re s s u re  ra n g e  of 1 -300 m m . Explosions do o c c u r  at 110° 

(8 8 ) . F u r th e r  s tu d ies  show ed tha t it explodes in m oist oxygen a t 20° 

a lso  igniting o lefins (89 ). T he oxide and hyd ro x id eare  fo rm ed

A1(BH4 )3 + 12H20  

2A1(BH4 )3 +12 0 2 -

-> Al(OH )3 + 3B(OH )3 + 12H2 

A120 3 +  3 B2°3  + 12H2 °

T he h yd ro ly sis  is p roposed  to p roceed  in two steps (90) f an in itia l 

fo rm ation  of alum inium  hydroxide and diborane followed by a  slow er 

hyd ro ly sis  o f the la t te r .



A1(BH4 )3 + 3H20  fast > A l(O H )3 +  3/2B2H6 + 3H2

3/2B2H6 +  9H20  Sl° Wer > B(OH)3 + 9H 2

T he m echanism  of the f ir s t  step is in te re s tin g , bearing in m ind the th re e  

o bserva tions below. Aluminium hydroborate is known to fo rm  adducts 

with oxygen donors (e . g . e th e rs ) ;  the fo rm atio n  of species of the type 

MeOAl(BH4 >2 (see la te r )  with methanol and th e  hydrate of d iborane 

iso lated  by Jo lly  (91a, b ) . It is the re fo re  tem pting  to suggest that the 

m echanism  of the f ir s t  step m ay be fo rm ation  of a tran s ien t adduct, 

followed by rep lacem en t of the hydroborate g ro u p s  on alum inium  by OH, 

the hyd robora te  groups being liberated as BH3 and H2> e . g .

a k b h 4 )3 + h 2o  ------------ * [Al(BH4 )3 .O H 2 ]

v. sho rt life tim e

4
HOAl(BH4 )2 +B H 3 + H2 

etc

(HO)3Al + 3 /2B 2H6 + 3H2

Unpublished work byMcAvoy (92) shows th a t when reac tin g  alum inium  

hyd robora te  with sm all am ounts of w ater, d ibo rane can be detec ted .

With m o la r  quantities of 1 A1(BH4 )3 : 3H 20 ,  a flash reac tio n  occu rred ; 

a la rge  am ount of hydrogen was m easured  (9 m oles ), d iborane w as 

detected  and no alum inium  hydroborate w as rec o v e red . A brown solid 

rem ained  which was unidentified. T his r e s u l t  would seem  to ag ree  with 

the above schem e, the excess hydrogen being  explained in te rm s  of an 

a c c e le ra te d  alum inium  hydroborate decom position  in the f la sh  zone. In 

postu lating  in term ediate  compounds of the type (HO) A1(BH ) , it m ust
X  4  «j “ X

be re m e m b e re d , however, that hydro lysis o f  a d iborane with lim ited 

q u a n titie s  of w ater always re su lts  In iso la tion  of boric ac id  and un reacted  

d iborane, p resum ably  due to in term ediate d isp ropo rtiona tion  (9 3 ), so the 

additional d isproportionation  reaction  m u s t a lso  be considered  in the 

alum inium  hydroborate schem e.

2B2H6 + 6H20  --------------- > 2B(OH )g 4 - B ^  + 3H2

Postulate e^g . 3(HOBH2 )2 ---------- > 2B2 H6 + 2B(OH)3

3HOAl(BH )
4 2

(H O )3Al + 2Al(BH4 )3
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Exchange R eactions and Substituted Products

Both diborane and hydrogen exchange hydrogen with alum inium  

hydroborate w hilst d ib o ran e  also  exchanges boron (94). T he exchange 

between alum inium  h y d ro b o ra te  and deu tero  d ibo rane has been 

in te rp re ted  in te rm s  of th e  following reac tion  sc h e m e :-

A1(BH4 )3

B2°6  '

BH3 + B2°6 

bd3 + HA1(BH4 )2

HA1(BH4 )2 BH

2BD„

BH3BD3 BD„

A1(BD3H)(BH4 )2

10 .Boron exchange was shown by using B in the d iborane > and long reaction  

tim es showed that a ll tw elve hydrogens exchanged.

The exchange with deu teriu m  is believed to  p roceed  via two m echanism s 

as e ith e r  two o r th ree  o f  the hydrogen exchange m ore  rap id ly  than the 

rem a in d e r. The p redom inan t reac tion  has been suggested  to  be exchange 

of deuterium  with b o ran e  frag m en ts .

a i (bh4 )3

BH3 + ° 2  -

A1(H)(BH4 )2 

BH2D + HD

BH

Initial d issocia tion  producing  a borane fragm en t would a lso  be 

consisten t with p y ro ly s is  experim en ts which w ill be d iscu ssed  la te r  in 

conjunction with alum in ium  hydroborate decom position  and n . m . r .  

spec trum .

Aluminium h y d ro b o ra te  has been o bserved  to exchange te rm in a l 

hydrogens with boron a lk y ls  (this w o rk ). As w ill be shown by n . m . r .  

sp e c tra f the alum inium  spec ies  becom es a lky lated  on the boron and 

the boron alkyl becom es an alkylated  d lb o ran e( e .g .

H y  H
AI ^ B .  + E t

Z » ' -  / HB E t ------ * Al B ^  + Et BH

H "  Et /

E t2B H / BEt2

■ ; •- 
•: V  t
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S im ila r  behaviour has been observed  by S ch leslnger e t a l . (95) fo r 

u ran iu m  hydrobora te with tr lm e th y l borane, the com pounds U(BH^)g- 

(BH3 M e)and  UfBH^Me) being Isolated , and by M arks and Kolb fo r 

t r i s  cyclo  pen tadienyl u ran ium  hydroborate with tr ie th y l borane (96).

A lum inium  hyd robo ra te  is now known to undergo a g en e ra l 

exchange /red it-.ribu tion  reac tio n  with alum inium  alky ls to produce 

a lk y l alum inium  hyd ro b o ra tes  (97). T he f i r s t  alkyl alum inium  h y d ro ­

b o ra te s  produced w ere  the m ono and dim ethyl d e riv a tiv e s  iso la ted  by 

S ch le sin g e r et a l . (98), and they w ere  a lso  fo rm ed  as  by-p roducts in the 

a t te m p te d  p rep a ra tio n  of tin and lead h yd robo ra tes  by Holliday e t a l.

(61 ). The next alky l alum inium  hyd robora te  to be iso lated  was the 

d ie th y l alum inium  hydrobora te  of D avies and W allbridge (99) who 

sy n th e s ise d  it by s e v e ra l m ethods including exchange between tr ie th y l 

a la n e  and alum inium  h y d ro b o ra te . T h ese  w o rk e rs  concluded tha t the 

d ie th y l d eriva tive  was m o re  stab le  than the m onoethyl which they w ere 

not ab le to iso la te . T h is  w as in d irec t c o n tra s t to the known p ro p e r tie s  

of the m ethyl d e riv a tiv e s , w here t r e  d im ethyl d eriv a tiv e  is u n s tab le . 

Oddy repea ted  the p rep a ra tio n s  of the m ethyl and ethyl d e riv a tiv e s  and 

show ed that the p re p a ra tiv e  ro u te , u sing  red is trib u tio n  rea c tio n s  of 

alum in ium  alky ls with alum inium  hyd robora te  in c o r re c t  sto ich io m etric  

r a t io s ,  could be u sed  for m ethyl, e thyl, n -p ro p y l and isobutyl alum inium  

h y d ro b o ra tes  (100 , 101 ).

A12R6 + 4A1(BH4 )3 -------- > 6RA1(BH4 )2 R = Me E t
9

a i 2R6 + a k b h 4)3 ------- > 3R.A1BH2 4
R = Me, E t

A1R3 +2A1(BH4 )3 ------ -------->■ 3RA1(BH )„4 2 R = isobutyl

Oddyconcluded that the d ie thy l alum inium  hyd robora te  re p o rte d  by 

D av ies had been w rongly assig n ed , due to d ie th y l alum inium  hydroborate 

d lsp ro p o rtio n a tin g  to ethyl alum inium  b ls(hydrobora te  ). A re in te rp re ta tio n  

h a s  very  rec en tly  appeared  (101). O ther o b se rv a tio n s suggesting  the 

ex is te n ce  of alkyl alum inium  hydrobora tes have been by Brokaw and Pease 

in reac tio n s  of alum inium  hyd robora te  with o lefins (89, 102, 103), and by
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S im ila r behaviour has been observed  by Schleslnger e t a l . (95) for 

u ran ium  hydrobora te  with tr lm e th y l bo rane( the compounds U(BH^)g- 

(BHgMe)and U(BHgMe)^ being iso lated , and by M arks and Kolb for 

t r is  cyclo pentadienyl u ran ium  hydroborate with tr ie th y l borane (96).

Alum inium  hydrobora te  is now known to undergo a g en e ra l 

ex ch an g e /red is trib u tio n  reaction  with aluminium alky ls to produce 

alkyl alum inium  hy d ro b o ra tes  (97). T he f i r s t  a lkyl alum inium  hy d ro ­

bo ra tes  p roduced w ere  the mono and dim ethyl deriv a tiv es  iso lated  by 

S chlesinger et a l . (98 )p and they w ere  a Iso form ed as  by-products in the 

a ttem p ted  p rep a ra tio n  of tin and lead hydrobora tes by Holliday et a l.

(61 ). T he next alky l alum inium  hydroborate to be iso lated  was the 

d iethyl alum inium  hyd robora te  of D avies and W allbridge (99) who 

syn thesised  it by s e v e ra l m ethods including exchange between tr ie th y l 

alane and alum inium  h yd robo ra te . T hese  w o rk ers  concluded that the 

d iethyl d eriv a tiv e  w as m o re  stab le than the m cnoethyl which they w ere 

not able to  iso la te . T h is  w as In d irec t co n tra s t to the known p ro p e rtie s  

of the m ethyl d e riv a tiv e s , w here t r e  d im ethyl d eriva tive  is unstab le . 

Oddy rep ea ted  the p rep a ra tio n s  of the m ethyl and ethyl deriva tives and 

showed that the p re p a ra tiv e  rou te , using red is trib u tio n  reac tio n s  of 

alum inium  alky ls with alum inium  hydroborate in c o r re c t  s to ich iom etric  

ra tio s , could be used  fo r m ethyl, ethyl, n -p ro p y l and isobutyl alum inium  

hydrobora tes (100 , 101 ).

A12R6 + 4A1<BH4>3 --------------■>

a i (b h4)3

A1R 3 + 2A1(BH4 )3

Oddy concluded that the d iethyl alum inium  hydrobora te  rep o rted  by 

D avies had been w rongly assigned , due to diethyl alum inium  hydroborate 

d isp roportiona ting  to ethyl alum inium  b ls(hydroborate ). A re in te rp re ta tio n  

has very  rec en tly  appeared  (101 ). O ther obse rva tions suggesting the 

ex istence of alkyl alum inium  hydroborates have been by Brokaw and Pease 

in reac tio n s  of alum inium  hydroborate with o lefins (89 ,102 ,103), and by
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Brown and Subba Rao in the reac tio n  of alum inium  hydro  bo rate  with 

1-octene Indiethyl e th e r  (63). T he alkyl alum inium  hyd ro b o ra tes  a re  

a ll vo la tile  liquids and v ap o rise  a s  the m onom er in c o n tra s t to the lower 

alum inium  a lk y ls . Like the p a re n t compound^ alum inium  h y d robo ra te ; 

they have ex trem e a i r  and m o is tu re  sen sitiv ity  and a r e  also  observed 

to form  adducts with Lewis bases (100j 101 ). T he d ia lky l compounds 

a r e  le s s  stab le  than the m onoalkyl sp e c ie s , and the s ta b ili ty  of the 

m onoalkyl species d e c re a se s  as  the s ize  of the alkyl g roup  in c re a se s , 

such that isobutyl alum inium  bis hydroborate w as e x tre m e ly  difficult 

to pu rify  due to its ready  d isproportiona tion  on d is tilla tio n  (1 0 1 ).

O ddyhas a lso  shown tha t the reaction  of alum inium  hydrobora te with 

hydride d ialkyl a lanes can a lso  lead to the substitu ted  hydrido alum inium  

h y d ro b o ra tes . T h ese  a r e  v ery  unstab le m a te r ia ls > d isp ropo rtiona ting  in 

the g as  p h a se ( but a r e  of g re a t  in te re s t in that any sch em e to explain 

alum inium  hydroborate d eco m p o sitio n  p y ro ly sis  o r  exchange reaction  

u ses  alum inium  hydrobora te  d issocia tion  to a hydrido sp e c ie s  and 

borane as  an in itia l s tep .

A1(BH4 )3 -----------> h a k b h 4 )2 + bh3

(E t2A lH )3 + 6A1(BH4 )3 -----------> 3HA1(BH4 )2 + 6 EtAl(BH4 >2

3HA1(BH4 )2 d lS tllla ti° n-> A1H3 i  +2A1(BH4 )3

T h e hydrido alum inium  hydrobora te  spec ies  can be s ta b ilise d  by 

com plexing with Lewis b a s e s . T he tr im e th y l am ine adduct has been 

obtained in good yield by Ruff (104) by the reaction  of lithium  h y d ro ­

bo rate  with hydrido d lch lo ro  a lan e -trim eth y lam ln e  in benzene solution.

H AlCl-.NM e« + 2LIBH --------- > HA1(BH ) „ . NMe + 2LiCl2 3 4 4 2 H

E th e r adducts have been p re p a re d  by two m ethods, both using  diborane in

e th er solution e i th e r  on lithium  hydroalum lnate o r  a la n e .

LIA1H + 3/2B H4 Z b
e th e r HA1(BH ) .O E t + LIBH 4 2 2 4 (105)/

A1H3 - ° E t2 + B2H6
e th e r -> HAl(BH4 )2 .O E t2 (106)
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The re la te d  te trahydrofu ran  adduct w as also  p rep a red  ( 105) ( but in

te trah y d ro fu ran  solution th is  decom poses by ring  cleavage leading to

form ation  of butoxy alum inium  h y d ro b o ra tes . 
h 2
C - C H

H A1BH O | • ' ‘ > (C H O) A1BH
A 4 C — CH 4

h 2 2

An adduct containing two m oles of Lewis base has also  been re p o rte d  (107).
Paraffin

H2A1BH4 ,NM e3 NMe„ Oil H A1BH .2NMe„ 2 4 3

A com pound with the form ula H -A lB PL .C .H , has been iso lated  (45). Oddy2 4 6 6
has suggested  that the uncom plexed fo rm  of hydrido alum inium  bis h y d ro ­

borate  is m onom eric based on the n . m . r .  sh ift of the alum inium  hydrogen> 

and on the sam e b as is  has suggested  that bis hydrido alum inium  hy d ro ­

borate is d im e ric . The hydrido alum inium  hydroborate sp e c ie s  a re  

usually  Identified by an alum inium -hydrogen s tre tch ing  frequency  around 

1850 cm   ̂ in the in fra -re d  sp e c tru m .

A re c e n t re p o r t (174) m entions the p repara tion  and p ro p e r tie s  of the 

hydrido gallium  b is(h y d ro b o ra te). T h is  seem s to be m ore s ta b le  than 

the alum inium  sp e c ie s t although s t i l l  unstab le a t room  te m p e ra tu re .

The compound is vo latile ( s .v .p .  a t -45° Cf 10mm Hg)and shown to be 

m onom eric by estim ation  of the decom position reaction

GaB2H9 -> Ga + 3 /2H 2 + B 2H6

The s tru c tu re  is assigned  a te rm in a l Ga-H  and two doubly b ridged  hy d ro ­

borate  g ro u p s on the b asis  of spec tro scop ic  data . The com pound also  

undergoes exchange with tr lm e th y l gallium  and form s an adduct with 

tr im e th y l am ine.

T h is  apparen t s tab ility  of the gallium  over the alum inium  d eriva tive  

is a lso  seen for the d im ethyl gallium  d eriva tive  which is fo rm ed  in p re fe ren c e  

to the t r i s (te trahydroborate  ) on reac tion  of tr lm ethy l gallium  w ith d iborane 

(175). T h is  trend  in s tab ility  lsfof c o u rs e ^ o n tra ry  to the sch em e in 

alum inium  ch em is try  w here alum inium  hydroborate Is the m o re  s tab le .

Alkoxy alum inium  hydrobora tes have been observed  in te trahyd ro fu ran  

cleavage reac tio n s of hydrido alum inium  hydroborate adducts (see above( 

105)tandhave also  been p rep a red  p rev iously  by two other m ethods.
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A compound formulated asAlH (BH ) .3Al(OC-H ) has been d escribed
«3 «3 «3 \j /  o

as a co lo u rless  llqu id> d is tillab le  in vacuo, obtained from  the action of 

alum inium  hyd robora te  on alum inium  isopropoxide in te trahydrofu ran  

(108), and alkoxy alum inium  hydroborates have a lso  been form ed from  

alkoxy hydrido a lanes and diborane in e th e r  solution (109).

efher
b2h 6 + r o a ih 2 ■' .....> ROAl(BH4 )2

T his w ork w illg iv e  d e ta ils  of p rep ara tio n  an d  som e sp ec tro sco p ic  

p ro p e rtie s  of alkoxy alum inium  h y d ro b o ra te s ( ROAl(BH4 >2 (R = Me, E t ) 

from  the reac tio n  of alum inium  hyd robo ra te  with alkoxy bo ranes and of 

th ioalky la lum inium  hyd robo ra tes , a c la s s  o f com pounds not rep o rted  

prev iously , RSA1(BH4 )2 (R = Me, E t, benzyl ), p rep a re d  by the action 

of thio ls on alum inium  hydrobora te .

The com pounds a re  rep o rted  to be w hite  a sso c ia ted  so lid s  (believed 

to be d im e ric )  and showing a much d e c re a se d  se n sitiv ity  to m o is tu re  and 

a ir  over the p a re n t compound> alum inium  h y d ro b o ra te ( and no observed  

tendency tow ards adduct fo rm ation  with d ie thy l e th e r .  T he associa tion  

is p red ic ted  to b ev ja  the alkoxy oxygen (1 0 9 ). An alkoxy beryllium  

hydroborate has  recen tly  been p rep a red  an d  c h a ra c te r is e d . T his is 

believed to be d im eric  (182).

Siloxy sp e c ie s  m ay be p rep a red  by the reac tio n  of lithium  hydrobora te  

with tr im e th y l siloxy alum inium  d lch lo rid e  (110 ).

4LIBH + [R 3SiOAlCl2 ] 2 -------- } [ R g S iO A liB H ^ ^  + 4UC1

The compound is d im eric  with bridging oxygens , a s  a r e  the co rrespond ing  

hydrido and ch lo ro  deriva tives [RgSiO AlXBH^^ (X = H( C l) .  R eaction 

of these  with am ines o r  phosphines does n o t lead to adduct form ation as  

in nea t alum inium  hydroborate ch e m is try , but d irec tly  to boron loss a s  

a borane adduct.

Several d im ethylam ino  deriva tives of alum inium  hyd robora te  now 

ex is t. The in itia l p rep a ra tio n s m ade use o f  the reac tio n  of lithium  h y d ro ­

borate on the co rresponding  am ino ch lo ro  alane (104).
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C l2AlNMe2 + 2L 1BH4 -----------} M e2NAl(BH4 )2 + 2LIC1

HAlClNMe2 +  LiBH4 ------------ > H AlNM e.BH. +  L iC l 2 4

T hese w ere  found to be a s so c ia te d  in benzene solution to d eg rees  between 

2 and 3 by n itrogen b rid g in g . A m o re  re c e n t m ethod of p rep a rin g  

Me NA1(BH )„u sed  the reac tio n  of d ibo rane on the re la te d  hydrido 

compound (110 )j and a  s im ila r  com pound h as the d im ethyl am ino group 

bridging between the alum inium  and the boron atom s a s  H^BCN'Me^) A l- 

(BH^)^ (111 ,112). T h is  compound can be p rep a re d  by the action of 

excess d iborane on H A l(N M e)2, Al(NM e2 )3 o r  [ H2B(NMe2 )2 "]2AlH ¡n 

d iethyl e th e r  so lu tion . The product is a c o lo u rle s s , sligh tly  vo la tile  

solid  which exhibits a t r ip le t  (J 1 -| = 115 Hz) in its  ^ B  n . m . r ..D ~ IJ
spec trum  which is e n t ire ly  co n sis ten t w ith the fo rm u lated  te rm in a l 

BH^. T re a tm en t of the  compound with one m ole of tripheny l phosphine 

rem oved a BH as BH .PPh leaving H B(NMe ) AIBH although this
O «5 *5 Z. Z  4

could not be se p ara te d  fro m  the s ta r in g  m a te r ia l.  An im pure , oily

compound form ulated  a s  (Me„NBH„ )„A1BH re su lts  from  the reaction  of2 3 2 4
alum inium  h y d robo ra te  with d im ethyl am ino borane (113). It exhibits 

s im ila r  chem ical p ro p e r t ie s  to the com pound H^iHNM e^^AHBH^)^.

A few ch lo ro  a lum in ium  h yd robo ra tes have been re p o r te d . ClAllBH^)^ 

itse lf  ap p ears  to be an unstab le  liquid (m elting around  - 10°  C ) and 

rap id ly d isp ro p o rtio n a tin g  to the d ich lo ro  compound and alum inium  h y d ro ­

b o ra te . T he dichloro com pound is again unstab le ; it is solid  and vo latile 

and d ispo rpo rtiona tes  below room  te m p e ra tu re  to alum inium  hydroborate 

and alum inium  ch lo rid e  (114 ,59a).

2C1A1(BH4 )2 — ------- => A1„A1BH + A1(BH )2 4 4 ,

3C1»A1BH -----2 4 -------> A1(BH4 )3 +2A1C13

T he ch lo ro  alum inium  h yd robo ra tes a r e  com pounds which again can be 

s tab ilised  by com plex lng  with d ie thy l e th e r  (115, 116-120). T he la tte r  

re fe re n c e s  by R ussian  w o rk e rs  a lso  d esc rib e  the sp ec tro sco p ic  p ro p e rtie s  

of the adducts of the ch lo ro  alum inium  h y d ro b o ra te s . The adducts a re  

m onom eric in the c ry s ta llin e  phase (117) and a re  liquids a t room  

tem p era tu re  (116). A ssignm ents o f v ib rational freq u en c ies  w ere  m ade
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(1 1 8 ) and an In crease  in ionic c h a ra c te r  of the hyd robora te  group over 

th a t in alum inium  hydroborate is suggested . T h e ir  n . m . r .  sp ec tra  

have been rec o rd e d  (119 ).

The only o th e r halo com pound rep o rted  Is the d lfluoro  compound 

a s  a by-product of the rea c tio n  of alum inium  hyd robora te  w ith heavy 

m e ta l flu o rid es . Its isolation has not been rep o rted  (9, 59a ).

Anionic Alum inium  H ydroborate Compounds

Anionic alum inium  hydrobora te  com pounds w ere  f i r s t  suggested  in

th e  1950's (121-126). Salts such as  LiAl(BH ) w ere  believed to be4 4
fo rm ed  when hydride spec ies  w ere  rea c te d  with e i th e r  alum inium

hydrobora te  o r  d iborane in e th e re a l so lu tions.

LiH + A1(BH4 )3 i
ether.. LIA1H(BH )4 3

l ib h 4 + A 1(BH4 )3
e th er „ LiAl(BH4 )4

LiAlH 4* BnH 
4 Z o

e th e r .
l ia ih 2 (b h4 )V

A possib le  s tru c tu re  for [Al(BH^)^] was suggested  with two doubly 

bridged  and two singly bridged bydroborate g ro u p s . Ashby e t a l . (105) 

concluded that som e of the stab le  anionic h yd robo ra tes rep o rte d  In 

te trahydrcfuran  solution w ere the butoxy cleavage p ro d u c ts t but ag reed  

com pounds of the type LiA lH^BH^.nOEtj could ex is t although the 

p re fe r re d  form ulation w as m ix tu re s  of adducts of LIAIH^ and BH^.

The f A1(BH ) 1 Ion has now been iso lated  by s e v e ra l w o rk e rs ;
4 4

w ith  the large cation  [C gH ^N C gB ^] by Noth e t a l . (1 2 7 ), with po tassium  

(1 28,129) and w ith te tra  alkyl am m onium  ca tions (130-132) by R ussian 

w o rk e rs . The te tra  ethyl am m onium  sa lt of [A l(B H^)^] w as shown to 

contain  four double Hydrogen bridge bonds by In fra -red  and X -ray  

techniques and is stab le to 150° C (130). T he po tassium  s a lt  is s tab le  

to  120° C (128) but the te trab u ty l slightly  le s s  so , decom posing a t 90° C 

(132).

Several p ap e rs  have dealt w ith the addition of lithium  hydride o r  

ch lo ride  o r  hydrobora te  to alum inium  hy d ro b o ra te . S pectra  Indicated 

th e  following equ ilib ria  with the ionic spec ies  predom inant a t room  

te m p era tu re  and the equ ilib rium  going to the r ig h t If the te m p era tu re  

w as lowered o r  the solvent rem oved  (45, 133-135).
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X = BH4, C l, Br, H

If lithium  deu teride  was used  and the so lven t rem oved, the product not 

only contained deu terium  attached  to alum inium  but a lso  in the hydro ­

bo rate  g ro u p s . The suggested  m echan ism s w ere  in te rm o lecu la r lo ss

bridges to put the deu terium  into the hydrobora te  g ro u p s.

T h ere  have been m any sh o rt p ap e rs  recen tly  on the sub jec t o f mixed 

halo hydroborato  anionic alum inium  sp e c ie s  by a lm ost exc lusively  

R ussian  w o rk e rs  (136 -145 ).

An am in e  com plex of te trah y d ro b o ra te  trihyd roalum inate  has been 

rep o rted  (146) a s  being form ed from  tr im e th y l am ine a lane  and te trab u ty l 

am m onium  te trah y d ro b o ra te .

and is sta ted  to have a sing le hydrogen bridge between boron and alum inium  

on the basis  of in fra -re d  ev idence. Semenenko and his co -w o rk e rs , how ever, 

working on the in te raction  of com plexes M [A1(BH4 >4 ] with am m onia re p o r t 

that the reac tio n  p roceeds to p roduce MBH^ and [ A1(MH^ )^ jlBH^)^ (144).

An in te rm ed ia te  adduct w as not re p o r te d , but th is is not su rp ris in g  as ex cess  

am m onia w as used and the p re fe re n tia l reac tio n  of alum inium  hydroborate 

with am m onia is to ab so rb  2 o r  6 m o les  (see la te r ) .

Adducts of Aluminium H ydroborates

The In teraction  of alum inium  h y d robo ra te  with Lewis b ases  was f ir s t  

noted by S chlesinger e t a l . who obtained adducts of alum inium  hydrobora te  with 

d im ethyl e th e r  and trim e th y lam in e . T h is  is an In teresting  reaction  in that, 

although the o rb ita ls  of alum inium  a r e  involved in the hydrogen bridge 

bonding to boron, they a r e  s ti l l  capab le  of in te racting  with donors of th is  

s o r t .  The m ajo r s ite  of e lec tro n  defic iency  In the alum inium  hydroborate 

m olecule is the alum inium  atom ,and It Is not su rp ris in g  tha t the donor 

m olecule bonds p re fe re n tia lly  a t th is  s i te .  With ce rta in  m o lecu les, the 

donor can a lso  attack  a t boron which re s u lts  in breaking of a bridge bond 

and form ation of a borane adduct.

of BH^ o r  an in tram o lecu la r re a rra n g e m e n t involving sing le  hydrogen

AlH3NMe3 Bu.N.BH 4 4
* Bu4N+[N M e3AlH3 (BH4 )l
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Since the in itia l obse rva tion  by S ch leslnger e t a l . . the m a jo r 

contribu tion  to th is  field  has been by W allbridge with various co -w o rk e rs  

(147-156, 30), o th e r con tribu tions having com e from  se v e ra l o ther w orkers 

(157- 169, 118 , 119, 8 ,48 , 104).

Two m ajo r so r ts  of ligand sp ec ie s  a re  form ed w here the sto ich iom etry

is e i th e r  of the type A1(BH4 )3 .L  o r  A1(BH4 )3 . 2L, although rea c tio n s  to

form  A1(BH ) . 4L (L = NH o r  N H ) and A1(BH ) , . 6 L (L = NH_) a re  4 3 3 2 4 4 3 3
known. With ligands containing a donor atom  from  group VIB of the 

period ic  tab le, only 1:1 adducts have been obtained, even a t low 

te m p e ra tu re . T h ese  adducts a re  s tab le  tow ards decom position at room  

te m p era tu re  under in e rt a tm osphere  and a r e  soluble in ex c ess  of the 

ligand which is used  in th e ir  p rep a ra tio n  ; thus alum inium  hydroborate 

is condensed on to the ex cess  of ligand, s t i r r in g  fo r se v e ra l m inutes 

at 0° C and then rem oving  the ex cess  at 0 °  C . Adducts have been 

p rep a re d  with d im ethyl e th e r , d iethyl e th e r , d i-Isopropy l e th e r ,  te tr a -  

hydrofuran , dim ethyl sulphide and te trahydro th lophene (this w o rk ).

All a r e  involatile liquids at room  te m p era tu re , except fo r the d i- is o ­

propyl e th e r adduct which is a solid  and possib ly  the te trah y d ro th io - 

phene adduct which w as observed  to deposit c ry s ta ls  on standing in 

which the te trahydro th iophene ring  w as Intact (by n . m . r .  ). In co n tra st 

the te trahyd ro fu ran  adduct deposits a sm a ll num ber of c ry s ta ls  of 

butoxy alum inium  bis hydroborate due to rin g  opening.

With com pounds containing the donor atom  from  group VB, the 

situation  Is sligh tly  d iffe ren t. M ore c a re  m ust be taken in the p reparation  

w here ex cess  alum inium  hydrobora te  and a hydrocarbon solvent m ust be 

u sed . If th is c a re  is not taken, then c leavage of the hyd robo ra te  bridges 

can o cc u r accord ing  to

r 3x + a i(bh4 )3 . x r 3 ------------> h a i(bh4 )2. x r 3 + bh3x r 3

(X = N, P, A s)

1:1 adducts have been form ed with NMe3, NM ejH, NH3, (possibly) NHjMe,

NEt_, PMe_, PPh and A sM e. and h y d raz in e . 1:2 adducts have been 
0 * *5 0

form ed with NMe3 , NHjM e, NH3 andPM e3< A m ixed adduct with PMe3 

and NMe3 has a lso  been p re p a re d . All these  compounds a r e  solid  with



the exception of the d im ethyl am ine adduct ( and a re  re la tiv e ly  stable 

a t room  te m p era tu re  under n itrogen except fo r the trlphenyl phosphine 

adduct. Information on the mono am m oniate is not av a ilab le . The 

1:2 adducts with tr im e th y l am ine and tr im e th y l phosphine decom pose 

slowly a t room  te m p e ra tu re ( re leasin g  the 1:1 species and cleavage 

p ro d u c ts .

The streng th  o fth e b o n d  between alum inium  and the co-ord inating  

atom  has been given a re la tiv e  sca le  by d isp lacem ent reac tio n s to 

rev e a l the o rd e r

N «  P >  As and O > S

The ex istence of a bond between alum inium  and the donor atom has been 

d ire c tly  observed by X -ray  d iffraction . T he m ost extensively  studied  

compound is Al(BH4 )g .N M eg( which has been subjected  to ana lysis  a t 

25° C and -160° C (153-156 )( the study of the la tte r  te m p e ra tu re  

determ in ing  the positions of the hydrogen a to m s. At 25° C the 

a rran g e m en t of the th ree  borons and the nitrogen is e ssen tia lly  t e t r a ­

h ed ra l around the alum inium  w hilst the th re e  carbons and the alum inium  

around nitrogen is a lso  te tra h e d ra l.  T he two te trah ed ra  adopt a 

stag g ered  configuration . The bond d is tan ces w ere Al-B 219 pm t A l-N  

201 pm  and C-N 158 pm . At -160° C the te tra h e d ra l configuration 

around alum inium  is d is to rted  as  one boron m oves away from  the

nitrogen  and the o th e r two tow ards it ( N-Al -B^ 1 2 2 ° ;^ -N-Al-B^ g,
0 9 100 ). The alum inium  bridge hydrogens with the nitrogen ligand a tom

m ake up a d is to rted  pentagonal bipyram id arran g em en t around a lum in ium .

The ap ica l positions a re  the nitrogen and a bridge hydrogen. Bond

d istan ces w ere A l-N 200pm ; Al-B 224 pm; Al-Hu, 188pm ; B-Hu,

143 pm ; B-Ht 119 pm .

T he X -ray  data on the tr lm e th y l a r s in e  adduct (155) shows that th e

s tru c tu re  is s im ila r  to that of the low te m p era tu re  form  of the tr im e th y l-

am lne adduct. The data w as considered  by the w o rk ers  to be of p o o r

quality  and fu rth e r  im plications of the d isto rtion  w ere not pu rsued .

V alues that w ere given w ere  A s-A l-B . 121°; ^ A s-A l-B  93°;3
A1B 247 pm ; A1B 218pm ; A l-As 255 pm .

1 L «J
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T he s tru c tu re  of the m onoam m onlate adduct h a s  been rep o rted  

(158p 159) as  havlngtw o independent types of m onom eric  m olecu les, 

each having d iffe ren t in te ra tom ic d istances and a n g le s .  T h e  average 

values quoted w ere  Al-B 223 pm , A l-N 197pm .

C leavage rea c tio n s  by ex cess  am ine o r phosphine have been m ost 

ex tensively  studied fo r the d i-  and tr im eth y l a m in e s . Addition of 

ex cess  tr im e th y l am ine re su lted  in an uptake of up  to four m o les and 

form ation of a borane adduct,

e .g .  A1(BH ) + 4NMe ------------> A1H .NMe +  3BH .N M e.
4 3 3 3 3 3 3

At an in te rm ed ia te  s tage  hydride alum inium  bis (hydro  b o ra te ) tr lm e th y l 

am ine could be iso la ted .

With d im ethy lam ine  in solution, up to six  m o le s  of am ine a r e  

absorbed ,and  in the absence  of a solvent a fu r th e r  one and a h a lf.

A1(BH ) +4NMe H -------4 3 2 -----> AlH3 .N M e2H + 3BH3.N M e2H

AlH3 .N M e2H + 2NMe2H ----- -------> Al(NMe2 )3 + 3 H 2

and
3BH3NMe2H ---------------»  3BH.NMe + 3H 

2 2 2

3/2BH2NMe2 + 3/2N M e2H ----------> 3/2BH(NM e2 )2 + 3 /2H 2

Although the p re fe r re d  reac tio n  of alum inium  h y d ro b o ra te  with am m onia

Is to fo rm  a 1:2 adduct (148), the reaction  of e x c e s s  of am m onia with

alum inium  h y d robo ra te  re su lted  in the form ation  of a w hite so lid

A ^BH^Jg.ôNH^. It w as insoluble In e th e r  o r  hyd rocarbon  so lven ts

(149, 163-166, 168, 160). O rig inally  fo rm u la ted  a s  the ionic compound

[A1(NH-),1^+ 3(BH * ) it was la te r  am ended to [ A1H (NH ) ] -  
o o 4 ¿ 6  4

[EH^iNHgJ^iBH^)^] by B n .m . r .  stud ies (1 6 8 ). Some la te r  w o rk e rs

s t i l l  p re fe r  the ionic form ulation  (160).

H ydrazine behaves In a s im ila r  m anner, fo rm in g  a 1:1 adduct, and
3+ -with ex cess  a com pound best fo rm ulated  as  A1(N H ) (BH ) (167).

4 3

V ibrational Spectra of Aluminium H ydroborate

In 1949 P rice  published the f irs t  in fra -re d  sp e c tru m  of alum inium  

hydroborate (24) and concluded that the m olecu le  contained double 

hydrogen b ridges between the boron and the a lu m in iu m . In p a r tic u la r ,
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ag reem en t with the sp e c tru m  of diborane w ere  bands a t 2559 cm  and 

2493 cm   ̂ in a region w hich had been designated as  a B-Ht s tre tch ing  

reg io n . Two bands a t 2031 cm  1 and 15C0 cm 1 w ere  considered  

analagous to bridge v ib ra tio n s  of diborane at 1860 cm   ̂ and 1602 cm 

Ram an sp ec tra  have been r e p o r te d > including a com m unication of re su lts  

by Rice and Young which h a s  not been fully published, by se v e ra l w o rk ers  

(169,(also see 24), 170, 171 ). M ore recen tly  a com bined Raman and 

in fra -re d  study, including th e  c ry sta llin e  s ta te  of alum inium  hydrobora te , 

has been published by Sem enenko e t a l . (172),but by fa r  the m ost detailed  

stud ies a re  those of M a rr io tt  (23) an d N ib le r  and Coe (173) which w ill be 

considered  h e re . The ass ig n m e n ts  for A l( ' ^BH^)^ a r e  given fo r both 

p ap e rs  in T able 1.3. As can  be seen from  the tab le , the assignm ents 

given by these au thors d is a g re e  in s e v e ra l p la ce s . In p a r tic u la r , the 

band a t 2032 cm  ̂ is a s s ig n e d  by M a rrio tt to the sy m m etric  B-H^ 

s tre tc h  with the an tisy m m etric  B-Hv* s tre tc h  being the shoulder 

observed  in the in fra -red  sp e c tru m  at 1940 cm . N ib ler, how ever, 

a ssig n s the band at 2032 c m   ̂ to the an tisym m etric  B-Hy and the 

sym m etric  B-Hy. to the band a t 2059 cm ^, which is a strong  band in 

the solid s ta te  spectrum  bu t not v isib le in the gas p h ase . In th is  Instance 

th is author p r e f e r s  the a ssig n m en t of M arrio tt because , as Oddy has 

shown (97, 100), that in th e  spectrum  of the d im ethyl alum inium  h y d ro ­

borate  , the shoulder o b se rv e d  a t 1940 cm   ̂ for alum inium  hydroborate 

has becom e a very strong  band, shifted sligh tly  to 1960 cm The 

assignm ent of N ibler of th e  1940 cm  1 band as a com bination of the 

sym m etric  Al-B s tre tch  a n d  the sy m m etric  bridge s tre tc h  would not 

seem  to ag ree  with th is o b se rv a tio n . The o ther m a jo r d ifference is 

n ea r  1500 cm . W hereas M arrio tt a ss ig n s  the b ridge s tre tc h  at 

1501 cm  1 and the sh ear a t  1440 cm \  N ibler su g g ests  the sh e ar at 

1505 cm  1 and the bridge s tre tc h  a t 1425 cm .

Oddy found the sp e c tra  of the alkyl alum inium  b is(h y d ro b o ra te ) 

s e r ie s  (alkyl =M e, E t, r^-Pr, 1_-Bu) to resem b le  each  o ther very  c losely  

in position of bands a t tr ib u tab le  to the hydroborate g ro u p . Thus a ll the 

B-Hr bonds w ere n ea r 2550 cm  ̂ and 2485 cm  ̂ and the bridge



T able 1 . 3a

In fra -red  v ib rations of alum inium  hydrobora te

Raman /c m  ^ r / " 1 I . r . / c m A ssignm ent (23)

dp 2551 m s 2556 s V15 as B-Ht s tre tc h

2490 s V16 s B-Ht s tre tc h

p 2473 v s ' V1
s B-Ht s tre tch

2215 m 2 x V19
p 2079 v s V2

s B-Hy s tre tc h

2032 vs V17 s B-Hy s tre tc h

dp 2000  m V24 as B-Hy s tre tc h

1940 sh
V11

as B-Hy s tre tc h

p 1930 m w ?

1501 vs V18
s b ridge s tre tc h

p 1501 s V3 s bridge s tre tch

1440 sh V12
bridge sh e a r

dp 1385 m w V25 bridge sh e a r

dp 1 1 5 2 m ° 26 BH2 tw ist

p 1122  m V4 BH2 d e fo rm  tlon

dp 1113 mw 1113 vs V19
BH2 deform ation

dp 976 m 978 w
V20

BH2 rock  in plane

920 vw V13 ? BH2 ro ck  out of p lane

dp 603 m 606 vs
V21

as Al-B s tre tch

p 511 vs V5
s Al-B s tre tch

470 w ?

dp 323 m 325 w
V22

Al-B deform ation

220 w V14 Al-B deform ation
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T ab le 1 ,3b

In fra -re d  v ib ra tions of alum inium  hydroborate

R am an /cm  ^ I . r . / c m  1 A ssignm ent (173)

2650 m sh V + V 
2 21

dp 2550 s 2555 vs v as B-Ht s tre tc h

2490 vs V as  B-Ht s tre tc h

p 2475 vs s B-Ht s tre tc h

2218 s V , + V _4 19
p 2075 vs s B-Hp s tre tc h

2030 vsb V as B-Hp s tre tc h

dp 2000  m V + V 
18 21

1930 m sh + V5 18

p 1925 m 2 V
20

1505 vs bridge sh ear

p 1503 s Vg s b ridge s tre tc h

dp 1386 m sh 1425 ssh V 0 s bridge s tre tc h
1 o

dp 1155m v26 BH2 twiSt
p 11 24 m v„ BH^ deform ation 4 2
dp 1114m 1112 vs V - BH„ deform ation 

19 2
dp 979 w 981 w Vjq  BH^ rock in p lane

765 wsh BH2 rock  out o f plane

dp 601 m 605 vs v a s  A l-B s tre tc h

p 512 s Vg s A l-B s tre tc h

dp 3 2 0 w 324 m v „ . A l-B deform ation 
22

222 m V . Al-B deform ation 14
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stre tch in g  and BH^ deform ation m odes ce n tred  around 2100  cm   ̂ and 

1115 cm   ̂ re sp e c tiv e ly . T h is  would Indicate that the bonding in the 

hydroborate g roups in these  m olecu les is v e ry  s im ila r j and that they 

a re  very  little  influenced by the alkyl g roup .

A cross the s e r ie s  A1(BH, )„ MeAl(BH , ) „  Me„AlBH, the stre tch in g  4 6’ 4 2 2 4
v ib rations, B-Ht , d ec rease  in frequency by sm a ll am ounts a c ro ss  the 

s e r ie s > accom panied by a s lig h t in c rease  in the positions of the 

te rm in a l BH^ deform ation and rocking m o d es. The m ost d ram atic  

change is in the band a ttr ib u ted  above to the asy m m etric  B-Hy s tre tc h  

which is a weak shoulder fo r alum inium  hydrobora te  and becom es the 

s tro n g est band in the region fo r  the d im ethyl com pound. T h is d ram atic  

change was not fully explained, but the o th e r  tren d s m entioned w ere  

explained on the b as is  of inc reasing  charge  density  at the hydroborate 

group ren d erin g  it m ore ionic in natu re  and req u irin g  movem ent 

tow ards coincidence of theB -H y and B-Ht m odes and thus s tren g th en i-g  

the bridge bonds at the expense of the te rm in a l bonds.

A s im ila r  trend  is o bse rved  when the alum inium  hydrobora tes a re  

com plexed with ligands. T h re e  se ts  of bands could be defined. T hose 

bands which can be c o rre la te d  with the f re e  ligand> those bands which 

can be co rre la te d  with the o rig in a l alum inium  hydroborate fram ew ork 

and those bands which a r is e  from  the m e ta l to donor atom  bond.

The doublet a r is in g  from  the v ib rations of the B-Ht Is moved 

approxim ately  60 cm  ̂ to low er frequency com pared  to the positions in 

the paren t compound and the bands from  the bridging B-Hy, unit move 

approxim ately  120 cm 1 to h igher frequency . As sta ted  above> the 

convergence of the bands due to the te rm in a l and bridge m odes is seen 

as  an Increase  in ionic c h a ra c te r  of the hydrobora te  g ro u p s . The B-Hy, 

stre tch in g  reg ions show one strong  band and a shoulder fo r alum inium  

hydroborate ligand species and alkyl alum inium  bis (hydroborate) ligand 

sp ec ie s , but fo r  the d ialkyl alum inium  hyd robo ra te  ligand species th is 

region again shows two bands but It Is u n c le a r  which band is the sym m etric  

and which the an tisy m m etric  s tre tch  (97). Only one band,which can be 

assigned  to v ib rational m odes of the bridging AlH^B group ing ,appears in 

the adduct sp e c tra  around 1450 cm  , and is  assigned to the s tre tch in g  m ode.

C om parison of the o bserved  frequenc ies of the sym m etric  and a n t i­

sym m etric  C -O  bands of e th e ra te s  enabled pred ic tions of the re la tiv e  Lewis



ac id itie s  of se v e ra l alum in ium  species to be m ade. 

The o rd e r  w as as  follow s :-

55.

A1(BH4 )3 >  RA1(BH4 )2 > R 2A1BH4 > RgAl

MeAl(BH ) > EtAl(BH ) > i BuAl(BH )„4 2 4 2 — 4 2

T h is was applied  m ore g e n e ra lly  to 

A1X3 > RA1X2 > R 2A1X > R3A1 (X = C1, Br, H, BH4 >

Alum inium  ch lo ride and alum inium  hyd robora te  w ere  found to be of 
the sam e o rd e r  of Lewis ac id ity .

The ran g e  into which the C-O frequency fell a lso  led to a m ethod of 

prediction  of the num ber of alkyl groups to alum inium  thus:

R gA l.O Et

R2A lX .O E t2

RAlX2 .OEt

AlX3 .O E t2

Bands a ttr ib u tab le  to the ac tua l

1034 - 1044 cm 

1021 - 1031 c m ’ 1

1005 - 1018 cm  1

990 - 1002 c m ’ 1

alum inium -ligand  atom  bond have not been

Identified because of the difficulty  of assignm en t and the mixing of various 

m odes at the w avenum bers req u ired .

N uclear M agnetic R esonance of Aluminium H ydroborates

The n u c lea r  m agnetic resonance sp ec tru m  of alum inium  hydroborate 

has been the sou rce  of m uch co n tro v e rsy  in explaining the changes that 

a re  o bse rved  when the sam p le  is trea ted  d iffe ren tly . Cooling the 

compound w ill be co n sid ered  f i r s t> and w arm ing it secondyt as th is a lso  

has a bearing  on alum inium  hydroborate decom position .

A t25°C  th e 1H n . m . r .  spectrum  of pure alum inium  hydroborate is a 

h road(esse n tia lly  s tru c tu re le s s  resonance which is re ta in ed  on cooling to  

the m elting  point (3 8 ,9 7 ) . Oddy gave the position of the ce n tre  as 0 .7  

ppm and the width at half height of about 325 Hz. Oddy then subjected a

12% solution of alum inium  hydroborate In deu te ra ted  toluene to the sam e
o otre a tm e n t. At 10 C the above signal is observed , but at -10 C a dip

appeared In the top of the signal and between -15° C and -50° C a

broadened q u arte t was re p o r te d . On fu rth e r  cooling th is  co llapsed  to

an apparen t doublet, and then fu rthe r to a sing let a t -70° C . T his
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continued to sh a rp e n  as the te m p e ra tu re  w as low ered to -90° C . 

a t th is te m p e ra tu re  was quoted a s  52 H z. T h is  obviously shows that 

the bridging hydrogen , te rm in a l hydrogen sc ram b lin g  m echanism  is 

s ti l l  operating  a t  th is te m p e ra tu re  o r two se p a ra te  reso n an ces  for them  

would be o b se rv e d . T hese changes a re  a s c r ib e d  to the in c reased  ra te  

of quadrupole re la x a tio n  caused  by the d e c re a se  in te m p era tu re  and 

consequent in c re a se d  v isc o s ity . T h is quaurupo lar re laxa tion  does not 

occur for the compound as  it is le s s  v isco u s than its toluene 

solution even a t  the m elting  po in t.

S im ilar e ffe c ts  a re  o bse rved  in the " B n . m . r .  sp e c tru m . The 

spectrum  of the p^-re liquid rem a in s  in v a rian t as a 1:4:6:4:1 quintet 

(J11 89 Hz ) and a sh ift of -3 5 .5  ppm down to the m elting  point.

In toluene (or to lu e n e /cy c lo p en ta n e ) so lu tion , low ering the te m p e ra tu re  

broadened the s ig n a l such th a t 'a t  -60° C the signal rese m b le d  a 

broadened tr ip le t,a n d  th is  broadened fu r th e r  until a sing let with half 

width 710 Hz id e n tic a l with the h e te ro n u c le a r  double resonance decoupled 

spectrum  was ob ta in ed . T h is  again ind icated  decoupling of boron from  

hydrogen by quadrupo le  re la x a tio n . T he sp e c tra  in the m ixed solvent 

showed the s a m e  developm ent, but at a low er te m p era tu re  such that 

a t -110° C co m p le te  decoupling was not o b se rv e d . T hese  conclusions 

on v iscosity  an d  quadrupo lar re lax a tio n  w ere  v e r if ie d , using  a p lot of 

width at half h e ig h t aga in st v isco sity  over te m p e ra tu re  as  had been 

recen tly  done for zirconium  hyd robora te  (177).

The s p e c tra  of dim ethyl alum inium  hyd robo ra te  behaved in an

analagous m a n n e r . The ^H n . m . r .  sp e c tru m  showed a q u arte t a t room
27tem p era tu re  Indicating  that coupling to A1 had a lre ad y  been lost due to 

the increased  v isc o s ity  and a le s s  sy m m e tr ic a l env ironm ent around 

alum inium . C ooling washed out o the r coupling at -30° C . All the alkyl 

alum inium  h y d ro b o ra te s  exhibited the q u a r te t s tru c tu re  in th e ir  room  

tem p era tu re  n . m . r .  sp e c tra  and a qu in te t s tru c tu re  In th e ir  

sp e c tra . F u r th e r  cooling ex perim en ts  w ere  not p e rfo rm ed .

Heating alum in ium  nydrobora te  leads to  com plex changes, and these  

have now been d isc u sse d  by five g roups of w o rk ers  (23, 38, 97, 173, 178).



Ogg and Ray (38) showed tha t on heating  a t 80 C and then rap id ly  

cooling the sam p le , a q u arte t signal w as form ed in the n . m . r .  

spectrum  which re v e rte d  back to the 'n o rm a l' broad signal over a 

period of days at room  te m p e ra tu re . T h is  was in te rp re ted  on the 

basis of the following eq u ilib rium :- 

2A1(BH )'4 '3  ^
broad

signal

A12B4H18 + B2H6 
q u arte t 

s ignal

With the d im eric  species being dom inant at the h igher te m p e ra tu re t 

Maybury and Ahnell (178) re -ex am in ed  the n .m . r .  spectrum  and in 

p a r tic u la r  found no m ore  than trac e  quantities of d ibo rane . T hese  

w orkers explained th e ir  observa tions on the basis  of th e re  being two 

form s ofalum inium  hydroborate separa ting  th e ir  re s u lts  into two types, 

(i) T em p o ra ry  m odification . Short heating tim e . Spectra rec o n v e rt 

to broad s ig n a l.

(ll) M ore perm anen t m odification . Longer heating tim e . S pectra  do 

not re c o n v e rt at room  te m p era tu re .

The schem e was as  below :-

Broad form
(I)

Instantaneous 90 C ( = = = == 
Instantaneous 25 C

Q uarte t form  
(I)

M arrio tt (23) andN Ibler and Coe (173) supplem ented n .m . r .  sam pling

with v ib ra tio n a l sp e c tra . Both re p o r ts  found s im ila r  behaviour in the

n . m . r .  to p rev ious w ork, but th e re  was no change in the v ib rational

spectrum  except for the appearance of a weak bond around 800 cm  ^

whichcould be the v. of d iborane. In addition N ibler and Coe noticed 4 ’
som e white so lid  of unknown com position form ed above the level o f the
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T he o rig ina l explanations of Ogg and Ray and M aylwry andA hnell 

would seem  to be elim inated  by th is  la te r  work as  both m ethods would 

re q u ire  a substan tia l change in the v ib rational sp ec tru m . The la tte r  

w orkers concluded tha t a b e tte r  explanation would be an in c reased  ra te  

of exchange of hydrobora te  groups caused  by a sm a ll am ount of 

decom position product as  ca ta ly s t.

Oddy (97) ag reed  with the la te r  w orkers and pointed out that 

quadrupo lar re laxation  could not be the method of decoupling as  th is 

o ccu rred  on cooling and not on heating , and that in te rm o lecu la r 

exchange of hydroborate groups not borane g roups m ust be resp o n sib le  

as  the '^ B n .m  . r .  sp ec tru m  re m a in s  u n a lte red . He fu rth e r  suggested 

tha t the ca ta ly s ts  m ight be ( i ) HAlfBH^)^ form ed by d issocia tion  of the 

alum inium  hydroborate; ( i i ) (B^H^)A 1(BH4 In fo rm ed  by addition of 

d ib o ran e to  the hydride, i . e . a lso  explaining the a lm ost to ta l absence of

diborane; (Hi) (BgHg)A1(BH4 )̂ .

2A1(BH4 )3 v 2HA1(BH4 )2 + B2H6

Al(BH4 )3 + èB2H6 ---------> (B2H7 )A1(BH4 )2

HA1(BH4 )2 + B2H6 c — =* (B2H7 )A1(BH4 )2

(B2H7)A1(BH4 )2 + ¿b2h 6 ---------- > (B3Hg )Al(BH4 )2 + H:

T h ese  th ree  com pounds needed only to be p re se n t in tra c e  quantities 

to  exchange hydroborate g roups with alum inium  hydroborate, thus causing  

decoupling from  the alum inium  n u cleu s. The ex ten t of q u arte t form ation could 

depend on two fa c to rs . F irs tly , it would depend on the am ounts of the 

decom position products which would in c rease  with longer heating tim es 

and h igher reac tion  te m p e ra tu re s , and secondly on the te m p era tu re  

itse lf which would affect the exchange r a te .

Applying these  to the schem e of Maybury and Ahnell, Oddy suggested 

th a t  the sho rt heating tim e would only produce a tra c e  am ount of 

decom position products and the extent of q u a rte t form ation would be 

dependent on the tem p era tu re ,an d  on re tu rn in g  to  room  te m p era tu re  a 

q u arte t would not be v isib le  . Prolonged heating  would produce m ore 

decom position product and a q u a rte t due to exchange would be v isib le



a t room  te m p era tu re  but not a t -40° C. V olatising  the heated sam ple

would decom pose any hydride species p re se n t and d e c re a se  the am ounts

of B„H A1(BH ) and B H A1(BH ) which would be le s s  vo latile than ¿ 7  4 2  *58  4 2
Al(BH^)^ (179, and th is w ork ). C onsequently, no q u arte t form ation 

would be observed  a fte r th is trea tm e n t.

Decom position of Aluminium H ydroborate - Hydrido Aluminium 

H ydroborates

Heating alum inium  hydrobora te  g ives r i s e  to se v e ra l In teresting  

changes, som e of which have a lread y  been d esc rib ed  p rev io u sly . F u rth e r  

obse rva tions along a slightly  d iffe ren t line w ill lie p resen ted  h e re . Many 

of the re su lts  of re se a rc h  c a r r ie d  out to o b se rv e  and explain the 

decom position w ere  obtained under A m erican  Office of Naval R esearch  

co n tra c ts , and a r e  not ava ilab le  for sc ru tin y .

Aluminium hydroborate was observed  by Schlesinger et a l . to 

decom pose from  te m p era tu re s  of room  te m p era tu re  upw ards to evolve 

hydrogen , but no d iborane. No explanation was put fo rw ard . T he o ther 

p roducts w ere found to be non-vo latile  com pounds of alum inium , boron 

and hydrogen r e fe r re d  to as  'p o ly m e r '. The 'p o ly m er' could behave in 

two w ays; one, w here it was soluble in alum inium  hydroborate and was 

likely  to detonate in a i r ,  and secondly w here it was insoluble and having 

the approxim ate com position AIB^H^. A substance of m etallic

appearance was also  ob se rv ed .

At room  te m p era tu re  the decom position o ccu rred  slowly and only in 

the liquid p h ase . The ra te  d ec reased  with tim e and th is was not due to 

hydrogen p re se n c e . Soluble 'po lym er' only was produced . Heating 

alum inium  hydrobora te  at 40° C for two days brought a m arked 

re ta rd a tio n  of the decom position . If alum inium  hydroborate was d istilled  

off and rep laced  by fre sh , the sam e re ta rd a tio n  was evident, thus 

suggesting  the soluble 'p o ly m er' m a te r ia l was acting  as a stab ilising  

agent. Pumping of the so lub le resid u e  ren d e re d  it ineffective in th is ro le .

Heating a t a h igher te m p era tu re  did not produce these  re ta rda tion  

e ffe c ts . Much insoluble po lym er was form ed as was som e m etallic  looking 

m a te r ia l.  The decom position of the vapour was one tenth the ra te  of the 

liquid decom position . Addition of soluble po lym er did not affect the r a te s .
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O ther evidence that has been put forw ard is the conclusion of 

Brokawand P ease that( in the th e rm al decom position of alum inium  

hydroborate a t 150° C, a fragm en t with no m ore than th ree  hydrogens 

is lo st In the in itia l s te p . No dependence on hydrogen p re s s u re  w as 

observed> so th is would be co n sis ten t with an in itial d isso c ia tio n . 

T hese  and fu rth e r  observationsvvhich w ill be mentioned subsequently  

in Chapter prom pted Oddy to develop the following schem es fo r  

decom position of alum inium  hydroborate and the behaviour of hydrido 

alum inium  h y d robo ra tes .

2A1(BH4 )3 2HA1(BH4 )2 + B2H6 (1)

3HA1(BH4 )2 A1H3 +2A1(BH4 )3 (2)

2A1H3 ---- > 2A1 + 3H2 (3)

2A1(BH4 )3 +  B2H6 2B2H?A1(BH4 )2 (4)

HA1(BH4 )2 + b2h 6 =—  b2h ?a i (bh4 )2 (5)

2B2H7 A1(BH4 )2 + B2H6 ----- » 2 (B3H8 )A1(BH4 )2 + 2H2 (6 )

2B3H8A1(BH4 )2 + B2H6 ------> 2(B4HÇ)A1(BH4 )2 + 2H2 (7)

2B4H9A1(BH4 )2 + B2H6 -------* 2(B5Hg )Al(BH4 )2 + 4H2 (8 )
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h a i(bh4 )2 . o r 2

j + e th e r

6A1(BH4 )3 + (E t2A lH )3 ------> 3HA1(BH4 )2 + 6 EtAl(BH4 >2

Heating a t 40° C would produce re ta rd a tio n  through rea c tio n s  

1( 4f5f6' the hydrido alum inium  h y d ro b o ra tes  being s ta b ilised  by 

excess alum inium  hydrobora te . Above 40° C , 2 and 3 would 

p redom inate .

Aluminium H ydride

Alum inium  hydride is an In teresting  com pound In that it bas not been 

m ade in any quantity  a s  pure  alum inium  h y d rid e  with only alum inium  and 

hydrogen p re se n t and nothing e lse .

Pure alum inium  hydride has been ob tained by bom barding a v e ry  pure 

alum inium  ta rg e t with deu terons (183). T he p roduct was sub jected  to 

an X -ray  d iffraction  and re su lts  s im ila r  to an  e a r l ie r  study w ere  

obta ined.

F ive c ry s ta llin e  modifications w ere  found to  ex is t in a sam p le  

p rep a re d  by an undisclosed method (184). In a ll the s tru c tu re s  

alum inium  w as found to be bonded to s ix  hydrogen a to m s . T he m ost 

stab le  form  had the hydrogens a rranged  o c tah ed ra lly  around the
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alum inium  with each hydrogen  Involved In A l-H -A l 3 -cen tre  bonds.

The Al-H d istance w as found to be 171.5 pm . The A l-A l d istance  

of 324 pm indicated no m e ta l-m e ta l in te ra c tio n s . T he re su ltan t 

s tru c tu re  is a com plete ly  bridged 3 -d im ensional network of 3 -ce n tre  

2 e lec tron  bonds.

Some evidence fo r  m onom eric  and d im eric  alum inium  hydride has 

been indicated at high te m p e ra tu re  and low p re s s u re  by m ass 

sp e c tro m e try  (185). E vaporation  of alum inium  into a s tre a m  of 

hydrogen in a flow s y s te m  produced a peak a t m /e  30, co rresponding  

to A1H* a t 1040°C . At 1170° C a peak co rrespond ing  to A ^ H ^  was 

a lso  observed .

By chem ical m ethods the f i r s t  p rep a ra tio n  of alum inium  hydride 

w as by Wiberg (48) who ab s tra c te d  it a s  the tr im e th y l am ine adduct 

from  a reaction  of tr im e th y l alane w ith hydrogen. He noted it to be 

an im pure white solid  w hich decom posed slow ly . An a lte rn a tiv e  

method orig inally  p re se n te d  by S ch lesinger is to r e a c t  lithium  hydro- 

alum lnate with alum in ium  ch lo ride  in e th e r (42).
pffipr

3LIAIH +A 1C 1. — » 4A1H + 3L1C14 3 3
T he product contained an  Al-H ra tio  of 3:1 but prolonged pumping 

could only produce a 75 m ole %of (AlHg)^ because of com plex 

form ation  with the e th e r .  It was rep o rte d  tha t the po lym er could be 

freed  from  ether if the  alum inium  hydride e th e r  sooution w as filte red  

Into a la rg e  volume of n o n -co -o rd in a tin g  solvent such as pentane where 

the fluffy solid  that s e ttle d  out w as c la im ed  to  be f re e  of e th e r  afte r 

subsequent evaporation  (1 86 ).

T h ere  has been a lo t of co n tro v e rsy  over the valid ity  of c la im s 

for p rep ara tio n  of alum in ium  hydride g r e a te r  than 80% m ole pure  t 

and the situation is s t i l l  u n c lea r (e . g . 187-190).

Aluminium Alkyls

T hese a re  highly re a c tiv e  m a te r ia ls ,  the low er m em bers being 

ex trem ely  sensitive  t o a i r  and m o is tu re . T he e a r ly  m em bers a re  also  

asso c ia ted , e .g .  tr im e th y l alane and tr le th y l a lane a re  d im e r ic . ' The

o rd e r  of the capacity  o f  an alkyl g roup  to bridge In these m a te r ia ls  is 

Me > Et >  i P r  > t -Bu
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w h ich  Is In the r e v e rs e  o rd e r  expected from  e lec tro n  re le a s in g  

p ro p e r t ie s .  The dom inant fac to r  th e re fo re  is the bulk of the alkyl 

g ro u p  such that A l^-B u)^  is m onom eric.

T he assoc ia ted  s tru c tu re  ex is ts  a t low te m p e ra tu re s , and c ry s ta l 

d a ta  a t -170° C on tr im e th y l alane show (191 ) a sy m m etry . T his 

p e r s i s t s  into the g as  phase a s  shown by e lec tro n  d iffraction  (192).

In th e  liquid phase , the bridging and te rm in a l m ethyl g roups a re  

exchanging and the * H n ,m ,r ,  shows only one sh a rp  signal a t room  

te m p e ra tu re . T he sp ec tru m  at -50° C, how ever, shows two peaks, 

r a t i o  2:1 (193).

The reaction  chem  is try  of alkyl alanes con tains m any fea tu re s :

( I ) they a re  usefu l alkylating  and reducing  agen ts and have been used 

co m m erc ia lly  as  such, and a s  ca ta ly s ts  in olefin  po lym erisa tion ,

(ll ) they re a c t to form  adducts with donor m olecu les s im ila r  in 

behav iour to d lb o ran e ,

( i l l ) re a c t with p ro tic  ac id  to r e le a se  the hydrocarbon ,

(iv  ) undergo exchange re a c tio n s , e .g ,  with o th e r alum inium  alky ls o r 

alum in ium  halides (see ,fo r exam ple, 194).

A lum inium  and H igher H ydroborate D eriva tives - O ctahyd ro tribo ra tes 

A few of th ese  a re  known , but on the w hole they a r e  not w ell 

c h a ra c te r is e d .

A compound w here an alum inium  unit b rid g es a boron hydride cage 

is  the tr im e th y l am m onium  sa lt of [H^AIB .n  E t^O . H ere  an

A lH ^  unit in te rna lly  b ridges the 6 , 9 positions of b .jqH.,2 " Proc5uct 

Is iso lated  as a w hite so lid  from  the reac tio n  of decaborane with alane 

tr lm e th y la m in e  in e th e r solution a t room  te m p e ra tu re .

BlOHl 4 + M e 3N ' A1H3 + n E t2 °  -------*  <Me3NH+)(H2AlB10Hl2~)nE t2 °  + H2

(198, 199).

A lum inium  hyd robora te  has  been claim ed  to r e a c t  with decaborane in 

co -o rd in a tin g  so lven ts to  produce com pounds of the type (E ^ H  )xA1(BH4)3 x 

(w h ere  x = 2, 1) depending on the ra tio  of re a c ta n ts  u sed . T h is  work a lso
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1
p re p a re d  the novel com pound A1B _H _ from  s im ila r  re a c tio n s . TheI U 1 O
com pounds a r e  claim ed  on the basis  of sto ich iom etry  of reaction  and

ch e m ic a l an a ly sis  of the p roduct, hut none of these  d e ta ils  nor any

s p e c tra l  d e ta ils  a re  av a ilab le  (179).

S im ilarly ,com pounds of the type (B,H ) A1(BH )« (x = 1 2, 3)

have been p rep a re d  from  the reaction  of alum inium  hydroborate with

te tra b o ra n e  (10). T h e se m a y  be c a r r ie d  out in the absence of a

so lven t and the p roducts have p ro p e rtie s  in te rm ed ia te  between the

vo la tile  alum inium  hyd robo ra te  and the involatile g la s sy  A1(B„H )„.o o o
Again no o th e r p ro p e r tie s  o r  re su lts  a re  quoted (179).

T he only o c tah y d ro tr ib o ra te  com pound of alum inium  that has been 

anything like rep o rted  and c h a ra c te r is e d  is the d im ethy l alum inium  

octahydro  tr ib o ra te  (200). T h is  w as p rep a red  by the reac tion  of 

sodium  o c tah y d ro trib o ra te  with dim ethyl ch lo roa lane in vacuo to 

y ield a v o la tile  , rea c tiv e  liquid, which was purified  by d istilla tion  

in v acu o .
M e d ic i+ N a B 3H g ---------- > M e ^ l B ^ g  + NaCl

A re c e n t addition to th is  field has been the p rep a ra tio n  and 

c h a ra c te r is a tio n  of a bery llium  b is(o c tah y d ro trlb o ra te  ) (202). T h is 

w as p re p a re d  from  bery llium  ch lo ride  and thallium  octah y d ro trib o ra te  

in vacuo at te m p era tu re s  sligh tly  above room  te m p e ra tu re . The product 

has conventional solid  and liquid phases (cf. bery llium  hydroborate ) and 

a vapour p re s s u re  at 0° C of 5-7 m m /H g . In fra -red  and n . m . r .  data 

w ere  re c o rd e d  fo r the com pound. Again, the m olecu le was found to  be 

fluxional with the s ta tic  s tru c tu re  again being w here two borons in each 

g roup  a re  hydrogen b ricked  to the bery llium , leaving a te rm  inal BH2 

g ro u p .

T he o c tah y d ro trib o ra te  spec ies  has been known fo r many y e a rs , 

being f i r s t  rep o rted  as  a p roduct of the reac tio n  of sodium  with d iborane 

(203 ). Salts of the o c tah y d ro trib o ra te  spec ies  a r e  white, non-volatile  

so lid s  p o sse ss in g  vary ing  d eg rees of s tab ility  depending on the cation 

and so lv a tio n . The f re e  ion has each boron with two te rm in a l hydrogens; 

two of the borons a r e  jo ined  by a boron-boron bond, and each of these 

is bonded to  the unique boron by a hydrogen b rid g e . T he in fra -re d
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spec trum  con tains B-H absorp tions a t 2450( 2400 cm   ̂ and 2120,2080 

cm  \  The ^ H n .m .r .  contains a ten line m ultip le t which shows that 

a ll th ree  boron atom s becom e equivalent and n . m . r .  shows a 

sep te t (expected nonet) due to coupling to eight pro tons that have also  

a ll become equivalent.

In re c e n t years th e re  has been a good deal of in te re s t in octahydro- 

tr ib o ra te  ions being rea c te d  with transition  m etal d e r iv a tiv e s . This 

is  p artly  due to the m ore ready  syn thesis  of the species by m ethods 

tha t do not involve isolation and use  of diborane under p re s s u re .  A 

rec en t exam ple is the p repara tion  of a m anganese te traca rb o n y l 

octahydro tr ib o ra te  from  m anganese te traca rb o n y l brom ide (204).

T h is has a s ta tic  s tru c tu re  which in common with o th e r m e ta l B.H9 J  O
sp e c ie s ,h a s  the two borons that a re  d irec tly  bonded a lso  bonded by 

hydrogen b ridges to the m e ta l. If th is  m a te r ia l is exposed to u l t r a ­

violet light, it loses one carbonyl group to produce a m a te r ia l w here 

the B .H 0 g roup  shows only one absorption  in the B-Hr stre tch in g
1 i

region and a B n . m . r .  spectrum  which shows a ll the borons to be 

equivalen t. The proposed s ta tic  s tru c tu re  in th is  ca se  is fo r all 

th ree  borons to be hydrogen bridge bonded to the m e ta l.

Mn(C O )4B3H8 'C O  * Mn(C°> 3 B3H8 + C°
Bidentate CH2C12 T rid en ta te



T ria lk y l Boranes . A lkyl D iboranes

T rim eth y l and tr ie th y l boranes have been known since 1862 (see 

205) and a re  again a i r  sensitive  m a te r ia ls  Inflaming in d ry  a ir  a t 

room  te m p e ra tu re . T rim ethy l borane is a g as  (b .p . -20° C ) and 

tr ie th y l borane a liqu id . Both these  com pounds a re  m onom eric. The 

im portan t fea tu re  of th e ir  reaction  ch em is try  that concerns this w ork 

is th e ir  exchange rea c tio n s  with hydride spec ies  to form  alkyl 

d ib o ran es. Thus m ixing of tr ia lk y l borane with a sto ich iom etric  

am ount of d iborane fo rm s the alky l d ibo rane . The alkyl d iboranes 

a re  sligh tly  le s s  vo la tile  than the co rrespond ing  tr ia lk y l borane 

because of th e ir  asso c ia te d  n a tu re .

Me^B -  Me + H -  B M e2B -  H + Me -  B

Me

d im e rise s

Mevk h 
\  /

B B
/  \  \

Me H Me

The alkyl d iboranes a re  s ti ll ,  how ever, ex trem ely  a ir  and m o is tu re  

se n s itiv e . They m ay be identified by th e l r n .m . r .  sp e c tra  (see 206) 

and in f ra - re d  sp e c tra  (207 and re fe re n c e s  th e re in )  by ex trapolation  

from  d iborane .

A p a r t of th is w ork w ill show the exchange of alkyl groups fo r 

hydrogen by the tr ia lk y l bo ranes.
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CHAPTER 2

R eaction of Aluminium H ydroborate with Alcohols and T hio ls and

som e Compounds containing ADcoxy Groups

The reac tion  of alum inium  hydroborate with w a te r  and p ro tlc  species 

has  been known since  the e a r l ie s t  p repara tion  of th e  compound by 

S ch lesinger and h is c o -w o rk e rs . V ery little in form ation  has been 

published on the exact natu re  of the hydro lysis re a c tio n . T he f ir s t  

w o rk e rs  m e re ly  sta ted  that the reaction  was rap id  and com plete with 

12 m oles of hydrogen being produced , i . e . one fo r  each hydrogen a to m  

p re se n t in the h yd robo ra te . The reac tio n  is quan tita tive  and th e re fo re  

u sed  fo r an a ly s is . The o ther p roducts w ere b o ric  acid and alum inium  

hydroxide.

A1(BH4 )3 + 12H20  ---------- » Al(OH)3 +  3B(OH)3 + 12 H2

A s with a ll hydrobora te  hydro lyses the reaction  p ro ce ed s  b e tte r  in 

ac id ic  con d itio n s.

A study in the 1950's Indicated that the rea c tio n  with w ate r o cc u rre d  

In two s ta g e s . T h e re  was an in itia l fast reaction  which produced d lborane 

and alum inium  hydroxide, followed by a slow er rea c tio n  involving the 

hyd ro ly sis  of d ibo rane .

A1(BH4)3 + 3H20  f3St > Al(OH)3 + 3 /2 B 2H6 + 3H2

3/2B2H6 + 9 H 20  Sl° W ) 3B(OH)3 + 9H 2

T h is , how ever, s ti lld o e s  not g ive us any r e a l  c lu e  to the very  f i r s t  step  

In the rea c tio n .

It is very  tem pting to suggest that the in itia l s tep  would be attaching 

o f a w ater m olecule to the alum inium  h y d robo ra te  m olecule para lle lin g  

with the behaviour of alum inium  hydroborate w ith e th e rs . T h is is fu rth e r  

suggested  by the isolation of an apparent h y d ra te  o f d iborane B ^ ^ ^ O  

although this is probably  m ore c o rre c tly  fo rm u la ted  as [H 2B(OH2 >2 ]BH4. 

T h is  adduct m ay then be unstab le and re a c t fu r th e r  to form  compounds 

of the type [A lH 2 (OH2>2 ]BH4 as in the reaction  with am m onia o r  re a c t 

in a stepw ise substitu tion  of OH for BH4 fo rm ing  In term ediate  com pounds 

(HO)xA1(BH4 )3 _x .
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In the ca se  of the n e a re s t analagous compound d iborane, except 

fo r  the isolation of the hydrate m entioned above, the exact m echanism  

a lso  rem ains undecided. Hydroxy deriva tives of borane, excep t boric 

ac id , seem  incapable of iso la tio n . M ass sp e c tra l evidence fo r  the 

ex is ten ce  of HOBH2 andHB(OH>2 in the m ass spec trum  of a m ix tu re  

of B„H and B(OH)„ has been ob ta ined  and th e ir  en thalp ies o f form ation 

es tim a ted  from  th e ir  equ ilib rium  co n cen tra tio n s. The fa ilu re  to iso late  

them  is doubtless due to th e ir  therm odynam ic and kinetic  in stab ility  

w ith re sp e c t to d iborane and b o ric  acid . No p a rtia lly  hydroxylated 

sp e c ie s  have ev e r been iso lated  in the hydro lysis  of d ib o ran e , even 

w ith sm a ll am ounts of w ater and excess  d ibo rane . The p roducts a re  

alw ays boric ac id , hydrogen and un reac ted  d iborane, indicating  rap id  

d isproportionation  of possib le  p a r t ia l ly  hydroxylated sp e c ie s .

H ydrolysis of diborane by ice a t -80°C , how ever, does not go to 

com pletion , producing 4 m oles of hydrogen instead of 6 . T he d iborane- 

w a te r reaction  Is 1st o rd e r  w ith re sp e c t to w ate r and 0 .5  with re sp e c t 

to d iborane.

Thus two m echanism s that m igh t be proposed for the h yd ro ly sis  of 

alum inium  hydroborate m ight be 

(1) 3A1(BH4 )3 + 3 H 20  - -> 3A1(BH4 )3 .H 20

3A1(BH4 )3 .H 20

3HOAl(BH4 )2

o r  continued reaction  as above.

3HOAl(BH4 )2 + 3/2B2H6 + 3H2

Al(OH)3 + 2A1(BH4 )3

A1(BH4 )3 + 3 H 20 Al(OH)3 + 3/2B2H6 + 3H2

(2 ) A1(BH4 )3 + H20  ■ 

Al(Bh'4 )3 .H 20 + H 20  

[A ih 2 (h 20 ) 2ib h 4 + h 2o

a i(b h4 )3 . h 2o

[A1H2 (H20 ) 2 1BH4 +  B2H6

Al(OH)3 + BH3 + 3 H 2

A1(BH4 )3 + 3H20 *  Al(OH )3 + 3/2B2H6 + 3H2
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T h ese  schem es a r e  based ,as  can be seen,on very  sm a ll and ex trapo lated  

p ieces of d a ta . It was p roposed  by studying rea c tio n s  that m ight p roceed  

in an analagous m anner that m o re  re levan t,a lthough  s t i l l  ex trap o la ted > 

inform ation cou ld  be g a th e red .

A ccordingly  the reaction  of alum inium  hyd robo ra te  with alcohols and 

th io ls which s t i l l  have an ac tive hydrogen w ere  studied in som e d e ta il.

The re a c tio n  of d iboranew ith  m ethanol has m any s im ila r it ie s  to that 

with w ater w ith  one o r  two im portan t d iffe ren ce s . An adduct has been 

iso lated  a t low te m p e ra tu re  and diborane undergoes m ethanolysis a t n o rm al 

te m p era tu re s  w ith r e le a se  of hydrogen. T h is  r e le a s e  of hydrogen, how ever, 

is not violent a s  in the w ater re a c tio n . By com parison  the reac tio n  is 

sluggish in the la te r  s ta g e s . The final p roducts a r e  tr im e th y l bo rate  and 

hydrogen, but a stab le  in term ediate BH(OMe>2 can be iso la ted . It 

d isp ro p o rtio n a te s  slowly into tr im e th y l b o ra te  and d iborane.

4MeOH + B„H. ---------- » 2BH(OMe ) .  + 4H„
2 o 4 4

2MeOH + 2BH(OMe) 2 ---------> 2B(OMe )g + 2H2

6BH(OMe)2 i, '  4B(OMe )g + B ^

W hite> ap p a ren tly  p o ly m eric , m ethoxyborane (B H jO M e ^ h a s  also  been 

observed  (1 1 ).

The known rea c tio n s  of d iborane with th io ls a r e  m ore com plex. M ethane 

thiol fo rm s an adduct MeSH. BH^ which re a d ily  loses hydrogen to g ive a white 

polym er (MeSBH2)x which, on heating in vacuo , w ill undergo p a r tia l  

d ep o ly m erisa tio n . With the ethyl analogue the m ost stab le  spec ies  se em s to 

be the t r im e r ,  and the m ethyl tr im e r  has a lso  been re p o rted . T his 

decom poses a t  140° C to g ive,am ong o th e r  things,(M eS )3B. With n -p ro p y l and 

n-buty l th io ls , the com pounds [ (RS >2BH] 2 have been rep o rted , but th e ir  form ulation 

as  te tra -su b s titu te d  d ibo ranes has not been e s tab lish ed .

Exchange o f RS fo r hydrogen takes p lace  with B(SR >3 and B2H6 to g ive 

com pounds u u ch a s  BH(SR>2. T his is s im ila r  in behaviour to that with B(OR)3>
j  oi IWiI

The fo llow ingjchapter d ea ls with the rea c tio n  of alum inium  hydrobora te  

with a lco h o ls , thiols and som e alkoxide sp e c ie s .
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R eaction  of alum inium  hyd robo ra te  wtth alcohols 

1. With m ethanol

As m ight have been an tic ipated  from  the prev ious work in re la ted  f ie ld s ( 

it w as found that the reac tio n  of alum inium  hydroborate w as very  rap id  

indeed. The extent of the reac tio n  could be judged by the amount of gas 

that w as evolved when the two re a c ta n ts  m e t. The gas w as found to consist 

of hydrogen and d ibo ranew ith  tw ice as much hydrogen a s  diborane p re se n t. 

The reac tio n  had been approached in the expectation of the reaction  being 

rap id ,and  the reac tio n  conditions had been ad justed  accord ing ly . The 

alum inium  hydroborate w as d isso lved  in a low m elting point so lven t> pentane 

and the m ethanol w as added in sm a ll am ounts to the cooled solution. R eaction( 

as  w itnessed  by gas evolutionj was observed  to take p lace  at le a s t as  low as 

the m elting  point of m ethanol (-98° C ) and when the two reac tan ts  m et th e re  

was no delay before g as  evolution w as w itnessed .

T h is  re su lt  suggests f irs tly  that m ethoxy groups from  the m ethanol w ere 

exchanging for the BH^ of the alum inium

-BH + MeOH 4
-OMe + H2 + BH3

and secondly that a t -98 C th e re  is  no app reciab le  quantity  of a stab le 

alum inium  hyd robo ra te-m ethano l adduct, o th e rw ise a  delay in hydrogen 

evolution m ight be expected . If th is adduct is form ed, it w ill be decomposing 

o v er a period  o fa  few m inutes only to produce hydrogen and diborane.

A1(BH V + M eO H  P°SSihl-— > A1(BH ) .MeOH form ation 4 *4 '3 4 3 '

d ire c t
rapid  decom position 

a t -98° C

MeOAl(BH4 )2 + H 2 +BH3

T he am ounts of hydrogen and diborane that w ere  reco v ered  w ere m easured  

by m eans of a T o ep le r  pum p. The figure fo r the am ount of hydrogen was 

alw ays co n sis ten t with the am ount of m ethano lthat had been added, thus each 

m ole of m ethanol p roduced one m ole of hydrogen. T he diborane figure was 

alw ays half the hydrogen fig u re . In a typ ical experim en t, addition of 4 .25 

m m ol of m ethanol p roduced 4. 20 m m ol of hydrogen and 2.09 m m ol of
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d ib o ran e . T h ese  figu res a re  th e re fo re  also  in com plete ag reem en t with the 

equation

Al - BH . + MeOH 4 Al - OMe + H2+ BH3

T he o th e r  product of the reac tion  is a white solid  which was assum ed  to be 

po lym eric  to som e degree  as it was found to be insoluble in the hydrocarbon 

so lven ts which could sa fe ly  be tr ie d . The compound evidently contained 

m ethoxy g roups and associa tion  through them was of co u rse  p o ss ib le .

A nalysis o f th is  compound showed that the compound was not p u re  MeOAl(BH4 >2 

as m igh t bave been an ticipated  from  theam ount of rea c ta n ts  u se d > nor w as it 

alum inium  m ethoxide caused  by d isproportionation  of the above m entioned 

com pound; the re su lt  was som ew here between and suggests a m ix tu re  of 

com pounds.

Expected fo r MeOAl(BH4 >2 A ctive H 9.19% A1 30.77%

Al(OM e)3 A ctive H 0% A1 22.47%

Found A ctive H 7.67% A1 26.31%

T his would seem  to indicate that sp e c ie s  of the type MeO^AlCBH^ a re  

form ed and that they a r e  s ta b le »  d isp ropo rtiona tion  possib ly  due to 

asso c ia tio n  o r  being incorporated  in a la ttice with alum inium  m ethoxide 

which is known to be po lym eric , a s  a r e  many o ther alum inium  alkoxides.

What the reaction  would a lso  seem  to show is that the reaction  is too fast 

to be sp e c if ic : in o th e r  w ords, if th e  reaction  p roceeds through the following 

reaction  s e r ie s ,  as would seem  likely,

-i MeOAl(BH4)2 + BHg + H j

(M eO )2AlBH4 + BH3 + H2

(M eO )3Al + BH3 + H2

A1(BH, ) + MeOH -  4 J

MeOAl(BH ) +MeOH -  4 Z

(M eO)2AlBH4 +MeOH -

then the speeds of the second and th ird  reac tio n s m ust be of the sa m e o rd e r  

of m agnitude as  the f i r s t .  M ethanol w ill then re a c t with w hichever alum inium  

sp ec ie s  it com es into con tac t, re g a rd le s s  of the o th e r g roups on alum inium , 

and th is  w ill lead to a m ix tu re  of p ro d u c ts .

Ili
; As • * •

• A ' JO
- *



2. With la rg e r  alcoho ls

As the reac tion  of alum inium  hydroborate w ith m ethanol was found to be

so ra p id , itw as though tthat by increasing  the s iz e  of the reac tin g  alcohol

m olecu le the ra te  o f the reaction  m ight be m odera ted  and a p a r tic u la r  alkoxy

alum inium  spec ies  m ight be iso lated . This in fac t proved to be the case .

With cyclohexanol the reaction  s tillp ro ceed ed  a t a m odera te  pace at -60° C

and hydrogen and d iborane w ere observed as  g aseo u s p ro d u c ts . A white

so lid  p roduct was ob se rv ed  which gavean  an a ly sis  approaching that of m ono­
an a ly sts

cyclohexanoxy alum inium  bishydroborate , but s t i l l  with a slightly  low hydrogen/ 

p robably  suggesting  contam ination with the b is cyclohexanoxy compound as 

had been noted fo r  the product of the reaction  between alum inium  hydroborate 

and m ethanol.

With som e o th e r  alcohols that w ere  tr ie d  ( a d iffe ren t reaction  se t in which 

fo r  iso la tion  of alkoxy alum inium  hydrobora tes proved  u nsuccessfu l. The 

alcoho ls that w ere  tr ie d  w ere la rg e , s te r ic a lly  fa irly  bulky o r  e lse  electron  - 

r ic h  and the reac tio n  is these ca se s  was reduction  of the organic hydroxyl to 

o rgan ic  a lkane . Thus the reaction  of alum inium  hydroborate with 2-methyl 

p ro p a n -2 -o l (t-bu tanol) produced 2 -m ethyl p ropane (iso -bu tane) in 

ap p ro x im ate ly  505f(+) yield and s im ila r  re a c tio n s  and corresponding products 

w ere  noted when the reacting  alcohol w a sp -m e th o x y  benzyl alcohol (anisyl 

alcohol) o r  diphenyl m ethanol(benzhydro l).

T he behaviour o f the last th ree  m entioned com pounds is not altogether 

s u rp r is in g t although to the au th o r's  knowledge has not been rep o rted  for pure 

alum inium  h y d ro b o ra te . It is known in the field  of reduction of organic 

com pounds by com plex hydrides that ce rta in  alcohols can be reduced to 

alkenes o r  a lkanes by the action o fe lth e r  lith ium  hydroa lum inate and alum inium  

c h lo r id e  o r  by sodium  hydroborate and boron tr if lu o rid e  . In these reactions 

carbonium  ions seem  to be in te rm ed ia tes which then com bine with a hydride 

to become the hyd rocarbon . The alcohols th e re fo re , that fa ir ly  easily  form  

carbonium  ions, can then be reduced in th is  w ay. Aliphatic p rim a ry  alcohols 

and unsubstitu ted  benzyl alcohols a re  not re a c tiv e  in any way, but secondary  

and te r t ia ry  a lip h a tic  alcohols, a c tiv a te d b en zy lic  alcohols and di - and t r l - a r y l  

ca rb in o ls  m ay be deoxygenated. It is th is behaviour which is being m irro re d  

in th e re ac tio n  o f a lum in lum hydroborate .
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It m ust b e n o te d l how everf tha t detailed  investigation of the products o f 

th e  reaction  ofalum inlum  hydrobora te  with thesea lcoho ls w as not undertaken 

and that thecondi tions used w ere  not the u su a l ones a s so c ia te d  with organic 

so lu tio n  reac tio n s  su itab le for carbonium  ion form ation . So although the 

observa tions that w ere m ade would seem  to c o rre la te  w ell w ith  what has 

been prev iously  repo rted , because of the above reaso n s a s t r i c t  com parison 

m ay not be en tire ly  valid.

T h e  reaction  of ahimin ium hydrobora te with thiols

The reaction  ofalum inium  hydrobora te with thio ls has been found to be 

b as ica lly  s im ila r  to the behaviour of alum ium  hydroborate w ith  a lco h o ls .

If excess alum inium  hydrobora te  is reac ted  with m ethane th io l, even at 

low tem p era tu re  gas evolution can be observed . If the two com pounds a re  

condensed together and allow ed to stand at the m elting point o f  m ethane thiol 

(-120° C ) a slow evolution of hydrogen and diborane is involved. Again 

then, the conclusion may be drawn that if the f irs t  step  in th e  reaction  is a 

1:1 adduct fo rm at ion, then the adduct isn o t stab le even at low te m p era tu re s  

and would be very  d ifficu lt to iso la te . The reac tions of th io ls  a re  a lso  

s im ila r  to the reaction  with alcohols In that full reaction  o f a mole of thiol 

to  produceone m ole of hydrogen and half a m ole of d iborane is observed .

In c o n tra s t the reaction  of the thiol is som ewhat m o d e ra te d , and because 

o f th is  by choosing excess alum inium  hydroborate the re a c tio n  m ay be used  

to specifically  p rep a re  a monothioaflcyl alum inium  bis h y d ro b o ra te . T his 

assu m es that of the reactions

A1(BH4)3+RSH --- ----- » RSA1(BH4)2 + H2 +BH3

RSA1(BH ) + RSH ---4 z ----- ? (RS)2A1BH4 + H2 + BH3

(RS)2A1BH4 +RSH --- ----- > (RS)3A1+H2 + BH3

the second and th ird  a re  slo w er than the f ir s t ,  which th e re fo re  p red o m in a te s .

In th is way the com pounds thlom ethyl, thloethyl and th lobenzyl alum inium  

bl s (hydro bora tes ) have been p re p a re d . Again these a re  w hite  so lid s , 

probably assoc ia ted  to som e d eg ree . D iscussion of these  com pounds w ill be 

covered la te r  in this ch a p te r. A thiobutyl compound could not be p rep a red  

from  alum inium  hydrobo ra te te trahyd ro th lophenate . The te trahydro th lophene 

ring  rem ained  intact in c o n tra s t to observations for te trah y d ro fu ran  (105).
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The only o th e r  com parison that may be draw n between the th io ls and 

alcohols reac tio n  is with a te r t ia ry  com pound. 2 -m ethyl propane 2 -th io l 

when reac ted  w ith a lum ium  hydroborate p ro d u ces  2 -m ethyl propane as  the 

maj o r  p ro d u c t. It would se em > th e re fo re , that s im ila r  reducing  p ro p e r tie s  

and fo r s im ila r  rea so n s  would be observed  fo r  the th io l s e r ie s .  F rom  th is 

au th o r 's  lim ited experim en ts it would seem  that p r im a ry  aliphatic  and 

unsubstitu ted  benzyl thiols a r e  not affected , but that te r t ia ry  a liphatic  th io ls 

have th e ir  su lphur rem oved and reduction to  the alkane takes p la c e . (T here 

is much less inform ation on reduction of a th io lg ro u p  by hydride sp ec ie s  

available ).

P reparation  and attem pted  p repara tion  of alkoxy  andhydroxy alum inium  

hydroborate sp e c ie s  using exchange re a c tio n s

Exchange re a c tio n s  have been much u s e d  in alum inium  ch e m is try , 

p a r tic u la rly  fo r  alum inium  alky land  h a lid e  ch e m is try . Oddy d em onstra ted  

p a rticu la rly  w ell th eu sefu ln ess  of these re a c tio n s  in alum inium  hydrobora te 

c h e m is try . A luminium hydroborate was found to exchange in tact hyd robora te

groups.

Some exchange reac tions using alkoxide groups have been a ttem pted  in 

th is  w ork. T o d irec tly  m ir r o r  the exchange reac tio n s  used by Oddy, 

alum inium  hydrobora te  was s t i r r e d  w itha lum in ium  m ethoxide a t room  

te m p era tu re . The reaction  proved to be v e ry  slow indeed. F o r  reac tio n  to 

occu r the alum inium  hydroborate would have to break down th e p o ly m eric  

network of alum inium  oxygen bondsand although the alum inium  hydrobora te  

is ab le  to b reak  up th e d im e ric  form s o f  d im ethy l alum inium  and the tr im e r ic  

fo rm s of d ie thy l alum inium  hydride in o r d e r  to exchangew ith  alum inium  

m ethoxide th is  is p resum ably  too slow . Some reac tio n  does occu r a s  not 

a ll the alum inium  hydroborate that is p u t into the reac tion  m ix tu re  can la te r 

be rec o v ered .

An analagous reaction  was a t te m p te d  with alum inium  hydroxide. No 

reac tion  w as apparen t, and a l l  the alum inium  hydroborate that was added 

could be re c o v e re d . The rea so n s  for th is  may be two fold. F irs t ly  is the 

possib ility  o fah im ln ium  being unable to b reak  down the alum inium  hydroxide 

s tru c tu re  a s  fo r the m ethoxide, o r  second ly  that any reaction  that m ight 

have taken p lace  on the su rface  im m edia te ly  being re v e rse d  by d isp ro p o rtio n a tio n .



T h is  behaviour has  a lre ad y  been d iscu ssed  fo r  p ossib le  hydroxy deriva tives 

o f d lborane.

2A1(BH4)3 +  Al(OH )3 3A1(0H)(BH4 )2

An exchange rea c tio n  involving a lkoxlde g roups w as observed  for the 

reaction  of alum in ium  hydrobora te  with a lkoxyboranes. T h ese  a re  

m onom eric> re la tiv e ly  easy  to handle liquids and thus do not su ffe r from  

the draw backs ex p e rien ced  with the alum inium  m ethoxide and hydroxide. 

Reaction of a lum in iu m h y d ro b o ra te  with e i th e r  tr im e th o x y o r trie thoxy  

borane resu lted  in tr a n s fe r  o f an alkoxide g roup  on to alum inium

T he tra n s fe r  of h y d ro b o ra te  g roups m ight p ro ceed  as shown in the equation 

and indeed the only p roducts that w ere  iso lated  from  the reac tion  w ere  the 

excess alum inium  h y d robo ra te  th a t had been u sed , d iborane and the alkoxy 

species which w as identified by ana ly sis  a s  a p u re  m onoalkoxyalum inium  

hydrobora te .

T his has been th e  p re fe rre d  rou te  in th is  w ork to the p rep a ra tio n  of these 

com pounds, but th e u se fu ln e ss  o f the reac tio n  is lim ited som ew hat. U nless 

alum inium  hy d ro b o ra te  is used in ex cess , a l l  thecom ponents w ill not stay  

in so lu tion  and an incom plete reaction  r e s u l t s .  A ttem pts to p re p a re  bis 

alkoxy a lu m in ium hydrobo ra te  by th is rou te  have th e re fo re  not been 

undertaken . They have been p rep a re d  by an o th er m ethod. T his rou te  was 

not needed to p re p a re  the mono thio alkyl b is hydrobora te  sp e c ie s , but 

reaction  of alum in ium  hydroborate with the thiom ethyl bo ranes should be 

equally su ccessfu l.

One o ther ex p e rim en t that m ight usefu lly  be attem pted  would be the 

reaction  of boric a c id  with alum inium  hyd robo ra te  In an analagous reaction  

to try  and produce hydroxy sp e c ie s .

3A1(BH4 )3 + B(OR )3 •> 3ROAl(BH4)2 +  [B(BH4 )3 ]?

'I'
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D iscussion  of the m echan ism  of h y d ro ly s is -ty p e  reac tio n s

Having describ ed  the various re a c tio n s> it now se em s ap p ro p ria te  to 

d isc u ss  the m echanism  of hydro lysis  type rea c tio n s  in the light of the new 

in fo rm ation  gained . It m ust be s tre s s e d  again that ex p erim en ts  with w ate r 

have not been c a r r ie d  out but that experim en ts with re la te d  m olecules have 

been undertaken and th a t conclusions to the h y d ro ly sis  reaction  w ill be 

in tu itive but a t the sam e tim e reasonab ly  va lid . T he only o th e r re c e n t w ork 

on alum inium  hyd robo ra te  hyd ro ly sis  is som e unpublished data by McAvoy (92). 

H e has investigated  the h y d ro ly s is  with lim iting  am ounts of w ater and has 

noted the am ount of hydrogen produced p e r  m o le  of w ater added. At low 

concen tra tions o f w ater a flash  reac tio n  was o b serv ed , and a m o la r am ount 

o f  hydrogen above th a to f  the w ater put in. T h is  was explained on the b as is  

o f  increased  alum inium  hydroborate decom position in the flash  zone. A 

so lid  deposit rem a in ed > but its com position was not determ ined .

The very  f i r s t  step  in a hydrolysis type reac tio n  is a lm o st ce rta in  to 

b e  thoughtof a s  an addition of the lone p a i r  of an oxygen o r  a su lphur atom  

to the alum inium . T his is of co u rse  well es tab lish ed  for a s e r ie s  of 

re la te d  oxygen and su lphu r con tai ning ligands such as  dim ethyl e th e r , diethyl 

e th e r ,  te tra h y d ro fu ra n , dim ethyl sulphide, which have been studied in 

d e ta il . Bonding of the elec tronegative  atom  to the alum inium  weakens the 

bonds to the ad jacen t a to m s  and thus,if d ie th y le th e r  is co -o rd ina ted  to 

alum inium  hyd robo ra te , th eC -O  s tre tch in g  frequency of the e th e r  is 

red u ced .

C om parison of the C -O  s tre tch in g  positions o f e th e ra te s  o f alum inium  compounds 

Compound as  C-O s tre tc h /c m  1 s C-O s tre tc h /c m  1

E th e r 1116 934

AlM e3 .O E t2

Al(BH4 )3 .O E t2

A lC l3 .O E t2

1041 904

1000 878

995 876
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If a m ethanol m o lecu le  th e re fo re  w ere  to bond toalum lnlum  hydroborate In 

the sam e way th e re fo re  a d im in ish ing  in the s tren g th  of the O-H tend  

would be expected . F ro m  p o la risa tio n  co n sid era tio n s the hydrogen has 

som e positive  c h a ra c te r  and could th e re fo re  attack  the hydrogen bridge 

sy s tem  which, accord ing  to th e a n a ly s is  of Perk ins (8Q re ta in s  som e slight 

negative c h a ra c te r .  The p rox im ity  of these  two oppositely  charged regions 

m ay th e re fo re  explain th e 'in s ta b ility  of a m ethanol com p lex.

A1(BH4 )3 + MeOH

Me h 6+

H. 'h "~ H\
b ''

h '  s h " 7 \ ^ " h
H H
\  /3
/ \ 

H H

Al(BH4 )3 .MeOH

Me
I

OH H ,
-»  ' X  A1

H X \
H H
\  /

B
/ \

H H

+ H2 + BH3

1

A stepw ise  addition c e r ta in ly  of alcohol and th io l m olecu les is es tab lished  

In th is  w ork . The substance  iso lated  from  the ca re fu l reaction  of alum inium  

hy d ro b o ra te  with m ethanol w as c le a rly  es tab lish ed  as  a m ix tu re  of alkoxy 

alum inium  hyd robo ra tes by ch em ica l a n a ly s is  and la te r  by com parision  of 

in f ra - re d  sp e c tra  with that o f an authentic sa m p le  of m ethoxy alum inium  

h y d ro b o ra te . The s t epw ise reac tio n  is dem o n stra ted  even b e tte r  by the 

th io l reaction  which can be con tro lled  to h a lt a f te r  addition of one m olecu le.

The reason  for th is would not seem  to be based on the acid ity  of the 

th io l o r  a lcohol as  thio ls a r e  m ore  acid ic than the co rrespond ing  alcohol 

and m ight be expected to re a c t  f a s te r .  R a th e r the rea so n  would seem  to 

be caused  by the g r e a te r  e lec tro n eg ativ ity  of the oxygen atom s and the 

s tren g th  of the bonds being form ed to the alum inium  a to m . It has been 

dem onstra ted  that adducts o f alum inium  hydrobora te  w ith e th e rs  have a 

s tro n g e r  m etal-oxygen bond than the m e ta l su lphur bond In alum inium  

h y d robo ra te  adducts with su lp h id es .
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T hus we have

Al(BH4 )3 .SM e2 + OMe2 - Al(BH4 )3>OMe2 + SMe2

4 '3 ‘

but also

h 2°

CHgOH

C 2H5OH
(c h 3 )3c o h

2 +  SMe2 - i f - » Al(BH4)3 .SM e2 +OM e2

PKa PKa
15.7  - H2S 6.97

15.5

15.9 C 2H5SH 10.5

- 1 8 .0

C6H5CH2SH 9.43

O-H (in m ethanol) 428kJ mol ^

S-H 349 kj m o f 1

P ro p e rtie s  of alkoxy and thioalkyl alum inium  hydroborate

The com pounds iso lated  w ere found to be white solids, except for the 

th ioethyl deriva tive  , w ere  stab le under dry nitrogen but hydrolysed in 

the a i r .  They w ere no tpyrophorlc in a i r ,  but reac ted  v igorously, som etim es 

inflam ing if w ater was added to them . They w ere rapidly  hydrolysed also  by 

d ilu te  acid,and th is reaction  was used for the ir an a ly s is .

As iso la ted , the compounds w ere re lu c tan t to d isso lve in the hydrocarbon 

so lv e n ts  th a tco u ld  be safe ly  tr ied , although they w ere  a ll soluble in benzene 

and toluene to som e ex ten t. On warming, one o r  two of the compounds 

produced a sm all am ount of sub lim ate a t low p re s su re  and th is  showed very  

s im ila r  p ro p e r tie s  to th eo rig in a l so lid  except for an inc reased  solubility . 

T h is it w as believed was evidence for associa tion  with possib ly  m ore than 

one d eg ree  of po lym erisation  species p re se n t. T his had also  been suggested 

p re v io u s ly  for som e bis alkoxyalum inlum  hydroborates w hich had been 

suggested  to have a degree  of associa tion  between 2 and 3, o r  to be a 

m ix tu re  of d im ers  and tr im e r  (109).A m olecu lar weight determ ination  was 

pe rfo rm ed  on ethoxy alum inium  bis hydroborate, without it being sublim ed, 

by cryoscopy  in benzene solution, and this gave am o lec u la r w eightclose to 

the value for a d im eric  fo rm . This would seem  to suggest that the sm all 

am ounts to sublim e out m ight be a m onom eric form , but th is  on the basis of 

o the r alum inium , oxygen and sulphur ch em is try  seem s to be a little unlikely.
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A m ore  likely explanation would be fo r the m o le cu la r  weight to be between 

2 and 3 tim es the m onom er w eight with the sub lim ate being the d im e r .  The 

re s id u e  from  the sub lim ation  seem ed to be stab le  to 200° C without re a c tio n . 

The compounds did not m e lt  below 200° C.

The anom alous natu re  of the th ioethyl d eriva tive  should also  be d iscu ssed  

h e re . Unlike th e o th e r  compounds which w ere white so lid s, this w as a 

c o lo u r le s s , involatile (at least a t no rm al tem p era tu re s  and vacuum line 

p r e s s u r e )  liquid. It exhibited a l l  the p ro p e rtie s  of the o ther com pounds 

except fo r its physical s ta te . As it was m ade, it seem ed to m elt a t  about 

17° C but subsequent cooling failed to p ro p e rly  solidify it. S pectroscopic 

ana lysis  o f som e sam ples p rep a red  a lso  showed evidence of two com pounds 

with very  s im ila r  v a lu es  and th is could indicate a m ix tu re  of say d im e rs  

and tr im e rs  again . The exact reaso n  for this apparently  anom alous 

behaviour unfortunately  rem a i ns u n c le a r .

The com pounds w ere  found not to undergo adduct fo rm at ion w ith e th e r . 

Two possib le  rea so n s m ight be postu lated  for th is . With an a lkoxy o r a  

thioalkyl group attached  toa lum in ium , the alum inium  m ight be unw illing  to 

accep t ano ther elec tronegative  atom  o r  this may make the com pound 

unstab le , o r  that the e th e r  is unable to break down the d im eric  o r  

tr im e rlc  la ttice  of the hydroborate in o rd e r  to form  the adduct. E th e r  Is 

known to be able to c leav e  tr im e ric  alum inium  compounds when the  linking 

is done by hydrogen, but bridging by p resum ably  s tro n g er oxygen b rid g es 

would then be m ore d ifficult to b reak .

S pectroscopic p ro p e rtie s

The in fra -re d  sp e c tra  of the monoalkoxy and m onothloalkyl alum in ium

hydrobora tes w ere  obtained a s  Nujol m u lls .

As in d iscussion  of o ther a lum ln ium hydrobo rates, the In te re s t is in the

positionof theB-H  bands near 2500 cm   ̂ theB-H  bandnear 2000 cm   ̂
t ’ u

and the deform ation n ea r 1100 cm

F o r a ll the monoalkoxy and m onothloalkyl spec ies, the values fo r  the 

B-Ht s tre tc h e s  have d ec reased  from  the values observed  for alum inium  

hydroborate itse lf .

As can be seen from  the tabled values, theB-H^ bands occur a t  2520 and 

2460 cm   ̂ which Is approaching the values observed fo ra lum ln ium  

hydroborate-ligand sp ec ie s .
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T able 2.1

Selected sp e c tra l p ro p e rtie s  of RO and RS AlfBH^)^ compounds

MeS EtS Benzyl S Me O EtO

2520 s 2520 s 2520 s 2510 s 2520 s

2460 s 2460 s 2450 s 2450 s 2455 s

2120  s 2110  s 2100  s 2120  s 2102  s

1275 1265 m

1115 s 1130 s 1110  s 1120-1140 b r 1112 s

1060 s 1065 s

975 m 970 m 980 sh 990 sh

920 m 890 s

780m 760 m

690 m 695 m -s 630 m 650 m

500 m -s 500 m

1.48 0 .9 7 3 .68 1.40 0 .73 1„H nm r

2.47 6 .95 3 .3

34.9 -35.1 -34 .8 -3 6 .5
11D B nm r

6 9 .8
27Al nm r





84.

A ccom panying this tre n d ( theB -H ^ bandhas Increased  In value from  that

a sso c ia te d  w ith pu reah im in lum  h y d ro b o ra te . Thus the v a h e  Is around  2110 cm 1

an In c re a se  of a lm ost 80 cm  * from  the 2032 cm   ̂ fo r Al(BH^)g and again

approaching tha t fo ra  ligand sp e c ie s .

In the c a se  of an alum inium  hydroborate-ligand  sp ec ie s , th is  was exp lained

on the b a s is  tha t a convergence of the two se ts  of boron -hydrogen bands indicate.*

a tendency tow ards m o re  ionic n a tu re  in the hydrobora te  g roup . T h is  is not

u n reaso n ab le  in the alkoxyand thio a lk y lc a se . The p re se n ce  of the e le c tro n -

ric h  a lk o x y o r thio a lky lg roup  w ill m ean a g r e a te r  e lec tron  density  a t alum inium

which can be put into the A l-H -B bridge , thus strengthening  it and leading to an

in c re ase  in frequency . At the sam e tim e > th is  b ridge strengthening  co u ld

produce a sligh t d e c re a se  in frequency  o fthe  B-H v ib ra tio n s.
1 -1

As fo r  o th e r  v ib ra tio n s , the defo rm atio n  mode which o ccu rs  at 1113 cm 

In A1(BH ) has moved slighly to around  1130 cm  1 in theE tS  com pound, but
** O

for som e of the o th e rs  it is a lm ost unchanged. The rocking mode a lso  hard ly  

a l te r s ,  being a t 978 cm   ̂ in Al(BH^)^ and 970 cm  ̂ in the EtS com pound. The 

b rid g e  band region around  1500 c m " ' is m ore  difficult to co m p are . T h e re  is 

s t ill a lit t le d o u b ta s  to  th e ass ig n m en t of the bands in th is region in alum inium  

hy d ro b o ra te  itse lf, the bandat 1501cm   ̂ in Al(BH^) being assig n ed  to the 

bridge s tr e tc h .  In thealkoxy  and th io  alkyl compound th is is fu rth e r  com plicated  

by the p re se n c e  in the sa m ereg io n  of C-H bands, and if the h ighest intensity 

band a t 1475 cm 1 in the EtS com pound is the b rid g e  s tre tc h  then th is  would mean 

that the b ridge had weakened sligh tly  com pared  to alum inium  hy d ro b o ra te , a 

conclusion opposite to the one p roposed  for the observed  trend  in the B-Ht and 

B-H reg ion  above 2000 cm  ^.

F o r  the solid com pounds th is is not p ossib le  due to an obscu ring  by Nujol 

bands. T h ese  re s u lts  a r e  in good ag reem en t with values published fo r  one or 

two o th e r  alkoxy alum inium  h y d ro b o ra tes . T he mono butoxy alum inium  bis 

hyd ro b o ra tes  studied showed B-H bands a t 2525 and 2457cm   ̂ and 2513 and

2445 cm   ̂ fo r  the tBuO andBuO re sp e c tiv e ly . The B-H bands w ere  a t  2146
-1 U -1 and 2119 cm  re sp e c tiv e ly . D eform ations w e re a t  1116and 1114cm  . F o r

th e ir  b is  alkoxy alum inium  h yd robo ra tes the frequencies fo r the B-Ht d ec rease

s t i l l  fu r th e r  e .g .  to 2488 and 2427 fo r  the (MeO) A1BH, and the B-H in c re a se s  
’ — 2 4 y,

to e . g . 2164 cm  thus re in fo rcing  the view a lre a d y  e x p re sse d . £ i o  9 )
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N uclear m agnetic reso n an ce  sp e c tra

M ost of the com pounds p rep a re d  have b een sub jected  to n . m . r .  and ^ B  
27n . m . r .  and one to A ln .m .r .  T he proton sp e c tra  a ll have a s im ila r  fo rm .

T h ere  is a signal p re se n t due to the pro tons in the alky l side chain and th is is

u sua lly  superim posed  on a broad sig n a l w hich is due to the hydroborate p ro tons.

A b ro ad  s ig n a lfo r  hyd robo ra te  p ro tons is com m on in alum inium  hydroborate

ch e m is try , and it is believed tha t th is  is due to th e re  being an exchange by the

b rid g e  and te rm in a l pro tons yet re ta in in g  coupling to the and ^ B  nuclei and 
27 27the A1 n u c le u s . Coupling to  A1 is re ta in ed  because o fth e  high sym m etry

m a in ta in ed  around th e  alum inium  atom . If th is sy m m e try  is p e rtu rb ed ,as  it is

for ex am p le  in the c a se  o fth e  m onom eric alky l alum inium  hyd robo ra tes , then 
27the coupling to A1 is  lo st and the signal fo r  the hyd robora te  pro tons becom es

11 27a 1 : 1 :1:1 q u arte t due to coupling to B. T hat the coupling to A1 is re ta in ed  , 

th e re fo re ,in  the c a s e o f  thealkoxy  and thio a lk y lh y d ro b o ra tes  would suggest 

that the  compound is not m onom eric which would produce an asy m m e try  at 

a lum inium  an d th a t the m o lecu le  is a sso c ia ted  which would produce a m ore 

sy m m e tr ic a l env ironm ent and thus re ta in  coupling.

A v ariab le  te m p e ra tu re  1H n . m . r .  w as taken fo r the thio ethyl alum inium  

bis hyd robo ra te , th is  being th e m o st so lu b le  of the compounds p re p a re d . The
g

so lven t w asd  to luene. When th is experim en t w as c a r r ie d  out by Oddy for 

alum inium  hyd robo ra te  in the sam e so lven t, th is produced decoup 1 ing effects 

which heconcluded w ere  due to v isc o s lty  e ffe c ts . T h is ethyl alum inium  bis 

hydrobora te  a t room  te m p era tu re  showed a broad sig n a l fo r its hydroborate 

p ro to n s  with the p ro tons on the ethy l g roup  c e n tred  at 0 .9 7  ppm fo r the CH^ 

and 2. 47 ppm fo r the CH^. On co o lin g , how ever, it was not the hydroborate 

reso n an ce  that a l te re d  but th e s ig n a ls  fo r the e thy l g roup . At 238K tw osignals 

fo r e th y lg ro u p s w ere  becom ing v is i b le . F o r the high field CH^ resonance the 

o rig in a l had moved to 0 .9 2 p p m an d  ano ther w as appearing  a t 1 .03 ppm . At 

223 K this w as s lig h tly  m o re  p ro m in en t. T h is  m ay Indeed m ean that th e re  is an 

eq u ilib riu m  se t up in so lu tion  between m o le c u le s  of d iffe ren t deg rees of 

a sso c ia tio n . T heobvious choice ,bearing  in m ind prev ious in fo rm ation , would 

be a d im e r - tr im e r  equilib rium  w here  the ch em ica l sh ifts of the alkyl group in 

the two fo rm s a r e  sligh tly  d iffe ren t.
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3[EtSAl(BH4)2 ] 2 2[EtSAl(BH4)2 ]3

If the solution is w arm ed only to 343 one sharp  s e to f  signals can 

be seen  but these  a re  cen tred  at 1 .16 ppm fo r the CH^ and 2.74 fo r th e  

CH
11A ll the com pounds show 1:4:6:4:1 quintets in th e ir  B sp e c tru m .

T h is  shows that a ll the protons In the hydroborate group a re  being m ade  

equ ivalen tby  exchange p ro c e s s e s . The chem ical shift of the ^1B s ig n a l 

seem s to  be dependent upon the e lec tronegativ ity  of the atom to w hich the 

alum inium  is bonded. Thus th e th io  alkyl compounds a ll la v e  sh ifts s im ila r  

to o r  s lig h t ly low er field  than the ^ B  resonance foralum inium  h y d ro b o ra te . 

T he alkoxy com pounds reso n a te  to sligh tly  h igher field than the p a re n t 

h y d ro b o ra te . T hi s w as also  observed  for the alkoxy species p re p a re d  by 

NBth andSuchy (109).
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CHAPTER 3

Exchange reac tio n s  of Aluminium H ydroborate with T ria lk y lb o ran es 

Introduction

When alum inium  hydroborate is re a c te d  with species capable of 

exchanging alkyl g ro u p s> two cen tres of re a c tio n  a re  possible^ nam ely  

the alum inium  and boron a tom s. The p ro c e s s  of alkylation at a boron atom 

as opposed to the alkylation at alum inium  w hich has been shown by Oddy 

to be a g e n e ra l reaction  when alum inium  a lk y ls  a re  m ixed with alum inium  

hyd robo ra te> was f ir s t  observed by S ch lesinger et a l . fo r uranium  hydro- 

b o ra te> U(BH^)^. T rea tm en t of uranium  hyd robo ra te  with tr im e th y l - 

borane re su lted  in the isolation of a m onom ethyl and a te tram eth y l 

d eriv a tiv e . The compounds w ere a g reen  so lid  and a lavender so lid  

re sp e c tiv e ly . Both the compounds w ere v o la tile  and S chlesinger assigned  

them  the fo rm u lae  LKBH^lgBHgCH^ and LHBH^CHg)^ the m onom ethyl 

d eriva tive  being m ore volatile than u ran iu m  hydroborate itse lf . In te r ­

m ediate com pounds w ere  probably also  p re s e n t  but w ere  not iso la ted .

Equally uran ium  hydroborate was found to  re a c t  with tr ie th y l bo rane and 

h igher alkyl boranes, but pure products cou ld  not be Isolated in th e se  

c a se s .

M ore recen tly  o ther boron alkylated sp e c ie s  have been p re p a re d  by 

M arks et a l . They rep o rted  the p rep a ra tio n  and sp e c tra l p ro p e r tie s  of 

(CgHglgUBHgEt and (C^H^.IgUBH^C^H^ w hich a re  both brown so lid s .

The s tru c tu re o f  uranium  hydroborate Is known tocontain  hydroborate 

groups attached  by a tr ip le  hydrogen b rid g e  to the m e ta l. T hese form ulations 

a re  th e re fo re  not su rp ris in g > and contain the  s tru c tu ra l unit 

H
/  \

U — H —  B —  R (where R = m ethyl ethyl o r  p h en y l).

\  /
H

The In fra -red  sp ec tra  reco rded  by M arks confirm  th is , since no tra c e  of 

a B-H te rm in a l band was observed . T he ^H n .m . r .  shows a q u a r te t for 

the BHg pro tons which co llapses to a s h a rp  singlet when ^ B  decoupling is
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applied . M arks a lso  a rg u e s  that the co llapse of the B-H signal a t low 

tem p era tu re  fo r )gUBH4 is the f i r s t  obse rva tion  of the slowing of

the b rid g e-te rm in a l hydrogen exchange p ro c e s se s .

Although the bonding of the hydrobora te  group  is d ifferen t in 

alum inium  hydroborate to that in u ran ium  h y d ro b o ra te ( th e re  being a 

double ra th e r  than a tr ip le  bridge to the m etal, th e re  seem ed no reaso n  

why exchange of the te rm in a l hydrogens should not take p lace  with alkyl 

g ro u p s . In the alum inium  case  th e re  is of co u rse  the possib ility  of the 

hydroborate group having one o r two te rm in a l hydrogens substitu ted  by 

alkyl g ro u p s .

Reactions of alum in ium  hydrobora te  with tr im e th y l and tr ie th y l borane 

w ere attem pted at v a rio u s  concen tra tions. T he vapour p re s s u re s  of the 

m ix tu res w ere followed and the m ix tu re s  sub jected  to ^ B n . m . r .

by in fra -re d  sp ec tro sco p y  was a ttem p ted > as  w as an a lte rn a tiv e  p rep a ra tio n  

of the alkylated com pounds by a novel m ethod involving ne ither alum inium  

hydroborate nor tr ie th y l borane.

N uclear m agnetic reso n a n ce  p ro p e r tie s  of alum in ium  h y d robo ra te-trie thy l 

borane m ix tu res

T rie th y l borane - alum inium  hydroborate (1:1 m obr r a t i o )

In the ^ B n . m . r .  spec trum  of a sam ple th a t had been s t i r r e d  at room

spectrum  in which a v e ry  weak quintet a t-3 5 .6 ppm , a q uarte t a t-20 .6  

ppm (J 71 Hz) and a sm a ll broad hump a t-6 .2  ppm  w ere apparen t, toge ther

subaa^ao-nb
investigation . L a te r ,  separation  an of the reac tio n  products

tem pera tu re , and on w hich no a tte m p t was m ade a t  separation , a quintet

(1:4:6:4:1 ) at-35. 8 ppm  was observed  along with a very  sm a ll peak at

+28 ppm . This sam p le  was s to red  and the sp e c tru m  retaken  a f te r  a period

of th ree  w eeks. A qu in te t was s ti l lv ls ib le  a t-3 6 .3  ppm but a q u arte t

(1:3:3:1 ) a lso  ap peared  at-21 ppm fl_ u  = 7 0 H z ) .  Sm all peaks around 28 ppm 
27 B' Hw ere a lso  p re se n t. T h e  A1 sp ec tru m  showed a sing le peak at 94 .4  ppm .

A sam ple which had  been d is tille d  at 0° C had an a lte red  ^ B  n . m . r .

13,
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T rle th y l  borane-alum inium  hyd robo ra te  (5:1 m o la r  r a t i o )

T h e  ^ B n . m . r ,  spectrum  o f an un trea ted  m ix tu re  showed a quintet 

a t-3 5 .0 p p m  and a q uarte t =^73 H z ) a t-1 9 .9 ppm . T h ere  was a broad 

hum p a t-3 .5  ppm and a la rg e  peak  a t +28 ppm . A fter a period  of 2 weeks 

the sp e c tru m h a d  changed in that th e re  had been an in c re ase  of the quarte t 

and the  hump with re sp e c t to the q u in te t> and th e re  had been an inc rease  

in the  s ize  of the signal a t +28 ppm  In rela tion  to  the signal due to 

r e s id u a l  triethyl bo rane . T h is tre n d  continued a s  the sam ple  was left for 

a fu r th e r  3 m o n th s .

On attem pting to se p a ra te  the m ix ture a t0 °  C, a vo la tile  portion 

show ed aqu in te t a t-3 3 .7  ppm w ith som e tr ie th y l borane, w hilst the 

in  v o la tile  portion showed an in d is tinc t signal at-21 ppm t a hump at-6 ppm 

and a signal a t+ 2 8  ppm.

I rie th y lb o ra n e -a lu m in iu m h y d ro b o ra te  (12:1 m o la r .r a t io )

T h e  liquid m ix tu re  of th is  com position showed a signal in the 

n . m . r .  sp ec tru m  which, when proton decoupling w as applied( was 

found to be due to two signals a t-3 3 .9  ppm and-36.6 ppm . The spectrum  

a lso  showed a broad hump, som e res id u a l tr ie th y l borane, and a signal 

a t+ 2 8  ppm . A fter 5 days the quintet had v irtu a lly  d isappeared , and the 

b ro ad  hump had Increased  In s iz e  and was cen tred  a t-3 .5  ppm . The 

tr le th y l  borane sig n a l had d ec re a se d  and the signal at +28 ppm in c reased .

T rie th y l borane - alum inium  hydrobora te (25:1 m o la r r a t i o )

T h is  m ix tu re  produced v ery  s im ila r  re s u lts  to the 12:1 m ix tu re  with 

in itia lly  two qu in te ts  cen tred  a t-3 6 .5  and-33.7 ppm , followed by theLr 

d isappearance  on standing and in c re ase  of a broad hump signal at-4 . 2 

p p m . R esidual tr ie th y l borane and a signal a t +28 ppm w ere  p re se n t.

T rim ethy lbo rane-a lum in ium  hydrobora te  (5:1 m o la r r a t i o )

T h e  products of this rea c tio n  w ere investigated  a f te r  18 hours at 

ro o m  te m p era tu re  and an ap p ro x im ate  to ta l p re s s u re  of 6 a tm o sp h e res . 

T he products w ere  condensed in trap s  at -80° C and -110° C . The -80° C 

tr a p  contained a sm all am ount of resid u e  which gave a braod s tru c tu re le s s
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signal ( ^ B n . m . r .  sp e c tru m ) cen tred  at-36 . 2 ppm . The -1 1 0 °C  trap  , 

when su b jec ted to  ^ B  n . m . r . ,  showed a quintet at-33. 8 ppm ( a quarte t

at-21 ppm ( J B-H 72 H z), and a tra c e  of a signal a t-5  ppm . A signal

a t +25 ppm was a lso  p re se n t.

The reac tio n  w as repeated  at 70° C w ith a reaction  tim e of 6 h o u rs .

The to ta l p re s s u re  was estim ated  to be 7 a tm o sp h e re s . The fractionation  

te m p era tu re s  w ere  a l te re d  slightly  to -95° C and -120° C . T he " B n . m . r .  

spectrum  of the -95° C fraction  showed a quintet at-33 ppm and an ill-  

defined q u a rte t at-20 ppm , as w ell as s igna ls  a t+ 2 9 j +25 and +14 ppm .

In the -120° C f ra c tio n t the low field  s igna ls  w ere  a lso  p re se n t tu t  the 

high field signals showed a quintet a t -3 3 .8 ppm and a q u arte t = 72 Hz)

a t-2 1 .0 p pm . On standing, this sam ple showed a d ec rease  in the size  of 

the quintet and an in c re ase  in the s ize  of the q u a rte t.

T rim eth y l borane - d im ethyl alum inium  hydroborate (5:1 m o la r r a t i o )

As tr lm e th y lb o ra n e  boils at -20° C and dim ethyl alum inium  hy d ro ­

borate tends to decom pose at room  te m p e ra tu re , th is  m ix tu re  was kept 

cold and showed no apparen t reac tion  a f te r  a substan tia l tim e p erio d .

D iscussion

All th e se  r e s u lts  a r e  consis ten t with the form ation of exchange 

products between the species involved.

The com m only observed  low field  peaks of +28 ppm and +25 ppm in 

the ^ B  n . m . r .  sp ec tru m  w ere  identified as being due to te trae th y l and 

te tram ethy l d iboranes resp ec tiv e ly  by com parison w ith published values (206). 

On som e occasions the sp ec tra  showed these  signals to have shou lders on 

them  to Indicate the  expected tr ip le t s tru c tu re .  In these  two compounds 

the only hydrogens p re se n t a re  In b ridge positions, and the 11B-^H 

coupling constan t would be approxim ately  40 Hz.

R H R

^ B ^  ^ B ^
R ^  H ^  ^  R



T h ese  compounds a re  not en tire ly  stab le  and have a tendency to

d isp ropo rtiona te  . The signals observed  at +29 and +14 ppm in the

n . m . r .  sp ec tra  of the heated trim ethy l borane-alum inium  hydroborate

rea c tio n  a re  due to tr im e th y l d iborane form ed by disproportionation

of te tram ethy l d iborane according to

3Me B H -----------> 2Me B H + 2BMe
4 2 2 -  3 2 3  3

In the exchange rea c tio n s  with alum inium  hydrobora te ,these  compounds

would probably be fo rm ed  by the following schem e
H H H

/  \ / / \ /
A1 B + R — BR_ — » A1 B

^  / \ 2 / \
H H H

R H R
/ \ /

2H --  BR_ —------------> B B2
R / \

H / \
R

T h is  leads to the alum inium  containing sp e c ie s , and as  shown in this 

equation the alum inium  species form ed would be expected to show a q u a r te t 

in Its ^ B  n . m . r .  sp ec tru m , providing the p resen ce  of an alkyl group does 

not p reven t b r id g e -te rm in a l hydrogen exchange. This was not found to be 

the ca se , and a q u arte t was observed  in m ost c a s e s . The coupling co n s tan t 

^B -^H  was found to be consis ten t with an average of the value for the 

p resen ce  of one te rm in a l and two bridging hydrogens.

(1 B-H at 120Hz +  2B-H at 40 Hz) + 3 = 67 Hz t u

T he quintet s ig n a ls  observed  a re  obviously from  unreacted  hyd robora te  

g roups, and it seem s reasonab le  to assign  quintets that reso n a te  at v a lu es 

sligh tly  low er than the alum inium  hydroborate position, to hydroborate 

g roups that a re  in a m olecule with som e deg ree  of alkylation on other 

borons.

rriore than one te rm in a l hydrogen p er hyd robo ra te  

group m ay be substitu ted . In this c a se  the boron resonance would be

expected to be a t r ip le t .  On no occasion w as a tr ip le t observed . H ow ever, 

the broad hump which was observed  at positions around-4 ppm is assig n ed

to th is  doubly substitu ted  group .
H R



The appearance observed  for the resonance m ay be due to one of two 

c a u se s . T h ere  is the possib ility  of v iscosity  of the liqu id  having an 

effect on the couplingt but in th is case  th is would seem  un like ly . M ore 

lik e ly  possib ly , in view of the fact that a doubly te rm in a lly  alkylated

hydrobora te  group is probably  a r ig id , n o n -in tram o lecu la rly  exchanging
27 ’ 11group , then the A1 atom  may be involved in the coupling to B.

H R  H H

X  H X  X  R

It should be noted in these  reac tio n s that the ra te  of rea c tio n  is slow and 

Incom plete. To fully alkylate an alum inium  hyd robora te  m olecule will 

obviously re q u ire  six  alkyl g roups in te rm in a l p o s itio n s . T hus, even 

if each tr ie th y l borane m olecule can only supply one a lk y l group , and the 

o th e r two a re  lost toexchange reac tions as te traethy l d ibo rane , then any 

ra tio  g re a te r  than bBEt^ : lAl(BH4 )g has the am ount n e c e s sa ry  to go to 

com pletion . T his is only observed  for the m ix tu res w ith  very large 

am oun ts  of tr ie th y l borane w here the broad hump ass ig n ed  to the doubly 

alky lated  g roups is found to dom inate o ther Al-B s ig n a ls .  Below these 

ra tio s  the broad hump is not p resen t in substan tia l am o u n ts . Even at 

a 5:1 ra tio  w here two borons could be doubly a lk y la ted , ev idence of 

incom plete alkylation as  w itnessed by the p resence  of the quarte t due 

to BH^Et was alw ays p re se n t. In th is  work, heating the tr ie th y l borane 

m ix tu re s  was not attem pted  in view of the unstable n a tu re  of the s ta rtin g  

compound, Al(BH4 )g , possib ly  leading to even m ore com plex  p ro d u c ts . 

F u rth e r  work could Involve heating of these m ix tu res to  try  and drive 

the reac tions to com pletion . The reaction  of d im ethyl alum inium  h y d ro ­

bo rate  and tr im eth y l borane in fact showed no rea c tio n  even a f te r  se v e ra l 

w eeks, but again th is was kept cold to avoid com plicating  the sy s tem . 

D im ethyl alum inium  hydroborate would tend to d isp ro p o rtio n a te  at h igher 

tem p era tu re .

The n . m . r .  evidence is en tire ly  consisten t with th e se  fo rm u lations. 

T he in c rease  in the am ount of tr ia lky l borane av a ilab le  leads to a g re a te r  

p roportion  of the broad hump, or quarte t over quintet o r  broad hump over 

q u a rte t. Increased  reaction  tim e also  produces th e se  effec ts . 

Accompanying th is is an increase  in the amount of te tra e th y l d iborane



In re la tio n  to tr ia lk y l borane. The evidence, how ever, is only 

c irc u m sta n tia l because, as  was s ta te d  above, th e re  is incom plete 

reac tio n  and a m ix ture form ed and th e  postulated com pounds w ere 

n o tav a ilab le  fo r confirm atory  a n a ly s is .

A ttem pts w ere m ade to se p ara te  the m ix tu res in vacuo and take g a s  

phase  in fra -re d  sp ec tra , but it se e m s  ap p ro p ria te  to  f ir s t  p re se n t som e 

data on the vapour p re s su re s  of the m ix tu re s .

The m ix tu re s  containing tr ie th y l borane produced  vapour p re s s u re s  

w ell below that of alum inium  hyd robo ra te  as expected .

By R aou lt's  Law the vapour p r e s s u r e s  a t 0° fo r the various m ix tu re s  

would be expected to be

A1(BH4 >3 : BEt3 = 1 :1 (119.5 x 0 .5 )  + (10 x 0 .5 )  = 65 m m  Hg

A1(BH4 )3 : BEt = 1 : 5 (119.5 x 0 . 167) + (10 x 0 . 833) = 28 mm Hg

The 1:1  m ix tu re  was found to have a vapour p re s s u re  of 62 mm Hg a t 0° 

and the 1 :5 m ix ture a vapour p r e s s u r e  of 14 mm Hg, and th is m ay be 

explained by the chem ical In terac tion  taking p lace .

T he data for an alum inium  hydrobora te  : tr im e th y l borane = 1 :5  

m ix tu re  a re  p resen ted  in T able 3 .1 ,along with a com parison  fo r p^-ce. 

tr(m ethy l bo rane . When the system  had ceased  to show a change in 

vapour p re s s u re , excess trim ethy l borane, 90% of the o rig ina l am ount 

used, was rem oved and the vapour p re s s u re  of the subsequent m ix tu re  

was found to be
-61° C 8 mm  Hg

-45° C 15 m m  Hg

-35° C 32 mm  Hg

-23° C 57 mm Hg

0°C 148 mm Hg

Room tem p. 19.4 C 257 mm Hg

By reducing the am ount of tr lm e th y l borane u sed  Initially , a m ix tu re

with a vapour p re s su re  below an a tm o sp h e re  at room  tem p era tu re  could
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T able 3.1

Com parison of th e  Vapour P re ssu re  of Aluminium H ydroborate: T rim eth y l |

Borane 1:5 with T rim e th y l Borane

T /  °C O bserved vapour 
p re s su re

L ite ra tu re  for 
BM e^/mm Hg (208)

-61 66 100

-52 .7 100

-45 146 245

-35 229 400

-33 .4 245

-23 374 683

-21.0 400

- 20.1 418 A tm osphere

-5 .7 683

X — Z_
Xo
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1

F o r the alum inium  hyd robo ra te( tr ie th y l borane=  5:1 mixture (Table. 3 .2 ) 

the vapour p re s s u re  was found to s ta b ilise  a t 200-220 mm Hg at room  

te m p era tu re . The m ix tu re  continued to evolve hydrogen as  would be 

expected for alum inium  hyd robo ra te . The tr ie th y l borane did 

not seem  to p rev en t d ecom position  and the effect was not a lte red  

reg a rd le ss  of w hether the hydrogen w as re ta in ed  o r pumped away.

In fra-red  s p e c tra l data on alum inium  hydroborate, tr ia lk y l borane 

exchange rea c tio n s

The study of the ^ B n . m . r .  sp e c tra  of these exchange reac tio n s 

and m easu rem en t of th e ir  vapour p re s s u re  gave an indication as to which 

species w ere  p re se n t and th e ir  vo la tility . A ccordinglyt p rocedu res w ere 

sought for sep ara tin g  the com ponents by d istilla tion  in vacuo, and fu rth e r  

c h a rac te risa tio n  by in fra -re d  spec tro sco p y . T h ere  w ere se v e ra l 

d ifficu lties. As has a lread y  been s ta te d ( in no case  had the reac tions 

seem ed to have reached  co m p le tio n  and the compounds form ed w ere  

likely to have s im ila r sp e c tra l p ro p e r tie s  to the in itia l com pounds.

F u rth e r j the alkyl d iboranes and suggested  B-alkylated hydrobora tes 

might also  ap p ear s im ila r .  This indeed appeared to be the c a se .

Most of the sp e c tra l d e ta ils  observed  could be assigned to the known 

com pounds, alum inium  hyd robo ra te> tr ia lk y l boranes and alkyl 

d iboranes.
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T able 3 .3 a

In fra -red  sp e c tra l d e ta ils  of exchange re a c tio n s  between A1(BH4 >3 and BR^

Compound o r  P rocedu re  In fra -red  f re q u en c ie s /cm
M ixture ____________________________________________________________

BEt3 1460 1325 1110 920

E t4B2H2
1582 1466 1400 1290 1109

1047 814

E t3B2H3 2500 1582 1470 1435 1289

1114 1072 1024 838

Me4B2 H2 1605 1437 1324 -1312 1147

1111 1055 1017 935 772

Me3B2H 3 2506

BMe3 1300 - 1311 1163 1150 970

860

A1(BH4 )3 :BEt3 S eparation  0

1 : 5

-78

-196

A1(BH4 >3 : BEt3 Separation  -35 

1 : 12

-60°

-196

^ l4B2^2* ^ x tra  Peaks ln 1300

2500 sm a ll. D om inated by

E ,4B2H2 
reg ion .

Domlnat

Sm all p ea k s , 650 600 

Domini 

a t 650

D om inated by BEtg. 1540 cm -1

D om inated by A1(BH4 >3 . No peak

1580 cm ^ .

No A l-H-B bands

Some BEt3 p eak s.

2540 2480 BEtg p eak s.

650 600 (650 m ore  In tense)

re d is t i l  -55°

BEt3 pure

+ 2545 2480 650 600 (600 m ore

Intense )

T ra c e  A1(BH4 >3

w * .  % 1 _______ • . .  f i »  1  . 4 ~ / ' i

j T l
:fr’y  p  . .

■>' .  *  l  ' •  .
.. ;  ;  ;  i  * 1 0 4
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T ab le  3 . 3b

In fra -re d  s p e c tra l d e ta ils  of exchange re a c tio n s  between AlfBH^)^ andBR^

M ixture P rocedu re Infra -re d  fre q u e n c ie s /c m

A1(BH4 )^: BMe? Separation -80° 2540 2480 1600 1500 1300

1 : 5 1110 685 575

Room tem p . - 110° 2550 2500 1600 1310 1150

1110 690 600

-196° BMe3 73% re c o v e ry . 1600

A1(BH4 ) ,  : BMe^ Separation -95° 2515 2500 sh a rp  su p e rim p o sed

1 : 5 on le s s  Intense s ig n a l.  1600 ver

s tro n g .

oo

1310 S evera l bands 1200-1000

930 800 680 sm a ll

- 120° S im ila r . No band 690

-196 BMe3
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T he Inform ation obtained and the p ro ce d u re s  used  a r e  su m m arised  

in T able 3 .3 .

The conclusion m u s t th e re fo re  be th a t the sp e c tra  of the com pounds 

form ed in the exchange reac tio n s  a re  insufficiently  d iffe ren t from  

the s ta rtin g  com pounds to be positively  identified by in f ra - re d  

sp e c tra  of the m ix tu re s .

A ttem pted p re p a ra tio n  of B -alkylated alum inium  hy d ro b o ra tes  by a novel 

reaction

T h is  was sug g ested  by an analogous reac tio n  from  bery llium  c h e m is try  

d escribed  in a U .S . pa ten t (195). In th is  work te trae th y l d iborane was 

rea c te d  with d ie thy l bery lliu m  at 0° C . B eryllium  bis (diethyl b o ro h y d rid e ) 

was sta ted  to be fo rm e d .

2E t4B2H2 + [ E t2 Be] ---------> B e f B E ^ H ^  + 2BEt3

On heating to 180° C under reduced  p re s s u re  fo r 4-6 hou rs this gave a 

71% yield of pure bery lliu m  hy d rid e .

By analogy a re a c tio n  was se t up acco rd ing  to the equation

6E t4B2H2 + (E t3A l ) 2 ------------ > 2Al(BEt2H2 )3 + 6BEt3

S pectra l ana ly sis  o f th e  reac tio n  p roducts by 11B n . m . r .  spectro scopy  

showed the sam e b ro ad  signal at-4 ppm as had been o bserved  in the 

exchange reac tio n s  o f alum inium  h y d ro b o ra te . T rie th y l borane was a lso  

observed to be fo rm e d . Study of the in f ra - re d  spec trum  of the m ix tu re  

which had been d is t i l le d  to rem ove B Et, su rp ris in g ly  did not show any 

strong  band c lose  to  2000  cm  which would indicate the p re se n ce  of an 

Al-H-B bridge u n it. T h e re  w as only a v e ry  broad band spanning 2000 cm  

Bands due to C-H bonds w ere  observed  c lo se  to 3000 cm   ̂ and 1470 cm  ^ . 

T here  w ere som e bands around 1000 cm   ̂ which could not be a ssig n ed .

No definite conclusion  can th e re fo re  be drawn a t th is s ta g e t and it 

ap p ears  as  though a m ix tu re  of p roducts is again ob ta ined .

Conclusion

Much evidence h a s  been accum ulated  pointing tow ards the form ation  

of a new c la ss  o fcom pounds, B -alkylated alum inium  h y d ro b o ra te s( by two 

d iffe ren t ro u te s . C om pletely  defin itive p roof In the fo rm  of total 

separation  and ch em ica l ana ly sis  w as no t obtained.
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CHAPTER 4

R eac tions of A lum inium  H ydroborate with so m e O ctahydro T rib o ra te  

and H ydride Species, and th e ir  R elevance to  Aluminium H ydroborate 

D ecom position 

Introduction

As w as m entioned in C hapter 1t the o b se rv ed  decom position  of alum inium  

h y d ro b o ra te  has p re se n ted  m any p ro b le m s . F rom  the e a r l i e r  work of 

S ch le sin g e r and h is c o -w o rk e rs t Brokaw and P ease> and so m e  rec en t 

unpublished  w ork by McAvoy( w hose observ a tio n  that h ea tin g  d iborane 

with alum in ium  h y d robo ra te  a t 80° C p roduced  a five-fo ld  in c re a se  in 

hydrogen  evolution and no d iborane re c o v e ry , Oddy developed the 

rea c tio n  schem e below .

2A1(BH4 )3V- V 2 HA1(BH4 )2 + B2H6 (1 )

3HA1(BH4 )2 - — » A1H34+ 2A1(BH4 )3 (2 )

2a ih 3 — >■ 2A1 + 3H 2 (3)

2A1(BH4 )3 + B2H6 __X 2B2HyAl(BH4 )2 (4)

HA1(BH4 )2 + B2H6 __3k
B2H7A1(BH4>2 (5)

2B2H7A1(BH4 )2 + B2H6 — » 2 (B3H8 )A1(BH4 )2 +  2H2 (6 )

2B3H 8A1(BH4 )2 +  B2H6 — > 2 (B4H9 )A1(BH4 )2 + 2H2 (7)

2 (B4 H9 )A1(BH4 )2 + B2H6 — ï 2(B5Hg )Al(BH4 )2 + 4H2 (8 )

T h e se  re a c tio n s  could a lso  be supplem ented  by fu rth e r  re a c tio n s  to g ive. 

h y d ro b o ra te s  of h igher p e rcen tage  boron conten t and m o re  than one 

h y d ro b o ra te  group  p e r  m olecule could be Involved In the re a c tio n .

T h e  build-up of h igher hydrobora te  g ro u p s  is c o n s is te n t with the 

ch an g es review ed by Long fo r d iborane decom position w h ere  only B^H^q f 

B gH ^  , B5H9 t B QH and hydrogen a r e  read ily  Iso lab le  (13).

C onsideration  of the rea c tio n  schem e laid out by Oddy p red ic ts  that no 

d ib o ran e  w ill be ob tained, and shows the likely behaviour when d ibo rane Is 

added a s  in the McAvoy experim en t (1, 4 , 5, 6 , 7, 8 ). T h e  schem e also



p red ic ts  hydrogen as  a decom position p ro d u c t (3 ,6 ,7 , 8 ).

However it should be pointed out th a t as  yet th e re  Is no d ire c t 

experim en ta l evidence fo r  such a sch em e a s  that above, and although 

Oddy investigated  the H A1(BH ) (x = 1 o r  2) com poundsi th e re  a re
X  4  o  “ X

no re su lts  which a re  re le v a n t to the a lu m in o -h ig h er borane sp e c ie s .

T he purpose of th is C hap te r is to com m ent upon such sp e c ie s  and th e ir  

likely p ro p e r tie s .

The e a r l ie r  work of Oddy is re le v a n t to  this d iscu ssio n  and w ill 

th e re fo re  be p resen ted  b rie f ly . Oddy m ixed  ex cess  aluminium hydroborate 

w ith d ie thy l alum inium  hydride and d is t i l le d  off vo la tile  p roducts before 

red is tillin g  alum inium  hyd robo ra te  back into the rea c tio n  m ix tu re  and 

rep e a tin g . By th is m ethod it was p o ss ib le  to form  an involatile  fluffy 

white so lid , insoluble in fu rth e r  a lum in ium  hydroborate> which form ed 

a f te r  a rap id  p o ly m e risa tio n . T h is so lid  slowly darkened  at room  

te m p e ra tu re . C hem ical ana ly sis  of the so lid  showed it to be about 80 

m ole %  alum inium  hyd ride  in co rpo ra ted  with alkyl and hydrobora te 

g ro u p s, but c o n tra ry  to  m any ex p e rim en ts  in th e  p as t no co -o rd inating  

so lven t.
o

Mixing the re a c ta n ts  by s tir r in g  a t 0 C for one hou r in a c losed  

sy stem  produced a c le a r  co lo u rless  liq u id . On rem oving  the vo la tile  

com ponents by d is tilla tio n , the re m a in d e r  becam e m o re  v iscous un til 

It looked like a p la s tic  re s id u e . Up to th is  stage the re s id u e  could be 

red isso lv ed  in alum inium  hydroborate to  g ive a m obile liquid aga in . The 

liquid o r  p la s tic  re s id u e  had to contain m o re  A l-H u n its  than the in itia l 

m ix tu re  as ethyl alum inium  bis (h y d ro b o ra te ) w as o bserved  a s  a vo latile 

p ro d u ct. The conclusions that Oddy rea ch ed  a re  su m m arised  in the 

following d i a g r a m e d  th is  dovetails in n icely  with the schem e proposed 

fo r alum inium  hyd robo ra te  decom position  and the o b se rv a tio n s of 

S ch lesinger.
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HAl(BH4 )2 .O R 2
/K

+ e th er

6A1(BH4)3 +  (E t2A lH )3 ->  3HAl(BH4 )2 + 6EtAl(EH4 )2

T he decom position  a t 40 C would Involve rea c tio n s  1' 4, 5, 6  w ith  hydrido 

alum inium  h y d ro b o ra tes  being s ta b ilised  by the ex c ess  alum inium  

h y d ro b o ra te . T he hyd rido  alum inium  hyd robo ra te  can then rem o v e  any 

d lbo rane which m ight r e a c t  a s  in 6 t 7 o r  8 to produce hydrogen by the 

r e v e r s e  of reac tio n  1 o r  by 5. Addition of so lub le ’p o ly m e r’ which was 

Identified as  the so lu b le  p la s tic  re s id u e  p r io r  to po ly m erisa tio n  to 

(p red o m in an tly ) alum inium  hydride should In c rea se  the alum inium  

hy d ro b o ra te  s ta b ili ty .

At te m p era tu re s  above 40° C the s tab ilisa tio n  by hydrido alum inium  

h y d robo ra te  sp e c ie s  w as not p o ss ib le  as  rea c tio n s  2 and 3 took o v e r . 

Insoluble po lym eric  alum inium  hydride and alum inium  m e ta l could  be 

p roduced . The p o ly m eric  la ttice  w as shown by Oddy to fo rm  w ith the 

com position  A1H„I 2X  A1H w here X was a hydro  bo ra te  g ro u p . Since
o  JL

the hyd robora te  g ro u p  In th is ca se  could be la rg e r  (say B^Hg o r  h ig h e r) , 

the com position  of th e  po lym er could approach  the observed  AIB^H^.
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Oddy has also  shown tha t the hydrldo alum inium  hydroborates a re  

ex tre m ely  sen sitiv e  tow ards d isp ro p o rtio n a tio n . In anything but a c lo se d  

sy s tem  in vacuo they  im m ediate ly  deposit po lym eric  alum inium  hyd ride  

acco rd ing  to

3HA1(BH4 ) 2 -------— >(A1H3 )x 4 +2A1(BH4 )3 1'

3H2A1BH4 - q - ----> 2(AlH3 ) i  +Al(BH4 )3 t

C onsequently  the hydrido alum inium  hyd ro b o ra tes  have not been found to  

e x is t in the gas  phase  and th is has p resu m ab ly  prevented  th e ir  iso la tion  

and c h a ra c te r isa tio n  as  unco-o rd inated  com pounds. The addition of e th e r  

to co -o rd in a te  to the alum inium , how ever, s ta b ilise s  the species,and  

sp e c tra  of the co -o rd in a ted  sp ec ie s  can be o b se rv ed .

T he in fra -re d  sp ec tru m  shows bands of the BH^ group at 2495 cm  ,

2435 cm  ̂ 2150 cm   ̂ showing it is s im ila r  in s tru c tu re  to the alum in ium

hydrobora te  ad d u c ts . In addition ,the sp e c tru m  shows an Al-H^ 

s tre tc h in g  vibration  at 1885 cm

T he n . m . r .  sp e c tra  a lso  show som e in te restin g  fe a tu re s . The

n . m . r .  shows qu in te ts indicating  equivalence of the hydrogen atom s in
27the hyd robora te  g ro u p . The A1 n . m . r .  shows the alum inium  re so n a n ce  

to be a slightly  h ig h e r sh ift fo r the hydrldo alum lum  hydroborate adduc ts 

(82 ppm ) than fo r the alum inium  h y d robo ra te  adducts (65 p p m ). T he 1H 

n . m . r .  sh ift for the alum inium  hydride in the adduct spec ies  was 

de term ined  in a few c a s e s .  T h is  was found to occu r at approxim ately  

3 .7  ppm and was taken a s  evidence fo r a te rm in a l hydride by co m p ariso n  

w ith the reso n an ce  position fo r the te rm in a l hydride in [H A liC llO S iM e ,^  (180). 

Bridging hydrides tend to com e a t a low er sh ift, e . g . in the d im ethyl 

alum inium  hydride  t r im e r  it is a t 2 . 8 ppm  (181).

F o r the uncom plexed hydrido alum inium  hydrobora tes the hydride  

reso n a n ce  was found to vary  in position . F o r  hydrido alum inium  bis 

h y d robo ra te  In ex c ess  ethyl alum inium  b is hydrobora te, the hydride 

reso n a n ce  was a t 3 .69  ppm , suggesting  a te rm in a l position . H ow ever, 

if the percen tage of alkyl hydrobora te  is allowed to d ec rease  o r  the 

alum inium  hyd robora te  tends tow ards a b is hydrldo sp ec ie s , then the
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sh ift of the hydride m oves down to 3. 2 to 3 .3  ppm . Thus the s tru c tu re  

Is tending tow ards an asso c ia te d  species,and  of c o u r s e  th is  Is p a ra lle l  

to the observed  bulk behaviour that the b is hydrido alum inium  h y d ro ­

bo rate  sp e c ie s , with li t t le  alkyl alum inium  h y d ro b o ra te  to s ta b ilise  it, 

tends to po ly m erise  e a s ily . D im érisation  m ust obv iously  be a f i r s t  

s tep  in alum inium  atom s associa ting  through b ridg ing  hydrogens to 

form  the po lym eric alum inium  hydride.

T his w ork, how ever, did not attem pt to iso la te  any com pounds with 

h igher hyd robora te  g ro u p s attached  to alum inium . Some com pounds of 

th is  type tha t have been iso lated  prev iously  w ere  m entioned  in C hap te r 1.

Although alum inium  is the next atom  to boron in Group III of the 

period ic  tab le , it has not proved p ossib le  to in c o rp o ra te  an alum inium  

atom  into a po lyhedral boron cage . Compounds w h e re  it is asso c ia te d  

w ith a c a rb o ra n e  anion, e .g .  in E tA lB g C jH ^(2 0 9 ),how ever a re  known.

A recen t re p o r t suggests a p ossib le  rou te  to alum inium  Insertion  into 

a pentaborane cage . 2 -T e trah y d ro b o ra to -2 -b e ry lla -n td o -h ex a b o ra n e  (11 ) 

prepared(197)frcm  •) -chloro-pentaborane(9)and bery lliu m  h y d ro b o ra te , 

re su lted  from  a cage opening reaction  with subseq u en t Incorporation  of 

Be into the la rg e r  cag e .

T h is ch ap te r w ill d isc u ss  p rim a rily  the c h e m is try  of som e alum inium  

o c tah y d ro trib o ra te  com pounds and re la te  them  to the alum inium  h y d ro - 

borate  decom position sch em e .

D im ethyl Alum inium  O ctahyd ro tribo ra te

The b rie f re p o r t on th is  compound gave a m ethod  of p rep a ra tio n  that 

was used  in the p re se n t w ork, and a few sp e c tro sc o p ic  p ro p e r t ie s .  T he C 'i0 0 )  

vapour p re s s u re  w as a lso  quoted but not thought to  be a p ro p e r te s t  of 

p u rity . In the p re se n t w ork, good ag reem en t w as found with the published 

data, but the com pound was found to undergo decom position  only very  

slowly a t room  te m p e ra tu re  and the vapour p r e s s u r e  of the com pound is 

th e re fo re  a m ore  u se fu l and re lia b le  p ro p erty  than  had been h ith e rto  

re p o rte d . O ther p ro p e r tie s  and data not fully re p o r te d  p rev iously  have 

a lso  been re c o rd e d . T hus the compound has been  sa tis fa c to r ily  ana ly sed ,
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since this w as  not rep o rted  In the o rig ina l note, for hydro ly sab le  m ethyl 

and hydrogen (as CH^ and re sp e c tiv e ly )  and for alum inium  (by EDTA 

titra tio n ) . T h e  in fra -re d  sp ec tru m  (g as-p h ase )  was confirm ed  as

having B-H bands at 2550 cm  1 and 2490 cm  \  and a v e ry  strong  
-1

Al-H, -B band a t 2170 cm  . T h is la tte r  absorp tion  subsequently  
b

proved to be a very  valuable identification band as  did the p re se n ce  (or

a b sen c e ) o f th e  strong  band a t 715 cm  ̂ [v (A l-C )] .

A fa irly  de ta iled  exam ination of the n u c lea r  m ^ n e t ic  reso n an ce

spectrum  of th e  compound w as undertaken  , som e ag reem en t with the

previous w ork  being ob tained. As sta ted  in the o rig in a l w ork , the ^ B

n .m .r .  is te m p e ra tu re  dependent, but it is a lso  solvent dependent. ( 2 ° ' ' )

If the p .  re liquid is cooled, then at 0 C fine  s tru c tu re  due to prctor.

coupling is o b se rv e d . Two boron signa ls,one a low field  tr ip le t  J 120 Hz,

and the o th e r  a q uarte t J 74, 79, 73 Hz a re  observed , th is  being in good

agreem ent w ith  the published sp e c tru m . The low field reso n a n ce  is

assigned to th e  unique boron and the coupling pa tte rn  and coupling constant

would seem  to  indicate that it is only coupling to Its two te rm in a l

hydrogens. T he high field  reso n an ce  is assigned  to the two equivalent

borons. T h e  coupling p a tte rn  and coupling constan t h e re  would seem

Indicate th a t these  borons a r e  coupling w ith the te rm in a l and bridging

hydrogens o f  which th e re  a re  one and two re sp e c tiv e ly  as so c ia te d  with

each boron . The coupling constan t is a re flec tio n  of th is  r a t io .

Below th is  te m p era tu re , se v e ra l changes a r e  observed  in the ^1B

n .m . r .  A t -33° C the reso n an ces  of the q u arte t a r e  beginning to m erge

and a t -38° have becom e a sing le  resonance  with two sh o u ld e rs . The low

field tr ip le t a t  this te m p era tu re  is beginning to broaden . At -43° C the
o

high field s ig n a l ap p ears  to have two se ts  of sh o u ld e rs , and a t -57 has

th ree  sh a rp  peaks a t  its apex with a spacing of 65 Hz. At te m p era tu re s

between -5 7 °  and -73° a g rad u a l change is obse rved  so th a t a t -83°
o

virtually  a l l  the fine s tru c tu re  has d isappeared , and a t -93 no evidence 

of fine s tru c tu re  re m a in s .
Vi
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T able  4.1

Some n . m . r .  p a ra m e te rs  fo r  M e^AlB^H^

11 B P^r<z. liquid

T em p. Shift/ppm F orm  of signal

22° C -17 .7 Broad singlet
-40.2 Broad sing let

0° C -14.0 T rip le t J = 119.6  Hz
-41.3 Q u arte t J = 72 Hz

-23° C -14 .0 T rip le t J = 125 Hz
-41.4 Q u arte t J = 79 Hz

-33° C -14.0 T rip le t J = 122 Hz
-41.3 111 defined q u a r te t J ou ter 84 Hz

Inner 46 Hz

-38° C -14.0 T rip le t J = 122 Hz
-41 .4 111 defined t r ip le t  J = 102 Hz

-43° C -14.0 Broadening t r ip le t  J = 119 Hz
-41.3 Singlet. Ill defined  fine s tru c tu re

1 cn '-j
O

O -13.9
-39 .0
-41.3
-43.6

Broadened t r ip le t .  Broad decoupled
_  , , s igna l T h re e  sharp  p e a k s  a t apex.
Spacing 65 Hz. Sharp  decoupled
signal

-83° C -14.2 Broad hump
-41 .2 Singlet. Ill defined  fine s tru c tu re

-93° C -14 .7 V ery  broad
-41 .2 Broad sing let

B T oluene solution

20° C -32.9 Singlet

-23° C -34 .2 Broadened s in g le t.  Broad shou lder 
to low field s id e

-43° C -38 .2 Broadened s ln g le tt Broad shou lder 
11 to 15 ppm

-63° C -18 .5  (7) V ery  broad s in g le t.  Shift figu re  
d ifficult to d e te rm in e

1H

-40 .9 Singlet

T oluene solution

Singlet fo r m ethyls a t a l l  te m p e ra tu re s  
Width of signal v a r ie s .

27Al P* rz liquid

23° C 189 Singlet
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1
An n . m . r .  Investigation w as undertaken a t various te m p e ra tu re s

with a so lu tion  of dim ethyl alum inium  o c ta h y d ro tr ite ra te  In to luene

solution . T he n . m . r .  showed sign ifican t d iffe rences f ro m  that

obtained from  the ¡i«.r«.liquid. At room  te m p era tu re  , ju s t  o n e  signal

at-32 .9  ppm  w as o b se rv e d > the chem ical sh ift being in good a g re em e n t

with the position  obtained by G aines fo r  Me A1B H a t 50° C (33 .3  p p m ).
2 o o

It co rre sp o n d s  fa ir ly  w ell to a tim e averaged  position of two borons at 

a shift o f-41 .3  ppm and one boron at a shift of-14 ppm (2 x 4 1 .3  + 14-5-3 = 

-3 2 .2  p p m ). At -23° C the signal has shifted sligh tly  to -3 4 .2 , has b roadened , 

and has a v e ry  broad shou lder to the low field s id e . T h is tr e n d  continues 

as  the te m p e ra tu re  is low ered f u r t h e r e d  only a t -63° C a r e  the two 

signals re a lly  s e p a ra te .

In the n . m . r . ,  n e c e s sa r ily  c a r r ie d  out in toluene so lu tio n , the

only fe a tu re  that can be c le a rly  d istinguished  is the m ethyl s ig n a l. This

signal re m a in s  substan tia lly  unchanged as the te m p e ra tu re  is  reduced

although It broadens below -80° C. It was not observed  to s p li t  into two

as re p o rte d  by G aines. In th is  Investigation the hydrogen a ttac h ed  to

boron rem a in ed  too broad  for any inform ation to be g a in ed .
27T he A1 n . m . r .  showed a sing le t and was a t a sh ift o f 189 ppm

3+(downfield w . r . t .  A1(H O) = 0 ) .  The chem ical sh ift of a n  alum inium  
2 6

signal re f le c ts  the s te re o c h e m is try  and co -o rd ination  n u m b e r  around 

that alum inium  atom . Thus crow ded alum inium  a to m s,a s  In alum inium  

hyd robora te ,have a reso n a n ce  around  100 ppm , the d im eric  alum inium  

alky ls w ith  a 4 co -o rd ination  around  alum inium  re so n a te  a ro u n d  150 ppm , 

and the m onom eric tr ig o n a l alum inium  a lky ls, 3 -co -o rd in a tio n , reso n a te  

below 200 ppm . D im ethyl alum inium  o c tah y d ro trib o ra te  co m es  in between 

these la t te r  two.

T h is  confirm s that d im ethyl alum inium  o c ta h y d ro tr ib o ra te  is m ono­

m eric  and suggests th a t the bonding a t alum inium  is so m ew h ere  between 
2

the sp needed for the tr ig o n a l a rran g em en t in, say , A l( l-B u ) . and the
3 '

n ea r sp  in, say , A1 Me .

1.1
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F ig . 4 .4  Al n . m . r .  spec trum  of pure Me^AlB^Hg a t +23° C

A1(H20 ) 6
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The m olecu le Is obviously  fluxlonal and the s p e c tr a l  changes 

o bserved  In th is  w ork r e q u ir e  • a m echan ism  w hereby the m ethyl 

g roups a re  alw ays eq u ilib ra tin g . If the s tru c tu re  w as im m obile , then 

the two m ethyls a re  not equ iv a len t. The schem e p roposed  by G aines ( .2 0 o ) 

w here one hydrogen b ridge ( A l-Bj is broken and ro ta tio n  of the Me^Al 

g roup  o ccu rs  seem s quite s a tis fa c to ry , as  do the o th e r  in te rm ed ia te s  

to provide hydrogen exchange. T he com plex fine s tru c tu re  then 

o bserved  on the high field s ig n a l would then be due to  the te m p e ra tu re  

effect on the v a rio u s  eq u ilib ria  and consequent slow ing of the d iffe ren t 

exchanges a t d iffe ren t r a te s .

The effect of the so lven t is to a l te r  the te m p e ra tu re  a t which the 

boron nuclei c e a s e  to fully exchange and a lso  to e ffec t the pro ton  

coupling to the boron n u c le i. T h is  is quite likely  to be a quad rupo lar 

effect brought about by the v isc o s ity  of the so lu tion . The sp littin g  out 

o f the borons into th e ir  two env ironm ents w ill be encoun tered  again with 

alum inium  o c ta h y d ro tr ib o ra te  b is h yd robo ra te .

Unlike the alum inium  hydrobora te  s e r ie s  of com pounds w here 

com plexing w ith ligands is  w ell e s tab lish ed , the d im ethyl alum inium  

o c tah y d ro trib o ra te  showed a com plete c o n tra s t .  With diethyl e th e r ,  which 

com plexes re a d ily  with alum inium  hydrobora te  com pounds,show ing no 

tendency to sp lit off bo rane g ro u p s even when In ex c e s s , no s im p le  adduct 

could be iso la ted . Indeed the reac tio n  p roducts proved to be qu ite v a rie d .

A trlm eth y l bo rane frag m en t as  w ell as  an alum inium  hyd robo ra te  

e th e ra te  fraction  w ere  lden tlfled> as  w ell as  a t le a s t  one o th e r  borane 

fragm ent w hich w as not iden tified . The product w as a c o lo u rle s s  o il, and 

an ana lysis  fo r  hyd ro ly sab le  m ethane and hydrogen produced a figu re  which 

was c lose  to that expected  fo r  M e^A lB H ^.O Etj. A d isru p tiv e  reac tio n  has 

obviously o c c u rre d , and It w as thus not s u rp r is in g  that a rea c tio n  with 

tr im eth y l am ine , which h a s  a tendency to a ttack  boron in alum inium  

hydroborate c h e m is try  if a t  a ll In ex c ess , was found to p roduce com plex 

p ro d u cts .
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T his m ay In fact mean tha t It Is the B H g roup  ra th e r  than the 

alum inium  which is the f i r s t  s ite  fo r attack  by the Lewis base, but 

suffice It to say  that the A1-B_H en tity  p o sse sse s  d iffe ren t p ro p e r tie sO O
from  the Al-BH^ and th is w ill a lso  becom e apparen t when alum inium  o cta- 

hydro tr ib o ra te  b is hydrobora te  is considered .

D im ethyl alum inium  o ctah y d ro trib o ra te  was used  as  a p r e c u rs o r  in 

the p repara tion  of alum inium  o c tah y d ro trib o ra te  bis h y d ro b o ra te . Two 

possib le m ethods suggested them se lves from  p as t w ork . In the o rig in a l 

p repara tion  of alum inium  hyd robo ra te , S ch lesinger and his co -w o rk e rs  

used the reaction  of tr im ethy la laue  with d iborane, i . e . rep la c in g  m ethyl 

g roups on alum inium  with hyd robora te  g roups, and tra n s fe rr in g  the 

m ethyls to boron.

2(AlMe3 )2 + 5B2H6 -------- > 2A1(BH4 >3 +  4BMe3 + 3H2

A ccordingly, since  rep lacem en t of m ethyl by hyd robo ra te  was re q u ired , 

a p repara tion  based on the equation below w as s e t up.

3Me2AlB3Hg+4B2H6 ---------> 3(BH4 >2AlB3Hg + 2BMe3

T h is  was not su ccessfu l. The only alum inium  contain ing sp e c ie s  that 

could be Isolated was alum inium  h yd robo ra te . An exchange rea c tio n  of 

som e so r t had o ccu rred  how ever, as  m ethyl d lbo ranes , notably 

1, 1 -d im ethyldiborane, w ere identified by in f ra - re d  sp ec tro sco p y .

The second m ethod w as a red is trib u tio n  reac tio n  using alum inium  

hydrobora te  s im ila r  to the m ethod used  by Oddy in the p rep a ra tio n  of hydrido 

alum inium  hydroborate sp e c ie s .

Me2AlB3Hg +  2Al(BH4 )3 -----------> (B H ^A lB gH g + 2MeAl(BH4 >2

By using ex cess  alum inium  hyd robo ra te , purify ing  and rem oving  m ethyl 

alum inium  hydrobora tes and then adding fre sh  alum inium  hydrobora te  

and repeating , the d es ire d  p roduct could be ach ieved .

The p ro g re ss  of the reac tio n  could be followed by g as phase  In fra -red  

sp e c tra  of the sp e c tra . The strong  m ethyl band above 700 cm   ̂ in 

d im ethyl alum inium  o c tah y d ro trib o ra te  g rad u a lly  d im in ish e d . When th is 

band d isappeared , the pu rity  of the product was a sce rta in e d  by chem ical 

analysis , the num ber of m oles of non-condensib le gas  that w e re  evolved 

being indicative of the product p u rity . C om plete conversion to  alum inium  

octah y d ro trib o ra te  bis hydroborate re su lted  in 16 m oles of g a s  (hydrogen)



being evolved, but fo r le s s  p u re  p roducts a s m a lle r  num ber as  m ethyl 

groups s t i l l  p re se n t would re p o r t a s  one m ole a s  opposed to four for a 

hyd robo ra te . T he evolved g as  would a lso  contain  som e m ethane and this 

was confirm ed by a m ass sp e c tru m .

The product obtained from  th is reac tio n  w as a co lo u rless  liquid 

which gave sa tis fa c to ry  an a ly s is  r e s u l ts .

Expected hydro lysab le hydrogens fo r (BH^^AlB^Hg 16.0

Found " " " " 15.94

The an a ly sis  figu re  for alum inium  w as not rec o rd e d  as  It would be the 

sam e w hatever com pound o r  m ix tu re  of Me^AlB^Hg t BH^(Me )AlBgHg 

o r  (BH ) A1B„H w as p re se n t a s  the m o lecu la r w eight o f m ethyl and
4  z  j  o

hydrobora te  g roups a re  so s im ila r .

The vapour p r e s s u r e  of the liqu id> which was of co u rse  m ade u se  of

In its p rep a ra tio n  and sep ara tio n  through cold tra p s ,  w as found to be 4

m m  rig a t 0° C and 11 m m l£ at room  te m p e ra tu re , and it was en tire ly

condensed by a tra p  of -75° C a t a line p r e s s u r e  of 10 ^m m  H g.The

compound fo rm ed  a g la ss  and so a m elting  point was not ob ta ined . If

the vapour p re s s u re s  of the com pounds Me^AlB^Hg and (BH^l^AiB^Hg

a re  com pared  w ith the s e r ie s  Me„AlBH, to A1(BH,)„ then the trend2 4 4 d’
observed  fo r the o c tah y d ro trlb o ra te s  Is rev e rse d ,w lth  M e2AlBgHg 

being the m ost vo la tile  and the compound w ithout m ethyl g roups the 

le a s t vo la tile  . T h is  m ay be a re su lt  of some In term o lecu lar asso c ia tio n s , 

since it w ill be shown la te r  that the B,H g ro u p  is not p a r tic u la rly  stab leO O
in th is com pound, and it m ay be that a sso c ia tio n  takes p lace through 

these  g roups which m ight re a r ra n g e  to a la rg e r  hydrobora te  g rouping.

T h is  m ay be favoured ov er a sp ec ie s  w here two rig id  o c tah y d ro trlb o ra te  

groups a re  m ain ta ined . The o c tah y d ro tr ib o ra te  group  would thus seem  

to Im part slig h tly  d iffe ren t p ro p e r tie s  to the alum inium  boron o r  

alum inium  carbon nucleus than does the hyd robo ra te  g roups, as was 

observed  p rev io u sly . While the above tren d s  in vapour p re s s u re  appear 

anom alous, o th e r  p ro p e r tie s  o f the compound w ere  en tire ly  co n sis ten t 

with Its fo rm ulation  and nam e. The alum inium  o c tah y d ro tr ib o ra te  b lsh y d ro - 

bo rate  w as found to be unstab le  a t room  te m p e ra tu re  as is alum inium
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cm

hydrobo ra te , but the co u rse  of the decom position reaction  Is som ew hat 

d iffe ren t. In the ca se  of the o c tah y d ro trib o ra te  com pound, d iborane 

w as an identified decom position product w hereas only a tra c e  has e v e r  

been observed  in alum inium  hyd robo ra te  decom position . A luminium 

hyd robora te  w as the o ther m a jo r  compound identified in the 

decom position of the o c tah y d ro tr ib o ra te  which seem ed to occur in both  

liquid and g as  p h ases . Hydrogen w as a lso  p roduced . Some unidentified  

so lid  re s id u e  w as a lso  p ro d u ced . However, no s im ple  equation can b e  

deduced fo r the o v era ll decom position  which ap p ears  to be a com plex 

re a c tio n . One p o ssib ility  m igh t be

— > A1(BH4 )3 + A1B5H1 0 +  b2h 6 + 2H_2A1(BH4 )2B3H8

if the alum inium  took the p la ce  of boron in the B^H^q fram ew ork . T n is  

is , of co u rse , a t best specu la tive  and m ight b e tte r  re p re se n te d  as 

producing a com plex A l-H-B po lym er as  the re s id u e .

The decom position w as fa ir ly  rap id , decom position products being 

v is ib le  in, say , one hour, but the compound could, with c a re , be d is t i l le d  

Intact and allow  o ther p ro p e r tie s  of the compound to be determ ined .

The in f ra - re d  sp ec tru m  of the o c tah y d ro trib o ra te  sp ec ie s  was u se d

a s  a guide in the p rep a ra tio n  o f the com pounds with the d isap p ea ran ce  of 
-1 Al-M e band In Me A1B H as  the key . 2 J othe 715 cm

Alum inium  o c tah y d ro tr ib o ra te  bis hydroborate was found to have the 

in f ra - re d  sp e c tra l de ta ils  a s  in the following ta b le :-
M p  a i r  h

8<BH4>2A1B3H8 Al(BH4 )3 M e2AlB3H

2565 vs 2556 s 2960 m

2495 s 2490 s 2550 vs

2210 s 2490 s

2040 vs 2032 vs 2170 vs

1500 s 1501 vs

1215 m 1200 m

1120 s 1113 vs

1000 m

690 s 606 vs 715 vs

600 m 670 m

550 m 570 m





The values for the B-H^ bands a r e  v e ry  c lo s e  to those ob se rv ed  for both 

alum inium  hydroborate and d im e th y l alum inium  o c tah y d ro tr ib o ra te .

T his indicates that the d iffe ren t a to m  a rran g e m en ts  do not a l te r  the 

bonding to the te rm in a l B-H bonds su b stan tia lly . The value fo r the 

Al-H, -B band h ard ly  v a rie s  fo r  th e  hyd robo ra te  g roups in alum inium  o c ta -  

hydro tr ib o ra te  bis h y d robo ra te  . and alum inium  hy d ro b o ra te . but 

substitution of m ethyl fo r h y d ro b o ra te  g roups a l te r s  the A l-H ^-B  band 

in the o c tah y d ro trib o ra te  g ro u p s  in that the absorp tion  sh if ts  to h igher 

w avenum ber in the alum inium  o c ta h y d ro tr ib o ra te  bis h y d ro b o ra te . In 

aluminium o ctah y d ro trib o ra te  b is  hydro borate, th e re fo re . th e re  would seem  

to be som e strengthening  of the A l-H -B  b rid g es , but th is  does not seem  

to be a t the expense of the B-H^ bonds. T he sy m m e tr ic a l b ridge mode 

o ccu rs  a t a s im ila r  position  to alum inium  hy d ro b o ra te , and the band 

a t 690 cm  1 probably c o rre sp o n d s  to the 670 cm   ̂ band in dim ethyl 

alum inium  o ctah y d ro trib o ra te  an d  Is p robably  a sk e le ta l A l-B v ibration  

w ith the 600 cm  ̂ v ibration  co rre sp o n d in g  to the 606 cm   ̂ v ibration  

in alum inium  h yd robo ra te .

The n u clea r m agnetic sp e c tru m  was taken of the com pound for the

and ^ B  nucle i. Amount and difficulty  of tr a n s fe r  of the com pound

m eant that th is was not a s  ex ten s iv e  as m ight be w ished . In p a r tic u la r .
27a A1 spec trum  was not taken , and the ch em ica l sh ift of the reso n an ce  

m ight have shed som e light abou t the bonding around alum inium  a s  w as 

explained for dim ethyl o c ta h y d ro tr ib o ra te . Inform ation on any 

assoc ia tion  p re se n t in the liqu id  m ight help  in explaining the vapour 

p re s s u re  in p a r tic u la r .

The n . m . r .  a t  room  te m p e ra tu re  w as a broad s tru c tu re le s s  

signal which.In view of s im ila r  com pounds, w as as ex p ected . The w idth 

of the s ignal was ap p rox im ate ly  240 Hz. In which It Is s lig h tly  n a rro w e r  

than the co rrespond ing  a lum in ium  hyd robo ra te  and had a chem ical sh ift 

a t its  ce n tre  of approx im ate ly  0 .5  ppm downfleld from  TM S.
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F tg , 4 ,7 a  11E n .m . r ,  sp ec tru m  of (BH4 )2A1B3H 8 a t + 1 °  C

<■ "900 V¡'¿
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F ig . 4 . 7d ^ B n . m . r .  spec trum  of (BH^ ^AlB^Hg a t -50° C

->1 3 0 0  H z
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T he spec trum  of the pure liquid w as taken> and th is  w as a lso  

sub jected  to a v a ria b le  tem p era tu re  s tu d y . At + 10° the sp e c tru m  shows 

a sh a rp  quintet superim posed  on ano ther b ro ad e r s ig n a l. On proton 

decoupling these a r e  sep ara ted  as a 3:2 ra t io  with the b road  signal 

cen tred  a t-34 .4  ppm ( ra tio  3 and the qu in te t cen tred  a t-3 7 .0  ppm t 

ra tio  2. T hese sh ifts  a r e  in good a g re em e n t with the form ulation  of the 

compound as  (BH^ J^AlB^Hg^nd the ch e m ic a l sh ifts a r e  s im ila r  to those  

o bserved  in Me A IB. H fo r the B H re so n a n c e  and in alum inium  h y d ro -2 o o o 8
bo ra te  fo r the BH. reso n an ce . The sh iftso f the hyd robo ra te  borons a re  

4
sligh tly  inc reased  and th is is usually  c o r re la te d  with them  taking an 

in c re ase d  am ount of elec tron  density .

At th is tem p era tu re  th e re  is obviously fluxional behaviour with the

th re e  boron atom s of the B.H group becom ing equ ivalen t. Equally th e re«3 o
is com plete coupling of the protons to the  boron in the hydro bo rate  g ro u p s .

On cooling the sam p le( the quintet due to the hyd robo ra te  g roups 

b roadens sligh tly  and a lso  moves s lig h tly  dow nfield( the signal being 

ce n tred  a t 6 =-36.4 ppm . The signal fro m  the B.H borons g rad u a llyO O
broadens un til a t -50 C two d istinc t s e p a ra te  s ignals m ay be observed  

fo r the two d iffe ren t boron env iro n m en ts . T h e re  was a b road low field  

sig n a l cen tred  a t-1 7 .7  ppm which sh a rp en ed  som ew hat on applying proton 

decoupllng> and a le ss  broad high field  s ig n a l a t-43 .2  ppm . T his w as 

o bscu red  under the hydroborate quintet u n til proton decoupling was 

applied .

T hese  values a re  in the sam e s o r t  o f sh ift region a s  w as o bserved  fo r 

dim ethyl alum inium  o c tah y d ro tr lb o ra te ( but the sligh t d iffe ren ce  m ust

re f le c t the d iffe ren t bonding and p ro p e r tie s  of the B.H en tity  In the two3 8
com pounds. T he sh ift value obtained fo r  the borons a t + 10  C is In good 

ag reem en t with an average of the sh ift va lues fo r the Individual env ironm en ts. 

(2 x 43 .2  + 17 .7  + 3 = -34 .7 ). All th e se  values a r e tln fact^higher field  values 

than w ere  observed  fo r dim ethyl alum in ium  o c ta h y d ro tr lb o ra te . As sta ted  

above, th is is usually co rre la te d  with an in c re a se  in e lec tro n  density  at 

the boron c e n tre  which com bined with the observation  on the hydroborate 

g roups seem s to indicate an e lec tro n  d efic ien t a lum in ium . The vapour
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p re s s u re  and v isc o s ity  then m ay be high due to p o ss ib le  associa tion  in an 

attem pt to le ssen  the  e lec tro n  defic iency  a t the alum inium  a to m . The 

alum inium  atom  shou ld  be v ery  suscep tib le  to a ttack  by Lewis b a s e s . T h is 

is, o f co u rse , in c o n tra s t  to dim ethyl alum in ium  o c tah y d ro tr ib o ra te .

Thus the situ a tio n  is

<BH4>2A1B3H8 ---------------------------------- *  M e2A1B3H8

E lectron  density  on boron. L ess  e lec tro n  density  on boron.
E lectron  d efic ien t alum in ium . Possib le e lec tro n  defic ien t boron .
P ossib le a s so c ia tio n . No a s so c ia tio n .

The sp ec tra  of alum in ium  o c ta h y d ro tr ib o ra te  b is hydroborate again show 

no coupling of boron to its attached  hydrogens w ithin the B_H group .O O
It is in te re s tin g  a t th is point to d raw  a b r ie f  com parison  w ith the known 

c h e m is try  of te tra b o ra n e  (10). Both d im ethy l alum inium  o ctah y d ro trib o ra te  

and alum inium  o c tah y d ro tr ib o ra te  b is hy d ro b o ra te  can be reg a rd e d  as 

deriv a tiv es  of te tra b o ra n e  with boron 4 rep laced  by the alum inium  grouping, 

a s  the d iag ram s show .



129.

T e tra b o ra n e  Is v o la tile  but h a s  a tendency to decom position . The reaction

of te trab o ran e  with e th e r  Involves a ttack  a t the e lec tro n  poor B -H b ridge(4 p
and th is  leads to fo rm ation  of the tr lb o ran e  7 adduct.

B4H10 2° ------ > B3H7E t2 °  + BH3 -E t2 °

2° ------ > B3H7E t20 + B H 3E t2 °3 ' 3 7

A s im ila r  reac tio n  o c c u rs  w ith tr im e th y l am in e .

T he reac tio n  o b se rv ed  for dim ethyl o c tah y d ro tr ib o ra te  with Lew is 

bases Is thus likely to  be in itia ted  by a s im ila r  s te p . In alum inium  

o ctah y d ro trib o ra te  b is  h y d ro b o ra te> the s treng then ing  of the Al-H -B 

bridge m ay p rev en t th is .

T e tra b o ra n e  Is known to r e a c t  with ca rbon  m onoxide to form  carbon  

monoxide te tra b o ra n e  8 w here  the carbon  m onoxide a ttac h es  to the 1

position  and the fou r boron a to m s a re  re ta in e d .
H H

H

H

T h is  m ay prove to Ls a p o ss ib le  and In te res tin g  adduct fo r the alum inium  

com pounds.

As m entioned above, the pu rp o se  of th is  section  o f the work Is to 

p re p a re  com pounds of alum in ium  with h igher borane anions as they had 

been postu lated  a s  In te rm ed ia tes  In alum inium  hyd robo ra te  decom position . 

To the au th o r 's  know ledge, th is  Is the f i r s t  such com pound of which 

n u m erica l d e ta ils  a r e  av a ila b le . A paten t by Hough c la im s  the syn thesis  

of these  com pounds, but only d e ta ils  of p rep a ra tio n  a r e  av a ilab le .

T h e re  has alw ays been speculation  on the decom position of alum inium  

h yd robo ra te , e sp ec ia lly  w ith re g a rd  to the so -c a lle d  s tab ilisa tio n  of the 

decom position ob se rv ed  by the ea rly  w ork of S ch le s in g e r. P re lim inary
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ex perim en ts  pe rfo rm ed  In connection with the D epartm ent of M olecu lar 

Sciences d isa g re e  with th is  finding, and do not re g a rd  the d e c re a s e  in 

r a te  to be a s  la rg e  as tha t rep o rted  by S ch lesinger.

The s e a rc h  fo r a sp ec ie s  which s ta b ilise s  alum inium  hyd robo ra te  

m ay th e re fo re  be f ru it le s s .  N evertheless it would seem  that if such a 

species e x is ts ,  then it is not alum inium  o c tah y d ro tr ib o ra te  bis h y d ro ­

bo rate  as  th is  is even m ore unstab le than the p aren t alum inium  h y d ro ­

b o ra te . S pec tra l an a ly sis  of som e p a r tia lly  decom posed alum inium  

hydrobora te failed to detec t any of the h igher hydroborate com pound. 

U nless it is s tab ilised  when d isso lved  In excess alum inium  hydrobora te  

and decom posed if this is rem oved (as som e n ec e s sa r ily  was to avoid 

swam ping the specmin-'N, then it w u ld  seem  not to be p re se n t. T he 

sp e c tra l fea tu re s  observed  in th is experim en t have yet to be Identified, 

but the only signal v is ib le , o the r than a hydroborate quintet, w as a 

s tru c tu re d  hum p, p o ssib le  a t r ip le t ,  at-53 ppm .

This w ork th e re fo re , not su rp ris in g ly , failed  to positively  identify  

alum inium  spec ies  containing h igher borane fragm ents In the com plex 

m ix tu re  a r is in g  from  decom posing alum inium  hydrobora te, but did show 

that such com pounds could be p rep a re d  by exchange re a c tio n s .

F u rth e r  exchange reac tio n s

In h is d iscussion  of the sp e c tra l p ro p e rtie s  of alum inium  hy d ro b o ra te  

adducts and th e ir  p o ssib le  chem ical exchange, Oddy proposed  the o rd e r  

of exchange

Two uncom plexeclspec ies > One com plexed + one adduct > Two adducts

It w as p roposed  to t r y  and m ake u se  of these possib le  exchanges and in 

p a r tic u la r  a s  a novel method of p rep a rin g  hydrldo alum inium  hy d ro b o ra te  

sp ec ie s , e . g .

2A1(BH )_ + A1H . NMe ---------» HA1(BH ) .NM e +  2HA1(BH )4 3 3 3  4 ^ 3  4 /

A ccordingly, ex cess  alum inium  hydrobora te  w as condensed on to  alane

trlm ethy lam lne  (p rep ared  from  LiAlH and N M e,.H C l) and s t i r r e d  at 
o 4 3

0 C. A red is trib u tio n  reaction  of som e so r t took p la ce ,a s  th e re  was
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p rec ip ita tio n  of a w hite so lid  which showed A l-H  bands In Its In fra -red  

sp ec tru m , but the only compound which could be conclusively  identified 

was alum inium  hyd robo ra te  tr im e th y l am ine , ^ u s  although an exchange 

reac tio n  has o c c u rre d , it m ay only be t ra n s fe r  o f tr im eth y l am ine to 

alum inium  hy d ro b o ra te . If th is is the c a se , then the compounds p red ic ted  

by the above equation m ay not even be p re se n t in the reac tion  m ix ture 

and,if they w ere , ex trac tio n  m ight be d if f ic u lt . If t r a n s fe r  of trim ethy l 

am ine is the only reac tio n  , then th is could be an o th er m ethod of 

obtaining alum inium  hyd ride . In view of the behaviour of alum inium  

hydro bo rate  /h y d rid e  m ix tu res  observed  by Oddy and in itially  by 

S ch lesinger e t a l . , it is unlikely to be a m ethod fo r preparation of pure  

alum inium  h y d rid e t also  bearing  in mind tha t the purification  technique 

is likely  to involve sublim ing out a not e n tire ly  stab le  im purity .

In sp ite  of exchange of two adduct sp ec ie s  being at the low er end of 

the proposed  exchange ra te  sequence> it w as found that exchange o ccu rred  

quite rea d ily  between e th e ra te s  of alum inium  h y d robo ra te  and trim ethy l 

a lan e . If these  two com pounds w ere  mixed in the sto ich iom etric  ra tio s  

re q u ire d  to p roduce m ethyl o r  dim ethyl a lum in ium  hydrobora te , then 

the m ethyl and e th e r  reso n an ces  of the tr im e th y l alane e th e ra te  was 

shifted  to the value expected  fo r  the alkyl alum in ium  hydroborate 

e th e ra te s .  Subsequent additions of alum inium  hyd robora te  o r  trlm ethy l 

a lane e th e ra te s  would cau se  the signals to m ove In the ap p rop ria te  

d ire c tio n s .
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"It r e a c ts  rea d ily  w ith a i r , ................ it Inflam es spontaneously , giving

a blue w hite flash  of unusua l b rillia n c e ” T _H .I . S ch lesinger

G enera l techniques

Alum inium  h y d ro b o ra te , as f i r s t  rep o rted  above, and its  deriv a tiv es

a re  ex tre m ely  se n s itiv e  tooxidation andhydro lysis  in the a i r .  Consequently

volatile  com pounds w ere  m anipulated in a conventional h igh  vacuum line  w hich

was evacuated  using e i th e r  an Edw ards ED 100 ro ta ry  o il pum p o r the ro ta ry

pump in conjunction with a m e rc u ry  diffusion pump, th is  sy s tem  being
-4capable of m ain ta in ing  a p re s s u re  of C£. 10 m m  H g .P re ssu re  was

m easu red  with a Genevac Penning gauge. The line w as f itte d  with ground

g la ss  vacuum  seated  stopcocks lub ricated  with "Apiezon N " g re a s e .

M anipulations of the le s s  vo la tile  compounds w ere  p e rfo rm e d  in a glove

box filled  with n itro g en . T h en itro g en , from  the boil off of a nitrogen

liquefaction p lant, w as m ain ta ined  oxygen fre e  by p ass in g  through a colum n

containing BASF R3-11 c a ta ly s t and m o is tu re  free  by p a s s in g  through

colum ns of s il ic a  g e l .  In addition d ishes of phosphorus pentoxide inside

theg lovebox  abso rbed  m o is tu re  and occasionally  so lven t vapou rs.
o

All ap p a ra tu s  was d r ie d  p r io r  to u se  by heating to 100 C . Solvents 

w ere  d ried  anddeoxygenated  before u se  by trea tin g  them  with lithium  

hydroalum lnate o r  m e ta llic  sodium and d istilling  them  In an a tm o sp h e re  

of n itro g en . They w ere  s to red  in evacuated bulbs fitted  w ith Young's 

g re a s e le s s  stopcocks w hich w ere d irec tly  attached  to th e  vacuum line .

The w aste m a te r ia ls  co llec ted  in the lin e 's  'm uck ' t r a p s  w ere  trea ted  

with d ie th y le th e r  befo re  being rem oved  for subsequent cau tious hyd ro ly sis  

w ith isopropano l. O ther hydroborate re s id u e s  w ere  tre a te d  f ir s t  with 

e th e r  and th en ,a fte r lengthy standing,cautiously  tre a te d  w ith isopropanol. 

Lithium  hydroalum lnate re s id u e s  w ere  destroyed  by tre a tm e n t with ethy l 

ace ta te  diluted with hyd rocarbon . A resid u e  possib ly  contain ing d iborane 

was tre a te d  with tr lm e th y l am ine before adopting the above p ro c e d u re s .
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A nalytical techniques

Sam ples a r e  hydro lysed  to d e te rm in e  the quantity  of g a s , non-condensib le  

a t -196° C( follow ed by a m e ta l an a ly s is  to d e te rm in e  the quantity  of 

alum inium .

F o r m ost sam p le s  the hydro lysis  was accom plished  by w eighing the
3

sam ple in a s m a ll v ia l, tra n s fe rr in g  th is  to  the bottom  of a 500 cm  flask
3

fitted  with a tap ad ap te r to the vacuum line and evacua ting . About 15 cm 

of degassed  (by s e v e ra l thaw j f re e z e , pum p cycles) d ilu te  h yd roch lo ric  

acid was condensed  o n to  th e sam p le  a t -196° C and the conten ts allowed 

to w arm . M elting of the acid produced  a v igorous rea c tio n  but the flask  

was left a t room  te m p era tu re  for about 24 hours be fo re  cooling to -196° C 

and passing  the non-condensib le g a s e s  through a tra p  a t -196° C and 

m easu rin g  w ith  a T o ep le r pum p. F o r  m ost vo la tile  sam p les  the weighed 

am ountw as s im p ly  d is tilled  on to the p rev iously  degassed  a c id .

The sy s te m  fo r hydrogen an a ly sis  o f a lum in ium octahydro tr i te r a te  

bis hy d ro b o ra te  was sligh tly  d iffe ren t. A th ree  necked flask  was u sed . 

The flask w as charged  with d ilu te acid  and fitted w ith an ad ap te r to  the 

vacuum line and a stopper fo r two of the n eck s. In the th ird  w as a bent 

tube on the bottom  of which was ag ro u n d  g la s s  cone to  which a w eighing 

tube sealed  w ith a tap could be a ttach ed . The flask  w as then evacuated , the 

acid  degassed  an! the flask  iso lated  from  the vacuum  line . T he ac id  was 

then d is tille d  on to the sam ple  in the weighing tube . T h is m ethod e lim inated  

lo sses  of the com pound by In teraction  with g re a s e  and decom position  on 

d is tilla tion  a f te r  weighing.

The a n a ly s is  fo r alum inium  w as c a r r ie d  out on the p roducts of the 

hydro lysis re a c tio n s  d esc rib ed a b o v e> the m ethod being valid  fo r  alum inium
3

co n cen tra tio n s up to 100mg of alum inium  in 100 cm  of w a te r . T he pH of 

the solution w as ad justed  to between two and th re e  by adding sodium  

hydroxide pellets, and a known am ount of 0 .1  M EE/TA (F is o n s ’ 

vo lum etric  so lu tio n ) was added. T h is  am ount had to re p re se n t an e x c e s s . 

The re su ltin g  solution was boiled fo r 15 m inutes to  fully com plex  the 

EDTAand then cooled, and its  pH ad ju sted  to pH 6 .5  with A nala r sodium 

ace ta te  (F iso n s) before adding the in d ica to r. T he ind icato r u sed  was
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F ig . 5 .2

D iagram  of ap p ara tu s  to c a r ry  out 

hydro lysis of (BH^ ^AIB^H^

G lass  tube

/ \

A dapter
with

vacuum
tap

T hick  g la ss  
weighing tube w ith 
vacuum  tap

3 -necked 
r . b .  flask
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X ylenol o range; one m ic ro sp a tu la  full of a m ix tu re  obtained by grinding 

to g e th er 0 .1  g of Xylenol o ran g e  with 10g of po tassium  n itra te .  The 

Ind icator tu rned the solution yellow  and th is w as titra te d  with 

p rev io u sly  s ta n d ard ise d  zinc su lphate (B .D .H ., c a . 0 .1  m o la r )  to 

a d is tin c tiv e  red  end po in t. T h e  titra tio n  figu re  allowed the am ount of 

the ex c ess  EDTA in the o rig in a l solution and hence the alum inium  

con tent to be ca lc u la ted .

Spectroscopic techniques

In fra re d  sp e c tra  w ere  re c o rd e d  on a Perkin  E lm er 457 g ra tin g  

sp e c tro m e te r  o r  occas io n ally  a PE 621 ov er the range 4000-250 cm   ̂

u sing  e ith e r  KBr p la te s  o r an 8 cm gas c e ll  with KBr w indowst depending 

on th e  n a tu re o f  the sam ple to  be investiga ted . M ulls w ere  m ade with 

sodium  d ried , nitrogen purged  Nujol in the glove box.

N .m .r .  sp e c tra  w ere  obtained on e i th e r  of two m ach in es. Routine 

proton sp e c tra  w ere  run on a Perkin E lm er R12and o th e r proton, boron, 

alum inium  and carbon  sp e c tra  w ere run on the d e p a rtm en t's  Bruker WH90 

F . T . n . m . r .  The sam p les  w ere  e ith e r  sealed  off under vacuum for 

the m o re  re a c tiv e  com pounds, o r  m ade up under nitrogen fo r the less 

re a c tiv e  com poundst the tigh t fitting p la s tic  caps being found adequate 

p ro tec tion  aga in st the a ir  fo r  the sh o rt tim e  req u ire d .

P rep ara tio n  of P re c u rso rs  

A lum inium  hydrobora te

(A1C13)2 + 6LiBH4 2A1(BH4)3 + 6LIC1

T h is  m ethod is adapted from  the m ethods of S chlesinger e t a l .(43>.In the 

g lo v eb o x , finelyg round t resu b lim ed  alum inium  ch lo ride  (11 g ,83 m m ol)
3

w as placed in the side  a rm  of a 250 cm  f la sk . In the bottom of the flask  

was placed finely  ground lithium  hydrobora te  (5 .3 g , 240 m m ol) and a 

m agnetic fo llow er. The flask  was attached  to the vacuum line with the 

u su a l stopcock ad a p te r  and the flask evacuated . T he flask  was opened to 

tra p s  at -80° and -196° C and a fte r  m ixing and s t i r r in g  the rea c ta n ts  with 

the m agnet, pum ping through the tra p s  w as continued fo r approxim ately
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fou r h o u rs . The flask  w as then heated  with an oil bath up to 100 C 

fo r two hours,when the rea c tio n  was e sse n tia lly  co m p le te . The flask 

w as then rem oved  from  the vacuum line and tre a te d  fo r d isp o sa l a s  

p rev iously  m entioned in the glove box.

The v o la tile  com ponents w ere pu rified  In the follow ing m anner.

T he -80° C trap  was allow ed to w arm  up since  th is  contained m ainly  

ch loro  alum inium  h yd robo ra tes  which d isp ropo rtiona ted  into alum inium  

hy d ro b o ra te  and alum inium  ch lo ride  on w arm ing . T he alum inium  hydro 

b o ra te  w as allow ed to p ass  into the -196° tra p , the re s id u e  of the -80° 

tra p  then being d isc a rd e d . The con ten ts of the -196 tra p  w ere  then 

frac tio n a ted  through tra p s  a t -80° and -120° C to c o llec t alum inium  

h y d robo ra te  but not d ib o ran e> and -196° C trapping  d ib o ran e . All but 

the con ten ts of the - 120°  tra p  w ere  then des troyed  and the  conten ts of 

the - 120°  tra p  re d is t ille d  un til the vapour p re s s u re  of the product was 

119 m m  H gat 0 ° C .

T ria lk y l bo ranes

The m ethod adopted w as chosen sim ply  because of the e a se  of the 

ava ilab ility  of s ta rtin g  m a te r ia ls  and not because of any chem ical 

advantage of p repara tion  j sa y fro m  G rignard .

T rlm e th y l borane

(AlM e3 )2 + 2B(OMe)3 ------------> 2Al(OM e>3 + 2BMe3

B(OMe) , 4. 8 g , w as allowed to d rip  slowly from  a p r e s s u r e  equalised
o

dropping funnel on to (AlMe3 )2, 3 .3  g , cooled by a bath at -30 under a 

p a r tia l  n itrogen  p re s s u re  of c a . 100mm 1%. The rea c tio n  flask  was 

opened to tra p s  at -90° and -196° C which p a rtia lly  pu rified  the reaction  

products a s  the In itia lly  vigorous reac tio n  p roceeded . T he -30 C bath 

could be rem oved  as  the reac tio n  m o d era ted . T he con ten ts of the -90° C 

tr a p f in te rm ed ia te  m ethoxy alkyl b o ran es, w ere p e rio d ica lly  re tu rn ed  

to the rea c tio n  f la sk . On com pletion of the rea c tio n , th e  conten ts of the 

-196° C tr a p ,  m ainly tr im e th y l b o rane , w ere  d is tilled  thrcxigh a trap  at 

-120° C co llec ting  at -196° C . T he tr lm e th y l borane w as identified by 

its  in f ra - re d  sp ec tru m .



T rte th y l borane

(AlEt3)2 + 2B(OEt)3 ------------- > 2BEt3 + 2Al(OEt>3

B(OEt)3> 8 .5 g ,  was allowed to d rip  slowly from  a p re s s u re  

equalising  dropping funnel on to (A lE tg)^ , 8 .3 g, under n itro g e n . The 

reac tio n  was exotherm ic and when the flask  had cooled the funnel was 

rep laced  quickly by a stopper and the m ix tu re  w arm ed. The p ro d u c t was 

co llec ted  by passing  it through a sh o rt V igreuxcolum n and condensing 

with a w ate r cooled co ndenser. On tra n s fe r  to the vacuum line th e  

product w as found to have a vapour p re s s u re  of 10.5 m m  Hg at 0 °  C and 

was used  a fte r  one d istilla tion  at -30° C.

The p repara tion  of trim ethy l bo rane produced alum ium  m ethoxide as 

the o ther product which w as used in the exchange reaction  with alum inium  

hydroborate d escribed  in C hapter 2.

O ctahydro tribo ra te  Species

NaB3H8(C4H8 °2 )3

The o c tah y d ro trib o ra te  species w as p rep a red  as sodium  o c ta h y d ro tr i­

borate  dioxanate following c lo sely  the p rocedu re  in Inorganic S y n th ese s t 

Volume XV.
3

Sodium hydroborate (10 g )  w as d isso lved  in 500 cm  of p rev io u sly  

d ried  b is-(2 -m ethoxyethy l)ether, known asd lg ly m e( a t c a . 40° C . The 

drying had been accom plished by refluxing for 4 hours with m e ta llic  sodium  

and d istilling  at a tm ospheric  p re s s u re  (b .p . 158-162° C ), follow ed by 

trea tm en t with lith ium hydroalum inate andd istilllng  under red u c ed  p re s s u re .
3

The diglym e solution was in a 1000 cm  3-necked flask  equipped with a

m ech an ica l s t i r r e r ,  a n itrogen Inlet and a p ressure-equalised  dropping

funnel which dipped below the level o f the solution, containing d is tille d
3 3trifluo roborane d ie thy l e th e ra te , 16 cm  , d issolved in 50 cm  of dig lym e. 

The effluent g ases  w ere  bubbled through a wash bottle con tain ing  acetone 

to d es tro y an y  diborane o r  higher boron hyd rides. The n itro g e n  inlet 

was clamped and the solution in th e  dropping funnel was added d ropw ise  over 

a period  of approxim ately  30 m in u tes . The solution was then hea ted  to 

100° C fo r approxim ately  2 h o u rs . The reac tio n s taking p la ce  w ere :-



139.

7NaBH + 4BF . (OEt0 ) J:oorn.tenlP- )  3NaBF + 4NaB H +  (E t„0 ) 
4 3 2 4 2 7 2

4NaB2H? - -Q°  C > 2NaB.H +2NaBH + 2H„ 3 8 4 2

5NaBH + 4 B F ..(O E t0 ) 4 3 2 3NaBF +  2NaB,H + 2H„ +  (E t„0 ) 4 o 8 2 2

T he reac tio n  m ix tu re  w as then allowed to coo l to room  te m p e ra tu re > the 

n itrogen  flow being allowed to pass through th e  system  to p reven t sucking 

back of the acetone scrubbing solution. T he m ix tu re  was f ilte re d  a t the 

pum p to rem o v e the sodium  te tra f lu o ro b o ra te  and the diglym e was then 

rem oved  at c£ . 60° C under vacuum (ca. 6 -8  h o u rs  ). The sodium  

o ctah y d ro trib o ra te  w as separa ted  from  the c ru d e  product by shaking with
3

150 cm  po rtions of sodium  dried  e th e r f i l te r in g (and the d ioxanate adduct 

w as p rec ip ita ted  by adding excess sodium d r ie d  dioxan to the e th e r so lu tion . 

The ex traction  was stopped when no fu rth e r  p re c ip ita te  a p p e a red > and the 

product w as f ilte re d  a t the pump and d ried  in vacuo . T he yield was 

v a r ia b le > 6-11  g^ dependent on se v e ra l th in g s t p a r tic u la rly  d ry n ess  of 

the diglym e and dioxan.

T étram éthy lam m on ium  o c tah y d ro tr ib o ra te  was p re p a re d  by adding, 

in a typical c a se , 3 g of the dioxanate to 1 .4  g  of te tram e th y l am m onium
3

brom ide in 10 cm  of w ater, slowly and w ith  s t i r r in g .  On com pletion  of
3

the addition a fu rth e r  10 cm  of w ate r w e re  added and the m ix tu re
t 9

cooled in an ice bath fo r se v e ra l m in u te s .T h e  p rec ip ita ted  product w as 

f ilte re d  a t the pump and d ried  in vacuo . and  u sed  without fu rth e r  

p u rifica tio n . Y leld rca . 60%.

M e2A1B3H8

The m ethodused  was s im ila r  to that pub lished  In the no te by G aines.

(Me2A lCl)2 + 2NMe4B3Hg 2Me2AlB3Hg + 2NMe4Cl

E xcess té tram éthy lam m onium  o c tah y d ro tr ib o ra te , 1 .6 3  g , was placed
3

In the s id e  a rm  o fa  100cm  round b o tto m ed , two necked fla sk . T he flask  

was evacuated  on the vacuum line and ch lo rod lm ethy l a lan e , 1 .3  g , w as
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condensed into the flask . T h e  flask was iso la ted  and the so lid  added

slowly from  the side a rm  to  the s t i r r e d  ch lo rod im ethy l a lan e . The

reac tio n  m ix tu re  becam e m o re  and m ore  v iscous a s  the addition

proceeded  over a period of about 15 m in u tes . S tirr in g  was continued

for a fu rth e r  Sm inutes and a ll vo la tile m a te r ia ls  w ere  then condensed

into a -1 9 6 °C trap  and the d im ethyl alum inium  o c tah y d ro tr ib o ra te  was
o o

eas ily  purified  in vacuo by d is tillin g  at -45 C through a tra p  a t -78 C 

w here it condensed. It w as  identified by its  in fra -re d  spec trum  and 

vapour p re s su re  m e asu rem en ts  w hichj c o n tra ry  to the re p o r t of G aines, 

w ere  found very  u se fu l. T h e  compound w as ana lysed  for CH^. active 

hydrogen andalum lnium . A nalysis figu res  w ere not rep o rted  by G aines. 

Found: CH3> 11 , 39.9% . Al, 27.2%

Expected for Me A1B.H : CH. H 39.1%  A l,27.7%2. o o o

O ther P re c u rso rs  

A lanetrim ethyl am ine

T h is  was p repared  by u s in g  the following r e a c tio n :-

Li A1H + M e.N .H C l 4 3 H A l.N M e3 + L iC l + H2

T rim ethy l am ine hyd ro ch lo rid e  was p laced in the side a rm  of a th ree -n eck ed

100 cm'* round bottom ed flask , the flask  containing lithium  hydro-
3

alum inate 2 .2 g  and 3 0 c m  of sod iu m -d ried  d ie thy l e th e r .  The flask

was equipped with a n itro g e n  supply an d a  w ate r cooled condenser t and

exhausted  through a w ash  bottle of p ara ffin  o il. T he tr im e th y lam ine

was added slowly to the s t i r r e d  e th er , and a f te r  com plete addition the

m ix tu re  was s t i r re d  fo r a fu rth e r  15 m in u tes . The e th e r w as then

rem oved under vacuum an d  the alane tr im e th y lam in e  was ex trac ted
o -3

from  the crude product by  sublim ation in vacuo (ca . 40 , 10 mm H g ). 

D im ethyl alum inium  h y d ro b o ra te

Dim ethyl alum inium  h y d robo ra te  w as p rep a re d  by the m ethod d e sc r ib e d  

by Oddy:-
(AlMe ) + A1(BH4)3 ------------ > 3M e2AlBH4

►,-vK.
JO

■4 --
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1
S ligh t ex cess  of tr lm e th y l a lane (0.65 g) and alum inium  hyd robo ra te  

(0 .3 g ) w ere  s t i r r e d  fo r 30 m inutes a t 0° C In a sm a ll flask  on the 

vacuum  line . The m ix tu re  was then passed  through tra p s  at -50° C(

-75° C and -196° C. T he conten ts of the -75° C tra p  w ere  red is tille d  

and found to be reasonab ly  pu re  d im ethyl alum inium  hydrobora te  as 

shown by the in f ra - re d  sp e c tru m .

T e tra  e th y l d iborane

4BEt3 + B2H6 ------------ »  3E t4B2H2

T rie th y l borane (0 .55  g , 5 .6  m m ol ) w as condensed with d iborane 

(1 .4  m m o l m easu red  by volum e) into a 100 m l round bottom ed flask  an d t 

left open to a m a n o m eter, was allow ed to  w arm  to room  te m p e ra tu re .

The ex ten t of the reac tio n  could be judged by the drop  in vapour p re s s u re  

of th e m ix tu re .  When the vapour p re s s u re  a t0 °  C had dropped to below 10 

m m  Hg (sev e ra l hours )f the m ix tu re  was pumped a t -20° C to rem ove 

le s s  a lky la ted  d ib o ran esan d  the rem ain ing  te trae th y l d iborane was 

Iden tified  by its  infra red  sp e c tru m .

4-M ethoxybenzyl alcohol (Anisyl a lc o h o l)

NaBH
M eO —<0 > -C H O  ------- — > MeO — ($)>—  CHjOH

5 g  of the aldehyde in w ate r w ere  tre a te d  with sodium  hyd robora te  in 

w a te r  (1 .5 g ) . The reac tio n  was left overn igh t. M ore w ate r was added( and 

the so lu tion  w as ex trac ted  with e th e r .  The e th e r w as d ried  with anhydrous 

m agnesium  sulphate and then rem o v ed u n d er reduced  p re s s u re .  A 

c ry s ta llin e  so lid  was obtained which m elted  ju s t  above room  te m p era tu re  

(L it. m .p . 24-5° C ) . A bsence of a carbony l band in the in fra -re d  

sp e c tru m  indicated the compound to be of sufficien t p u r ity .

R eac tio n s fo r C hapter 2

R eac tion  of alum inium  hyd robora te  with m ethanol

A lum inium  hyd robora te  (0 .4 8 g , 6 .71 m m o l)w a s  d isso lved  in c a .  5 c m ' 

o fp e n ta n e . M ethanol (0 .034 g , 1 .10  m m o l) was condensed on a t -196° C 

and th e m ix tu re  a llow ed to  w arm  to -95° C (m .p . MeOH -9 7 .7 °  C ) .  A fter 

30 m inu tes th e m ix tu re  was frozen  down to -1 9 6 °C and the accum ulated
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n o n -co n d en sib leg as m easu red  a t th e T o e p le r  pum p and rem o v ed > and

a fu rth e r  2 .1 0  m m ol of m ethanol w ere  condensed on . T his w as rea c te d  
ofo r 1 hour a t -78 C before m eauring  the non-condensib le g as  a s  befo re .

A fin a l 1 .05  m m ol m ethanol w ere  re a c te d  in a s im ila r  m anner and the 

rea c tio n  m ix tu re  was w arm ed to room  te m p e ra tu re  before the final 

quantity  of non-condensib le gas  w as taken . The o th e r  vo la tile  com ponents 

w ere  rem oved  a t -20° C( se p a ra te d  a t -120° C and the quantity  of 

d ibo rane identified by its  in f ra - re d  sp e c tru m .w as m easu red  in a s im ila r  

m anner to the non-condensib le g a s .  The non-condensib le gas  w as 

assu m ed  to be hydrogen as  no C-H frequency  for m ethane could be seen 

in the in f ra - re d  sp ec tru m  of a sa m p le .

A1(BH4 )3

MeOH

6.71 m m ol 

4 .25  m m ol
» 2

4. 20 m m ol

B2H6 2.09 m m ol

A nalysis  of re s id u a l w hite so lid :-

A ctive H Hg Found 7.67%  Al Found 26.31%

C alcu lated  fo r MeOAl(BH4 )2 30.77%  Al

9.19%  ac tive H2

R eaction  of alum inium  hyd robora te  with alum inium  m ethoxide

A l(OM e)3 + 2A1(BH4 )3 ------------- » 3MeOAl(BH4 >2

A lum inium  m ethoxide (0.65 g ) and alum inium  h y d robo ra te  (1 .013 g f 28% 

ex c ess  fo r the above reac tio n  ) w e re  s t i r r e d  fo r 1 week a t room  te m p e ra tu re . 

A fter th is tim e the alum inium  hy d ro b o ra te  w as d is tille d  off and weighed. 

R ecovered : 0 .6 3 3 g  A1(BH4>3 0 .3 8 g  re a c te d  = 49%

T h is  reac tio n  w as not pu rsued  fu r th e r .

A fu rth e r  re a c tio n > using  0 .39  g o f  alum inium  m ethoxide and 1.015 g  of 

alum inium  hyd robo ra te  was ob se rv ed  to be Incom plete even a f te r  se v e ra l 

w ee k s .
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R eaction  of alum in ium  hydrobora te  with alum inium  hydroxide

Al(OH )3 + A1(BH4>3 ---------- > 3HOAl(BH4)2

A lum inium  hydroxide (0 .1 4 g )  and alum inium  hydroborate (0 .67  g )  

w ere  s t i r r e d  fo r s e v e ra l days at room  te m p era tu re .

Amount A1(BH4 >3 reco v ered : 0 .6 4  g

P repara tion  of th iom ethyl alum inium  bis hydroborate

2A 1(B H J. +2M eSH  ------------ > 2MeSAl(BH,)„ + B.H + 2H„4 3 4 2 2 6 /
3

A lum inium  h y d robo ra te  (0 .9 3 g t 13 mmol) was condensed into a 100 cm 

round bottom ed flask  and 0 .3 4 g >( 7 . 1 m m ol)of m ethane thiol was 

condensed on in th re e  portions t each portion  being s t i r r e d  with the 

hydrobora te  a t -50° C(so that both re a c ta n ts  w ere liq u id >before the 

accum ulated  hydrogen was rem oved . When hydrogen evolution from  the 

th ird  portion  slow ed tthe m ix tu re  was ca refu lly  w arm ed to room  

te m p era tu re  and s t i r r e d  fo r 15m inutes to com plete the re a c tio n . The 

hydrogen was m easu red  an d rem o v ed > and the o ther vo la tile  m a te r ia ls f 

ex cess  alum inium  hydroborate and diborane^ w ere d is tilled  off> 

se p a ra te d  at - 120°  C and weighed and es tim ated  by volum e re sp e c tiv e ly . 

The product w as a white so lid .

T h eo re tica l r e c o v e ry  A1(BH4>3 0 .4 3  g

A ctual rec o v e ry  A1(BH4>3 0 .4 2  g

A nalysis: Found. A ctive H 7 .6 2%

A1 26.1%

Expected for MeSAl(BH4 )2 Active H 7.77%

A1 26.0%

P reparation  of th to  ethyl alum inium  bis (hydroborate)

2A1(BH4 )3 + 2C2H5SH ---------> 2C2H5SA1(BH4 )2 F B ^  +  2H2

A lum inium  hydrobora te  (0.51 g ( 7.1 m m ol) was condensed a t the bottom
3

of a 100 cm  round bottom flask  and ethane thiol (0.23 g ( 3 .7  m m ol) was

condensedat -196° Cabove the alum inium  hydrobora te . T he flask was
o ow arm ed to -60 C at which tem p era tu re  the ethane thiol (m .p . -121 C)
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ra n  down on to th e ju s t liquid alum inium  hyd robo ra te  (m .p . -64 C ). 

Hydrogen evolution was observed  and when th is c e a se d (a fte r  two h o u rs , 

the reac tio n  f la sk  was w arm ed to room  te m p era tu re  to en su re  full 

re a c tio n , then frozen to rem ove hydrogen and then w arm ed to d is til 

off alum inium  hydroborate and diborane as  p rev iously  d escrib ed .

The p ro d u ct was a v irtu a lly  co lo u rless  o il.

A naly s is: Found 'A ctive H 6 . 68% A1 23.0%

Expected  fo r C 2H5SA1(BH4 ) : A ctiveH  6.81%  A1 22.90%

P rep ara tio n  of thiobenzyl alum inium  bis (h y d ro b o ra te)

2A1(BH ) .+  2C .H  CH SH 4 3 6 5 l 2C6H5CH2SA1(BH4>2 + 2H2 + B2H6

0 .5  m l, i . e .  0 .5 3 g , 4 .3  m m ol, of toluene - a - thiol was placed at the
3

bottom  of a 100 cm round bottom flask  In the glove box. Aluminium 

h y d ro b o ra te , 0 .6  g , 8 .4 m m o l, was condensed on at -196° C . The liquid 

n itrogen  was rem oved  and rep laced  by a bath a t -60° C . The Initial 

rea c tio n  was rap id ,bu t a s  th is  slowed the m ix tu re  was allowed to w arm  

to room  te m p e ra tu re . On rem o v ln g all the vo la tile  p roducts by pumping , 

a white so lid  rem a in ed .

Found: A ctiveH  4.48%  A1 15.0%

E j e c t e d  fo r C6 H5CH2SA1(BH4 )2 A c tiv eH  4.51%  A1 15.0%

R eaction of alum inium  hydroborate with 2 -m ethyl p ropane-2 -th io l 

P ossib le rea c tio n  :-

2A1(BH )_ + 2 BuSH 4 3
2BuSAl(BH4 )2 + 2H2 + B 2H6

2-m ethyl p ro p a n e -2 -th io l, (0 .353  g , 3 .9 2  m m ol), was condensed into a
3

'100 cm  round  bottom flask , and alum inium  h y d ro b o ra te ,(0 .4 8 8  g , 6 .8 2

m m ol), w as condensed above It a t -196° C . T he com ponents w ere  allowed

to re a c t a t -60° C in itially , and the g a se s  lib e ra ted  w ere  analysed.

L ess  than the th e o re tic a l quantity of hydrogen p red ic ted  by the above

equation w as found,along with som e d iborane and isobutane (c a . 2 m m ol)

Identified by its vapour p re s s u re  and in f ra - re d  spectrum , which w ere

com pared  w ith an authentic sam p le . A white solid  resid u e  rem ained .

A nalysis: A ctiveH  5.43%  A1 37.7%

Expected fo r C.H„SA1(BH ) .  A ctiveH  5.55%  A1 18.5%• 4 9 4 2
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R eaction between alum inium  hydrobora te  and te trahydro th iophene 

Aluminium h y d robo ra te  (0 .52 g f 7 .3  m m ol) was condensed with a 

s lig h t ex cess  of te trahydro th iophene (0.695 g t 7 .9  m m o l)  a t -196° C.

The com ponents w ere  allow ed to w arm  to room  te m p e ra tu re  for 15 

m inutes and then ex c ess  vo la tile  m a te r ia l was pumped aw ay . The 

product was an involatile  o il and the s im ila rity  of the in f ra - re d  

sp ec tru m  of the o il to th a t of o the r 1 :1 adducts of a lum inium  hy d ro ­

bo rate  with Lewis b ases  would indicate th is being a 1:1 adduct.

I . r .  o fo il 2470 2420 2130 c m ’ 1

I . r .  of A1(BH4 ) .SM e2 2460 2410 2115 c m " 1

R eaction of alum inium  hyd robo ra te  with cyclohexanol

T h is was c a r r ie d  out in a s im ila r  m anner to above > using cyclohexa.iol 

( 0 .4 5 g  d ried  ov er MgSO^ and d is t i l le d )  with ex cess  alum inium  h y d ro ­

borate  (0 .44 g ) .  Hydrogen and diborane only w ere o b se rv e d a s  the 

g aseo u s p ro d u c ts . T he re s id u e  was a white so lid .

A nalysis A ctive H 5.03%  A1 18.2%

E j e c t e d  for C6 H11OAl(BH4 )2 A ctiveH  5.18%  A1 17.3%

R eaction of alum inium  te trah y d ro b o r a te  with Anisyl a lcoho l (p-m  ethoxy 

benzyl a lco h o l), benzhydrol (diphenyl m ethano l) and t-bu tano l (2 -m ethyl 

propan -2 -ol)

T h ese  w ere  m o re  quantitat ive reac tio n s  which w e re  c a r r ie d  out in the 

a lread y  d esc rib ed  m an n er on approxim ately  the sa m e  sc a le , using excess 

alum inium  hy d ro b o ra te  in each c a s e .

In the f ir s t  two c a s e s ,  shaking the so lid  re s id u e  w ith  deu tera ted  benzene 

and taking a proton n . m . r .  spec trum  showed the fo rm a tio n  of p-m ethoxy 

toluene and diphenyl m ethane( identified re sp e c tiv e ly  by the position  of 

the toluene m ethyl and com parison  with the sp e c tru m  of authentic 

diphenyl m ethane . As fo r  the reac tio n w ith  2 -m e th y l-p ro p an e -2 -th lo l, 

thep roduc t w ith t-b u tan o l w as identified in the g aseo u s  phase as  i s o ­

butane.

The yield of th e se  p roducts was es tim ated  to be about 50%.
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P rep ara tio n  of methoxy alum inium  b ts  (h y d ro b o ra te)

(M eO )3B + 3A1(BH4 )3 3MeOAl(BH )„ + 2B H
4 z  z  O

T rim ethoxyborane ( 0 .2 g ( 1.92 m m o l m easu red  by vo lum e) and

alum inium  hydroborate (0 . 8g f 11.2  m m ol) w ere  condensed toge ther at 
o

-196 C . T he reac tan ts  w ere  s t i r r e d  a t  room  te m p era tu re  fo r  se v e ra l 

h o u rs  until the p re s su re  due to d ib o ran e  form ation  was ob se rv ed  to 

c e a s e .  E xcess alum inium  hy d ro b o ra te  and d iborane w ere rem oved  by 

pum ping to leave a white solid re s id u e .

A nalysis Active H 8.96%  A 130.2%

Expected for CH3OAl(BH4 )2 H 9.19%  A1 30. 8%

P repara tion  of ethoxy alum inium  bis (hydroborate)

Aluminium hydroborate (0.67 g ( 9 .3 0  m m o l) and trie thoxyborane 

( 0 .2 3 g ( 1.55 m m ol) w ere  condensed together a t -196° C . As above( 

the rea c ta n ts  w ere s t i r re d  at room  te m p e ra tu re  fo r 36 h o u rs . V olatile 

p roducts and excess alum inium  hyd robo ra te  w ere  then rem oved  by pumping 

a t 0°  C and a white solid which had been com pletely  soluble in the excess 

alum inium  hydroborate was ob ta ined .

A nalysis Active H 7 .77%  A1 26.1%

Expected for C 2H5OAl(BH4)2 A ctive H 7.93%  A1 26.5%

M olecular weight determ ination of ethoxy alum inium  bis (h y d ro b o ra te ) 

by a freezing  point depression  m ethod

The m o lecu lar weight was c a r r ie d  out under a blanket of n itrogen  .using 

the apparatus shown. The solvent u se d  was benzene which had been tw ice 

refluxed  and d istilled  from  lithium  hyd roalum inate . The ap p ara tu s  was 

ca lib ra ted  using a solution of naphthalene in benzene p r io r  to  u s e . ( F ig - 5 .3 » )
3

Naphthalene 0.1198 g in 43.95 g  (50 cm ) of benzene

EtOAl(BH4 )2

AT 0 .110“

0.02684 g in 2 1 .9 7 5 g  (25 cm '*) of benzene

AT 0 .031°
(T)ol. lOb
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F ig . 5 .3 b  F lask  with n .m  . r .  tube s id e -a rm

s id e -a rm

K ------  co n s tric tio n
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R eactlons fo r C hapter 3 

G enera l

Most of th e se  re a c tio n s  w ere c a r r ie d  out on the vacuum line

m easu rin g  re la tiv e  m o la r am ounts by th e ir  p r e s s u r e  in a bulb of

known volum e. I . e . a 2:1 m ix tu re  was p rep a re d  by m ixing the amount

of one com ponent that p roduced a p re s s u re  of f sayt 100 m m  with the

am ount that p roduced a -p re s su re  of 200 mm of the o ther com ponent.

A com m only used ap p a ra tu s  in these  reac tio n s  was a flask  with

an n . m . r .  tube attached  to a side a rm  such th a t the m ix tu re  could»
be poured  into the tube w ithout the need for d is tilla tio n  which m ight 

u p se t the liquid eq u ilib r ia . See d ia g ra m ( F : g \  5 .3 b ^

R eaction  of te tra e th y l d iborane with tr ie th y l alane

T e tra e th y l d iborane m ade from  the action of tr ie th y l borane^ ( l .1 g , 

8 .04  m m o l^o n  d ibo rane^(2 .6  mmol)> was re a c te d  with tr ie th y l alane 

(O .SSg, 2 .9  m m ol) at room  te m p era tu re  fo r four d ay s . The m ix tu re  

w as d is tille d  a t 0° C.

The v o la tile  p roducts Identified by th e ir  g a s  phase In fra -re d  

sp e c tra  w ere  p r im a rily  tr le th y l borane (which had not been p re se n t when 

the tr ie th y l a lane w as added )t and tra c e s  of ethy l alum inium  bis 

(h y d robo ra te) and d ib o ran e .

The non -vo latile  p ro d u cts  identified by the in f ra - re d  spec tro scopy  

of the liquid phase  showed som e ex cess  tr le th y l alane (bands at 660 cm  1 

and 620 cm "* )and  bands w hiehhave been assigned  to the compound a lso  

giving the peak at-6 ppm in  the * ^ B n .m .r .

Suggested r e a c tio n :-

3Et4B2H2 + EtgAl -> Al(BH2E t2 )3 + 3BEt3

R eactions fo r C hap ter 4

P repara tion  of alum inium  o ctahyd ro tribo ra te  b is (h y d ro b o ra te )

T h is m ethod is s im ila r  to the red is trib u tio n  reac tio n s  tha t Oddy 

showed w ere  app licab le to the p rep a ra tio n  of alkyl alum inium  hy d ro ­

b o ra te s .
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D im ethyl alum inium  o c ta h y d ro tr ib o ra te ^ O .33 gt 3 .3 6 m m o l) f was

condensed with alum inium  hyd robo ra te  (1 .04  g ( 14.6 m m o l) at -196° C.

The com ponents w ere allowed to w arm  to 0 °  C and to stand a t 0° C for

30 m in u tes . A la rg e  ex cess  of alum inium  h yd robora te  w as used  a s  th is

would then m ax im ise  the chance of the rea c tio n  p roceeding  in the

d irec tion  of the a rro w  shown andno t re v e rs in g  o r  stopping at an

In term ed ia te  m ethyl alum inium  h y d robo ra te  octahydrobora te

MeAl(BH^ )(BgHg) s ta g e . The m ix tu re  w as then d is t i l le d a t  0° C through

tra p s  a t -75° C f -95° C which is low enough to trap  m ethy l alum inium

bis (hydroborate ) but not alum inium  h y d robo ra te  and finally  -196° C . 
oThe con ten ts of the -75 C tra p  w ere  r e tr e a te d  with f re sh  alum inium  

hyd robo ra te  (0 .67 g )  and tre a te d  s im ila r ly ( as  above> before a th ird  

trea tm e n t with a fu rth e r  portion  of alum inium  hydrobora te  (0.63 g ) .  

A fter a f in a l d istilla tion  the product w as found to h av e a  vapour p re s s u re  

at 0° C o f 4 mm Hg.

A nalysis A ctive H

F o r (BH4 )2AlB3Hg

16.54%

16.60%  Sam ple equivalent 15.94 
H ydrolysable hydrogens

No m ethane was detected  In the co llec ted  hydrogen. T he alum inium  

an a ly sis  would not be helpful in this c a se  a s  the d iffe rence  between the 

figu res  fo r M e2AlB3Hg( MeAl(BH4>(B3Hg ) and (BH4)2A1B3H 8 would be 

to o c lo se to  the experim en ta l e r r o r  of the m ethod. T he alum inium  figure 

was not d e term ined .

R eaction of d im ethyl alum inium  o c tah y d ro trib o ra te  w ith d iborane 

P ossib le reac tio n

3Me2AlB3Hg + 4B2H6 3(BH4 )2AlB3H g + 2BMeg

D im ethyl alum inium  o c tah y d ro tr ib o ra te  (0.1 84 g t 1 .88  m m ol) was 

re a c te d  with the co rrespond ing  am oun to f d iborane, accord ing  to the 

equation ,for 8 hou rs a t room  te m p e ra tu re . The m ix tu re  was d is tilled  at 

-78° C through tra p s  a t -130° C and -196° C . 1, 1 -d im ethyl d iborane 

co llec ted  in the -130°C  tra p  (identified by Its in f ra - re d  sp e c tru m ).

F re sh  d iboranc w as condensed into the m a te r ia l re ta in ed  a t -78° C and 

rea c te d  fo r a fu rth e r  period  a t room  te m p e ra tu re . T he on lyproducts that 

could be iso la ted  from  the m ix tu re  w ere  m ethyl d ib o ran es, d iborane and 

alum inium  h yd robo ra te . A sm a ll am ount o f solid  re s id u e  w as not identified .
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1
R eaction  of d im ethyl alum inium  o c tah y d ro trlb o ra te  with d iethyl e th er 

D im ethyl a lu m in iu m o c ta h y d ro trib o ra te  (0 .1 2 g , 1 .2  m m ol) was 

condensed with ex c ess  d ie thy l e th e r  and the m ix tu re  allowed to w arm  

to room  te m p e ra tu re  fo r  15 m in u tes . The excess e th e r  was pumped 

away to  leave an o il.

A nalysis: A ctive H/CH 3.37%

Expected fo r  (CH3 )2AlB3 Hg[0 (C 2H5 )2 ] A ctive H /C H 4 5.87%

R eaction of dim ethyl alum inium  o c tah y d ro tr ib o ra te  with tr im e th y l am ine 

D im ethyl alum in ium  o c tah y d ro trib o ra te  (0.19 g , 1 .94 m m o l) was
3

disso lved  in 10cm  of pen tane . T rim e th y l am ine ( 0 .1 0 g , 1 .7  m m ol) 

was then condensed on a t -196° C . T h em ix tu re  w as allow ed tow arm  

to -20° C o v er a p e rio d  of 30 m inu tes with continuous s t i r r in g .  The 

m ix tu re  w as then reco o led  to -50° C and  the v o la tile  com ponents pumped 

aw ay. T h e re  w as an o ily  re s id u e  which could not be identified .

R eaction  of alum inium  hyd robora te  with alane tr im e th y l am ine

E x cess  alum inium  hyd robora te  ( 0 .9 3 g , 13 .0  m m ol) w as condensed 

bn to  a lan e  tr im e th y l am ine ( 0 .4 g ,  4 .49  m m ol) and the m ix tu re  was 

s t i r r e d  at 0° C . A w hite solid w as p rec ip ita ted  which w as sub jected  to 

an in f ra - re d  sp e c tru m , a f te r  rem o v a l of ex cess  alum inium  hydrobora te . 

T h is  w as then c a re fu lly  sublim ed whence a white su b lim ate> Identified 

as  alum inium  hy d ro b o ra te  tr lm e th y l am ine by its in f ra - re d  sp ec tru m , 

was ob ta ined .

P rep ara tio n  of alum in ium  h y d robo ra te  and tr im e th y l alane e th e ra te s

T h ese  w ere  p re p a re d  by adding ex cess  diethyl e th e r  to  the corresponding  

alum inium  com pound, s ti r r in g  atO  C fo r 15 m inu tes, and then rem oving 

the e x c ess  e th e r .  T h e  com pounds,Identified sp ec tro sco p ica lly , w ereu sed  

w ithout additional p u rifica tio n .
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